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On the total variation Wasserstein gradient
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Abstract

We study the JKO scheme for the total variation, characterize the
optimizers, prove some of their qualitative properties (in particular a
sort of maximum principle and the regularity of level sets). We study
in detail the case of step functions. Finally, in dimension one, we
establish convergence as the time step goes to zero to a solution of a
fourth-order nonlinear evolution equation.

Keywords: total variation, Wasserstein gradient flows, JKO scheme,
fourth-order evolution equations.
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1 Introduction

Variational schemes based on total variation are extremely popular in image
processing for denoising purposes, in particular the seminal work of Rudin,
Osher and Fatemi [27] has been extremely influential and is still the ob-
ject of an intense stream of research, see [10] and the references therein.
Continuous-time counterparts are well-known to be related to the L2 gradi-
ent flow of the total variation, see Bellettini, Casselles and Novaga [4] and
the mean-curvature flow, see Evans and Spruck [15]. The gradient flow of the
total variation for other Hilbertian structures may be natural as well and in
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particular the H−1 case, leads to a singular fourth-order evolution equation
studied by Giga and Giga [16], Giga, Kuroda and Matsuoka [17]. In the
present work, we consider another metric, namely the Wasserstein one.

Given an open subset Ω of Rd and ρ ∈ L1(Ω), recall that the total varia-
tion of ρ is given by

J(ρ) := sup
{∫

Ω

div(z)ρ : z ∈ C1
c (Ω), ‖z‖L∞ ≤ 1

}
(1.1)

and BV(Ω) is by definition the subspace of L1(Ω) consisting of those ρ’s in
L1(Ω) such that J(ρ) is finite. The following fourth-order nonlinear evolution
equation

∂tρ+ div
(
ρ ∇div

( ∇ρ
|∇ρ|

))
= 0, on (0, T )× Ω, ρ|t=0 = ρ0, (1.2)

supplemented by the zero-flux boundary condition

ρ∇div
( ∇ρ
|∇ρ|

)
· ν = 0 on ∂Ω (1.3)

has been proposed in [7] for the purpose of denoising image densities. Nu-
merical schemes for approximating the solutions of this equation have been
investigated in [7, 14, 5]. One should of course interpret the nonlinear term
div( ∇ρ|∇ρ|) as the negative of an element of the subdifferential of J at ρ.

At least formally, when ρ0 is a probability density on Ω, (1.2)-(1.3) can
be viewed as the Wasserstein gradient flow of J (we refer to the textbooks of
Ambrosio, Gigli, Savaré [2] and Santambrogio [28], for a detailed exposition).
Following the seminal work of Jordan, Kinderlehrer and Otto [18] for the
Fokker-Planck equation, it is reasonable to expect that solutions of (1.2) can
be obtained, at the limit τ → 0+, of the JKO Euler implicit scheme:

ρτ0 = ρ0, ρ
τ
k+1 ∈ argmin

{ 1

2τ
W 2

2 (ρτk, ρ) + J(ρ), ρ ∈ BV(Ω) ∩ P2(Ω)
}

(1.4)

where P2(Ω) is the space of Borel probability measures Ω with finite second
moment and W2 is the quadratic Wasserstein distance:

W 2
2 (ρ0, ρ1) := inf

γ∈Π(ρ0,ρ1)

{∫
Rd×Rd

|x− y|2dγ(x, y)
}
, (1.5)

Π(ρ0, ρ1) denoting the set of transport plans between ρ0 and ρ1 i.e. the set of
probability measures on Rd × Rd having ρ0 and ρ1 as marginals. Our aim is
to study in detail the discrete TV-JKO scheme (1.4) as well as its connection
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with (suitable weak solutions) of the PDE (1.2). Although the assertion that
(1.2) is the TV Wasserstein gradient flow is central to the numerical schemes
described in [7, 14, 5], there has been so far, to the best of our knowledge,
no theoretical justification of this fact.

Fourth-order equations which are Wasserstein gradient flows of function-
als involving the gradient of ρ, such as the Dirichlet energy or the Fisher
information, have been studied by McCann, Matthes and Savaré [24] who
found a new method the flow interchange technique to prove higher-order
compactness estimates, we refer to [19] for a recent reference on this topic.
The total variation is however too singular for such arguments to be directly
applicable, as far as we know.

The paper is organized as follows. In section 2, we start with the discus-
sion of a few examples. Section 3 is devoted to some properties of solutions
of JKO steps and in particular a maximum principle based on a result of
[12]. Section 4 establishes optimality conditions for JKO steps thanks to an
entropic regularization scheme. Section 5 discusses regularity properties of
the boundaries of the level sets of JKO solutions. In section 6, we address in
detail the case of step functions in dimension one. Finally, in section 7, we
prove convergence of the JKO scheme, as τ → 0+, in the case of a strictly
positive and bounded initial condition on a bounded interval of the real line.

2 Some examples

We first recall the Kantorovich dual formulation of W 2
2 :

1

2
W 2

2 (µ0, µ1) = sup
{∫

Rd
ψdµ0 +

∫
Rd
ϕdµ1 : ψ(x)+ϕ(y) ≤ |x− y|

2

2

}
(2.1)

an optimal pair (ψ, ϕ) for this problem is called a pair of Kantorovich po-
tentials. The existence of Kantorovich potentials is well-known and such
potentials can be taken to be conjugates of each other, i.e. such that

ϕ(x) = inf
y∈Rd
{1

2
|x− y|2 − ψ(y)}, ψ(y) = inf

x∈Rd
{1

2
|x− y|2 − ϕ(x)},

which implies that ϕ and ψ are semi-concave (more precisely 1
2
|.|2 − ϕ is

convex). If µ1 is absolutely continuous with respect to the d-dimensional
Lebesgue measure, ϕ is differentiable µ1 a.e. and the map T = id − ∇ϕ is
the gradient of a convex function pushing forward µ1 to µ0 which is in fact
the optimal transport between µ0 and µ1 thanks to Brenier’s theorem [6]. In
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such a case, we will simply refer to ϕ as a Kantorovich potential between µ1

and µ0. We refer the reader to [30] and [28] for details.

In this section, we will consider some explicit examples which rely on the
following sufficient optimality condition (details for a rigorous derivation of
the Euler-Lagrange equation for JKO steps will be given in section 4) in the
case of the whole space i.e. Ω = Rd.

Lemma 2.1. Let ρ0 ∈ P2(Rd), τ > 0 and Ω = Rd (so J is the total variaton
on the whole space), if ρ1 ∈ BV(Rd) ∩ P2(Rd) is such that

ϕ

τ
+ div(z) ≥ 0, with equality ρ1-a.e. (2.2)

where ϕ is a Kantorovich potential between ρ1 and ρ0 and z ∈ C1(Rd), with
‖z‖L∞ ≤ 1, div(z) ∈ Ld, and

J(ρ1) =

∫
Rd

div(z)ρ1. (2.3)

Then, setting

Φτ,ρ0(ρ) :=
1

2τ
W 2

2 (ρ0, ρ) + J(ρ), ∀ρ ∈ BV(Rd) ∩ P2(Rd) (2.4)

one has
Φτ,ρ0(ρ1) ≤ Φτ,ρ0(ρ), ∀ρ ∈ BV(Rd) ∩ P2(Rd).

Proof. For all ρ ∈ BV(Rd)∩P2(Rd), J(ρ) ≥
∫
Rd div(z)ρ = J(ρ1)+

∫
Rd div(z)(ρ−

ρ1), and it follows from the Kantorovich duality formula that

1

2τ
W 2

2 (ρ0, ρ) ≥ 1

2τ
W 2

2 (ρ0, ρ1) +

∫
Rd

ϕ

τ
(ρ− ρ1).

The claim then directly follows from (2.2).

2.1 The case of a characteristic function

A simple illustration of Lemma 2.1 in dimension 1 concerns the case of a
uniform ρ0, (here and in the sequel we shall denote by χA the characteristic
function of the set A):

ρ0 = ρα0 , α0 > 0, ρα :=
1

2α
χ[−α,α].

It is natural to make the ansatz that the minimizer of Φτ,ρ0 defined by (2.4)
remains of the form ρ1 = ρα1 for some α1 > α0. The optimal transport
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between ρα1 and ρ0 being the linear map T = α0

α1
id, a direct computation

gives

Φτ,ρ0(ρα1) =
1

α1

+
1

6τ
(α1 − α0)2

which is minimal when α1 is the only root in (α0,+∞) of

α2
1(α1 − α0) = 3τ. (2.5)

To check that this is the correct guess, we shall check that the conditions of
Lemma 2.1 are met. First define the Kantorovich potential

ϕ(x) =
1

2α1

(α1 − α0)x2 − 3τ

2α1

and z1 by

τz1(x) := −(α1 − α0)

6α1

x3 +
3τx

2α1

, x ∈ [−α1, α1]

extended by 1 on [1,+∞) and −1 on (−∞,−1). Then −1 ≤ z1 ≤ 1 (use
the fact that it is odd and nondecreasing on [0, α1] thanks to (2.5)), also
z′1(±α1) = 0 so that z1 ∈ C1(R) and z1(α1) = 1, z1(−α1) = −1 hence J(ρ1) =
−
∫
R z1Dρ1 =

∫
R z
′
1ρ1 (here and in the sequel Dρ1 denotes the Radon measure

which is the distributional derivative of the BV function ρ1). Moreover τz′1 +
ϕ ≥ 0 with an equality on [−α1, α1]. The optimality of ρ1 = ρα1 then directly
follows from Lemma 2.1.

Of course, the argument can be iterated so as to obtain the full TV-JKO
sequence:

ρτk+1 = argmin Φτ,ρτk
=
(ατk+1

ατk
id
)

#
ρτk =

(ατk+1

α0

id
)

#
ρ0

where ατk is defined inductively by

(ατk+1 − ατk)(ατk+1)2 = 3τ, ατ0 = α0

which is nothing but the implicit Euler discretization of the ODE

α′α2 = 3, α(0) = α0,

whose solution is α(t) = (α3
0 + 9t)

1
3 . Extending ρτk in a piecewise constant

way: ρτ (t) = ρτk+1 for t ∈ (kτ, (k + 1)τ ], it is not difficult to check that ρτ

converges (in L∞((0, T ), (P2(R),W2)) and in Lp((0, T )×R) for any p ∈ (1,∞)

and any T > 0) to ρ given by ρ(t, .) = (α(t)
α0

id)#ρ0. Since v(t, x) = α′(t)
α(t)

x is the

velocity field associated to X(t, x) = α(t)
α0
x, ρ solves the continuity equation

∂tρ+ (ρv)x = 0.
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In addition, ρv = −ρzxx where

z(t, x) =
−α′(t)
6α(t)

x3 +
3x

2α(t)
, x ∈ [−α(t), α(t)],

extended by 1 (respectively −1) on [α(t),+∞) (respectively (−∞,−α(t)]).
The function z is C1, ‖z‖L∞ ≤ 1 and z · Dρ = −|Dρ| (in the sense of
measures). In other words the limit ρ of ρτ satisfies

∂tρ− (ρzxx)x = 0

with |z| ≤ 1 and z ·Dρ = −|Dρ| which is the natural weak form of (1.2).

2.2 Instantaneaous creation of discontinuities

We now consider the case where ρ0(x) = (1 − |x|)+ and will show that the
JKO scheme instantaneously creates a discontinuity at the level of ρ1, the
minimizer of Φτ,ρ0 when τ is small enough. We indeed look for ρ1 in the form:

ρ1(x) =

{
1− β/2 if |x| < β,

(1− |x|)+ if |x| ≥ β,

for some well-chosen β ∈ (0, 1). The optimal transport map T between such
a ρ1 and ρ0 is odd and given explicitly by

T (x) =

{
1−

√
1− x(2− β) if x ∈ [0, β),

x if x ≥ β.

The Kantorovich potential which vanishes at β (extended in an even way
to R−) is then given by

ϕ(x) =

{
x2

2
− x− (1−x(2−β))3/2

3(1−β/2)
+ C if x ∈ [0, β),

0 if x > β,

where

C = −β
2

2
+ β +

2(1− β)3

3(2− β)
.

Let us now integrate τz′ = −ϕ on [0, β] with initial condition z(0) = 0, i.e.
for x ∈ [0, β]

τz(x) =− x3

6
+
x2

2
− 4

15(2− β)2
[1− (1− 2β)x]

5
2

+
(β2

2
− β − 2(1− β)3

3(2− β)

)
x+

4

15(2− β)2

6



1β0-β-1

1

Figure 1: The probablity density functions ρ0 and ρ1 from section 2.2

Note that z is nondecreasing on [0, β] (because ϕ(0) < 0, ϕ(β) = 0 and ϕ is
convex on [0, β] so that ϕ ≤ 0 on [0, β]), our aim now is to find β ∈ (0, 1) in
such a way that z(β) = 1 i.e. replacing in the previous formula

τ =
β3

3
− β2

2
+

4(1− (1− β)5)

15(2− β)2
− 2(1− β)3β

3(2− β)

the right hand-side is a continuous function of β ∈ [0, 1] taking value 0 for
β = 0 and 1

10
for β = 1, hence as soon as 10τ < 1 one may find a β ∈ (0, 1)

such that indeed z(β) = 1. Extend then z by 1 on [β,+∞) and to R− in
an odd way. We then have built a function z which is C1 (ϕ(β) = 0), such
that |z| ≤ 1, z ·Dρ1 = −|Dρ1| and such that z′ + ϕ

τ
= 0. Thanks to Lemma

2.1, we conclude that ρ1 is optimal. This example shows that discontinuities
may appear at the very first iteration of the TV-JKO scheme.

3 Maximum principle for JKO steps

Throughout this section, we assume that Ω is a convex open bounded subset
of Rd and denote Pac(Ω) the set of Borel probability measures on Ω that are
absolutely continuous with respect to the Lebesgue measure (and will use
the same notation for µ ∈ Pac(Ω) both for the measure µ and its density).
Given ρ0 ∈ Pac(Ω) and τ > 0, we consider one step of the TV-JKO scheme:

inf
ρ∈Pac(Ω)

{ 1

2τ
W 2

2 (ρ0, ρ) + J(ρ)
}
. (3.1)

It is easy by the direct method of the calculus of variations to see that (3.1)
has at least one solution, moreover J being convex and ρ 7→ W 2

2 (ρ, ρ0) being
strictly convex whenever ρ0 ∈ Pac(Ω) (see [28]), the minimizer is in fact
unique, and in the sequel we denote it by ρ1.
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3.1 Preliminaries

Our aim is to deduce some bounds on ρ1 from bounds on ρ0. To do so, we shall
combine some convexity arguments and a remarkable BV estimate due to De
Philippis et al. [12]. First we recall the notion of generalized geodesic from
Ambrosio, Gigli and Savaré [2]. Given µ, µ0 and µ1 in Pac(Ω), and denoting
by T0 (respectively T1) the optimal transport (Brenier) map between µ and
µ0 (respectively µ1), the generalized geodesic with base µ joining µ0 to µ1 is
by definition the curve of measures:

µt := ((1− t)T0 + tT1)#µ, t ∈ [0, 1]. (3.2)

A key property of these curves introduced in [2] is the strong convexity of
the squared distance estimate:

W 2
2 (µ, µt) ≤ (1− t)W 2

2 (µ, µ0) + tW 2
2 (µ, µ1)− t(1− t)W 2

2 (µ0, µ1). (3.3)

It is well-known that if G : R+ → R ∪ {+∞} is a proper convex lower semi-
continuous (l.s.c.) internal energy density, bounded from below such that
G(0) = 0 and which satisfies McCann’s condition (see [25])

λ ∈ R+ → λdG(λ−d) is convex nonincreasing (3.4)

then defining the generalized geodesic curve (µt)t∈[0,1] by (3.2), one has∫
Ω

G(µt(x))dx ≤ (1− t)
∫

Ω

G(µ0(x))dx+ t

∫
Ω

G(µ1(x))dx. (3.5)

In particular Lp and uniform bounds are stable along generalized geodesics:

‖µt‖pLp ≤ (1− t)‖µ0‖pLp + t‖µ0‖pLp , ‖µt‖L∞ ≤ max(‖µ0‖L∞ , ‖µ1‖L∞), (3.6)

and∫
Ω

µt(x) log(µt(x))dx ≤ (1−t)
∫

Ω

µ0(x) log(µ0(x))dx+t

∫
Ω

µ1(x) log(µ1(x))dx

(3.7)
An immediate consequence of (3.3) (see chapter 4 of [2] for general con-

traction estimates) is the following

Lemma 3.1. Let K be a nonempty subset of Pac(Ω), let µ0 ∈ K, µ1 ∈
Pac(Ω), if µ̂1 ∈ argminµ∈KW

2
2 (µ1, µ) and if the generalized geodesic with base

µ1 joining µ0 to µ̂1 remains in K then

W 2
2 (µ0, µ̂1) ≤ W 2

2 (µ0, µ1)−W 2
2 (µ1, µ̂1). (3.8)
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Proof. Since µt ∈ K we have W 2
2 (µ1, µ̂1) ≤ W 2

2 (µ1, µt), applying (3.3) to the
generalized geodesics with base µ1 joining µ0 to µ̂1 we thus get

(1− t)W 2
2 (µ1, µ̂1) ≤ (1− t)W 2

2 (µ1, µ0)− t(1− t)W 2
2 (µ0, µ̂1),

dividing by (1− t) and then taking t = 1 therefore gives the desired result.

The other result we shall use to derive bounds is a BV estimate of De
Philippis et al. [12], which states that given µ,∈ Pac(Ω) ∩ BV(Ω), and G :
R+ → R ∪ {+∞}, proper convex l.s.c., the solution of

inf
ρ∈Pac(Ω)

{1

2
W 2

2 (µ, ρ) +

∫
Ω

G(ρ(x))dx
}

(3.9)

is BV with the bound
J(ρ) ≤ J(µ). (3.10)

Taking in particular,

G(ρ) :=

{
0 if ρ ≤M,

+∞ otherwise,

this implies that the Wasserstein projection of µ onto the set defined by the
constraint ρ ≤M has a smaller total variation than µ.

3.2 Maximum and minimum principles

Theorem 3.2. Let ρ0 ∈ Pac(Ω) ∩ L∞(Ω) and let ρ1 be the solution of (3.1),
then ρ1 ∈ L∞(Ω) with

‖ρ1‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω). (3.11)

Proof. Thanks to (3.6) the setK := {ρ ∈ Pac(Ω)∩Lp(Ω) : ρ ≤ ‖ρ0‖L∞(Ω) a.e.}
has the property that the generalized geodesics (with any base) joining two
of its points remains in K. Let then ρ̂1 be the W2 projection of ρ1 onto
K i.e. the solution of infρ∈KW

2
2 (ρ1, ρ). Thanks to Lemma 3.1 we have

W 2
2 (ρ0, ρ̂1) ≤ W 2

2 (ρ0, ρ1) − W 2
2 (ρ1, ρ̂1) and thanks to Theorem 1.1 of [12],

J(ρ̂1) ≤ J(ρ1). The optimality of ρ1 for (3.1) therefore implies W2(ρ1, ρ̂1) = 0
i.e. ρ1 ≤ ‖ρ0‖L∞(Ω).
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Remark 3.3. In section 4, we shall use an approximation of (3.1) with an
additional small entropy term, the same bound as in Theorem 3.2 will remain
valid in this case. Indeed, consider a proper convex l.s.c. and bounded from
below internal energy density G and consider given h ≥ 0, the variant of
(3.1)

inf
ρ∈Pac(Ω)

{ 1

2τ
W 2

2 (ρ0, ρ) + J(ρ) + h

∫
Ω

G(ρ(x))dx
}
. (3.12)

Then we claim that the solution ρh still satisfies ρh ≤ ‖ρ0‖L∞(Ω). Indeed we
have seen in the previous proof that the Wasserstein projection ρ̂h of ρh onto
the constraint ρ ≤ ‖ρ0‖L∞(Ω) both diminishes J and the Wasserstein distance
to ρ0. It turns out that it also diminishes the internal energy. Indeed,
thanks to Proposition 5.2 of [12], there is a measurable set A such that
ρ̂h = χAρh + χΩ\A‖ρ0‖L∞ , it thus follows that |Ω \ A|‖ρ0‖L∞ =

∫
Ω\A ρh. So,

from the convexity of G and Jensen’s inequality,∫
G(ρ̂h) =

∫
A

G(ρh) + |Ω \ A|G
(
|Ω \ A|−1

∫
Ω\A

ρh

)
≤
∫
G(ρh),

thus yielding the same conclusion as above.

In dimension one, it turns out that we can similarly obtain bounds from
below:

Proposition 3.4. Assume that d = 1, that Ω is a bounded interval and that
ρ0 ≥ α > 0 a.e. on Ω then the solution ρ1 of (3.1) also satifies ρ1 ≥ α > 0
a.e. on Ω.

Proof. The proof is similar to that of Theorem 3.2 but using the Wasserstein
projection on the set K := {ρ ∈ Pac(Ω) : ρ ≥ α}, the only thing to check
to be able to use Lemma 3.1 is that for any basepoint µ and any µ0 and µ1

in K, the generalized geodesic with base point µ joining µ0 to µ1 remains in
K. The optimal transport maps T0 and T1 from µ to µ0 and µ1 respectively
are nondecreasing and continuous and setting Tt := (1− t)T0 + tT1, one has

µ = µt(Tt)T
′
t = µ0(T0)T ′0 = µ1T

′
1 = (1− t)µ0(T0)T ′0 + tµ1(T1)T ′1 ≥ αT ′t

which is easily seen to imply that µt ≥ α a.e..

4 Euler-Lagrange equation for JKO steps

The aim of this section is to establish optimality conditions for (3.1). Despite
the fact that it is a convex minimization problem, it involves two nonsmooth

10



terms J and W 2
2 (ρ0, .), so some care should be taken of to justify rigorously

the arguments. In the next section, we introduce an entropic regularization
approximation, the advantage of this strategy is that the minimizer will be
positive everywhere, giving some differentiability of the transport term.

4.1 Entropic approximation

In this whole section we assume that Ω is an open bounded connected subset
of Rd with Lipschitz boundary and that ρ0 ∈ Pac(Ω). Given h > 0 we
consider the following approximation of (3.1):

inf
ρ∈P(Ω)

{
Fh(ρ) :=

1

2τ
W 2

2 (ρ0, ρ) + J(ρ) + hE(ρ)
}

(4.1)

where

E(ρ) :=

∫
Ω

ρ(x) log(ρ(x))dx.

It is easy to see that (4.1) admits a unique solution ρh and since J(ρh) is
bounded, up to a subsequence of vanishing h’s, one may assume that ρh
converges as h → 0 a.e. and strongly in Lp(Ω) for every p ∈ [1, d

d−1
) to ρ1

the solution of (3.1).
We first have a bound from below on ρh:

Lemma 4.1. There is an αh > 0 such that ρh ≥ αh a.e..

Proof. Assume on the contrary that |ρ ≤ α| > 0 for every α > 0. For small
ε ∈ (0, 1) set µε,h := max((1 −

√
ε)ρh + ε, ρh) that is (1 −

√
ε)ρh + ε on

Aε,h := {ρh ≤
√
ε) and ρh elsewhere. Define

cε,h :=

∫
Ω

(µε,h − ρh)

and observe that cε,h ≤ ε|Ω| ≤
√
ε|Ω|. Now chose Mh > 0 such that Vh :=

{ρh > Mh} has positive Lebesgue measure and finite perimeter (recall that
ρh is BV) and chose ε small enough so that

√
ε ≤ Mh|Vh|

2|Ω|
. (4.2)

Note that (4.2) implies that cε,h ≤ 1
2
Mh|Vh| and Mh >

√
ε (so that Aε,h and

Vh are disjoint). Finally, define

ρε,h := µε,h − cε,h
χVh
|Vh|

.

By construction ρε,h ∈ P(Ω) hence 0 ≤ Fh(ρε,h) − Fh(ρh), in this difference
we have four terms, namely
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• the Wasserstein term, which, using the Kantorovich duality formula
(2.1) and the fact that Ω is bounded can be estimated in terms of
‖ρε,h − ρh‖L1 = 2cε,h:

1

2τ
W 2

2 (ρε,h, ρ)− 1

2τ
W 2

2 (ρh, ρ) ≤ C

τ
cε,h. (4.3)

for a constant C that depends on Ω but neither on ε nor h,

• the TV term: J(ρε,h) − J(ρh): outside Vh we have replaced ρh by a
1-Lipschitz function of ρh which decreases the TV semi-norm, on Vh on
the contrary we have created a jump of magnitude cε,h/|Vh| so

J(ρε,h)− J(ρh) ≤ cε,h
Per(Vh)

|Vh|
(4.4)

where Per(Vh) = J(χVh) denotes the perimeter of Vh (in Ω),

• the entropy variation on Aε,h, on this set both ρε,h and ρh are less than√
ε so that (1 + log(t)) ≤ (1 + log(

√
ε)) whenever t ∈ [ρh, ρε,h] which

by the mean value theorem yields∫
Aε,h

(ρε,h log(ρε,h)− ρh log(ρh)) ≤ (1 + log(
√
ε))cε,h (4.5)

• the entropy variation on Vh, but on Vh, if ρε,h ≥ 1
e

then (ρε,h log(ρε,h)−
ρh log(ρh)) ≤ 0, we then observe that the remaining set Vh ∩ {ρε,h ≤
1
e
} ⊂ {ρh ≤ 1

e
+ Mh

2
} so that both ρε,h and ρh are bounded away from

0 and infinity on this set so remain in an interval where t log(t) is
Lipschitz with Lipschitz constant at most

Ch(Mh) := max
{
|1 + log(t)| :

Mh

2
≤ t ≤ 1

e
+
Mh

2

}
, (4.6)

we thus have∫
Vh

(ρε,h log(ρε,h)− ρh log(ρh)) ≤ Ch(Mh)cε,h. (4.7)

Putting together (4.3)-(4.4)-(4.5)-(4.7), we arrive at

0 ≤
(C
τ

+
Per(Vh)

|Vh|
+ hCh(Mh) + h log(

√
ε) + h

)
cε,h

12



which for small enough ε is possible only when cε,h = 0 i.e. |Aε,h| = 0. More
precisely, either we have the lower bound:

h log(ρh) ≥ −
C

τ
− hCh(Mh)−

Per(Vh)

|Vh|
− h (4.8)

or (4.2) is impossible i.e.

ρh ≥
Mh|Vh|

2|Ω|
. (4.9)

We actually also have uniform bounds with respect to h:

Lemma 4.2. The family θh := −h log(ρh) is (up to a subsequence) uniformly
bounded from above. Moreover, θh is bounded in Lp(Ω) for any p > 1.

Proof. In view of (4.6), (4.8) and (4.9), it is enough to show that we can find
a family Mh, bounded and bounded away from 0, such that setting Vh :=
{ρh > Mh}, |Vh| remains bounded away from 0, and Per(Vh) is uniformly
bounded from above as h→ 0. First note that, since J(ρh) is bounded, there
exists ρ such that ρh → ρ in L1 and a.e. up to a subsequence, note also
that ρ ∈ BV and ρ is a probability density. Setting F h

t := {ρh > t} and
Ft := {ρ > t}, it is easy to deduce from Fatou’s Lemma that when s > t,
lim infh |F h

t | ≥ |Fs|, hence choosing 0 < β1 < β2 < β so that |Fβ| > 0 we
have that there exists h0 > 0 and c1 > 0 such that for all t ∈ [β1, β2]

c1 ≤ |F h
t | ≤ |Ω|

whenever 0 < h < h0. Also, since J(ρh) ≤ C, by the co-area formula∫ β2

β1

Per(F h
t )dt ≤ J(ρh) ≤ C.

So, there exists th ∈ [β1, β2] such that Per(F h
th

) ≤ C/(β2 − β1). Therefore, it
suffices to choose Mh = th and Vh = F h

th
.

We may assume that ρh ≤ φ for some φ ∈ L1, then by Dominated con-
vergence and since log(max(φ, 1)) ∈ Lp(Ω) for every p > 1, we have that
log(max(ρh, 1)) converges a.e. and in Lp, in particular this implies that
max(0,−θh) converges to 0 strongly in Lp(Ω), and we have just seen that
max(0, θh) is bounded in L∞(Ω).
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Let us also recall some well-known facts (see [9]) about the total variation
functional J viewed as a convex l.s.c. and one-homogeneous functional on

L
d
d−1 (Ω). Define

Γd :=
{
ξ ∈ Ld(Ω) : ∃z ∈ L∞(Ω,Rd), ‖z‖L∞ ≤ 1, div(z) = ξ, z·ν = 0 on ∂Ω

}
(4.10)

where div(z) = ξ, z · ν = 0 on ∂Ω are to be understood in the weak sense∫
Ω

ξu = −
∫

Ω

z · ∇u, ∀u ∈ C1(Ω).

Note that Γd is closed and convex in Ld(Ω) and J is its support function:

J(µ) = sup
ξ∈Γd

∫
Ω

ξµ, ∀µ ∈ L
d
d−1 (Ω). (4.11)

As for the Wasserstein term, recalling Kantorovich dual formulation (2.1),
the derivative of the Wasserstein term ρ 7→ W 2

2 (ρ0, ρ) term will be expressed
in terms of a Kantorovich potential between ρ and ρ0.

We then have the following characterization for ρh:

Proposition 4.3. There exists zh ∈ L∞(Ω,Rd) such that div(zh) ∈ Lp(Ω)
for every p ∈ [1,+∞), ‖zh‖L∞ ≤ 1, zh · ν = 0 on ∂Ω, J(ρh) =

∫
Ω

div(zh)ρh
and

ϕh
τ

+ div(zh) + h log(ρh) = 0, a.e. in Ω (4.12)

where ϕh is the Kantorovich potential between ρh and ρ0.

Proof. Let µ ∈ L∞(Ω) ∩ BV(Ω) such that
∫

Ω
µ = 0. Thanks to Lemma 4.1,

we know that ρh is bounded away from 0 hence for small enough t > 0, ρh+tµ
is positive hence a probability density. Also, as a consequence of Theorem
1.52 in [28], we have that

lim
t→0+

1

2t
[W 2

2 (ρ0, ρh + tµ)−W 2
2 (ρ0, ρh)] =

∫
Ω

ϕhµ (4.13)

where ϕh is the (unique up to an additive constant) Kantorovich potential
between ρh and ρ0, in particular ϕh is Lipschitz and semi concave (D2ϕh ≤ id
in the sense of measures and id −∇ϕh is the optimal transport between ρh
and ρ1). By the optimality of ρh and the fact that J is a semi-norm, we get

J(µ) ≥ J(ρh + µ)− J(ρh) ≥ lim
t→0+

t−1(J(ρh + tµ)− J(ρh)) ≥
∫

Ω

ξhµ, (4.14)
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where
ξh := −ϕh

τ
− h log(ρh).

Since ϕh is defined up to an additive constant, we may chose it in such a
way that ξh has zero mean, doing so, (4.14) holds for any µ ∈ L∞(Ω) ∩
BV(Ω) (not necessarily with zero mean). Being Lipschitz, ϕh is bounded,
also observe that h(log(ρh))+ = h log(max(1, ρh)) is in Lp(Ω) for every p ∈
[1,+∞) since ρh ∈ L

d
d−1 (Ω) and h log(ρh)− = −h log(min(1, ρh)) is L∞(Ω)

thanks to Lemma 4.1, hence we have ξh ∈ Lp(Ω) for every p ∈ [1,+∞).
By approximation and observing that ξh ∈ Ld(Ω), (4.14) extends to all

µ ∈ L
d
d−1 (Ω). In particular, we have

sup
ξ∈Γd

∫
Ω

ξµ ≥
∫

Ω

ξhµ

but since Γd is convex and closed in Ld(Ω), it follows from Hahn-Banach’s
separation theorem that ξh ∈ Γd. Finally, getting back to (4.14) (without
the zero mean restriction on µ) and taking µ = −ρh gives J(ρh) ≤

∫
Ω
ξhρh,

and we then deduce that this should be an equality.

4.2 Euler-Lagrange equation

We are now in position to rigorously establish the Euler-Lagrange equation
for (3.1):

Theorem 4.4. If ρ1 solves (3.1), there exists ϕ a Kantorovich potential
between ρ0 and ρ1 (in particular id−∇ϕ is the optimal transport between ρ1

and ρ0), β ∈ L∞(Ω), β ≥ 0 and z ∈ L∞(Ω,Rd) such that

ϕ

τ
+ div(z) = β, z · ν = 0 on ∂Ω, (4.15)

and

βρ1 = 0, ‖z‖L∞ ≤ 1, J(ρ1) =

∫
Ω

div(z)ρ1. (4.16)

Proof. As in section 4.1, we denote by ρh the solution of the entropic approxi-
mation (4.1). Up to passing to a subsequence (not explicitly written), we may
assume that ρh converges a.e. and strongly in Lp(Ω) (for any p ∈ [1, d

d−1
)) to

ρ1. We then rewrite the Euler-Lagrange equation from Proposition 4.3 as

ϕh
τ

+ div(zh) + β+
h = β−h , (4.17)
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where β+
h := h log(max(ρh, 1)), β−h := −h log(min(ρh, 1)), and

‖zh‖L∞ ≤ 1, zh · ν = 0 on ∂Ω and J(ρh) =

∫
Ω

div(zh)ρh. (4.18)

It is easy to see that β+
h converges to 0 strongly in any Lq, q ∈ [1,+∞) and it

follows from Lemma 4.2 that β−h is bounded in L∞. Up to subsequences, we
may therefore assume that zh and β−h weakly-∗ converge in L∞ respectively
to some z and β with ‖z‖L∞ ≤ 1, z · ν = 0 on ∂Ω and β ≥ 0. As for ϕh, it is
an equi-Lipschitz family and

∫
Ω
ϕh = τ

∫
Ω

(β−h −β
+
h ) which remains bounded,

hence we may assume that ϕh converges uniformly to some potential ϕ and
it is well-known (see [28]) that ϕ is a Kantorovich potential between ρ1 and
ρ0. Letting h tends to 0 gives (4.15).

Since ρh converges strongly in L1 to ρ1 and β−h converges weakly-∗ to β
in L∞ we have∫

Ω

ρ1β = lim
h

∫
Ω

ρhβ
−
h = lim

h
h

∫
Ω

ρh| log(min(1, ρh))| = 0,

hence βρ1 = 0. Thanks to (4.11), we obviously have J(ρ1) ≥
∫

Ω
div(z)ρ1, for

the converse inequality, it is enough to observe that

J(ρ1) ≤ lim inf
h

J(ρh) = lim inf
h

∫
Ω

div(zh)ρh

and that div(zh) = −ϕh
τ
−β+

h +β−h converges to div(z) weakly in Lq for every
q ∈ [1,+∞). Since ρh converges strongly to ρ1 in Lq when q ∈ [1, d

d−1
) we

deduce that J(ρ1) =
∫

Ω
div(z)ρ1 which completes the proof of (4.16).

Remark 4.5. It is not difficult (since (3.1) is a convex problem) to check that
(4.15)-(4.16) are also sufficient optimality conditions. The main point here
is that the right hand side β in (4.15) which is a multiplier associated with
the nonnegativity constraint is better than a measure, it is actually an L∞

function.

In dimension 1, we can integrate the Euler-Lagrange equation and then
deduce higher regularity for the dual variable z:

Corollary 4.6. Assume that d = 1 and Ω is a bounded interval. If ρ1 solves
(3.1) and z is as in Theorem 4.4 then z ∈ W 1,∞

0 (Ω). If in addition ρ0 ≥ α > 0
a.e. on Ω, then z ∈ W 3,∞(Ω).
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Proof. The first claim is obvious because both ϕ and β are bounded hence
so is z′. As for the second one when ρ0 ≥ α > 0, thanks to Proposition 3.4,
we also have ρ1 ≥ α hence β = 0 in (4.15) and in this case div(z) = z′ = −ϕ

τ

is Lipschitz i.e. z ∈ W 2,∞. One can actually go one step further because
x − ϕ′(x) = T (x) where T is the optimal (monotone) transport between ρ1

and ρ0. This map is explicit in terms of the cumulative distribution function
of ρ1, F1, and F−1

0 the inverse of F0, the cumulative distribution function of
ρ0, namely T = F−1

0 ◦ F1. But F1 is Lipschitz since its derivative is ρ1 which
is BV hence bounded and F−1

0 is Lipschitz as well since ρ0 ≥ α > 0. This
gives that ϕ ∈ W 2,∞ hence z ∈ W 3,∞.

5 Regularity of level sets

We discuss in this section how the fact that div(z) ∈ L∞ in Theorem 4.4
allows for conclusions about the regularity of the level sets of ρ1, the solution
of (3.1). A first consequence of the high integrability of div(z) is that one
can give a meaning to z ·∇u for any u ∈ BV(Ω). Indeed, following Anzellotti
[3], if u ∈ BV(Ω) and σ ∈ L∞(Ω,Rd) is such that div(σ) ∈ Ld(Ω), one can
define the distribution σ ·Du by

〈σ ·Du, v〉 = −
∫

Ω

div(σ) uv −
∫

Ω

u σ · ∇v, ∀v ∈ C1
c (Ω).

Then σ · Du is a Radon measure which satisfies |σ · Du| ≤ ‖σ‖L∞|Du| (in
the sense of measures) hence is absolutely continuous with respect to |Du|.
Moreover one can also define a weak notion of normal trace of σ, σ · ν ∈
L∞(∂Ω) such that the following integration by parts formula holds∫

Ω

σ ·Du = −
∫

Ω

div(σ)u+

∫
∂Ω

u(σ · ν).

We refer to [3] for proofs. These considerations of course apply to σ = z and
u = ρ1 ∈ BV(Ω) and in particular enable one to see z ·Dρ1 as a measure and
to interpret the optimality condition J(ρ1) =

∫
Ω

div(z)ρ1 as |Dρ1| = −z ·Dρ1

in the sense of measures.

It now follows from Proposition 3.3 of [10], that every (not only almost
every) level set Ft = {ρ1 > t} with t > 0 satisfies

Per(Ft) =

∫
Ft

div(z) and Ft ∈ argmin
G⊂Ω

{
Per(G)−

∫
G

div(z)
}
. (5.1)

This means that −div(z) is the variational mean curvature of Ft. Indeed,
recall, following Gonzalez and Massari [21], that a set of finite perimeter
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E ⊂ Ω ⊂ Rd is said to have variational mean curvature g ∈ L1(Ω) precisely
when E minimizes

min
F⊂Ω

Per(F ) +

∫
F

g. (5.2)

Regularity of sets with an Lp variational mean curvature, in connection with
the so-called quasi-minimizers of the perimeter has been extensively studied,
see Tamanini [29], Massari [22, 23], Theorem 3.6 of [21] and Maggi’s book [20].
It follows from the results of [29] that if E has variational mean curvature
g ∈ Lp(Ω) with p ∈ (d,+∞], then its reduced boundary (see [1]) ∂∗E is a

(d− 1)-dimensional manifold of class C1, p−d
2p and Hs((∂E \ ∂∗E)∩Ω) = 0 for

all s > d− 8. We thus deduce from Theorem 4.4:

Theorem 5.1. If ρ1 solves (3.1), then for every t > 0, the level set Ft =

{ρ1 > t} has the property that its reduced boundary, ∂∗Ft is a C1, 1
2 hypersur-

face and (∂Ft \ ∂∗Ft) ∩ Ω has Hausdorff dimension less than d− 8.

Finally, the question of whether one can assign a pointwise geometric
meaning to z · DχE was addressed by Chambolle, Goldman and Novaga in
[11]. In dimensions d = 2 and d = 3, it is indeed proved in [11] that if
g = −div(z) ∈ Ld(Ω) and E minimizes (5.2), then any point x ∈ ∂∗E is a
Lebesgue point of z and z(x) = νE(x) where νE is the unit outward normal
to ∂∗E.

6 The case of step functions

As another illustration of the results of section 4, we have the following result
concerning step-functions in dimension one:

Theorem 6.1. Let d = 1, Ω = (a, b) and ρ0 be a step function with at most
N-discontinuities i.e.:

ρ0 :=
N∑
j=0

αjχ[aj , aj+1), a0 = a < a1 · · · < aN < aN+1 = b, (6.1)

then the solution ρ1 of (3.1) is also a step function with at most N disconti-
nuities.

Proof. Step 1: reduction to the positive case We first claim that we may
reduce ourselves to the case where ρ0 ≥ α > 0 (so that ρ1 ≥ α > 0 as well by
virtue of Proposition 3.4). Indeed, assume that the statement of Theorem
6.1 holds under the additional assumption that α := min(α0, · · · , αN) > 0.
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Then, setting for every integer n ≥ 1, ρn0 := 1
n

+ (1− 1
n
)ρ0, the corresponding

solution of (3.1), ρn1 will also be a step function with at most N disconti-
nuities. It is clear that up to a subsequence, ρn1 converges strongly in L1 as
n → ∞ and a.e. to ρ1 which thus also has to be a step function with at
most N discontinuities. We therefore assume from now on that ρ0 and ρ1 are
everywhere positive.

Step 2 : ρ1 is a jump function. Thanks to Theorem 4.4 and Corollary
4.6, there is a z ∈ W 3,∞ such that z(a) = z(b) = 0, |z| ≤ 1 and a Kantorovich
potential ϕ such that

z′ +
ϕ

τ
= 0, ϕ′(x) = x− T (x), (6.2)

where T is the optimal (monotone nondecreasing) transport between ρ1 and
ρ0:

F0 ◦ T = F1, F0(x) :=

∫ x

a

ρ0, F1(x) :=

∫ x

a

ρ1, (6.3)

(note that T is a bi-Lipschitz homeomorphism) and

J(ρ1) =

∫ b

a

z′ρ1 = −
∫ b

a

z ·Dρ1 = |Dρ1|(a, b)

where Dρ1 is the (signed measure) distributional derivative of ρ1. Observe
also that from (6.2) points at which z′′ vanish are fixed points of T .

We then perform a Hahn-Jordan decomposition of Dρ1:

Dρ1 = µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, µ+ ⊥ µ−, (6.4)

and set

A := spt(|Dρ1|) = A+ ∪ A− with A+ := spt(µ+), A− := spt(µ−). (6.5)

Next, noting that |Dρ1| = µ+ + µ− = −z(µ+ − µ−), we deduce that z = −1
µ+-a.e and since z is continuous we should have z = −1 on A+ = spt(µ+).
In a similar way, z = 1 on A− := spt(µ−), it implies in particular that the
compact sets A+ and A− are disjoint so that the distance between A+ and
A− is positive. Note also that since z is C2, minimal on A+ and maximal on
A− we have (also see [10] for a similar discussion):

z′ = 0 on A, z′′ ≥ 0 hence T ≥ id on A+, and z′′ ≤ 0 hence T ≤ id on A−.
(6.6)

Since z′ = 0 on A, it follows from Rolle’s Theorem that if a < x < y < b with
x, y ∈ A × A, there exists c ∈ (x, y) such that z′′(c) = 0 i.e. T (c) = c. In
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particular T = id on the set of limit points of A. We now further decompose
µ± in its purely atomic and nonatomic parts:

µ± =
∑
x∈J±

µ±({x})δx + µ̃±, (6.7)

where J± is the (finite or countable) set of atoms of µ± and µ̃± has no atom.
Our aim is to show that the sets

Ã± := spt(µ̃±), (6.8)

are empty. Assume on the contrary that Ã+ 6= ∅, then since all points of Ã+

are limit points of A+, T = id on Ã+. In particular this implies that

χÃ+ρ1 = T#(χÃ+ρ1) = χT (Ã+)T#ρ1 = χÃ+ρ0,

i.e. ρ0 = ρ1 on Ã+. Now if x ∈ Ã+ \ {a0, · · · aN+1}, we may find δ > 0 such
that ρ0 is constant on [x− δ, x+ δ] and [x− δ, x+ δ] ∩A− = ∅, so that ρ1 is
nondecreasing on [x− δ, x+ δ]. Define then

x1 := inf Ã+ ∩ [x− δ, x+ δ], x2 := sup Ã+ ∩ [x− δ, x+ δ],

since both x1 and x2 lie in Ã+ and Dρ1 = µ+ ≥ µ̃+ on [x− δ, x+ δ] we have

ρ1(x2)− ρ1(x1) = ρ0(x2)− ρ0(x1) = 0 ≥ µ̃+([x1, x2]) = µ̃+([x− δ, x+ δ])

which contradicts x ∈ Ã+. This proves that µ+ (and µ− likewise) are purely
atomic (i.e. ρ1 is a jump function in the terminology of [1]):

Dρ1 =
∑
x∈J+

µ+({x})δx −
∑
x∈J−

µ−({x})δx.

Step 3: the jump sets J+ and J− are finite. Recall from the previ-
ous step that A+ = J+ and A− = J− are disjoint sets. In particular, there
cannot be points which are both limit points of J+ and J−. We argue by
contradiction that J+ is a finite set (a similar argument can be applied for
J−). Suppose that J+ is not finite so that for some x ∈ J+, every neigh-
bourhood of x contains an element of J+. Then, there exists x1 ∈ J+ with
x1 6= x (x1 > x say) such that [x, x1] ∩ J− = ∅ (which implies that F1 is
convex on [x, x1]). If x2 ∈ (x, x1)∩ J+, then we know from the previous step
that T (x2) ≥ x2 and there exist c1 ∈ (x, x2) and c2 ∈ (x2, x1) which are fixed
points of T .
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We then have

F1(x2)− F1(c1) = F0(T (x2))− F0(c1) ≥ F0(x2)− F0(c1)

and similarly

F1(c2)− F1(x2) = F0(c2)− F0(T (x2)) ≤ F0(c2)− F0(x2)

but since ρ1 has an upward jump at x2 we have

F1(x2)− F1(c1)

x2 − c1

<
F1(c2)− F1(x2)

c2 − x2

hence
F0(x2)− F0(c1)

x2 − c1

<
F0(c2)− F0(c1)

c2 − x2

implying that ρ0 has a discontinuity point in [c1, c2] hence in [x, x1], since
there are only finitely many such points this shows that J+ is finite.

Step 4: ρ1 has no more than N jumps. We know from the previous
steps that ρ1 can be written as

ρ1 =
K∑
k=0

βkχ[bk,bk+1), b0 = a < b1 · · · < bK < bK+1 = b, βk 6= βk+1

If βk+1 > βk arguing exactly as in the previous step, we find two fixed-points
of T , ck ∈ (bk, bk + 1) and ck+1 ∈ (bk+1, bk+2) such that ρ0 has a discontinuity
in (ck, ck+1), the case of a downward jump βk > βk+1 can be treated similarly
(using T (bk+1) ≤ bk+1 in this case). This shows that ρ0 has at least K jumps
so that N ≥ K.

7 Convergence of the TV-JKO scheme in di-

mension one

We are now interested in the convergence of the TV-JKO scheme to a solution
of the fourth-order nonlinear equation (1.2) in dimension 1, as the time step
τ goes to 0. Throughout this section, we assume that Ω = (0, 1) and that
the initial condition ρ0 satisfies

ρ0 ∈ Pac((0, 1)) ∩BV ((0, 1)), ρ0 ≥ α > 0 a.e. on (0, 1). (7.1)

21



We fix a time horizon T , and for small τ > 0, define the sequence ρτk by

ρτ0 = ρ0, ρ
τ
k+1 ∈ argmin

{ 1

2τ
W 2

2 (ρτk, ρ) + J(ρ), ρ ∈ BV ∩ Pac((0, 1))
}

(7.2)

for k = 0, . . . Nτ with Nτ := [T
τ

]. Thanks to Proposition 3.4, (7.1) ensures
that the JKO-iterates ρτk defined by (7.2) also remain bounded from below by
α. We also extend this discrete sequence by piecewise constant interpolation
i.e.

ρτ (t, x) = ρτk+1(x), t ∈ (kτ, (k + 1)τ ], k = 0, . . . Nτ , x ∈ (0, 1). (7.3)

We shall see that ρτ converges to a solution ρ of

∂tρ+
(
ρ
( ρx
|ρx|

)
xx

)
x

= 0, (t, x) ∈ (0, T )× (0, 1), ρ|t=0 = ρ0, (7.4)

with the no-flux boundary condition

ρ
( ρx
|ρx|

)
xx

= 0, on (0, T )× {0, 1}. (7.5)

Since ρ is no more than BV in x, one has to be slightly cautious in the meaning
of ρx
|ρx| which be conveniently done by interpreting this term as the negative

of a suitable z in the subdifferential of J (in the L2 sense for instance):

z ∈ H1
0 ((0, 1)), ‖z‖L∞ ≤ 1 and J(ρ) =

∫ 1

0

zxρ. (7.6)

This leads to the following definition

Definition 7.1. A weak solution of (7.4)-(7.1) is a ρ ∈ L∞((0, T ),BV((0, 1)))∩
C0((0, T ), (P ,W2)) such that there exists z ∈ L∞((0, T )×(0, 1))∩L2((0, T ), H2∩
H1

0 ((0, 1))) with

‖z(t, .)‖L∞ ≤ 1 and J(ρ(t, .)) =

∫ 1

0

zx(t, x)ρ(x)dx, for a.e. t ∈ (0, T ),

(7.7)
and ρ is a weak solution of

∂tρ− (ρzxx)x = 0, ρ|t=0 = ρ0, ρzxx = 0 on (0, T )× {0, 1}. (7.8)

i.e. for every u ∈ C1
c ([0, T )× [0, 1])∫ T

0

∫ 1

0

(∂tu ρ− (ρzxx)ux)dxdt = −
∫ 1

0

u(0, x)ρ0(x)dx.
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We then have

Theorem 7.2. If ρ0 satisfies (7.1), there exists a vanishing sequence of time
steps τn → 0 such that the sequence ρτn constructed by (7.2)-(7.3) converges
strongly in Lp((0, T )×(0, 1)) for any p ∈ [1,+∞) and in C0((0, T ), (P([0, 1]),W2))
to ρ ∈ L∞((0, T ),BV((0, 1))) ∩C0((0, T ), (P([0, 1]),W2)), a weak solution of
(7.4)-(7.1).

Proof. First, ρ0 being BV it is bounded on (0, 1) which gives uniform bounds
on ρτ thanks to Theorem 3.2, moreover we know from (7.1) and Proposition
3.4 that we also have a uniform bound from below

M := ‖ρ0‖L∞ ≥ ρτ (t, x) ≥ α, t ∈ [0, T ], a.e. x ∈ [0, 1]. (7.9)

Moreover by construction of the TV-JKO scheme (7.2), one has

1

2τ

Nτ∑
k=0

W 2
2 (ρτk, ρ

τ
k+1) ≤ J(ρ0), sup

t∈[0,T ]

J(ρτ (t, .)) ≤ J(ρ0) (7.10)

By using an Aubin-Lions type compactness Theorem of Savaré and Rossi
(Theorem 2 in [26]), the fact that the imbedding of BV((0, 1)) into Lp((0, 1))
is compact for every p ∈ [1,+∞) as well as a refinement of Arzèla-Ascoli
Theorem (Proposition 3.3.1 in [2]), one obtains (see section 4 of [13] or section
5 of [8] for details) that, up to taking suitable sequence of vanishing times
steps τn → 0, we may assume that

ρτ → ρ a.e. in (0, T )× (0, 1) and in Lp((0, T )× (0, 1)), ∀p ∈ [1,+∞)
(7.11)

and
sup
t∈[0,T ]

W2(ρτ (t, .), ρ(t, .))→ 0 as τ → 0, (7.12)

for some limit curve ρ ∈ C0, 1
2 ((0, T ), (P([0, 1]),W2)) ∩ Lp((0, T ) × (0, 1)).

From (7.9) and (7.10), one also deduces ρ ∈ L∞((0, T ),BV((0, 1)) and from
(7.9) M ≥ ρ ≥ α.

We deduce from the fact that ρτk ≥ α > 0 and Theorem 4.4 that for each
k = 0, . . . , Nτ , there exists zτk ∈ W 2,∞((0, 1)) such that

‖zτk‖L∞ ≤ 1, zτk(0) = zτk(1) = 0, J(ρτk) =

∫ 1

0

(zτk)xρ
τ
k, (7.13)

and the optimal (backward) optimal transport T τk+1 from ρτk+1 to ρτk is related
to zτk+1 by

id− T τk+1 = −τ(zτk+1)xx. (7.14)
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We extend zτk in a piecewise constant way i.e. set

zτ (t, x) = zτk+1(x), t ∈ (kτ, (k + 1)τ ], k = 0, . . . , Nτ , x ∈ (0, 1). (7.15)

We then observe that

W 2
2 (ρτk, ρ

τ
k+1) =

∫ 1

0

(x− T τk+1(x))2ρτk+1(x)dx

= τ 2

∫ 1

0

(zτk+1)2
xxρ

τ
k+1(x)dx

≥ ατ 2

∫ 1

0

(zτk+1)2
xxdx

Thanks to (7.10) we thus get an L2((0, T ), H2((0, 1)) bound

‖zτ‖L2((0,T ),H2((0,1))) ≤ C. (7.16)

We may therefore assume (up to further suitable extractions) that there is
some z ∈ L∞((0, T ) × (0, 1)) ∩ L2((0, T ), H2((0, 1))) such that zτ converges
weakly ∗ in L∞((0, T ) × (0, 1)) and weakly in L2((0, T ), H2((0, 1))) to z.
Of course ‖z‖L∞ ≤ 1 and z ∈ L2((0, T ), H1

0 ((0, 1)). Note also that ρτzτxx
converges weakly to ρzxx in L1((0, T )× (0, 1)).

The limiting equation can now be derived using standard computations
(see the proof of Theorem 5.1 of the seminal work [18], or chapter 8 of [28]):
Let u ∈ C1

c ([0, T )× [0, 1]) and observe that∫ T

0

∫ 1

0

∂tu ρ
τdxdt =

Nτ∑
k=1

(∫ 1

0

u(kτ, x)(ρτk(x)− ρτk+1(x))dx

)
−
∫ 1

0

u(0, x)ρτ1(x)dx.

Recalling that ρτk = T τk+1#
ρτk+1, and applying Taylor’s theorem, we have

Nτ∑
k=1

(∫ 1

0

u(kτ, x)(ρτk(x)− ρτk+1(x))dx

)

=
Nτ∑
k=1

(∫ 1

0

((T τk+1(x)− x)ux(kτ, x) + R̃τ (x))ρτk+1dx

)

=
Nτ∑
k=1

(∫ 1

0

(τ(zτk+1)xxux(kτ, x) + R̃τ (x))ρτk+1dx

)
,

where |R̃τ (x)| ≤ C‖uxx(kτ, ·)‖L∞|T τk+1(x) − x|2. Note also that for t ∈
(kτ, (k + 1)τ ], |ux(kτ, ·)− ux(t, ·)| ≤ τ‖uxt‖L∞ . Therefore,∫ T

0

∫ 1

0

(∂tu ρ
τ − ρτzτxxux)dxdt = −

∫ 1

0

u(0, x)ρτ1(x)dx+Rτ (u) (7.17)
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with

|Rτ (u)| ≤ C max{‖uxx‖L∞ , ‖uxt‖L∞}
Nτ∑
k=0

W 2
2 (ρτk, ρ

τ
k+1) ≤ Cτ. (7.18)

Passing to the limit τ to 0 in (7.17) yields that ρ is a weak solution to

∂tρ− (ρzxx)x = 0, ρ|t=0 = ρ0, ρzxx = 0 on (0, T )× {0, 1}.

It remains to prove that J(ρ(t, .)) =
∫ 1

0
zx(t, x)ρ(x)dx, for a.e. t ∈ (0, T ). The

inequality J(ρ(t, .)) ≥
∫ 1

0
zx(t, x)ρ(x)dx is obvious since z(t, .) ∈ H1

0 ((0, 1))
and ‖z(t, .)‖L∞ ≤ 1. To prove the converse inequality, we use Fatou’s Lemma,
the lower semi-continuity of J , (7.13) and the weak-convergence in L1((0, T )×
(0, 1)) of zτxρ

τ to zxρ:∫ T

0

J(ρ(t, .))dt ≤
∫ 1

0

lim inf
τ

J(ρτ (t, .))dt

≤ lim inf
τ

∫ 1

0

J(ρτ (t, .))dt

= lim inf
τ

∫ T

0

∫ 1

0

zτx(t, x)ρτ (t, x)dxdt

=

∫ T

0

∫ 1

0

zx(t, x)ρ(t, x)dxdt

which concludes the proof.
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and compactness for evolution problems in Banach spaces. Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze, 2(2):395–431, 2003.

[27] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total
variation based noise removal algorithms. Phys. D, 60(1-4):259–268,
1992. Experimental mathematics: computational issues in nonlinear
science (Los Alamos, NM, 1991).

[28] Filippo Santambrogio. Optimal transport for applied mathematicians,
volume 87 of Progress in Nonlinear Differential Equations and their Ap-
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