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We study the JKO scheme for the total variation, characterize the optimizers, prove some of their qualitative properties (in particular a sort of maximum principle and the regularity of level sets). We study in detail the case of step functions. Finally, in dimension one, we establish convergence as the time step goes to zero to a solution of a fourth-order nonlinear evolution equation.

Introduction

Variational schemes based on total variation are extremely popular in image processing for denoising purposes, in particular the seminal work of Rudin, Osher and Fatemi [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] has been extremely influential and is still the object of an intense stream of research, see [START_REF] Chambolle | Geometric properties of solutions to the total variation denoising problem[END_REF] and the references therein. Continuous-time counterparts are well-known to be related to the L 2 gradient flow of the total variation, see Bellettini, Casselles and Novaga [START_REF] Bellettini | The total variation flow in R n[END_REF] and the mean-curvature flow, see Evans and Spruck [START_REF] Evans | Motion of level sets by mean curvature[END_REF]. The gradient flow of the total variation for other Hilbertian structures may be natural as well and in particular the H -1 case, leads to a singular fourth-order evolution equation studied by Giga and Giga [START_REF] Giga | Very singular diffusion equations: second and fourth order problems[END_REF], Giga, Kuroda and Matsuoka [START_REF] Giga | Fourth-order total variation flow with Dirichlet condition: characterization of evolution and extinction time estimates[END_REF]. In the present work, we consider another metric, namely the Wasserstein one.

Given an open subset Ω of R d and ρ ∈ L 1 (Ω), recall that the total variation of ρ is given by

J(ρ) := sup Ω div(z)ρ : z ∈ C 1 c (Ω), z L ∞ ≤ 1 (1.1)
and BV(Ω) is by definition the subspace of L 1 (Ω) consisting of those ρ's in L 1 (Ω) such that J(ρ) is finite. The following fourth-order nonlinear evolution equation

∂ t ρ + div ρ ∇div ∇ρ |∇ρ| = 0, on (0, T ) × Ω, ρ | t=0 = ρ 0 , (1.2) 
supplemented by the zero-flux boundary condition

ρ∇div ∇ρ |∇ρ| • ν = 0 on ∂Ω (1.3) 
has been proposed in [START_REF] Burger | Regularized regression and density estimation based on optimal transport[END_REF] for the purpose of denoising image densities. Numerical schemes for approximating the solutions of this equation have been investigated in [START_REF] Burger | Regularized regression and density estimation based on optimal transport[END_REF][START_REF] Düring | A high-contrast fourthorder pde from imaging: numerical solution by ADI splitting[END_REF][START_REF] Benning | A primal-dual approach for a total variation Wasserstein flow[END_REF]. One should of course interpret the nonlinear term div( ∇ρ |∇ρ| ) as the negative of an element of the subdifferential of J at ρ. At least formally, when ρ 0 is a probability density on Ω, (1.2)-(1.3) can be viewed as the Wasserstein gradient flow of J (we refer to the textbooks of Ambrosio, Gigli, Savaré [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF] and Santambrogio [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], for a detailed exposition). Following the seminal work of Jordan, Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] for the Fokker-Planck equation, it is reasonable to expect that solutions of (1.2) can be obtained, at the limit τ → 0 + , of the JKO Euler implicit scheme:

ρ τ 0 = ρ 0 , ρ τ k+1 ∈ argmin 1 2τ W 2 2 (ρ τ k , ρ) + J(ρ), ρ ∈ BV(Ω) ∩ P 2 (Ω) (1.4)
where P 2 (Ω) is the space of Borel probability measures Ω with finite second moment and W 2 is the quadratic Wasserstein distance:

W 2 2 (ρ 0 , ρ 1 ) := inf γ∈Π(ρ 0 ,ρ 1 ) R d ×R d |x -y| 2 dγ(x, y) , (1.5) 
Π(ρ 0 , ρ 1 ) denoting the set of transport plans between ρ 0 and ρ 1 i.e. the set of probability measures on R d × R d having ρ 0 and ρ 1 as marginals. Our aim is to study in detail the discrete TV-JKO scheme (1.4) as well as its connection with (suitable weak solutions) of the PDE (1.2). Although the assertion that (1.2) is the TV Wasserstein gradient flow is central to the numerical schemes described in [START_REF] Burger | Regularized regression and density estimation based on optimal transport[END_REF][START_REF] Düring | A high-contrast fourthorder pde from imaging: numerical solution by ADI splitting[END_REF][START_REF] Benning | A primal-dual approach for a total variation Wasserstein flow[END_REF], there has been so far, to the best of our knowledge, no theoretical justification of this fact. Fourth-order equations which are Wasserstein gradient flows of functionals involving the gradient of ρ, such as the Dirichlet energy or the Fisher information, have been studied by McCann, Matthes and Savaré [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF] who found a new method the flow interchange technique to prove higher-order compactness estimates, we refer to [START_REF] Loibl | Existence of weak solutions to a class of fourth order partial differential equations with Wasserstein gradient structure[END_REF] for a recent reference on this topic. The total variation is however too singular for such arguments to be directly applicable, as far as we know.

The paper is organized as follows. In section 2, we start with the discussion of a few examples. Section 3 is devoted to some properties of solutions of JKO steps and in particular a maximum principle based on a result of [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF]. Section 4 establishes optimality conditions for JKO steps thanks to an entropic regularization scheme. Section 5 discusses regularity properties of the boundaries of the level sets of JKO solutions. In section 6, we address in detail the case of step functions in dimension one. Finally, in section 7, we prove convergence of the JKO scheme, as τ → 0 + , in the case of a strictly positive and bounded initial condition on a bounded interval of the real line.

Some examples

We first recall the Kantorovich dual formulation of W 2 2 :

1 2 W 2 2 (µ 0 , µ 1 ) = sup R d ψdµ 0 + R d ϕdµ 1 : ψ(x) + ϕ(y) ≤ |x -y| 2 2 (2.1)
an optimal pair (ψ, ϕ) for this problem is called a pair of Kantorovich potentials. The existence of Kantorovich potentials is well-known and such potentials can be taken to be conjugates of each other, i.e. such that

ϕ(x) = inf y∈R d { 1 2 |x -y| 2 -ψ(y)}, ψ(y) = inf x∈R d { 1 2 |x -y| 2 -ϕ(x)},
which implies that ϕ and ψ are semi-concave (more precisely 1 2 |.| 2 -ϕ is convex). If µ 1 is absolutely continuous with respect to the d-dimensional Lebesgue measure, ϕ is differentiable µ 1 a.e. and the map T = id -∇ϕ is the gradient of a convex function pushing forward µ 1 to µ 0 which is in fact the optimal transport between µ 0 and µ 1 thanks to Brenier's theorem [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF]. In such a case, we will simply refer to ϕ as a Kantorovich potential between µ 1 and µ 0 . We refer the reader to [START_REF] Villani | Topics in optimal transportation[END_REF] and [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] for details.

In this section, we will consider some explicit examples which rely on the following sufficient optimality condition (details for a rigorous derivation of the Euler-Lagrange equation for JKO steps will be given in section 4) in the case of the whole space i.e. Ω = R d .

Lemma 2.1. Let ρ 0 ∈ P 2 (R d ), τ > 0 and Ω = R d (so J is the total variaton on the whole space), if ρ 1 ∈ BV(R d ) ∩ P 2 (R d ) is such that ϕ τ + div(z) ≥ 0, with equality ρ 1 -a.e. (2.2)
where ϕ is a Kantorovich potential between ρ 1 and ρ 0 and

z ∈ C 1 (R d ), with z L ∞ ≤ 1, div(z) ∈ L d , and 
J(ρ 1 ) = R d div(z)ρ 1 . (2.3)
Then, setting

Φ τ,ρ 0 (ρ) := 1 2τ W 2 2 (ρ 0 , ρ) + J(ρ), ∀ρ ∈ BV(R d ) ∩ P 2 (R d ) (2.4) one has Φ τ,ρ 0 (ρ 1 ) ≤ Φ τ,ρ 0 (ρ), ∀ρ ∈ BV(R d ) ∩ P 2 (R d ). Proof. For all ρ ∈ BV(R d )∩P 2 (R d ), J(ρ) ≥ R d div(z)ρ = J(ρ 1 )+ R d div(z)(ρ- ρ 1 )
, and it follows from the Kantorovich duality formula that

1 2τ W 2 2 (ρ 0 , ρ) ≥ 1 2τ W 2 2 (ρ 0 , ρ 1 ) + R d ϕ τ (ρ -ρ 1 ).
The claim then directly follows from (2.2).

The case of a characteristic function

A simple illustration of Lemma 2.1 in dimension 1 concerns the case of a uniform ρ 0 , (here and in the sequel we shall denote by χ A the characteristic function of the set A):

ρ 0 = ρ α 0 , α 0 > 0, ρ α := 1 2α χ [-α,α] .
It is natural to make the ansatz that the minimizer of Φ τ,ρ 0 defined by (2.4) remains of the form ρ 1 = ρ α 1 for some α 1 > α 0 . The optimal transport between ρ α 1 and ρ 0 being the linear map T = α 0 α 1 id, a direct computation gives

Φ τ,ρ 0 (ρ α 1 ) = 1 α 1 + 1 6τ (α 1 -α 0 ) 2
which is minimal when α 1 is the only root in (α 0 , +∞) of

α 2 1 (α 1 -α 0 ) = 3τ. (2.5)
To check that this is the correct guess, we shall check that the conditions of Lemma 2.1 are met. First define the Kantorovich potential

ϕ(x) = 1 2α 1 (α 1 -α 0 )x 2 - 3τ 2α 1
and z 1 by

τ z 1 (x) := - (α 1 -α 0 ) 6α 1 x 3 + 3τ x 2α 1 , x ∈ [-α 1 , α 1 ]
extended by 1 on [1, +∞) and -1 on (-∞, -1). Then -1 ≤ z 1 ≤ 1 (use the fact that it is odd and nondecreasing on [0, α 1 ] thanks to (2.5)), also

z 1 (±α 1 ) = 0 so that z 1 ∈ C 1 (R) and z 1 (α 1 ) = 1, z 1 (-α 1 ) = -1 hence J(ρ 1 ) = - R z 1 Dρ 1 = R z 1 ρ 1 (
here and in the sequel Dρ 1 denotes the Radon measure which is the distributional derivative of the BV function ρ 1 ). Moreover τ z 1 + ϕ ≥ 0 with an equality on [-α 1 , α 1 ]. The optimality of ρ 1 = ρ α 1 then directly follows from Lemma 2.1.

Of course, the argument can be iterated so as to obtain the full TV-JKO sequence:

ρ τ k+1 = argmin Φ τ,ρ τ k = α τ k+1 α τ k id # ρ τ k = α τ k+1 α 0 id # ρ 0 where α τ k is defined inductively by (α τ k+1 -α τ k )(α τ k+1 ) 2 = 3τ, α τ 0 = α 0 which is nothing but the implicit Euler discretization of the ODE α α 2 = 3, α(0) = α 0 , whose solution is α(t) = (α 3 0 + 9t) 1 3
. Extending ρ τ k in a piecewise constant way: ρ τ (t) = ρ τ k+1 for t ∈ (kτ, (k + 1)τ ], it is not difficult to check that ρ τ converges (in L ∞ ((0, T ), (P 2 (R), W 2 )) and in L p ((0, T )×R) for any p ∈ (1, ∞) and any T > 0) to ρ given by ρ(t, .) = ( α(t) α 0 id) # ρ 0 . Since v(t, x) = α (t) α(t) x is the velocity field associated to X(t, x) = α(t) α 0 x, ρ solves the continuity equation

∂ t ρ + (ρv) x = 0.
In addition, ρv = -ρz xx where z(t, x) = -α (t) 6α(t)

x 3 + 3x 2α(t) , x ∈ [-α(t), α(t)],
extended by 1 (respectively -1) on [α(t), +∞) (respectively (-∞, -α(t)]).

The function z is C 1 , z L ∞ ≤ 1 and z • Dρ = -|Dρ| (in the sense of measures). In other words the limit ρ of ρ τ satisfies

∂ t ρ -(ρz xx ) x = 0
with |z| ≤ 1 and z • Dρ = -|Dρ| which is the natural weak form of (1.2).

Instantaneaous creation of discontinuities

We now consider the case where ρ 0 (x) = (1 -|x|) + and will show that the JKO scheme instantaneously creates a discontinuity at the level of ρ 1 , the minimizer of Φ τ,ρ 0 when τ is small enough. We indeed look for ρ 1 in the form:

ρ 1 (x) = 1 -β/2 if |x| < β, (1 -|x|) + if |x| ≥ β,
for some well-chosen β ∈ (0, 1). The optimal transport map T between such a ρ 1 and ρ 0 is odd and given explicitly by

T (x) = 1 -1 -x(2 -β) if x ∈ [0, β), x if x ≥ β.
The Kantorovich potential which vanishes at β (extended in an even way to R -) is then given by

ϕ(x) = x 2 2 -x -(1-x(2-β)) 3/2 3(1-β/2) + C if x ∈ [0, β), 0 if x > β,
where

C = - β 2 2 + β + 2(1 -β) 3 3(2 -β) .
Let us now integrate τ z = -ϕ on [0, β] with initial condition z(0) = 0, i.e.

for x ∈ [0, β] τ z(x) = - x 3 6 + x 2 2 - 4 15(2 -β) 2 [1 -(1 -2β)x] 5 2 + β 2 2 -β - 2(1 -β) 3 3(2 -β) x + 4 15(2 -β) 2 1 β 0 -β -1 1
Figure 1: The probablity density functions ρ 0 and ρ 1 from section 2.2 Note that z is nondecreasing on [0, β] (because ϕ(0) < 0, ϕ(β) = 0 and ϕ is convex on [0, β] so that ϕ ≤ 0 on [0, β]), our aim now is to find β ∈ (0, 1) in such a way that z(β) = 1 i.e. replacing in the previous formula

τ = β 3 3 - β 2 2 + 4(1 -(1 -β) 5 ) 15(2 -β) 2 - 2(1 -β) 3 β 3(2 -β)
the right hand-side is a continuous function of β ∈ [0, 1] taking value 0 for β = 0 and 1 10 for β = 1, hence as soon as 10τ < 1 one may find a β ∈ (0, 1) such that indeed z(β) = 1. Extend then z by 1 on [β, +∞) and to R -in an odd way. We then have built a function z which is C 1 (ϕ(β) = 0), such that |z| ≤ 1, z • Dρ 1 = -|Dρ 1 | and such that z + ϕ τ = 0. Thanks to Lemma 2.1, we conclude that ρ 1 is optimal. This example shows that discontinuities may appear at the very first iteration of the TV-JKO scheme.

Maximum principle for JKO steps

Throughout this section, we assume that Ω is a convex open bounded subset of R d and denote P ac (Ω) the set of Borel probability measures on Ω that are absolutely continuous with respect to the Lebesgue measure (and will use the same notation for µ ∈ P ac (Ω) both for the measure µ and its density). Given ρ 0 ∈ P ac (Ω) and τ > 0, we consider one step of the TV-JKO scheme:

inf ρ∈Pac(Ω) 1 2τ W 2 2 (ρ 0 , ρ) + J(ρ) . (3.1)
It is easy by the direct method of the calculus of variations to see that (3.1) has at least one solution, moreover J being convex and ρ → W 2 2 (ρ, ρ 0 ) being strictly convex whenever ρ 0 ∈ P ac (Ω) (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]), the minimizer is in fact unique, and in the sequel we denote it by ρ 1 .

Preliminaries

Our aim is to deduce some bounds on ρ 1 from bounds on ρ 0 . To do so, we shall combine some convexity arguments and a remarkable BV estimate due to De Philippis et al. [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF]. First we recall the notion of generalized geodesic from Ambrosio, Gigli and Savaré [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. Given µ, µ 0 and µ 1 in P ac (Ω), and denoting by T 0 (respectively T 1 ) the optimal transport (Brenier) map between µ and µ 0 (respectively µ 1 ), the generalized geodesic with base µ joining µ 0 to µ 1 is by definition the curve of measures:

µ t := ((1 -t)T 0 + tT 1 ) # µ, t ∈ [0, 1]. (3.2)
A key property of these curves introduced in [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF] is the strong convexity of the squared distance estimate:

W 2 2 (µ, µ t ) ≤ (1 -t)W 2 2 (µ, µ 0 ) + tW 2 2 (µ, µ 1 ) -t(1 -t)W 2 2 (µ 0 , µ 1 ). (3.3)
It is well-known that if G : R + → R ∪ {+∞} is a proper convex lower semicontinuous (l.s.c.) internal energy density, bounded from below such that G(0) = 0 and which satisfies McCann's condition (see [START_REF] Mccann | A convexity principle for interacting gases[END_REF])

λ ∈ R + → λ d G(λ -d ) is convex nonincreasing (3.4)
then defining the generalized geodesic curve (µ t ) t∈[0,1] by (3.2), one has

Ω G(µ t (x))dx ≤ (1 -t) Ω G(µ 0 (x))dx + t Ω G(µ 1 (x))dx. (3.5)
In particular L p and uniform bounds are stable along generalized geodesics:

µ t p L p ≤ (1 -t) µ 0 p L p + t µ 0 p L p , µ t L ∞ ≤ max( µ 0 L ∞ , µ 1 L ∞ ), (3.6) 
and

Ω µ t (x) log(µ t (x))dx ≤ (1-t) Ω µ 0 (x) log(µ 0 (x))dx+t Ω µ 1 (x) log(µ 1 (x))dx (3.7) An immediate consequence of (3.3) (see chapter 4 of [2] for general con- traction estimates) is the following Lemma 3.1. Let K be a nonempty subset of P ac (Ω), let µ 0 ∈ K, µ 1 ∈ P ac (Ω), if μ1 ∈ argmin µ∈K W 2 2 (µ 1 , µ)
and if the generalized geodesic with base µ 1 joining µ 0 to μ1 remains in K then

W 2 2 (µ 0 , μ1 ) ≤ W 2 2 (µ 0 , µ 1 ) -W 2 2 (µ 1 , μ1 ). (3.8) Proof. Since µ t ∈ K we have W 2 2 (µ 1 , μ1 ) ≤ W 2 2 (µ 1 , µ t ), applying (3.
3) to the generalized geodesics with base µ 1 joining µ 0 to μ1 we thus get

(1 -t)W 2 2 (µ 1 , μ1 ) ≤ (1 -t)W 2 2 (µ 1 , µ 0 ) -t(1 -t)W 2 2 (µ 0 , μ1 ),
dividing by (1 -t) and then taking t = 1 therefore gives the desired result.

The other result we shall use to derive bounds is a BV estimate of De Philippis et al. [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF], which states that given µ, ∈ P ac (Ω) ∩ BV(Ω), and G : R + → R ∪ {+∞}, proper convex l.s.c., the solution of inf ρ∈Pac(Ω)

1 2 W 2 2 (µ, ρ) + Ω G(ρ(x))dx (3.9)
is BV with the bound J(ρ) ≤ J(µ).

(3.10)

Taking in particular,

G(ρ) := 0 if ρ ≤ M , +∞ otherwise,
this implies that the Wasserstein projection of µ onto the set defined by the constraint ρ ≤ M has a smaller total variation than µ.

Maximum and minimum principles

Theorem 3.2. Let ρ 0 ∈ P ac (Ω) ∩ L ∞ (Ω) and let ρ 1 be the solution of (3.1), then

ρ 1 ∈ L ∞ (Ω) with ρ 1 L ∞ (Ω) ≤ ρ 0 L ∞ (Ω) . (3.11) 
Proof. Thanks to (3.6) the set

K := {ρ ∈ P ac (Ω)∩L p (Ω) : ρ ≤ ρ 0 L ∞ (Ω)
a.e.} has the property that the generalized geodesics (with any base) joining two of its points remains in K. Let then ρ1 be the W 2 projection of ρ 1 onto K i.e. the solution of inf ρ∈K W 2 2 (ρ 1 , ρ). Thanks to Lemma 3.1 we have

W 2 2 (ρ 0 , ρ1 ) ≤ W 2 2 (ρ 0 , ρ 1 ) -W 2 2 (ρ 1 , ρ1
) and thanks to Theorem 1.1 of [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF], J(ρ 1 ) ≤ J(ρ 1 ). The optimality of ρ 1 for (3.1) therefore implies

W 2 (ρ 1 , ρ1 ) = 0 i.e. ρ 1 ≤ ρ 0 L ∞ (Ω) .
Remark 3.3. In section 4, we shall use an approximation of (3.1) with an additional small entropy term, the same bound as in Theorem 3.2 will remain valid in this case. Indeed, consider a proper convex l.s.c. and bounded from below internal energy density G and consider given h ≥ 0, the variant of (3.1)

inf ρ∈Pac(Ω) 1 2τ W 2 2 (ρ 0 , ρ) + J(ρ) + h Ω G(ρ(x))dx . (3.12)
Then we claim that the solution ρ h still satisfies ρ h ≤ ρ 0 L ∞ (Ω) . Indeed we have seen in the previous proof that the Wasserstein projection ρh of ρ h onto the constraint ρ ≤ ρ 0 L ∞ (Ω) both diminishes J and the Wasserstein distance to ρ 0 . It turns out that it also diminishes the internal energy. Indeed, thanks to Proposition 5.2 of [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF], there is a measurable set

A such that ρh = χ A ρ h + χ Ω\A ρ 0 L ∞ , it thus follows that |Ω \ A| ρ 0 L ∞ = Ω\A ρ h . So,
from the convexity of G and Jensen's inequality,

G(ρ h ) = A G(ρ h ) + |Ω \ A|G |Ω \ A| -1 Ω\A ρ h ≤ G(ρ h ),
thus yielding the same conclusion as above.

In dimension one, it turns out that we can similarly obtain bounds from below: Proposition 3.4. Assume that d = 1, that Ω is a bounded interval and that ρ 0 ≥ α > 0 a.e. on Ω then the solution ρ 1 of (3.1) also satifies ρ 1 ≥ α > 0 a.e. on Ω.

Proof. The proof is similar to that of Theorem 3.2 but using the Wasserstein projection on the set K := {ρ ∈ P ac (Ω) : ρ ≥ α}, the only thing to check to be able to use Lemma 3.1 is that for any basepoint µ and any µ 0 and µ 1 in K, the generalized geodesic with base point µ joining µ 0 to µ 1 remains in K. The optimal transport maps T 0 and T 1 from µ to µ 0 and µ 1 respectively are nondecreasing and continuous and setting

T t := (1 -t)T 0 + tT 1 , one has µ = µ t (T t )T t = µ 0 (T 0 )T 0 = µ 1 T 1 = (1 -t)µ 0 (T 0 )T 0 + tµ 1 (T 1 )T 1 ≥ αT t
which is easily seen to imply that µ t ≥ α a.e..

Euler-Lagrange equation for JKO steps

The aim of this section is to establish optimality conditions for (3.1). Despite the fact that it is a convex minimization problem, it involves two nonsmooth terms J and W 2 2 (ρ 0 , .), so some care should be taken of to justify rigorously the arguments. In the next section, we introduce an entropic regularization approximation, the advantage of this strategy is that the minimizer will be positive everywhere, giving some differentiability of the transport term.

Entropic approximation

In this whole section we assume that Ω is an open bounded connected subset of R d with Lipschitz boundary and that ρ 0 ∈ P ac (Ω). Given h > 0 we consider the following approximation of (3.1):

inf ρ∈P(Ω) F h (ρ) := 1 2τ W 2 2 (ρ 0 , ρ) + J(ρ) + hE(ρ) (4.1)
where

E(ρ) := Ω ρ(x) log(ρ(x))dx.
It is easy to see that (4.1) admits a unique solution ρ h and since J(ρ h ) is bounded, up to a subsequence of vanishing h's, one may assume that ρ h converges as h → 0 a.e. and strongly in L p (Ω) for every p ∈ [1, d d-1 ) to ρ 1 the solution of (3.1).

We first have a bound from below on ρ h : Lemma 4.1. There is an α h > 0 such that ρ h ≥ α h a.e..

Proof. Assume on the contrary that |ρ ≤ α| > 0 for every α > 0. For small ε ∈ (0, 1) set µ ε,h := max((1

- √ ε)ρ h + ε, ρ h ) that is (1 - √ ε)ρ h + ε on A ε,h := {ρ h ≤ √ ε) and ρ h elsewhere. Define c ε,h := Ω (µ ε,h -ρ h )
and observe that c ε,h ≤ ε|Ω| ≤ √ ε|Ω|. Now chose M h > 0 such that V h := {ρ h > M h } has positive Lebesgue measure and finite perimeter (recall that ρ h is BV) and chose ε small enough so that

√ ε ≤ M h |V h | 2|Ω| . (4.2) Note that (4.2) implies that c ε,h ≤ 1 2 M h |V h | and M h > √ ε (so that A ε,h and V h are disjoint). Finally, define ρ ε,h := µ ε,h -c ε,h χ V h |V h | . By construction ρ ε,h ∈ P(Ω) hence 0 ≤ F h (ρ ε,h ) -F h (ρ h )
, in this difference we have four terms, namely

• the Wasserstein term, which, using the Kantorovich duality formula (2.1) and the fact that Ω is bounded can be estimated in terms of

ρ ε,h -ρ h L 1 = 2c ε,h : 1 2τ W 2 2 (ρ ε,h , ρ) - 1 2τ W 2 2 (ρ h , ρ) ≤ C τ c ε,h . (4.3) 
for a constant C that depends on Ω but neither on ε nor h,

• the TV term: J(ρ ε,h ) -J(ρ h ): outside V h we have replaced ρ h by a 1-Lipschitz function of ρ h which decreases the TV semi-norm, on V h on the contrary we have created a jump of magnitude c ε,h /|V h | so

J(ρ ε,h ) -J(ρ h ) ≤ c ε,h Per(V h ) |V h | (4.4)
where Per(V h ) = J(χ V h ) denotes the perimeter of V h (in Ω),

• the entropy variation on A ε,h , on this set both ρ ε,h and ρ h are less than

√ ε so that (1 + log(t)) ≤ (1 + log( √ ε)) whenever t ∈ [ρ h , ρ ε,h
] which by the mean value theorem yields

A ε,h (ρ ε,h log(ρ ε,h ) -ρ h log(ρ h )) ≤ (1 + log( √ ε))c ε,h (4.5) 
• the entropy variation on V h , but on V h , if ρ ε,h ≥ 1 e then (ρ ε,h log(ρ ε,h )ρ h log(ρ h )) ≤ 0, we then observe that the remaining set

V h ∩ {ρ ε,h ≤ 1 e } ⊂ {ρ h ≤ 1 e + M h
2 } so that both ρ ε,h and ρ h are bounded away from 0 and infinity on this set so remain in an interval where t log(t) is Lipschitz with Lipschitz constant at most

C h (M h ) := max |1 + log(t)| : M h 2 ≤ t ≤ 1 e + M h 2 , (4.6) 
we thus have

V h (ρ ε,h log(ρ ε,h ) -ρ h log(ρ h )) ≤ C h (M h )c ε,h . (4.7) 
Putting together (4.3)-(4.4)-(4.5)-(4.7), we arrive at

0 ≤ C τ + Per(V h ) |V h | + hC h (M h ) + h log( √ ε) + h c ε,h
which for small enough ε is possible only when c ε,h = 0 i.e. |A ε,h | = 0. More precisely, either we have the lower bound:

h log(ρ h ) ≥ - C τ -hC h (M h ) - Per(V h ) |V h | -h (4.8)
or (4.2) is impossible i.e.

ρ h ≥ M h |V h | 2|Ω| . (4.9) 
We actually also have uniform bounds with respect to h: Lemma 4.2. The family θ h := -h log(ρ h ) is (up to a subsequence) uniformly bounded from above. Moreover, θ h is bounded in L p (Ω) for any p > 1.

Proof. In view of (4.6), (4.8) and (4.9), it is enough to show that we can find a family M h , bounded and bounded away from 0, such that setting V h := {ρ h > M h }, |V h | remains bounded away from 0, and Per(V h ) is uniformly bounded from above as h → 0. First note that, since J(ρ h ) is bounded, there exists ρ such that ρ h → ρ in L 1 and a.e. up to a subsequence, note also that ρ ∈ BV and ρ is a probability density. Setting F h t := {ρ h > t} and F t := {ρ > t}, it is easy to deduce from Fatou's Lemma that when s > t, lim inf h |F h t | ≥ |F s |, hence choosing 0 < β 1 < β 2 < β so that |F β | > 0 we have that there exists h 0 > 0 and c 1 > 0 such that for all t ∈ [β 1 , β 2 ]

c 1 ≤ |F h t | ≤ |Ω|
whenever 0 < h < h 0 . Also, since J(ρ h ) ≤ C, by the co-area formula

β 2 β 1 Per(F h t )dt ≤ J(ρ h ) ≤ C.
So, there exists

t h ∈ [β 1 , β 2 ] such that Per(F h t h ) ≤ C/(β 2 -β 1 )
. Therefore, it suffices to choose M h = t h and V h = F h t h . We may assume that ρ h ≤ φ for some φ ∈ L 1 , then by Dominated convergence and since log(max(φ, 1)) ∈ L p (Ω) for every p > 1, we have that log(max(ρ h , 1)) converges a.e. and in L p , in particular this implies that max(0, -θ h ) converges to 0 strongly in L p (Ω), and we have just seen that max(0,

θ h ) is bounded in L ∞ (Ω).
Let us also recall some well-known facts (see [START_REF] Chambolle | Theoretical foundations and numerical methods for sparse recovery[END_REF]) about the total variation functional J viewed as a convex l.s.c. and one-homogeneous functional on

L d d-1 (Ω). Define Γ d := ξ ∈ L d (Ω) : ∃z ∈ L ∞ (Ω, R d ), z L ∞ ≤ 1, div(z) = ξ, z•ν = 0 on ∂Ω (4.
10) where div(z) = ξ, z • ν = 0 on ∂Ω are to be understood in the weak sense

Ω ξu = - Ω z • ∇u, ∀u ∈ C 1 (Ω).
Note that Γ d is closed and convex in L d (Ω) and J is its support function:

J(µ) = sup ξ∈Γ d Ω ξµ, ∀µ ∈ L d d-1 (Ω). ( 4 

.11)

As for the Wasserstein term, recalling Kantorovich dual formulation (2.1), the derivative of the Wasserstein term ρ → W 2 2 (ρ 0 , ρ) term will be expressed in terms of a Kantorovich potential between ρ and ρ 0 .

We then have the following characterization for ρ h :

Proposition 4.3. There exists z h ∈ L ∞ (Ω, R d ) such that div(z h ) ∈ L p (Ω) for every p ∈ [1, +∞), z h L ∞ ≤ 1, z h • ν = 0 on ∂Ω, J(ρ h ) = Ω div(z h )ρ h and ϕ h τ + div(z h ) + h log(ρ h ) = 0, a.e. in Ω (4.12)
where ϕ h is the Kantorovich potential between ρ h and ρ 0 .

Proof. Let µ ∈ L ∞ (Ω) ∩ BV(Ω) such that Ω µ = 0. Thanks to Lemma 4.1, we know that ρ h is bounded away from 0 hence for small enough t > 0, ρ h +tµ is positive hence a probability density. Also, as a consequence of Theorem 1.52 in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], we have that lim

t→0 + 1 2t [W 2 2 (ρ 0 , ρ h + tµ) -W 2 2 (ρ 0 , ρ h )] = Ω ϕ h µ (4.13)
where ϕ h is the (unique up to an additive constant) Kantorovich potential between ρ h and ρ 0 , in particular ϕ h is Lipschitz and semi concave (D 2 ϕ h ≤ id in the sense of measures and id -∇ϕ h is the optimal transport between ρ h and ρ 1 ). By the optimality of ρ h and the fact that J is a semi-norm, we get

J(µ) ≥ J(ρ h + µ) -J(ρ h ) ≥ lim t→0 + t -1 (J(ρ h + tµ) -J(ρ h )) ≥ Ω ξ h µ, (4.14) 
where

ξ h := - ϕ h τ -h log(ρ h ).
Since ϕ h is defined up to an additive constant, we may chose it in such a way that ξ h has zero mean, doing so, (4.14) holds for any µ ∈ L ∞ (Ω) ∩ BV(Ω) (not necessarily with zero mean). Being Lipschitz, ϕ h is bounded, also observe that h(log(ρ h ))

+ = h log(max(1, ρ h )) is in L p (Ω) for every p ∈ [1, +∞) since ρ h ∈ L d d-1 (Ω) and h log(ρ h ) -= -h log(min(1, ρ h )) is L ∞ (Ω) thanks to Lemma 4.1, hence we have ξ h ∈ L p (Ω) for every p ∈ [1, +∞).
By approximation and observing that ξ h ∈ L d (Ω), (4.14) extends to all µ ∈ L d d-1 (Ω). In particular, we have sup

ξ∈Γ d Ω ξµ ≥ Ω ξ h µ
but since Γ d is convex and closed in L d (Ω), it follows from Hahn-Banach's separation theorem that ξ h ∈ Γ d . Finally, getting back to (4.14) (without the zero mean restriction on µ) and taking µ = -ρ h gives J(ρ h ) ≤ Ω ξ h ρ h , and we then deduce that this should be an equality.

Euler-Lagrange equation

We are now in position to rigorously establish the Euler-Lagrange equation for (3.1): Theorem 4.4. If ρ 1 solves (3.1), there exists ϕ a Kantorovich potential between ρ 0 and ρ 1 (in particular id -∇ϕ is the optimal transport between ρ 1 and ρ

0 ), β ∈ L ∞ (Ω), β ≥ 0 and z ∈ L ∞ (Ω, R d ) such that ϕ τ + div(z) = β, z • ν = 0 on ∂Ω, (4.15) 
and

βρ 1 = 0, z L ∞ ≤ 1, J(ρ 1 ) = Ω div(z)ρ 1 . (4.16)
Proof. As in section 4.1, we denote by ρ h the solution of the entropic approximation (4.1). Up to passing to a subsequence (not explicitly written), we may assume that ρ h converges a.e. and strongly in L p (Ω) (for any p ∈ [1, d d-1 )) to ρ 1 . We then rewrite the Euler-Lagrange equation from Proposition 4.3 as

ϕ h τ + div(z h ) + β + h = β - h , (4.17) 
where β + h := h log(max(ρ h , 1)), β - h := -h log(min(ρ h , 1)), and

z h L ∞ ≤ 1, z h • ν = 0 on ∂Ω and J(ρ h ) = Ω div(z h )ρ h . (4.18)
It is easy to see that β + h converges to 0 strongly in any L q , q ∈ [1, +∞) and it follows from Lemma 4.2 that β - h is bounded in L ∞ . Up to subsequences, we may therefore assume that z h and β - h weakly- * converge in L ∞ respectively to some z and β with z L ∞ ≤ 1, z • ν = 0 on ∂Ω and β ≥ 0. As for ϕ h , it is an equi-Lipschitz family and Ω ϕ h = τ Ω (β - h -β + h ) which remains bounded, hence we may assume that ϕ h converges uniformly to some potential ϕ and it is well-known (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]) that ϕ is a Kantorovich potential between ρ 1 and ρ 0 . Letting h tends to 0 gives (4.15).

Since ρ h converges strongly in L 1 to ρ 1 and β - h converges weakly- * to β in L ∞ we have

Ω ρ 1 β = lim h Ω ρ h β - h = lim h h Ω ρ h | log(min(1, ρ h ))| = 0,
hence βρ 1 = 0. Thanks to (4.11), we obviously have J(ρ 1 ) ≥ Ω div(z)ρ 1 , for the converse inequality, it is enough to observe that

J(ρ 1 ) ≤ lim inf h J(ρ h ) = lim inf h Ω div(z h )ρ h
and that div(z h ) = -ϕ h τ -β + h + β - h converges to div(z) weakly in L q for every q ∈ [1, +∞). Since ρ h converges strongly to ρ 1 in L q when q ∈ [1, d d-1 ) we deduce that J(ρ 1 ) = Ω div(z)ρ 1 which completes the proof of (4.16).

Remark 4.5. It is not difficult (since (3.1) is a convex problem) to check that (4.15)-(4.16) are also sufficient optimality conditions. The main point here is that the right hand side β in (4.15) which is a multiplier associated with the nonnegativity constraint is better than a measure, it is actually an L ∞ function.

In dimension 1, we can integrate the Euler-Lagrange equation and then deduce higher regularity for the dual variable z: Proof. The first claim is obvious because both ϕ and β are bounded hence so is z . As for the second one when ρ 0 ≥ α > 0, thanks to Proposition 3.4, we also have ρ 1 ≥ α hence β = 0 in (4.15) and in this case div(z) = z = -ϕ τ is Lipschitz i.e. z ∈ W 2,∞ . One can actually go one step further because x -ϕ (x) = T (x) where T is the optimal (monotone) transport between ρ 1 and ρ 0 . This map is explicit in terms of the cumulative distribution function of ρ 1 , F 1 , and

F -1 0 the inverse of F 0 , the cumulative distribution function of ρ 0 , namely T = F -1 0 • F 1 . But F 1 is Lipschitz since its derivative is ρ 1 is BV hence bounded and F -1 0 is Lipschitz well since ρ 0 ≥ α > 0. This gives that ϕ ∈ W 2,∞ hence z ∈ W 3,∞ .

Regularity of level sets

We discuss in this section how the fact that div(z) ∈ L ∞ in Theorem 4.4 allows for conclusions about the regularity of the level sets of ρ 1 , the solution of (3.1). A first consequence of the high integrability of div(z) is that one can give a meaning to z • ∇u for any u ∈ BV(Ω). Indeed, following Anzellotti [START_REF] Anzellotti | Pairing between measures and bounded functions and compensated compactness[END_REF]

, if u ∈ BV(Ω) and σ ∈ L ∞ (Ω, R d ) is such that div(σ) ∈ L d (Ω), one can define the distribution σ • Du by σ • Du, v = - Ω div(σ) uv - Ω u σ • ∇v, ∀v ∈ C 1 c (Ω).
Then σ • Du is a Radon measure which satisfies |σ • Du| ≤ σ L ∞ |Du| (in the sense of measures) hence is absolutely continuous with respect to |Du|. Moreover one can also define a weak notion of normal trace of σ, σ • ν ∈ L ∞ (∂Ω) such that the following integration by parts formula holds

Ω σ • Du = - Ω div(σ)u + ∂Ω u(σ • ν).
We refer to [START_REF] Anzellotti | Pairing between measures and bounded functions and compensated compactness[END_REF] for proofs. These considerations of course apply to σ = z and u = ρ 1 ∈ BV(Ω) and in particular enable one to see z • Dρ 1 as a measure and to interpret the optimality condition

J(ρ 1 ) = Ω div(z)ρ 1 as |Dρ 1 | = -z • Dρ 1
in the sense of measures. It now follows from Proposition 3.3 of [START_REF] Chambolle | Geometric properties of solutions to the total variation denoising problem[END_REF], that every (not only almost every) level set

F t = {ρ 1 > t} with t > 0 satisfies Per(F t ) = Ft div(z) and F t ∈ argmin G⊂Ω Per(G) - G div(z) . (5.1) 
This means that -div(z) is the variational mean curvature of F t . Indeed, recall, following Gonzalez and Massari [START_REF] Gonzalez | Variational mean curvatures[END_REF], that a set of finite perimeter

E ⊂ Ω ⊂ R d is said to have variational mean curvature g ∈ L 1 (Ω) precisely when E minimizes min F ⊂Ω Per(F ) + F g. (5.2) 
Regularity of sets with an L p variational mean curvature, in connection with the so-called quasi-minimizers of the perimeter has been extensively studied, see Tamanini [START_REF] Tamanini | Boundaries of Caccioppoli sets with Hölder-continuous normal vector[END_REF], Massari [START_REF] Massari | Esistenza e regolarita delle ipersuperfici di curvatura media assegnata in R n[END_REF][START_REF] Massari | Frontiere orientate di curvatura media assegnata in L p[END_REF], Theorem 3.6 of [START_REF] Gonzalez | Variational mean curvatures[END_REF] and Maggi's book [START_REF] Maggi | Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory[END_REF].

It follows from the results of [START_REF] Tamanini | Boundaries of Caccioppoli sets with Hölder-continuous normal vector[END_REF] that if E has variational curvature g ∈ L p (Ω) with p ∈ (d, +∞], then its reduced boundary (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF])

∂ * E is a (d -1)-dimensional manifold of class C 1, p-d 2p and H s ((∂E \ ∂ * E) ∩ Ω)
= 0 for all s > d -8. We thus deduce from Theorem 4.4: Theorem 5.1. If ρ 1 solves (3.1), then for every t > 0, the level set F t = {ρ 1 > t} has the property that its reduced boundary,

∂ * F t is a C 1, 1 2 hypersur- face and (∂F t \ ∂ * F t ) ∩ Ω has Hausdorff dimension less than d -8.
Finally, the question of whether one can assign a pointwise geometric meaning to z • Dχ E was addressed by Chambolle, Goldman and Novaga in [START_REF] Chambolle | Fine properties of the subdifferential for a class of one-homogeneous functionals[END_REF]. In dimensions d = 2 and d = 3, it is indeed proved in [START_REF] Chambolle | Fine properties of the subdifferential for a class of one-homogeneous functionals[END_REF] that if g = -div(z) ∈ L d (Ω) and E minimizes (5.2), then any point x ∈ ∂ * E is a Lebesgue point of z and z(x) = ν E (x) where ν E is the unit outward normal to ∂ * E.

The case of step functions

As another illustration of the results of section 4, we have the following result concerning step-functions in dimension one: Theorem 6.1. Let d = 1, Ω = (a, b) and ρ 0 be a step function with at most N -discontinuities i.e.:

ρ 0 := N j=0 α j χ [a j , a j+1 ) , a 0 = a < a 1 • • • < a N < a N +1 = b, (6.1) 
then the solution ρ 1 of (3.1) is also a step function with at most N discontinuities.

Proof.

Step 1: reduction to the positive case We first claim that we may reduce ourselves to the case where ρ 0 ≥ α > 0 (so that ρ 1 ≥ α > 0 as well by virtue of Proposition 3.4). Indeed, assume that the statement of Theorem 6.1 holds under the additional assumption that α := min(α 0 , • • • , α N ) > 0.

Then, setting for every integer n ≥ 1, ρ n 0 := 1 n + (1 -1 n )ρ 0 , the corresponding solution of (3.1), ρ n 1 will also be a step function with at most N discontinuities. It is clear that up to a subsequence, ρ n 1 converges strongly in L 1 as n → ∞ and a.e. to ρ 1 which thus also has to be a step function with at most N discontinuities. We therefore assume from now on that ρ 0 and ρ 1 are everywhere positive.

Step 2 : ρ 1 is a jump function. Thanks to Theorem 4.4 and Corollary 4.6, there is a z ∈ W 3,∞ such that z(a) = z(b) = 0, |z| ≤ 1 and a Kantorovich potential ϕ such that

z + ϕ τ = 0, ϕ (x) = x -T (x), (6.2) 
where T is the optimal (monotone nondecreasing) transport between ρ 1 and ρ 0 :

F 0 • T = F 1 , F 0 (x) := x a ρ 0 , F 1 (x) := x a ρ 1 , (6.3) 
(note that T is a bi-Lipschitz homeomorphism) and

J(ρ 1 ) = b a z ρ 1 = - b a z • Dρ 1 = |Dρ 1 |(a, b)
where Dρ 1 is the (signed measure) distributional derivative of ρ 1 . Observe also that from (6.2) points at which z vanish are fixed points of T .

We then perform a Hahn-Jordan decomposition of Dρ 1 :

Dρ 1 = µ + -µ -, µ + ≥ 0, µ -≥ 0, µ + ⊥ µ -, (6.4) 
and set

A := spt(|Dρ 1 |) = A + ∪ A -with A + := spt(µ + ), A -:= spt(µ -). (6.5)
Next, noting that |Dρ 1 | = µ + + µ -= -z(µ + -µ -), we deduce that z = -1 µ + -a.e and since z is continuous we should have z = -1 on A + = spt(µ + ). In a similar way, z = 1 on A -:= spt(µ -), it implies in particular that the compact sets A + and A -are disjoint so that the distance between A + and A -is positive. Note also that since z is C 2 , minimal on A + and maximal on A -we have (also see [START_REF] Chambolle | Geometric properties of solutions to the total variation denoising problem[END_REF] for a similar discussion): z = 0 on A, z ≥ 0 hence T ≥ id on A + , and z ≤ 0 hence T ≤ id on A -. (6.6) Since z = 0 on A, it follows from Rolle's Theorem that if a < x < y < b with x, y ∈ A × A, there exists c ∈ (x, y) such that z (c) = 0 i.e. T (c) = c. In particular T = id on the set of limit points of A. We now further decompose µ ± in its purely atomic and nonatomic parts:

µ ± = x∈J ± µ ± ({x})δ x + µ ± , (6.7) 
where J ± is the (finite or countable) set of atoms of µ ± and µ ± has no atom.

Our aim is to show that the sets

A ± := spt( µ ± ), (6.8) 
are empty. Assume on the contrary that A + = ∅, then since all points of A + are limit points of A + , T = id on A + . In particular this implies that

χ A + ρ 1 = T # (χ A + ρ 1 ) = χ T ( A + ) T # ρ 1 = χ A + ρ 0 , i.e. ρ 0 = ρ 1 on A + . Now if x ∈ A + \ {a 0 , • • • a N +1 }, we may find δ > 0 such that ρ 0 is constant on [x -δ, x + δ] and [x -δ, x + δ] ∩ A -= ∅, so that ρ 1 is nondecreasing on [x -δ, x + δ]. Define then x 1 := inf A + ∩ [x -δ, x + δ], x 2 := sup A + ∩ [x -δ, x + δ],
since both x 1 and x 2 lie in A + and Dρ 1 = µ + ≥ µ + on [x -δ, x + δ] we have

ρ 1 (x 2 ) -ρ 1 (x 1 ) = ρ 0 (x 2 ) -ρ 0 (x 1 ) = 0 ≥ µ + ([x 1 , x 2 ]) = µ + ([x -δ, x + δ])
which contradicts x ∈ A + . This proves that µ + (and µ -likewise) are purely atomic (i.e. ρ 1 is a jump function in the terminology of [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]):

Dρ 1 = x∈J + µ + ({x})δ x - x∈J - µ -({x})δ x .
Step 3: the jump sets J + and J -are finite. Recall from the previous step that A + = J + and A -= J -are disjoint sets. In particular, there cannot be points which are both limit points of J + and J -. We argue by contradiction that J + is a finite set (a similar argument can be applied for J -). Suppose that J + is not finite so that for some x ∈ J + , every neighbourhood of x contains an element of J + . Then, there exists

x 1 ∈ J + with x 1 = x (x 1 > x say) such that [x, x 1 ] ∩ J -= ∅ (which implies that F 1 is convex on [x, x 1 
]). If x 2 ∈ (x, x 1 ) ∩ J + , then we know from the previous step that T (x 2 ) ≥ x 2 and there exist c 1 ∈ (x, x 2 ) and c 2 ∈ (x 2 , x 1 ) which are fixed points of T .

F 1 (x 2 ) -F 1 (c 1 ) = F 0 (T (x 2 )) -F 0 (c 1 ) ≥ F 0 (x 2 ) -F 0 (c 1 )
and similarly

F 1 (c 2 ) -F 1 (x 2 ) = F 0 (c 2 ) -F 0 (T (x 2 )) ≤ F 0 (c 2 ) -F 0 (x 2 )
but since ρ 1 has an upward jump at x 2 we have

F 1 (x 2 ) -F 1 (c 1 ) x 2 -c 1 < F 1 (c 2 ) -F 1 (x 2 ) c 2 -x 2 hence F 0 (x 2 ) -F 0 (c 1 ) x 2 -c 1 < F 0 (c 2 ) -F 0 (c 1 ) c 2 -x 2 implying that ρ 0 has a discontinuity point in [c 1 , c 2 ] hence in [x, x 1 ]
, since there are only finitely many such points this shows that J + is finite.

Step 4: ρ 1 has no more than N jumps. We know from the previous steps that ρ 1 can be written as

ρ 1 = K k=0 β k χ [b k ,b k+1 ) , b 0 = a < b 1 • • • < b K < b K+1 = b, β k = β k+1
If β k+1 > β k arguing exactly as in the previous step, we find two fixed-points of T , c k ∈ (b k , b k + 1) and c k+1 ∈ (b k+1 , b k+2 ) such that ρ 0 has a discontinuity in (c k , c k+1 ), the case of a downward jump β k > β k+1 can be treated similarly (using T (b k+1 ) ≤ b k+1 in this case). This shows that ρ 0 has at least K jumps so that N ≥ K.

Convergence of the TV-JKO scheme in dimension one

We are now interested in the convergence of the TV-JKO scheme to a solution of the fourth-order nonlinear equation (1.2) in dimension 1, as the time step τ goes to 0. Throughout this section, we assume that Ω = (0, 1) and that the initial condition ρ 0 satisfies ρ 0 ∈ P ac ((0, 1)) ∩ BV ((0, 1)), ρ 0 ≥ α > 0 a.e. on (0, 1). (7.1)

We fix a time horizon T , and for small τ > 0, define the sequence ρ τ k by

ρ τ 0 = ρ 0 , ρ τ k+1 ∈ argmin 1 2τ W 2 2 (ρ τ k , ρ) + J(ρ), ρ ∈ BV ∩ P ac ((0, 1)) (7.2)
for k = 0, . . . N τ with N τ := [ T τ ]. Thanks to Proposition 3.4, (7.1) ensures that the JKO-iterates ρ τ k defined by (7.2) also remain bounded from below by α. We also extend this discrete sequence by piecewise constant interpolation i.e.

ρ τ (t, x) = ρ τ k+1 (x), t ∈ (kτ, (k + 1)τ ], k = 0, . . . N τ , x ∈ (0, 1). ( 7.3) 
We shall see that ρ τ converges to a solution ρ of

∂ t ρ + ρ ρ x |ρ x | xx x = 0, (t, x) ∈ (0, T ) × (0, 1), ρ | t=0 = ρ 0 , (7.4) 
with the no-flux boundary condition

ρ ρ x |ρ x | xx = 0, on (0, T ) × {0, 1}. (7.5) 
Since ρ is no more than BV in x, one has to be slightly cautious in the meaning of ρx |ρx| which be conveniently done by interpreting this term as the negative of a suitable z in the subdifferential of J (in the L 2 sense for instance):

z ∈ H 1 0 ((0, 1)), z L ∞ ≤ 1 and J(ρ) = 1 0 z x ρ. (7.6) This leads to the following definition Definition 7.1. A weak solution of (7.4)-(7.1) is a ρ ∈ L ∞ ((0, T ), BV((0, 1)))∩ C 0 ((0, T ), (P, W 2 )) such that there exists z ∈ L ∞ ((0, T )×(0, 1))∩L 2 ((0, T ), H 2 ∩ H 1 0 ((0, 1))) with z(t, .) L ∞ ≤ 1 and J(ρ(t, .)) = We extend z τ k in a piecewise constant way i.e. set z τ (t, x) = z τ k+1 (x), t ∈ (kτ, (k + 1)τ ], k = 0, . . . , N τ , x ∈ (0, 1). (7.15) We then observe that We may therefore assume (up to further suitable extractions) that there is some z ∈ L ∞ ((0, T ) × (0, 1)) ∩ L 2 ((0, T ), H 2 ((0, 1))) such that z τ converges weakly * in L ∞ ((0, T ) × (0, 1)) and weakly in L 2 ((0, T ), H 2 ((0, 1))) to z.

Of course z L ∞ ≤ 1 and z ∈ L 2 ((0, T ), H 1 0 ((0, 1)). Note also that ρ τ z τ xx converges weakly to ρz xx in L 1 ((0, T ) × (0, 1)).

The limiting equation can now be derived using standard computations (see the proof of Theorem 5.1 of the seminal work [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], or chapter 8 of [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] Recalling that ρ τ k = T τ k+1 # ρ τ k+1 , and applying Taylor's theorem, we have Passing to the limit τ to 0 in (7.17) yields that ρ is a weak solution to ∂ t ρ -(ρz xx ) x = 0, ρ | t=0 = ρ 0 , ρz xx = 0 on (0, T ) × {0, 1}.

It remains to prove that J(ρ(t, .)) = 1 0 z x (t, x)ρ(x)dx, for a.e. t ∈ (0, T ). The inequality J(ρ(t, .)) ≥ 1 0 z x (t, x)ρ(x)dx is obvious since z(t, .) ∈ H 1 0 ((0, 1)) and z(t, .) L ∞ ≤ 1. To prove the converse inequality, we use Fatou's Lemma, the lower semi-continuity of J, (7.13) and the weak-convergence in L 1 ((0, T )× (0, 1)) of z τ x ρ τ to z x ρ: 

Corollary 4 . 6 .

 46 Assume that d = 1 and Ω is a bounded interval. If ρ 1 solves (3.1) and z is as in Theorem 4.4 then z ∈ W 1,∞ 0 (Ω). If in addition ρ 0 ≥ α > 0 a.e. on Ω, then z ∈ W 3,∞ (Ω).
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 11 x (t, x)ρ(x)dx, for a.e. t ∈ (0, T ), (7.7) and ρ is a weak solution of∂ t ρ -(ρz xx ) x = 0, ρ | t=0 = ρ 0 , ρz xx = 0 on (0, T ) × {0, 1}. (7.8) i.e. for every u ∈ C 1 c ([0, T ) × [0, 1]) ∂ t u ρ -(ρz xx )u x )dxdt = -u(0, x)ρ 0 (x)dx.

  to (7.10) we thus get an L 2 ((0, T ), H 2 ((0, 1)) boundz τ L 2 ((0,T ),H 2 ((0,1))) ≤ C. (7.16) 

  ): Let u ∈ C 1 c ([0, T ) × [0, 1]) and observe that

1 0( 1 0

 11 τ k+1 (x) -x)u x (kτ, x) + Rτ (x)z τ k+1 ) xx u x (kτ, x) + Rτ (x))ρ τ k+1 dx , where | Rτ (x)| ≤ C u xx (kτ, •) L ∞ |T τ k+1 (x) -x| 2 . Note also that for t ∈ (kτ, (k + 1)τ ], |u x (kτ, •) -u x (t, •)| ≤ τ u xt L ∞ . Therefore, T 0 ∂ t u ρ τ -ρ τ z τ xx u x )dxdt = -u(0, x)ρ τ 1 (x)dx + R τ (u) (7.17) with |R τ (u)| ≤ C max{ u xx L ∞ , u xt L ∞ }

  t, x)ρ(t, x)dxdt which concludes the proof.
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We then have Theorem 7.2. If ρ 0 satisfies (7.1), there exists a vanishing sequence of time steps τ n → 0 such that the sequence ρ τn constructed by (7.2)-(7.3) converges strongly in L p ((0, T )×(0, 1)) for any p ∈ [1, +∞) and in C 0 ((0, T ), (P([0, 1]), W 2 )) to ρ ∈ L ∞ ((0, T ), BV((0, 1))) ∩ C 0 ((0, T ), (P([0, 1]), W 2 )), a weak solution of (7.4)-(7.1).

Proof. First, ρ 0 being BV it is bounded on (0, 1) which gives uniform bounds on ρ τ thanks to Theorem 3.2, moreover we know from (7.1) and Proposition 3.4 that we also have a uniform bound from below

Moreover by construction of the TV-JKO scheme (7.2), one has

By using an Aubin-Lions type compactness Theorem of Savaré and Rossi (Theorem 2 in [START_REF] Rossi | Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces[END_REF]), the fact that the imbedding of BV((0, 1)) into L p ((0, 1)) is compact for every p ∈ [1, +∞) as well as a refinement of Arzèla-Ascoli Theorem (Proposition 3.3.1 in [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]), one obtains (see section 4 of [START_REF] Di | Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations[END_REF] or section 5 of [START_REF] Carlier | A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts[END_REF] for details) that, up to taking suitable sequence of vanishing times steps τ n → 0, we may assume that ρ τ → ρ a.e. in (0, T ) × (0, 1) and in L p ((0, T ) × (0, 1)), ∀p ∈ [1, +∞) (7.11) and sup

for some limit curve ρ ∈ C 0, 1 2 ((0, T ), (P([0, 1]), W 2 )) ∩ L p ((0, T ) × (0, 1)). From (7.9) and (7.10), one also deduces ρ ∈ L ∞ ((0, T ), BV((0, 1)) and from (7.9) M ≥ ρ ≥ α.

We deduce from the fact that ρ τ k ≥ α > 0 and Theorem 4.4 that for each k = 0, . . . , N τ , there exists z τ k ∈ W 2,∞ ((0, 1)) such that

and the optimal (backward) optimal transport T τ k+1 from ρ τ k+1 to ρ τ k is related to z τ k+1 by id -T τ k+1 = -τ (z τ k+1 ) xx . (7.14)