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Sampling from non-smooth distributions through Langevin diffusion

In this paper, we propose proximal splitting-type algorithms for sampling from distributions whose densities are not necessarily smooth nor log-concave. Our approach brings together tools from, on the one hand, variational analysis and non-smooth optimization, and on the other hand, stochastic diffusion equations, and in particular the Langevin diffusion. We establish in particular consistency guarantees of our algorithms seen as discretization schemes in this context. These algorithms are then applied to compute the exponentially weighted aggregates for regression problems involving non-smooth priors encouraging some notion of simplicity/complexity. Some popular priors are detailed and implemented on some numerical experiments.

Introduction

Problem statement

We consider the linear regression problem

y = Xθ 0 + ξ, (1.1) 
where y ∈ R n is the vector of observations, X ∈ R n×p is the design matrix, ξ is the vector of errors, and θ 0 ∈ R p is the unknown regression vector we wish to estimate. X ∈ R n×p can be seen as the sensing or degradation operator in inverse problems raising in, e.g., signal and image processing, or the design matrix for a regression problem in statistics and machine learning. Generally, problem (1.1) is either under-determined (p < n), or determined (p = n) but X is ill-conditioned. In both cases, (1.1) is ill-posed. The idea of aggregating elements in a dictionary has been introduced in machine learning to combine different techniques (see [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF]) with some procedures such as bagging [START_REF] Breiman | Bagging predictors[END_REF], boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF][START_REF] Schapire | The strength of weak learnability[END_REF] and random forests [1, 8-10, 13, 36]. In the recent years, there has been a flurry of research on the use of low-complexity regularization (among which sparsity and low-rank are the most popular) in various areas including statistics and machine learning in high dimension. The idea is that θ 0 generally conforms to some notions of sparsity/low-complexity. Namely, it has either a simple structure or a small intrinsic dimension. This makes it possible to build an estimate X θ with good provable performance guarantees under appropriate conditions. In literature, the information of sparsity/low-complexity has been taken into account through two families of estimators: Penalized Estimators and Exponentially Weighted Aggregates (EWA).

Variational/Penalized Estimators

The penalized approach consists in imposing on the set of candidate solutions some prior structure on the object to be estimated. The class of estimators are obtained by solving the convex optimization problem

θ PEN n ∈ Argmin θ∈R p V (θ) def = F (Xθ, y) + J λ (θ) , (1.2) 
where F : R n × R n → R is a general loss function assumed to be differentiable, J λ : R p → R is the regularizing penalty promoting some specific notion of simplicity/low-complexity which depends on a vector of parameters λ. Regularization is now a central theme in many fields including statistics, machine learning and inverse problems. A prominent member covered by (1.2) is the Lasso [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF][START_REF] Bühlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF][START_REF] Candès | Near-ideal model selection by 1 minimization[END_REF][START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Donoho | For most large underdetermined systems of linear equations the minimal 1 -norm solution is also the sparsest solution[END_REF][START_REF] Osborne | A new approach to variable selection in least squares problems[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and its variants such the analysis/fused Lasso [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Tibshirani | Sparsity and smoothness via the fused Lasso[END_REF] or group Lasso [START_REF] Bach | Consistency of the group lasso and multiple kernel learning[END_REF][START_REF] Bakin | Adaptive regression and model selection in data mining problems[END_REF][START_REF] Chesneau | Some theoretical results on the grouped variables lasso[END_REF][START_REF] Wei | Consistent group selection in high-dimensional linear regression[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. Another example is the nuclear norm minimization for low rank matrix recovery motivated by various applications including robust PCA, phase retrieval, control and computer vision [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming[END_REF][START_REF] Fazel | A rank minimization heuristic with application to minimum order system approximation[END_REF][START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF]. See [START_REF] Bühlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF][START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Van De Geer | Weakly decomposable regularization penalties and structured sparsity[END_REF] for generalizations and comprehensive reviews.

Exponential Weighted Aggregation (EWA)

An alternative to the variational estimator (1.2) is the aggregation by exponential weighting which combines all of candidate solutions with the aggregators promoting the prior information. The aggregators are defined via the probability density function

µ(θ) = exp (-V (θ)/β) Θ exp (-V (ω)/β)dω , (1.3) 
where β > 0 is called temperature parameter. If all θ are candidates to estimate the true vector θ 0 , then Θ = R p . The aggregate is thus defined by

θ EWA n = R p
θ µ(θ)dθ.

(1.4)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning literatures, see e.g. [START_REF] Dalalyan | Pac-bayesian bounds for the expected error of aggregation by exponential weights[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting and sharp oracle inequalities[END_REF][START_REF] Dalalyan | Sparse regression learning by aggregation and langevin montecarlo[END_REF][START_REF] Luu | PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting[END_REF][START_REF] Guedj | Pac-bayesian estimation and prediction in sparse additive models[END_REF][START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF][START_REF] Nemirovski | Topics in non-parametric statistics[END_REF][START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF][START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] to name a few.

The Langevin diffusion

In this paper, we focus on the computation of EWA. Computing θ EWA n in (1.4) corresponds to an integration problem which becomes very involved to solve analytically or even numerically in high-dimension. A classical alternative is to approximate it via a Markov chain Monte-Carlo (MCMC) method which consists in sampling from µ by constructing an appropriate Markov chain whose stationary distribution is µ, and to compute sample path averages based on the output of the Markov chain. The theory of MCMC methods is based on that of Markov chains on continuous state space. As in [START_REF] Dalalyan | Sparse regression learning by aggregation and langevin montecarlo[END_REF], we here use the Langevin diffusion process; see [START_REF] Roberts | Exponential Convergence of Langevin Distributions and Their Discrete Approximations[END_REF].

Continuous dynamics

A Langevin diffusion L in R p , p ≥ 1 is a homogeneous Markov process defined by the stochastic differential equation (SDE)

dL(t) = 1 2 ρ(L(t))dt + dW (t), t > 0, L(0) = l 0 , (1.5) 
where ρ = ∇ log µ, µ is everywhere non-zero and suitably smooth target density function on R p , W is a p-dimensional Brownian process and l 0 ∈ R p is the initial value. Under mild assumptions, the SDE (1.5) has a unique strong solution and, L(t) has a stationary distribution with density precisely µ [54, Theorem 2.1]. L(t) is therefore interesting for sampling from µ. In particular, this opens the door to approximating integrals R p f (θ)µ(θ)dθ, where f : R p → R, by the average value of a Langevin diffusion, i.e.,1 T T 0 f (L(t))dt for a large enough T . Under additional assumptions on µ, the expected squared error of the approximation can be controlled [START_REF] Xuerong | Stochastic differential equations and applications[END_REF].

Forward Euler discretization

In practice, in simulating the diffusion sample path, we cannot follow exactly the dynamic defined by the SDE (1.5). Instead, we must discretize it. A popular discretization is given by the forward (Euler) scheme, which reads

L k+1 = L k + δ 2 ρ(L k ) + √ δZ k , t > 0, L 0 = l 0 ,
where δ > 0 is a sufficiently small constant discretization step-size and {Z k } k are iid ∼ N (0, I p ). The average value 1 T T 0 L(t)dt can then be naturally approximated via the Riemann sum

δ T T /δ -1 k=0 L k , (1.6) 
where T /δ denotes the interger part of T /δ. It is then natural to approximate θ by applying this discretization strategy to the Langevin diffusion with µ as the target density. However, quantitative consistency guarantees of this discretization require µ (hence ρ) to be sufficiently smooth. For a comprehensive review of sampling by Langevin diffusion from smooth and log-concave densities, we refer the reader to e.g. [START_REF] Dalalyan | Theoretical guarantees for approximate sampling from a smooth and log-concave density[END_REF]. To cope with non-smooth densities, several works have proposed to replace log µ with a smoothed version (typically involving the Moreau-Yosida regularization/envelope, see Definition 2.2) [START_REF] Dalalyan | Sparse regression learning by aggregation and langevin montecarlo[END_REF][START_REF] Durmus | Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF]. In [START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF] for instance, the authors proposed proximal-type algorithms to sample from possibly non-smooth log-concave densities µ using the forward Euler discretization and the Moreau-Yosida regularization. In [START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF] 1 , -log µ is replaced with its Moreau envelope, while in [START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF], it is assumed that -log µ = L + H, L is convex Lipschitz continuously differentiable, and H is a proper closed convex function replaced by its Moreau envelope. In both these works, convexity plays a crucial role to get quantitative convergence guarantees. Proximal steps within MCMC methods have been recently proposed for some simple (convex) signal processing problems [START_REF] Chaari | A hamiltonian monte carlo method for non-smooth energy sampling[END_REF], though without any guarantees.

Contributions

Our main contributions are summarized as follows.

• We aim to enlarge the family of µ covered by [START_REF] Dalalyan | Sparse regression learning by aggregation and langevin montecarlo[END_REF][START_REF] Durmus | Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF] by relaxing some underlying conditions. Especially, in our study, µ is structured as µ in (1.3), and it is not necessarily differentiable nor logconcave.

• We propose two algorithms based on forward-backward proximal splitting for which we prove theoretical consistency guarantees.

• These algorithms are applied to compute EWA estimators with several popular penalties in the literature, and illustrated on some numerical problems.

Paper organization

Some preliminaries, definitions and notations are introduced in Section 2. Section 3 establishes key properties of a Moreau-Yosida regularized version of µ under mild assumptions of the latter. In turn we will consider the SDE (1.5) with such the smoothed density. Well-posedness of this SDE and consistency guarantees for its discrete approximations are proven in Section 4. Section 5 provides a large class of functions, namely prox-regular functions, for which the previous theoretical analysis applies. From this analysis, two algorithms are derived in Section 6 and applied in Section 7 to compute the EWA estimator with several penalties. The numerical experiments are described in Section 8. The proofs of all results are collected in Section 9.

Notations and Preliminaries

Before proceeding, let us introduce some notations and definitions.

Vectors and matrices F or a d-dimensional Euclidean space R d , we endow it with its usual inner product •, • and associated norm • 2 . I d is the identity matrix on R d . For r ≥ 1, • r will denote the r norm of a vector with the usual adaptation for r = +∞. Let M ∈ R d×d symmetric positive definite, we denote •, • M = •, M • and • M its associated norm. For a matrix M , we denote σ min (M ) its smallest singular value and |||M ||| its spectral norm. Of course,

• M and • 2 are equivalent. Let x ∈ R d and the subset of indices I ⊂ {1, . . . , d}. We denote x I the subvector whose entries are those of x indexed by I. For any matrix M , M denotes its transpose.

Sets For a set C, denote I C its characteristic function, i.e., 1 if the argument is in C and 0 otherwise, and ι C its its indicator function, i.e., 0 if the argument is in C and +∞ otherwise. For an index set I, I is its cardinality.

Functions

We will denote (•) + = max(•, 0) the positive part of a real number. For a function f :

R d → R∪ {-∞, +∞}, its effective domain is dom(f ) = x ∈ R d : f (x) < +∞ and f is proper if f (x) > -∞ for all x and dom(f ) = ∅ as is the case when it is finite-valued. A function f : R d → R ∪ {-∞, +∞} is lower semi continuous (lsc) at x 0 if lim inf x→x 0 f (x) ≥ f (x 0 ). For a differentiable function f , ∇f is its (Euclidean) gradient. Define C 1,+ (R d ) (resp. C 1,1 (R d ))
the set of differentiable functions in R d whose gradient is locally (resp. globally) Lipschitz continuous. We also define

C 1,+ (R d ) def = f ∈ C 1,+ (R d ) : ∃K > 0, ∀x ∈ R d , x, ∇f (x) ≤ K(1 + x 2 2 ) . The following lemma shows that C 1,1 (R d ) ⊂ C 1,+ (R d ). Lemma 2.1. Assume that f : R d → R d is Lipschitz continuous, then there exists K > 0 such that f (x), x ≤ K(1 + x 2 2 ), ∀x ∈ R d .
Let us also consider some definitions and properties of variational analysis. A more comprehensive account on variational analysis in finite-dimensional Eudlidean spaces can be found in [START_REF] Rockafellar | Variational analysis[END_REF]. Definition 2.1 (Subdifferential). Given a point x ∈ R d where a function f : R d → R ∪ {+∞} is finite, the subdifferential of f at x is defined as

∂f (x) = v ∈ R d : ∃x k → x, f (x k ) → f (x), v ← v k ∈ ∂ F f (x k ) , where the Fréchet subdifferential ∂ F f (x) of f at x, is the set of vectors v such that f (w) ≥ f (x) + v, w -x + o w -x 2 .
We say that f is subdifferentially regular at x if and only if f is locally lsc there with ∂f (x) = ∂ F f (x).

Let us note that ∂f (x) and 

∂ F f (x) are closed, with ∂ F f (x) convex and ∂ F f (x) ⊂ ∂f (x) [55, The- orem 8.6]. In particular, if f is a proper lsc convex function, ∂ F f (x) = ∂f (x)
prox M γf (x) def = Argmin w∈R d 1 2γ w -x 2 M + f (w) , M ,γ f (x) def = inf w∈R d 1 2γ w -x 2 M + f (w) ,
prox M γf here is a set-valued operator since the minimizer, if it exists, is not necessarily unique. When M = I p , we simply write prox γf and γ f . Operators For a set-valued operator S : R d ⇒ R d , its graph is gph(S) = (x, v) : v ∈ S(x) .

Definition 2.3 (Hypomonotone and monotone operators). A set-valued operator

S : R d ⇒ R d is hypomono- tone of modulus r > 0 if x -x, v -v ≥ -r x -x 2 2 , ∀(x, v) ∈ gph(S), (x , v ) ∈ gph(S).
It is monotone if the inequality holds with r = 0.

Moreau-Yosida regularization

In our framework, the target distribution µ is defined as

µ(θ) ∝ exp -L(θ) + H • D (θ) , (3.1) 
where L ∈ C 1,+ (R p ), D ∈ R p×q and H : R q → R. Moreover, H is assumed neither differentiable nor convex. To overcome these difficulties, we invoke arguments from variational analysis [START_REF] Rockafellar | Variational analysis[END_REF]. Namely, we will replace H by its Moreau envelope and state the following assumptions to exploit some key properties of the latter. To avoid trivialities, from now on, we assume that Argmin(H) = ∅.

(H.1) H : R q → R is lsc and bounded from below.

(H.2) prox M γH is single valued.

Let us start with some key properties of the Moreau envelope.

Lemma 3.1. Let M ∈ R q×q depending on γ ∈]0, γ 0 [ with γ 0 > 0, we denote it M γ , such that M γ is symmetric positive definite for any γ ∈]0, γ 0 [, and γ → θ M γ , ∀θ ∈ R q , is a decreasing mapping on ]0, γ 0 [. Assume that (H.1) holds. (i) prox M γ
γH (x) are non-empty compact sets for any x, and

x ∈ Argmin(H) ⇒ x ∈ prox M γ γH (x).
(ii) M γ ,γ H(θ) is finite and depends continuously on

(x, γ) ∈ R q ×]0, γ 0 [, and M γ ,γ H(x) γ∈]0,γ 0 [ is a decreasing net. More precisely, M γ ,γ H(x) H(x) for all x as γ 0.
The fixed points of this proximal mapping include minimizers of H. They are not equal however in general, unless for instance H is convex.

Lemma 3.2. Let M γ ∈ R q×q symmetric positive definite, assume that (H.1) and (H.2) hold. Then prox M γ γH is continuous on (x, γ) ∈ R q ×]0, γ 0 [, and M γ ,γ H ∈ C 1 (R q ) with gradient ∇ M γ ,γ H = γ -1 M γ I q -prox M γ γH .
In plain words, Lemma 3.2 tells us that under (H.1)-(H.2), the Moreau envelope is a smooth function, hence the name Moreau-Yosida regularization. Moreover, the action of the operator prox M γ γH is equivalent to a gradient descent on the Moreau envelope of H in the metric M γ with step-size γ. Remark 3.1. When the metric matrix does not depend on γ, Lemmas 3.1 and 3.2 hold with γ 0 = +∞.

Let us now define the smoothed density

µ γ (θ) = exp -L(θ) + ( M ,γ H) • D (θ) Z γ , (3.2) 
where

Z γ = R p exp -L(θ ) + ( M ,γ H) • D (θ ) dθ .
The following proposition answers the natural question on the behaviour of µ γ -µ as a function of γ.

Proposition 3.1. Assume that (H.1) holds. Then, µ γ converges to µ in total variation as γ → 0.

Langevin diffusion with Moreau-Yosida regularization

Let us define the following SDE with the Moreau-Yosida regularized version of H dL(t) = ψ(L(t))dt + dW (t), t > 0,

where ψ : θ ∈ R p → - 1 2 ∇ L + ( M ,γ H) • D (θ), (4.1) 
ψ is the drift coefficient.

Recall that (H.1) and (H.2) were mild assumptions required to establish key properties of Moreau-Yosida regularization, which in turn allow to compute ∇ M ,γ H by exploiting its the relation between ∇ M ,γ H and prox M γH as stated in Lemma 3.2. Now, to guarantee well-posed (existence and uniqueness) and discretization consistency of the SDE (4.1), we will also need the following assumptions.

(H.3) prox M γH is locally Lipschitz continuous. (H.4) There exists C > 0 such that D θ, prox M γH (D θ) M ≤ C(1 + θ 2 2 ), ∀θ ∈ R p .

Well-posedness

We start with the following characterization of the drift ψ. 

ψ(θ), θ ≤ K(1 + θ 2 2 ), for some K > 0, (4.2 

Discretization

Approach 1 Inserting the identities of Lemma 3.2 into (4.1), we get the SDE

dL(t) = - 1 2 ∇L + γ -1 DM I q -prox M γH • D (L(t))dt + dW (t), L(0) = l 0 , t > 0. (4.4)
Consider now the forward Euler discretization of (4.4) with step-size δ > 0, which can be rearranged as

L k+1 = L k - δ 2 ∇L(L k ) - δ 2γ DM D L k -prox M γH (D L k ) + √ δZ k , t > 0, L 0 = l 0 . (4.5)
Note that by Lemma 3.2, and without the stochastic term √ δZ k , (4.5) amounts to a relaxed form of gradient descent on L and the Moreau envelope of H in the metric M with step-size δ.

From (4.5), an Euler approximate solution is defined as

L δ (t) def = L 0 - 1 2 t 0 ∇L(L(s)) -γ -1 DM D L(s) -prox M γH (D L(s)) ds + t 0 dW (s),
where 

L(t) = L k for t ∈ [kδ, (k + 1)δ[. Observe that L δ (kδ) = L(kδ) = L k , hence L δ (t)
[ L(0) r 2 ] < ∞ for any r ≥ 2. Then E L δ (T ) -E [L(T )] 2 ≤ E sup 0≤t≤T L δ (t) -L(t) 2 -→ δ→0 0. (4.6)
The convergence rate is of order δ 1/2 when prox M γH is globally Lipschitz continuous.

Approach 2 Assume now that the metric also depends on γ ∈ (]0, γ 0 [ with γ 0 > 0, and we emphasize this by denoting it M γ such that M γ is symmetric positive definite for any γ ∈]0, γ 0 [, γ → θ M γ , for any θ ∈ R q , is a decreasing mapping on ]0, γ 0 [, and M γ → γ→0 I q (such a choice is motivated by the scheme described in Section 6.1). One can consider an alternative version of the SDE (4.1), i.e.,

dL(t) = - 1 2 ∇ L + ( M γ ,γ H) • D • M γ -1/2 (L(t))dt + M γ 1/2 dW (t), t > 0. (4.7)
Denote the drift coefficient of (4.7) by φ, we get that

φ(θ), θ = ψ(u), u ,
where u = M γ -1/2 θ. Therefore, it is easily seen that φ also satisfies (4.2) and (4.3) under assumptions (H.1)-(H.4). In turn, Proposition 4.2 applies to (4.7) the diffusion L is unique, non explosive and admits an unique invariant measure µ γ having density

θ → exp -L + ( M γ ,γ H) • D • M γ -1/2 (θ) /Z γ where Z γ = det(M γ ) R p exp -L + ( M γ ,γ H) • D (u) du. Since det(M γ ) → γ→0 
1, applying the reasoning in the proof of Proposition 3.1, we also deduce that µ γ converges to µ in total variation as γ → 0.

By the change of variable U (t) = M γ -1/2 L(t), we get the following SDE

dU (t) = - 1 2 M γ -1 ∇ L + ( M γ ,γ H) • D (U (t))dt + dW (t), t > 0. (4.8)
In an analogous way to (4.5), the forward Euler discretization of (4.8) has a deterministic part which is a relaxed gradient descent in the metric M γ -1 . In turn, mean square convergence of the Euler discretizations of both (4.7) and (4.8) and of their first-order moments can be established exactly in the same way as in Theorem 4.1. We omit the details here for the sake of brevity.

Prox-regular penalties

We now present a large class of penalties, namely prox-regular functions, which satisfy the key assumptions (H.2) and (H.3).

Roughly speaking, a lsc function f is prox-regular at x ∈ dom(f ) if it has a "local quadratic support" at x for all (x, v) ∈ gph(∂f ) close enough to (x, v) ∈ gph(∂f ) with f (x) nearby f (x). This is formalized in the following definition. Definition 5.1 (Prox-regularity). Let f : R d → R ∪ {+∞}, given a point x ∈ dom(f ). f is prox-regular at x for v, with v ∈ ∂f (x) if f is locally lsc at x, there exist > 0 and r > 0 such that

f (x ) > f (x) + (x -x) v - 1 2r x -x 2 2 , when x -x 2 < and x -x 2 < with x = x and f (x) -f (x) 2 < while v -v 2 < with v ∈ ∂f (x).
When this holds for all v ∈ ∂f (x), f is said prox-regular at x. When f is prox-regular at every x ∈ dom(f ), f is said prox-regular.

Example 5.1. The class of prox-regular functions is large enough to include many of those used in statistics.

For instance, here examples where prox-regularity is fullfilled (see [START_REF] Rockafellar | Variational analysis[END_REF]Chapter 13, Section F] and [START_REF] Poliquin | Local differentiability of distance functions[END_REF]):

(i) Proper lsc convex functions.

(ii) Proper lsc lower-C 2 (or semi-convex) functions, i.e., f is such that f

+ 1 2r • 2 2 is convex, r > 0. (iii) Strongly amenable functions, i.e., f = g • R, R : R d → R q ∈ C 2 (R d
) and g : R q → R ∪ {+∞} proper lsc convex.

(iv) A closed set C ⊂ R d is prox-regular if, and only if, ι C is a prox-regular function. This is also equivalent to: for any x ∈ R d and for any γ > 0,

P C (x) = Argmin v∈R d 1 γ x -v 2 2 + ι C (v) = prox γι C (x)
is single valued and continuous, or equivalently, to

d 2 C = min v∈R d 1 γ • -v 2 2 + ι C (v) = γ ι C ∈ C 1,+ (R d ).
The following lemma summarizes a fundamental property of prox-regular functions.

Lemma 5.1 ([50, Theorem 3.2]). When f : R d → R ∪ {+∞} is locally lsc at x ∈ R d , the following are equivalent (i) f is prox-regular at x for v ∈ ∂f (x).
(ii) v is a proximal subgradient to f at x, i.e., there exist r > 0 and > 0 such that

f (x) ≥ f (x) + v, x -x - r 2 x -x 2 2 , ∀x such that x -x 2 < .
Moreover, there exist r > 0 and an f -attentive -localization (with > 0) of ∂f around (x, v) defined by

T f ,x,v (x) = v ∈ ∂f (x) : v -v 2 < if x -x 2 < and f (x) -f (x) 2 < , ∅ otherwise, such that T f ,x,v + rI d is monotone.
Let us consider a prox-regular function satisfying (H.1). Owing to the following lemma, such type of functions also fullfills (H. .

When prox M

γH is globally Lipschitz continuous, the optimal convergence rate in (4.6) is of order δ 1/2 in view of Theorem 4.1.

Forward-Backward type LMC algorithms

Let us now deal with our main goal: computing the EWA estimator in (1.4) by sampling from µ. Remind that

µ(θ) ∝ exp - F (Xθ, y) + J λ (θ) β ,
where F : R n × R n → R is a general loss and J λ : R p → R is the penalty. Assume that F (X•, y) ∈ C 1,+ (R p ) and the penalty takes the form J λ = W λ • D . Let us impose the following assumptions on W λ .

(H.1') W λ : R q → R is lsc and bounded from below.

(H.2') prox γW λ is single valued.

(H.3') prox γW λ is locally Lipschitz continuous.

To lighten notation, we will write F β def = F (X•, y)/β. This section aims to describe our Forward-Backward type Langevin Monte-Carlo (LMC) algorithms to implement (1.4). These algorithms are based on wise specializations of the results reported in Section 4.

Forward-backward LMC (FBLMC)

In (3.1), we set D = I p (hence J λ = W λ ), L ≡ 0, and H = F β + J λ /β, where F is a quadratic loss, i.e., F β (θ) = y -Xθ 

prox γW λ /β • (I p -γ∇F β )(θ), θ M γ ≤ C FB (1 + θ 2 2 ), ∀θ ∈ R p .
By Lemma 2.1, a sufficient condition for (H.4'-FB) to hold is that the proximal mapping of W λ is Lipschitz continuous. From Lemmas 3.2 and 6.1, we get

∇ M γ ,γ H = γ -1 M γ I p -prox M γ γH = γ -1 M γ I p -prox γJ λ /β (I p -γ∇F β ) .
With this expression at hand, the forward Euler discretization of the SDE (4.1), specialized to the current case, reads

L k+1 = L k - δ 2γ M γ L k -prox γJ λ /β (L k -γ∇F β (L k )) + √ δZ k , t > 0, L 0 = l 0 , (6.2) 
Similarly, the forward Euler discretization of the SDE (4.8) is given by

U k+1 = (1 -δ 2γ )U k + δ 2γ prox γJ λ /β (U k -γ∇F β (U k )) + √ δZ k , t > 0, U 0 = l 0 . (6.
3)

The familiar reader may have recognized that the deterministic part of (6.3) is nothing but the relaxed form of the so-called Forward-Backward proximal splitting algorithm [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. This terminology reflects that there is a forward Euler discretization on F β and a Euler backward discretization on J λ .

Semi-Forward-Backward LMC (Semi-FBLMC)

The main limitation of (6.2) is that the proximal mapping of J λ must be easy to compute. This may not be true even if the proximal mapping of W λ is accessible as, for for example, when D does not have orthogonal rows [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. Our goal is to circumvent this difficulty. Toward this goal, in (3.1), consider now L = F β , H = W λ /β and M = I q . Owing to (H.1')-(H.3'), one can check that (H.1)-(H.3) are fulfilled. Assumption (H.4) is verified by imposing the following on W λ .

(H.4'-SFB) There exists

C SFB > 0 such that prox γW λ /β (u), u ≤ C SFB (1 + u 2 2 ), ∀u ∈ R q .
From Lemma 3.2, we obtain

∇ ( γ H) • D (θ) = γ -1 D(D θ -prox γW λ /β (D θ)).
Thus, the forward Euler discretization of SDE (4.1) now reads

L k+1 = L k - δ 2 ∇F β (L k ) - δ 2γ D D L k -prox γW λ /β (D L k ) + √ δZ k , t > 0, L 0 = l 0 . (6.4)
In the case where D = I p , F β and W λ are convex, we recover the scheme studied in [START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF].

Applications to penalties in statistics

In this section, we exemplify our LMC sampling algorithms for some popular penalties in the statistical and machine learning literature. Our goal is by no means to be exhaustive, but rather to be illustrative and show the versatility of our framework. For each penalty, we aim at checking that assumptions (H.1')-(H.3'), (H.4'-FB) and (H.4'-SFB) hold, and to compute prox γW λ /β . In turn, this allows to apply our algorithms (6.3) and (6.4) to compute EWA with such penalties.

Analysis group-separable penalties

We first focus on a class of penalties where J λ is analysis group-separable, i.e.,

J λ (θ) = W λ (D θ) where W λ (u) = L l=1 w λ u G l 2 , (7.1) 
for w λ : R + → R, and some uniform partition (G l ) l∈{1,...,L} of {1, . . . , q}, i.e., ∪ L l=1 G l = {1, . . . , q} and G l ∩ G l , ∀l = l . Remark 7.1. It is worth mentioning that separability of W λ does not entail that of J λ . In fact, overlapping groups can be easily taken intro account as any overlapping-group penalty can be written as the composition of W λ with a linear operator, say B, such that B B is diagonal, and B acts as a group extractor, see [START_REF] Chen | An efficient proximal-gradient method for general structured sparse learning[END_REF][START_REF] Peyré | Group sparsity with overlapping partition functions[END_REF].

A first consequence of separability is that prox γW λ /β is also separable under the following mild assumptions on w λ .

(W.1) w λ is bounded from below on ]0, +∞[. (W.2) w λ is non-decreasing functions on ]0, +∞[. Lemma 7.1. Assume that Assumptions (W.1) and (W.2) hold, and w λ is continuous on ]0, +∞[. For any u ∈ R q and γ > 0, we have

prox γW λ /β (u) =      prox γw λ /β ( u G 1 2 ) u G 1 u G 1 2 . . . prox γw λ /β u G L 2 u G L u G L 2      .

SCAD penalty

The SCAD penalty, proposed in [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] is parameterized by λ = (λ, a) ∈]0, +∞[×]2, +∞[ as

w λ (t) =      λt if 0 ≤ t ≤ λ, -t 2 -2aλt+λ 2 2(a-1) if λ < t ≤ aλ, (a+1)λ 2 2 if t > aλ, (7.5) 
The following lemma establishes the validity of w λ and computes prox γw λ /β . Lemma 7.4. Let w λ defined in (7.5), and κ = γ/β. For any γ < (a -1)β,

(i) w λ satisfies (W.1) -(W.3), ( 
ii) The proximal mapping of the SCAD penalty is given by the shrinkage

prox γw λ /β (t) =      (t -κλ) + if 0 ≤ t ≤ (κ + 1)λ, (a-1)t-kaλ a-1-κ if (κ + 1)λ < t ≤ aλ, t if t > aλ. (7.6)
Since a > 2, one can set κ = 1. In this case, (7.6) specializes to [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF]Equation (2.8)].

∞ penalty The ∞ norm penalty is convex and continuous but is not separable, unlike the previous ones. It is a suitable prior to promote flat vectors, and has found applications in several fields [START_REF] Jégou | Anti-sparse coding for approximate nearest neighbor search[END_REF][START_REF] Lyubarskii | Uncertainty principles and vector quantization[END_REF][START_REF] Studer | Signal representations with minimum ∞ -norm[END_REF]. It entails the following penalty W λ :

J λ (θ) = W λ (D θ) where W λ (u) = λ max l∈{1,...,L} [u] G l 2 , (7.7) 
where λ = λ > 0. Since W λ is not separable, Lemma 7.1 is not applicable. Nevertheless, the proximal mapping of W λ can still be obtained easily from the projector on the 1 unit ball, i.e.,

prox γW λ /β (u) = u -P x : l x G l 2 ≤ β λγ (u). (7.8) 
This projector can be obtained from [31, Proposition 2] (see also references therein). One can see that (H.1')-(H.3') hold. We report the verification of (H.4'-FB) and (H.4'-SFB) in the proof of the following lemma.

Lemma 7.5. Let W λ in (7.7). Then (H.4'-FB) and (H.4'-SFB) hold.

Numerical experiments

In this section, some numerical experiments are conducted to illustrate and validate our LMC algorithms.

Image processing experiments

Let θ 0 is a 2-D image which is a matrix in R 128×128 . Let us denote vec : R √ p× √ p → R p the vectorization operator, i.e. the operator which stacks the columns of its arguments. We then consider the following linear regression problem y = X vec(θ 0 ) + ξ.

Here p = 1282 and ξ ∼ N (0, σ 2 I n ). The noise level σ is chosen according to the simulated θ 0 through the signal-to-noise ratio SNR, i.e. σ = n -1/2 Xθ 0 2 /10 SNR/10 . In our experiments, we take SNR = 5.

The goal is estimating θ 0 by computing the EWA estimators via the penalties proposed in Section 7. Three types of problems are considered: compressed sensing, inpainting and deconvolution whose regression function described in what follows.

• Compressed sensing: in this case X is drawn from a random ensemble. In our experiments, X is drawn uniformly at random from the Rademacher ensemble, i.e., its entries are iid Rademacher random variables. We also set n = 9p/16.

• Inpainting In this case, X acts as a masking operator. Let M ⊂ {1, . . . , p} be the set indexing masked pixels. Thus X vec(θ 0 ) = vec(θ) j∈{1,...,p}\M .

In our numerical experiments, we mask out 20% of the pixels, and thus n = p-20%p where p the stands of integer part of p. The masked positions are chosen randomly from the uniform distribution.

• Deconvolution In this case X is the convolution operator with a Gaussian kernel with periodic boundary conditions, such that X is diagonalized in the discrete Fourier basis. In this experiment, the standard deviation of the kernel is set to 1.

Assuming that the targeted image is piecewise smooth, a popular prior is the so-called isotropic total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. To cas this into our framework, define D c : R

√ p× √ p → R √ p× √ p and D r : R √ p× √ p → R √ p×
√ p the finite difference operators along, respectively, the columns and rows of an image, with Neumann boundary conditions. We define D TV as

D TV : θ ∈ R √ p× √ p → vec (vec(D r (θ)), vec(D c (θ))) ∈ R 2p .
With this notation, our prior penalty J λ reads

J λ (θ) = p l=1 w λ vec(D r (θ)) 2 l + vec(D c (θ)) 2 l = W λ (D TV θ), (8.2) 
which clearly has the form (7.1) with p blocks of equal size 2.

To estimate θ 0 from (8.1), we employ the EWA estimator (1.4) with F (Xθ, y) = y -X vec(θ) 2 2 and J λ in (8.2). For each problem instance (compressed sensing, inpainting or deconvolution), we tested w λ as the 1 , SCAD and FIRM penalties. The corresponding EWA estimators are denoted respectively EWA-1 , EWA-SCAD and EWA-FIRM. Because of the presence of the analysis operator D TV , which is not unitary, we applied Semi-FBLMC scheme (6.4) to compute EWA with β = 1/(pn), γ = β, and δ = 5β/10 3 , 5β/10 2 , 5β/10 6 respectively associated to inpainting, deconvolution and compressed sensing problems. The results are depicted in Figure 1.

Signal processing experiments

Here we consider reconstructing a piecewise flat 1D signal from compressed sensing measurements using EWA. For this, we create a p = 128 sample signal whose coordinates are valued in {-1, 1} and compute the observations (8.1) where X is drawn from the Rademacher ensemble with n > p 2 . We set F (Xθ, y) = y -Xθ 2 2 , J λ (θ) = θ ∞ , i.e. D = I p and the size of groups is 1. We can then use the FBLMC scheme (6.3), where we choose β = 1/(pn), γ = β, and δ = 5/10 2 . The results are shown in Figure 2. 

f (x), x ≤ f (x) 2 2 /2 + x 2 2 /2 ≤ f (x) -f (x * ) 2 2 + f (x * ) 2 2 + x 2 2 /2 ≤ K x -x * 2 2 + f (x * ) 2 2 + x 2 2 /2 ≤ 2 K + 1/2 x 2 2 + 2 K x * 2 2 + f (x * ) 2 2 ≤ K(1 + x 2 2 ), with K ≥ max 2 K + 1/2, 2 K x * 2 2 + f (x * ) 2 2 .
Recalling that f is bounded on bounded sets concludes the proof.

Proof of Lemma 3.1 (i) In view of (H.1), H is prox-bounded by [START_REF] Rockafellar | Variational analysis[END_REF]Exercise 1.24] for any γ ∈]0, γ 0 [, and then for any x, (ii) The continuity and finiteness properties follow from [55, Theorem 1.17(c)] (see also [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 1.25]), where we use (H.1). For the second claim, we have ∀x

∈ R q -∞ < inf H ≤ M γ ,γ H(x) ≤ H(x).
Moreover, let p ∈ prox

M γ γH (x). Then, ∀δ > γ, M δ ,δ H(x) = inf w∈R q 1 2δ w -x 2 M δ + H(w) ≤ 1 2δ p -x 2 M δ + H(p) ≤ 1 2γ p -x 2 M γ + H(p) = M γ ,γ H(x).
This together with continuity concludes the proof of Assertion (ii).

Proof of Lemma 3.2 By virtue of Lemma 3.1-(i) and (H.2), prox

M γ
γH is clearly non-empty and single valued. The continuity property follows from [55, Theorem 1.17(b)] (see also [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 1.25]) and single-valuedness. By Lemma 3.1-(ii), M γ ,γ H(θ) is finite. Since (H.1) holds, H is prox-bounded with threshold ∞ by [START_REF] Rockafellar | Variational analysis[END_REF]Exercise 1.24]. Invoking [START_REF] Rockafellar | Variational analysis[END_REF]Example 10.32], we get that -M γ ,γ H is locally Lipschitz continuous, subdifferentially regular and

∂ -M γ ,γ H (θ) = γ -1 M γ prox M γ γH (θ) -θ , ∀θ ∈ R p .
Combining this with [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 9.18] applied to -M γ ,γ H, we obtain that M γ ,γ H is differentiable and its gradient is precisely as given.

Proof of Proposition 3.1 Recall that we denote with the same symbol the measure and its density with respect to the Lebesgue measure. Thus

µ γ -µ TV = R M µ γ (θ) -µ(θ) dθ, where µ γ (θ) = exp -L(θ) + ( M ,γ H) • D (θ) /Z γ and µ(θ) = exp -L(θ) + H • D (θ) /Z, and Z = R M exp -(L(θ ) + H • D (θ )) dθ .
In view of Lemma 3.1(ii), applying the monotone convergence theorem, we conclude that Z γ → Z when γ → 0. This together with Lemma 3.1(ii) again yield that µ γ converges to µ pointwise. We conclude using Scheffé(-Riesz) theorem [START_REF] Kusolitsch | Why the theorem of scheffé should be rather called a theorem of riesz[END_REF][START_REF] Scheffe | A useful convergence theorem for probability distributions[END_REF].

Proof of Proposition 4.1 In view of Lemma 3.2, the drift term reads

ψ(θ) = - 1 2 ∇(L + ( M ,γ H) • D )(θ) = - 1 2 ∇L(θ) - 1 2γ DM D θ + 1 2γ DM prox M γH (D θ).
Since L ∈ C 1,+ (R p ) and (H.4) holds, there exist K 1 > 0 and K 2 > 0 such that

ψ(θ), θ = - 1 2 ∇L(θ), θ - 1 2γ D θ 2 M + 1 2 prox M γH (D θ), D θ M ≤ K 1 (1 + θ 2 2 ) + |||D||| 2 |||M |||/(2γ) θ 2 2 + K 2 (1 + θ 2 2 ) ≤ K(1 + θ 2 2 ),
where 

K ≥ K 1 + K 2 + |||D||| 2 |||M |||/(2γ
> 0 such that H(x ) > H(x) + v, x -x - 1 2λ 0 x -x 2 2 > H(x) + v, x -x - 1 2λ 0 σ min (M ) x -x 2 M , (9.1) 
for any x = x and (

x, v) ∈ gph T H ,x,v . Let γ 0 = λ 0 σ min (M ), γ ∈]0, γ 0 [ and u = x + γM -1 v, (9.1) becomes H(x ) + 1 2γ x -u 2 M > H(x) + 1 2γ x -u 2 M .
Therefore, prox M γH (u) = x where (x, v) ∈ gph T H ,x,v . That yields prox M γH (x + γM -1 v) = x. Since H is lsc, proper and prox-bounded, from [55, Theorem 1.17(c)] (see also [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 1.25]), we have We conclude the proof of Lemma 6.1.

x ∈ prox M γH (u), u → x + γM -1 v =⇒ x → prox M γH (x + γM -1 v) = x, H(x) = M ,γ H(u) -1 2γ x -u 2 2 → H(x).
Proof of Lemma 7.1 This is a probably known result, for which we provide a simple proof. Since W λ is separable and w λ is continuous and lower-bounded, we have (i) Observe that w λ is continuously differentiable on ]0, +∞[ with w λ (t) = κλ I(t ≤ λ) + (aλ -t) + (a -1)λ I(t > λ) ≥ 0, w λ is then non decreasing and bounded from below by w λ (0) = 0 on ]0, +∞[. Thus, w λ satisfies (W.1) and (W.2). Let us check (W.3). Let u(t) = t + κw λ (t), we obtain that

• u(0) = κλ, • if 0 < t ≤ λ, u(t) = t + κλ > κλ,

• if λ < t ≤ aλ, since a -1 > κ > 0, u(t) = t + κ(aλ-t) a-1 = κλ + a-1-κ a-1 t + κλ a-1 > κλ, • if t > aλ, since a -1 > κ, u(t) = t > aλ > κλ.

Thus, t = 0 is the unique mimimum in [0, +∞[ of t + p λ (t). In other words, w λ satisfies (W.3).

(ii) For the sake of simplified notation, we denote p = prox γw λ /β (t). Owing to Lemma 7.2, we obtain that p = 0 if t ≤ κλ, t -κλ I(p ≤ λ) + (aλ-p) + (a-1)λ I(p > λ) otherwise. (9.7)

From (9.7), we get the following assertions when t > κλ,

• if p ≤ λ, p = t -κλ, and t = p + κλ ≤ (κ + 1)λ,

• if λ < p ≤ aλ, p = t -κ(aλ -p)/(a -1) implies that p = (a-1)t-κaλ a-1-κ . Since λ < p ≤ aλ, κ < a -1 and a > 2, we also get that

(1 + κ)λ < t = a -1 -κ a -1 p + κaλ a -1 ≤ aλ,
• if p > aλ, p = t, and t > aλ.

That concludes the proof of (ii), Lemma 7.4.

Proof of Lemma 7.5 Set u = D θ, α = γλ/β and p u = P Thus, Assumption (H.4'-FB) holds and we conclude the proof of Lemma 7.5.
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 1 Figure 1: (a): Original image. (b,c) Observed masked and blurry images. (d, e, f): EWA-1 estimated images from masked image, compressed sensing measurements, and blurry image. (g, h, i): EWA-FIRM estimated images from masked image, compressed sensing measurements, and blurry image. (j, k, l): EWA-SCAD estimated images from masked image, compressed sensing measurements, and blurry image. 16
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 2 Figure 2: Compressed sensing with EWA using the ∞ penalty. * is the original signal and • is the the estimated one.

1

 1 Let x * ∈ C, a bounded subset of R d . Using Young and Jensen inequalities as well as K-Lipschitz continuity of f , we obtain

1 2γ x -• 2 M

 12 γ + H is proper lsc and level-bounded uniformly in (x, γ) ∈ R q ×]0, γ 0 [. This entails that the set of minimizers of this function, i.e. prox M γ γH (x), is a non-empty compact set. For the last claim, suppose that x ∈ Argmin(H) = ∅ and bounded but x / ∈ prox M γ γH (x). Thus, for any p ∈ prox M γ γH (x), we have p = x andH(p) < 1 2γ pxleading to a contradiction with x is a minimizer of H.
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 222 and the latter operator is well-defined as a single-valued operator since S is maximal monotone; see[5, Proposition 3.22 (ii)(d)]. Let p = prox M γH (θ) and p = prox M γH (θ ). It then follows that M θ -γδM p ∈ γS(p) and M θ -γδM p ∈ γS(p ), and monotonicity of S yields pp, M (θ -θ) ≥ γδ pp ≥ γδσ min (M ) pp 2 Using Cauchy-Schwartz inequality, we then obtain pp 2 ≤ κ θθ 2 ,where κ -1 = γδσ min (M )
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 2 X(θw), Xθy + γJ λ /β (θ -γ∇F (θ)).

  v 2 ),and thus, ∀l ∈ {1, . . . , L},prox γW λ /β (u)

  and L(t) are continuous-time extensions to the discrete-time chain {L k } k .Mean square convergence of the pathwise approximation (4.5) and of its first-order moment can be established as follows. Assume that (4.2) and (4.3) hold and E

	Theorem 4.1.

  2) and (H.3). Let M ∈ R p×p symmetric positive definite and γ small enough, assume that H : R p → R is prox-regular and satisfies (H.1). Then prox M γH is single-valued and locally Lipschitz continuous. Lower-C 2 (or semi-convex) functions, see Example 5.1-(ii), satisfy the global counterpart of Lemma 5.1-(ii). For a lower-C 2 penalty H satisfying (H.1), the following lemma shows that prox M γH is globally Lipschitz continuous with a proper choice of γ which in turn implies directly (H.4) according to Lemma 2.1. Assume that H is lower-C 2 (with constant r) satisfying (H.1) and γ ∈]0, rσ min (M )[, prox M

	Lemma 5.2. Lemma 5.3.

γH is single-valued and Lipschitz continuous with constant |||M ||| σ min (M ) 1 -γ rσ min (M ) -1

2 2

 2 /β. Observe that H satisfies (H.1) by assumption (H.1'). To check (H.2)-(H.4), we need to design a metric in which prox M γH is expressed as a function of prox γJ λ /β . This idea is formalized in the following lemma. = prox γJ λ /β • (I p -γ∇F β ).

	Lemma 6.1. Assume that 0 < γ < β/(2|||X||| 2 ) and (H.1') holds. Define M γ	def = I p -(2γ/β)X X, which
	is symmetric positive definite. Then		
	prox	M γ	(6.1)
	In view of Lemma 6.1, (H.2') and (H.3'), it is immediate to check that (H.2) and (H.3) are satisfied.
	It remains now to verify (H.4) which is fulfilled by imposing the following assumption on W λ (or J λ ).

γH

(H.4'-FB) There exists C FB > 0 such that

  ). Moreover, under (H.3), ( M ,γ H) • D is locally Lipschitz continuous by virtue of Lemma 3.2, which applies thanks to assumptions (H.1)-(H.2). Clearly( M ,γ H) • D ∈ C 1,+ (R p ). Since C 1,+ (R p) is closed under addition, we conclude the proof. The proof of Lemma 5.3 is based on the one of [55,Proposition 13.37] and generalizes to the proximal mapping in metric M for any M ∈ R p×p symmetric positive definite.Without loss of generality, we prove the claim on a neighbourhood of x where H is lsc. Let x ∈ R p , v ∈ ∂H(x), since H is prox-regular at x for v and H is prox-bounded, owing to [7, Lemma 4.1], there exist > 0 and λ 0

	Proof of Proposition 4.2 Claim (i) follows by combining Proposition 4.1 and [69, Theorem 3.6, Chapter
	II]. Claim (ii) is a consequence of Proposition 4.1 and [54, Theorem 2.1].

Proof of Theorem 4.1 Owing to Proposition 4.1 and [69, Theorem 4.1, Chapter II], we get that the r-th moments of L(t) are bounded for any r ≥ 2 and t ≥ 0. A similar reasoning also entails that the r-th moments of the continuous-time extension L δ are also bounded. Moreover, according to Proposition 4.1, the drift ψ is locally Lipschitz continuous. The claim then follows from [38, Theorem 2.2] and Jensen's inequality. In the globally Lipschitz continuous case, we get the claimed rate by putting together Lemma 2.1, Jensen's inequality and [69, Theorem 7.3, Chapter II] or [40, Theorem 10.2.2 and Remark 10.2.3]. Proof of Lemma 5.2

  Owing to(7.8) and Young's inequality, we obtain thatu, prox γW λ /β (u) = u, up u ≤ u 2 2 + u 2 p u 2 ≤ ≤ |||D||| 2 θ 2 2 , (H.4'-SFB) holds. Set v = 2γX y/β, t θ = θ -γ∇F β (θ) = M γ θ + v and p t θ = P x : α l x G l 2 ≤1(t θ ). By Young's inequality, we obtain thatprox γW λ /β (t θ ), θ M γ = M γ prox γW λ /β (t θ ), θ ≤ 1 2 |||M γ ||| 2 prox γW λ /β (t θ )

							3 2	u 2 2 +	1 2	p u	2 2 ≤	3 2	u 2 2 +	1 2α 2 .
	According to the fact that u 2 2 = D θ	2 2 2 2	+	1 2	θ 2 2 .
	Moreover, owing to (7.8), we get that					
	prox γW λ /β (t θ )	2 2	= t θ -p t θ	2 2 ≤ 2 t θ	2 2 + 2 p t θ	2 2 ≤ 4|||M γ ||| 2 θ 2 2 + 4 v 2 2 +	2 α 2 .

x : α l x G l 2 ≤1 (u).

The author however applied it to problems where -log µ = L + H. But the gradient of the Moreau envelope of a sum, which amounts to computing the proximity operator of -log µ does not have an easily implementable expression even if those of L and H do.

The overdetermined regime is known to yield good performance for the ∞ penalty[START_REF] Vaiter | Model selection with low complexity priors[END_REF].

M γ + H(p) ≤ H(x),
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Our aim is now to design a family of penalties that will allow to establish (H.1')-(H.3'), (H.4'-FB) and (H.4'-SFB), while involving a form of shrinkage which is ubiquitous in low-complexity regularization. Inspired by the work of [START_REF] Antoniadis | Regularization of Wavelet Approximations[END_REF], we make the following assumptions on w λ .

(W.3) w λ is continuously differentiable on ]0, +∞[ and the problem min t∈[0,+∞[ {t + γ β w λ (t)} has a unique solution at 0 for a given γ.

Under these assumptions, prox γw λ /β has a indeed convenient shrinkage-type form. Lemma 7.2 ([2, Theorem 1]). Assume that (W.2) and (W.3) hold for some γ > 0. Then, prox γw λ /β are the single-valued continuous mappings, and satisfy, for t ∈ [0, +∞[,

Let us turn to check our assumptions. (H.1')-(H.3') are fulfilled thanks to (W.1)-(W.3). It remains to check (H.4'-FB) and (H.4'-SFB). This is the subject of the following lemma. Lemma 7.3. Assume that (W.2) and (W.3) hold for some γ > 0, then (H.4'-FB) and (H.4'-SFB) also hold.

We now discuss some popular penalties w λ that satisfy (W.1)-(W.3) for some γ > 0.

Examples

1 penalty Take w λ : t ∈ R + → λt. This entails the analysis group Lasso penalty

Clearly, w λ is a continuous positive convex function which verifies (W.1)-(W.3) for any γ > 0, and its proximal mapping corresponds to soft-thresholding, i.e., prox γw λ /β (t) = (t -γλ/β) + , ∀t ≥ 0.

FIRM penalty

The FIRM penalty is given by [START_REF] Gao | Waveshrink with firm shrinkage[END_REF] w

which entails the corresponding analysis group FIRM penalty

≥ 0, w λ is non-decreasing and bounded from below by w λ (0) = 0 on ]0, +∞[. Thus, w λ satisfies (W.1) and (W.2). Assumption (W.3) also holds for any γ < βµ/λ. The operator prox γw λ /β can be constructed from [START_REF] Woodworth | Compressed sensing recovery via nonconvex shrinkage penalties[END_REF]Definition II.3]. Its formula is defined as

where α = γλ/β. The formula (7.4) can also be found using Lemma 7.2. Observe that the FIRM shrinkage (7.4) interpolates between hard-(see [START_REF] Woodworth | Compressed sensing recovery via nonconvex shrinkage penalties[END_REF]Definition II.2]) and soft-thresholding. In particular, (7.4) coincides with soft-thresholding when µ → ∞.

For any x ∈ prox M γH (u), by Fermat rules we get

For any γ ∈]0, γ 0 [, owing to (9.2) and (9.3), there exists

So that

where δ = 1/γ -1/γ 0 , S = T H ,x,v + 1/γ 0 M . From (9.1), S is maximal monotone, the latter operator is well defined as a single valued operator (see [ 

Using Cauchy-Schwarz's inequality, we obtain

where

Let us note that when γ decrease, Inequality (9.1) can be hold for a larger that enlarges N γ,x,v and x + γM -1 v concentrate to x for any v. Thus, when γ is small enough, there exists a neighbourhood x that includes in N γ,x,v for any v ∈ ∂H(x). That concludes the proof of Lemma 5.3.

Proof of Lemma 5.3 From [55, Example 12.28(b)], ∂H is hypomonotone of modulus 1 r . In turn

Thus

is strongly convex uniformly in θ and γ complying with γ < γ 0 . It then follows that prox M γH is single-valued. We have

By Fermat's rule, we then get

For u G l = 0, by isotropy of problem (9.4), we can write

The inner minimization problem amounts to solving for the orthogonal projector on the 2 sphere in R G of radius t, which is obviously

since u G l = 0. Inserting this into (9.5) and rearranging the terms, (9.4) becomes

where we used even-symmetry of w λ .

Proof of Lemma 7.3 Before proceeding, let us discuss about the term prox γw λ /β . In view of (W.2), w λ /β is positive on ]0, +∞[. According to Lemma 7.2 we get that, for any t ≥ 0, prox

Set u = D θ, from Lemma 7.1 and (9.6), we get that

According to the fact that u 2 2 = D θ 

Thus, Assumption (H.4'-FB) holds and we conclude the proof of Lemma 7.3.