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Sampling from non-smooth distribution through Langevin diffusion

Tung Duy Luu∗ Jalal Fadili∗ Christophe Chesneau†

Abstract
In this paper, we propose algorithms for sampling from the distributions whose density is non-smoothed

nor log-concave. Our algorithms are based on the Langevin diffusion on the regularized counterpart of
density by the Moreau-Yosida regularization. These results are then applied to compute the exponen-
tially weighted aggregates for high dimensional framework with a general class of priors encouraging
objects which conform to some notion of simplicity/complexity. Some popular priors are detailed and
implemented on some numerical experiments.

1 Introduction

1.1 Problem statement

We consider the following linear regression

y = Xθ0 + ξ, (1.1)

where y ∈ Rn is the response vector,X ∈ Rn×M is a design matrix, ξ ∼ N (0, σ2In) is a random vector of
errors, and θ0 ∈ RM is the unknown regression vector of interest. When the dismension of θ0 is larger than
the number of observations (i.e., M ≥ n), (1.1) becomes ill-posed and can not be estimated by the classic
Least-Square estimators.

The idea of aggregating elements in a dictionary has been introduced in machine learning to combine
different techniques (see [39, 64]) with some procedures such as bagging [10], boosting [32, 54] and random
forests [1, 6–8, 11, 33]. In the recent years, there has been a flurry of research on the use of low-complexity
regularization (among which sparsity and low-rank are the most popular) in various areas including statistics
and machine learning in high dimension. The idea is that even if the ambient dimensionM of θ0 is very large,
its intrinsic dimension is much smaller than the sample size n. This makes it possible to build an estimateXθ̂
with good provable performance guarantees under appropriate conditions. In literature, the information of
sparsity/low-complexity has been taken into account through two families of estimators: Penalized Estimators
and Exponentially Weighted Aggregates (EWA).

1.2 Variational/Penalized Estimators

The penalized approach consists in imposing on the set of candidate solutions some prior structure on the
object to be estimated. The class of estimators are obtained by solving the convex optimization problem

θ̂
PEN ∈ Argmin

θ∈RM

{
V (θ)

def
= L(Xθ,y) +Gλ(θ)

}
, (1.2)
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where L : Rn × Rn → R+ is a general loss function, Gλ : RM → R is the regularizing penalty promoting
some specific notion of simplicity/low-complexity, and λ > 0 is the regularization parameter. In the present
paper, L and Gλ are imposed on some assumptions covering a large class of estimators. Regularization is
now a central theme in many fields including statistics, machine learning and inverse problems. A prominent
member covered by (1.2) is the Lasso [9, 12, 13, 17, 23, 45, 59] and its variants such the analysis/fused
Lasso [52, 61] or group Lasso [2, 3, 65, 69]. Another example is the nuclear norm minimization for low
rank matrix recovery motivated by various applications including robust PCA, phase retrieval, control and
computer vision [14, 15, 31, 48]. See [12, 42, 62, 63] for generalizations and comprehensive reviews.

A classical choice of L is the quadratic loss (i.e., L(Xθ,y) =
∥∥y − Xθ∥∥2

2
where

∥∥.∥∥
2

denote the
Euclidean norm). The associated estimator can be viewed as a Maximum a Posteriori (MAP) estimator
with the prior pλ(θ) ∝ 1/(2σ2) exp(−Gλ(θ)). Indeed, since ξ ∼ N (0, σ2In), we have that p(y|θ) ∝
exp

(
−
∥∥y −Xθ∥∥2

2
/(2σ2)

)
. Then the posteriori is defined by Bayes’ rule as

pλ(θ|y) =
p(y|θ)pλ(θ)∫

RM p(y|θ′)pλ(θ′)dθ′
∝ exp

(
−V (θ)

2σ2

)
. (1.3)

Thus, the minimization of V corresponds to the maximization of the posteriori (1.3).

1.3 Exponential Weighted Aggregation (EWA)

An alternative to the variational estimator (1.2) is the aggregation by exponential weighting which combines
all of candidate solutions with the aggregators promoting the prior information. The aggregators are defined
via the probability density function

µ̂(θ) =
exp (−V (θ)/β)∫

Θ exp (−V (ω)/β)dω
, (1.4)

where β > 0 is called temperature parameter. If all θ are candidates to estimate the true vector θ0, then
Θ = RM . The aggregate is thus defined by

θ̂
EWA

=

∫
RM
θµ̂(θ)dθ. (1.5)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning
literatures, see e.g. [18, 19, 21, 22, 27, 34, 38, 43, 49, 68] to name a few.

1.4 The Langevin diffusion

The penalized estimators are computed by solving the optimization problems (1.2). Several types of penalty
are well-studied, e.g. `0, `1, clipped `1, transformed `1, SCAD, FIRM, non-negative garotte and elastic net
penalties (see [24, 28, 29, 44, 56, 57, 60, 66, 70]).

The present paper focus on the computation of EWA estimators which is a recent challenge in literature.
Computing θ̂

EWA
in (1.5) corresponds to an integration problem which becomes very involved to solve

analytically or even numerically in high-dimension. A classical alternative is to approximate it via a Markov
chain Monte-Carlo (MCMC) method which consists in sampling from µ̂ by constructing an appropriate
Markov chain whose stationary distribution is µ̂, and to compute sample path averages based on the output
of the Markov chain. The theory of MCMC methods is based on that of Markov chains on continuous state
space. As in [22], we here use the Langevin diffusion process; see [50].
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Continuous dynamics A Langevin diffusionL in RM ,M ≥ 1 is a homogeneous Markov process defined
by the stochastic differential equation (SDE)

dL(t) =
1

2
ρ(L(t))dt+ dW (t), t > 0, L(0) = l0, (1.6)

whereρ = ∇ logµ, µ is everywhere non-zero and suitably smooth target density function onRM ,W is aM -
dimensional Brownian process and l0 ∈ RM is the initial value. Under mild assumptions, the SDE (1.6) has
a unique strong solution and, L(t) has a stationary distribution with density precisely µ [50, Theorem 2.1].
L(t) is therefore interesting for sampling from µ. In particular, this opens the door to approximating integrals∫
RM f(θ)µ(θ)dθ, where f : RM → R, by the average value of a Langevin diffusion, i.e., 1

T

∫ T
0 f(L(t))dt

for a large enough T . Under additional assumptions on µ, the expected squared error of the approximation
can be controlled [67].

Forward Euler discretization In practice, in simulating the diffusion sample path, we cannot follow ex-
actly the dynamic defined by the SDE (1.6). Instead, we must discretize it. A popular discretization is given
by the forward (Euler) scheme, which reads

Lk+1 = Lk +
δ

2
ρ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization step-size and {Zk}k are i.i.d. ∼ N (0, IM ). The
average value 1

T

∫ T
0 L(t)dt can then be naturally approximated via the Riemann sum

δ

T

∑bT/δc−1
k=0 Lk, (1.7)

where bT/δc denotes the interger part of T/δ. It is then natural to approximate θ̂ by applying this dis-
cretization strategy to the Langevin diffusion with µ as the target density. However, quantitative consistency
guarantees of this discretization require µ (hence ρ) to be sufficiently smooth. For a complete review about
sampling by Langevin diffusion from smooth and log-concave densities, we refer the studies in [20]. To cope
with non-smooth densities, several works have proposed to replace logµ with a smoothed version (typically
involving the Moreau-Yosida regularization/envelope, see Definition 2.2) [22, 25, 26, 46]. In [26, 46] for
instance, the authors proposed proximal-type algorithms to sample from possibly non-smooth log-concave
densities µ using the forward Euler discretization and the Moreau-Yosida regularization. In [46]1, − logµ is
replaced with its Moreau envelope, while in [26], it is assumed that− logµ = F +H , F is convex Lipschitz
continuously differentiable, and H is a proper closed convex function replaced by its Moreau envelope. In
both these works, convexity plays a crucial role to get quantitative convergence guarantees. Proximal steps
within MCMC methods have been recently proposed for some simple (convex) signal processing problems
[16], though without any guarantees.

1.5 Contributions

Our main contributions are summarized as follows.
1The author however applied it to problems where− logµ = F +H . But the gradient of the Moreau envelope of a sum, which

amounts to computing the proximity operator of − logµ does not have an easily implementable expression even if those of F and
H do.
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• We aim to enlarge the family of µ covered by [22, 25, 26, 46] by relaxing some conditions. Especially,
in our study, µ is not differentiable, nor log-concave. Two algorithms are proposed with some proven
theoretical guarantees.

• We apply our algorithms to several penalties in literature: `1, `∞, SCAD and FIRM. All of them are
considered in a very general forms (group-analysis) as Fused Group Lasso.

• In numerical aspect, our algorithms are applied to compute EWA estimators with these penalties in
some classical problems: Compressed Sensing, Inpainting and Deconvolution.

1.6 Paper organization

Some preliminaries, definitions and notations are introduced in Section 2. Section 3 presents some assump-
tions on µ to exploit the required properties for Moreau-Yosida smoothing on SDE (1.6). The well-posedness
of the smoothed SDE and the convergence of the associated Riemann sum (1.7) to θ̂

EWA
are proven in Sec-

tion 4. Section 5 considers the previous theoretical analysis for prox-regular functions. From these analysis,
two algorithms are proposed in Section 6 and applied in Section 7 to establish the EWA estimators with sev-
eral penalties. The numerical experiments are described in Section 8. The proofs of all results are collected
in Section 9.

2 Notations and Preliminaries

Before proceeding, let us introduce some notations and definitions.

Vectors and matrices For a d-dimensional Euclidean space Rd, we endow it with its usual inner product
〈., .〉 and associated norm

∥∥.∥∥
2
. Id is the identity matrix on Rd. For p ≥ 1,

∥∥.∥∥
p

will denote the `p norm of
a vector with the usual adaptation for p = +∞.

Let M ∈ Rp×p symmetric positive definite. For a p-dimensional Euclidean space Rp, we endow it with
the inner product 〈., .〉M defined as

〈u,v〉M =
〈
M1/2u,M1/2v

〉
= 〈Mu,v〉, ∀u,v ∈ Rp,

and
∥∥.∥∥

M
its associated norm. For a matrix M we denote σmin(M) its smallest singular value and |||M |||

its spectral norm, i.e., its largest singular value. We have the following equivalence between
∥∥.∥∥

M
and `2

norm
σmin(M)

∥∥v∥∥2

2
≤
∥∥v∥∥2

M
≤ |||M |||

∥∥v∥∥2

2
.

Let v ∈ Rp and A ⊂ {1, . . . , p}. We denote vA the sub-vector whose entries are those of v restricted to
the indices in A. For any matrix M , MT denotes its transpose. For a x ∈ R we denote bxc the stands of
integer part of x.

Sets For a set Ω, denote
∣∣Ω∣∣ its cardinality, IΩ its characteristic function, i.e., 1 if the argument is in Ω and

0 otherwise, and ιΩ its the indicator function, i.e., 0 if the argument is in Ω and +∞ otherwise.
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Functions For a function V : Rp → R∪{+∞}, the effective domain of V is defined by dom(V ) = {x ∈
Rp : V (x) < +∞} and V is proper if V (x) > −∞ for all x and dom(V ) 6= 0 as is the case when it is
finite-valued.

For a differentiable function V , ∇V is its (Euclidean) gradient. Define C1+(Rp) (resp. C11(Rp)) the set
of differentiable functions in Rp whose gradient is locally (resp. globally) Lipschitz continuous. We define
also C̃1+(Rp) as

C̃1+(Rp) def
=
{
V ∈ C1+(Rp) s.t. ∃K > 0,∀x ∈ dom(V ), 〈x,∇V (x)〉 ≤ K(1 +

∥∥x∥∥2

2
)
}
.

The following lemma shows that C11(Rp) ⊂ C̃1+(Rp).

Lemma 2.1. Assume that V : Ω ⊂ Rp → Rp is Lipschitz continuous, then there exists K > 0 such that

〈V (x),x〉 ≤ K(1 +
∥∥x∥∥2

2
), ∀x ∈ Ω.

Let us consider also some definitions and preperties of variational analysis. A more comprehensive ac-
count on variational analysis in finite-dimensional Eudlidean spaces can be found in [51].

Definition 2.1 (Subdifferential). Given a point x ∈ Rp where a function V : Rp → R ∪ {+∞} is finite, the
subdifferential of V at x is defined as

∂V (x) = {v ∈ Rp : ∃xk → x, V (xk)→ V (x),v ← vk ∈ ∂FV (xk)},

where the Fréchet subdifferential ∂FV (x) of V at x, is the set of vectors v such that

V (w) ≥ V (x) + 〈v,w − x〉+ o
(∥∥w − x∥∥

2

)
.

We say that V is subdifferentially regular at x if and only if V is locally lower-semicontinuous (lsc) there
with ∂V (x) = ∂FV (x).

Let us note that ∂V (x) and ∂FV (x) are closed, with ∂FV (x) convex and ∂FV (x) ⊂ ∂V (x) [51, The-
orem 8.6]. A proper lsc convex function is subdifferentially regular.

A function V is proper if it is not identically +∞ and V (x) > −∞ for all x.

Definition 2.2 (Proximal mapping and Moreau envelope). LetM ∈ Rp×p symmetric positive definite. For a
proper lsc function V and γ > 0, the proximal mapping and Moreau enveloppe in the metricM are defined
respectively by

proxMγV (x)
def
= Argmin

w∈Rp

{
1

2γ

∥∥w − x∥∥2

M
+ V (w)

}
,

M ,γV (x)
def
= inf
w∈Rp

{
1

2γ

∥∥w − x∥∥2

M
+ V (w)

}
,

proxMγV here is a set-valued operator since the minimizer, if it exsists, is not necessarily unique. WhenM =

IM , we simply write proxγV and γV . V is prox-bounded if there exists γ > 0 such that M ,γV (x) > −∞
for some x. The supremum of the set of all such γ is the threshold of prox-boundedness for V .
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Definition 2.3 (Hypomonotone and monotone operators). A set-valued operator S : Rp ⇒ Rp is hypomono-
tone of modulus r > 0 if〈

x′ − x,η′ − η
〉
≥ −r

∥∥x′ − x∥∥2

2
, ∀x′,x ∈ Rp and η′ ∈ S(x′),η ∈ S(x).

It is monotone if the inequality holds with r = 0.

Definition 2.4 (Prox-regularity). Let V : Rp → R ∪ {+∞}, given a point x̄ ∈ dom(V ). V is prox-regular
at x̄ for v̄, with v̄ ∈ ∂V (x̄) if V is locally lsc at x̄, ∃ε > 0 and r > 0 such that

V (x′) > V (x) + (x′ − x)Tv − r

2

∥∥x′ − x∥∥2

2
,

when
∥∥x′ − x̄∥∥

2
< ε and

∥∥x− x̄∥∥
2
< ε with x′ 6= x and

∥∥V (x)− V (x̄)
∥∥

2
< ε while

∥∥v − v̄∥∥
2
< ε with

v ∈ ∂V (x).
When this holds for all v̄ ∈ ∂V (x̄), V is said prox-regular at x̄. When V is prox-regular at every

x ∈ dom(V ), V is said prox-regular.

Roughly speaking, a lsc function V is prox-regular at x̄ ∈ dom(V ) if it has a “local quadratic support” at
x̄ for any (x,v) ∈ gph(∂V ) near enough to (x̄, v̄) and with V (x) near enough to V (x̄).

Let us mention some examples of prox-regular functions.

• Proper lsc convex functions.

• Proper lsc lower-C2 functions (i.e., V + 1
2r

∥∥.∥∥2

2
is convex, r > 0).

• Strongly amenable functions (i.e., V = g ◦H , H : Rp → Rq ∈ C2(Rp) and g : Rp → R ∪ {+∞}
proper lsc convex).

Furthermore, a set C ⊂ Rp is prox-regular iff for any x ∈ Rp and for any γ > 0,

proj
C

(x) = Argmin
v∈Rp

{
1

γ

∥∥x− v∥∥2

2
+ ιC(v)

}
= proxγιC(x)

is single valued and continuous. That equivalents,

d2
C(x) = min

v∈Rp

{
1

γ

∥∥x− v∥∥2

2
+ ιC(v)

}
= γιC ∈ C1+.

Figure 1: A nonconvex set that is everywhere prox-regular [51, Figure 13.4].
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Lemma 2.2 ([47, Theorem 3.2]). When V : Rp → R ∪ {+∞} is locally lsc at x̄ ∈ Rp, the following are
equivalent

(i) V is prox-regular at x̄ for v̄ ∈ ∂V (x̄).

(ii) v̄ is a proximal subgradient to V at x̄, i.e., there exist r > 0 and ε > 0 such that

V (x) ≥ V (x̄) + 〈v̄,x− x̄〉 − r

2

∥∥x− x̄∥∥2

2
, ∀x ∈ B(x̄, ε).

Moreover, there exist r > 0 and an V -attentive ε-localization (with ε > 0) of ∂V around (x̄, v̄) defined
by

TV
ε,x̄,v̄(x) =

{{
v ∈ ∂V (x)|

∥∥v − v̄∥∥
2
< ε
}

if
∥∥x− x̄∥∥

2
< ε and

∥∥V (x)− V (x̄)
∥∥

2
< ε,

∅ otherwise,

such that TV
ε,x̄,v̄ + rIp is montone.

3 Key properties of Moreau-Yosida smoothing

For ease of notation, we denote with the same symbol the measure and its density with respect to the Lebesgue
measure. In our framework, the target distribution µ is defined as

µ(θ) ∝ exp
(
−
(
F (θ) +H ◦ D̃(θ)

))
, (3.1)

where F ∈ C̃1+(RM ), D̃ ∈ Rp×M and H : Rp → R ∪ {+∞}. Moreover, H is assumed neither differ-
entiable nor convex. To overcome these difficulties, we involve arguments from variational analysis [51].
Namely, we will smooth H by a Moreau envelope and state the following assumptions to exploit the key
properties. To avoid trivialities, from now on, we assume that Argmin(H) 6= ∅.

(H.1) H : Rp → R ∪ {+∞} is proper, lsc and bounded from below.

(H.2) proxMγH is single valued.

Let us mention some key properties of Moreau-Yosida smoothing in the two following lemmas.

Lemma 3.1. LetM ∈ Rp×p symmetric positive definite, assume that (H.1) hold.

(i) proxMγH(x) are non-empty compact sets for any x, and

x ∈ Argmin(H)⇒ x ∈ proxMγH(x).

(ii) M ,γH(θ) is finite and depends continuously on (x, γ) ∈ Rp × (0,+∞), and
(
M ,γH(x)

)
γ∈(0,+∞)

is
a decreasing net. More precisely,

M ,γH(x)↗ H(x) for all x as γ ↘ 0.

The fixed points of this proximal mapping include minimizers ofH . They are not equal however in general,
unless for instance H is convex.
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Lemma 3.2. Let M ∈ Rp×p symmetric positive definite, assume that (H.1) and (H.2) hold. Then proxMγH
is continuous on (x, γ) ∈ Rp × (0,+∞), and M ,γH ∈ C1(Rp) with gradient

∇M ,γH = γ−1M
(
Ip − proxMγH

)
.

Therefore, for any θ ∈ RM , we have

∇(M ,γH) ◦ D̃(θ) = D̃
T
∇M ,γH(D̃θ) = γ−1D̃

T
M
(
D̃θ − proxMγH(D̃θ)

)
.

In plain words, Lemma 3.2 tells us that the action of the operator proxMγH is equivalent to a gradient descent
on the Moreau envelope of H in the metricM with step-size γ.

Lemma 3.1 (resp. Lemma 3.2) coincides to [27, Lemma 7.1, Lemma 7.2] (resp. [27, Lemma 7.3]) by
replacingMγ byM .

4 Theoretical guarantees

Let us define the following SDE

dL(t) = −1

2
∇
(
F + (M ,γH) ◦ D̃

)
(L(t))dt+ dW (t), t > 0. (4.1)

For (4.1) to be well-posed, we need also the following assumptions.

(H.3) proxMγH is locally Lipschitz continuous.

(H.4) For any θ ∈ RM , there exists K > 0 such that
〈
D̃θ,proxMγH(D̃θ)

〉
M
≤ K(1 +

∥∥θ∥∥2

2
).

Denote D = −1
2∇
(
F + (M ,γH) ◦ D̃

)
, D is called drift coefficient. We introduce the following propo-

sition.

Proposition 4.1. Assume that (H.1), (H.2), (H.3) and (H.4) hold. Then,

〈D(θ),θ〉 ≤ K(1 +
∥∥θ∥∥2

2
), for some K > 0, (4.2)

and
D is locally Lipschitz continuous. (4.3)

The following proposition guarantees the well-posedness of the SDE (4.1).

Proposition 4.2. Assume that D(θ) satistifes conditions (4.2) and (4.3). Then, for every initial point L(0)

such that E
[∥∥L(0)

∥∥2

2

]
<∞,

(i) there exists a unique solution to the SDE (4.1) which is strongly Markovian, and the diffusion is non-
explosive, i.e., E

[∥∥L(t)
∥∥2

2

]
<∞ for all t > 0,

(ii) L admits an (unique) invariant measure µγ having a density

θ 7→ exp
(
−
(
F (θ) + (M ,γH) ◦ D̃(θ)

))
/Zγ

where Zγ =
∫
RM exp

(
−
(
F (θ′) + (M ,γH) ◦ D̃(θ′)

))
dθ′.
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In Proposition 4.2, Assertion (i) is an application of [67, Theorem 3.6, Chapter II] in our framework.
Assertion (ii) is a consequence of [50, Theorem 2.1]. The following proposition answers the natural question
on the behaviour of µγ − µ as a function of γ.

Proposition 4.3. Assume that (H.1) hold. Then, µγ converges to µ in total variation as γ → 0.

Inserting the identities of Lemma 3.2 into (4.1), we get the SDE

dL(t) = −1

2

(
∇F + γ−1D̃

T
M
(
Ip − proxMγH

)
◦ D̃

)
(L(t))dt+ dW (t), L(0) = l0, t > 0. (4.4)

Consider now the forward Euler discretization of (4.4) with step-size δ > 0, which can be rearranged as

Lk+1 = Lk −
δ

2
∇F (Lk)−

δ

2γ
D̃
T
M
(
D̃Lk − proxMγH(D̃Lk)

)
+
√
δZk, t > 0, L0 = l0. (4.5)

Observe that by Lemma 3.2, this is also equivalent to a gradient descent on the Moreau envelope ofH in the
metricM with step-size δ.

From (4.5), an Euler approximate solution is defined as

Lδ(t)
def
= L0 −

1

2

∫ t

0

(
∇F (L(s))− γ−1D̃

T
M
(
D̃L(s)− proxMγH(D̃L(s))

))
ds+

∫ t

0
dW (s),

where L(t) = Lk for t ∈ [kδ, (k + 1)δ[. Observe that Lδ(kδ) = L(kδ) = Lk, hence Lδ(t) and L(t) are
continuous-time extensions to the discrete-time chain {Lk}k.

Mean square convergence of the pathwise approximation (4.5) and of its first-order moment can be estab-
lished as follows.

Theorem 4.1. Assume thatD(θ) satistifes conditions (4.2) and (4.3), and E
[∥∥L(0)

∥∥p
2

]
<∞ for any p ≥ 2.

Then ∥∥E[Lδ(T )
]
− E [L(T )]

∥∥
2
≤ E

[
sup

0≤t≤T

∥∥Lδ(t)−L(t)
∥∥

2

]
−→
δ→0

0. (4.6)

Alternative version Assume now that the metric matrix depends also to γ (we denote then Mγ) with
Mγ →

γ→0
Ip, and (H.1), (H.2), (H.3) and (H.4) hold. One can consider an alternative version of SDE (4.1),

i.e.,
dL(t) = −1

2
∇
(
F + (M ,γH) ◦ D̃

)
◦Mγ

−1/2(L(t))dt+Mγ
1/2dW (t), t > 0. (4.7)

Denote the drift coefficient of SDE (4.7) by D1, we get that

〈D1(θ),θ〉 = 〈D(u),u〉,

where u = Mγ
−1/2θ. Then D1 satisfies also (4.2) and (4.3). From Proposition 4.2, the diffusion L is

unique, non explosive and admits an unique invariant measure µγ having density

θ 7→ exp
(
−
(
F + (M ,γH) ◦ D̃

)
◦Mγ

−1/2(θ)
)
/Zγ

where Zγ =
√

det(Mγ)
∫
Rp exp

(
−
(
F + (M ,γH) ◦ D̃

)
(u)
)
du. Since det(Mγ) →

γ→0
1, apply the rea-

soning in the proof of Proposition 4.3, we get also that µγ → µ as γ → 0.
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By the change of variable U(t) = Mγ
−1/2L(t), we get the following SDE

dU(t) = −1

2
Mγ

−1∇
(
F + (M ,γH) ◦ D̃

)
(U(t))dt+ dW (t), t > 0. (4.8)

Denote the drift coefficient of SDE (4.8) by D2, we get that

D = MγD2.

Thus D2 satisfies the counterpart of the conditions (4.2) and (4.3) in the metric associated toMγ . Assume
that E

[∥∥L(0)
∥∥p
Mγ

]
<∞ for any p ≥ 2, the mean square convergence (4.6) can be establish via the metric

associated toMγ , i.e.,∥∥E [Lδ(T )− E [L(T )]
]∥∥

2
≤ 1√

σmin(Mγ)

∥∥E [Lδ(T )− E [L(T )]
]∥∥
Mγ

≤ 1√
σmin(Mγ)

E

[
sup

0≤t≤T

∥∥Lδ(t)−L(t)
∥∥
Mγ

]
−→
δ→0

0.

5 Prox-regularity functions

Let us now discuss about the assumptions imposed in the previous sections. (H.1) and (H.2) are theoretical
assumptions which furnish the properties of Moreau-Yosida smoothing and establish the relation between
∇M ,γH and proxMγH yielding ∇M ,γH calculable and exploitable. (H.3) and (H.4) are the numerical as-
sumptions implying the guarantees of existence, unicity and convergence of LMC diffusions.

This section focus on the prox-regularity which is a classical family of functions in variational analysis. Let
us consider a prox-regular function satisfying (H.1). Owing to the following lemma, such type of functions
covers also (H.2) and (H.3).

Lemma 5.1. LetM ∈ Rp×p symmetric positive definite and γ small enough, assume thatH is prox-regular
and satisfies (H.1). Then for any x̄ ∈ Rp, there exists a neighbourhoodNx̄ of x̄ on which proxMγH is single-
valued and Lipschitz continuous.

Corollary 5.1. Observe that a function H with ∂H r-hypomonotone satisfies the globalized counterpart of
Lemma 2.2-(ii). Then such type of functions is prox-regular owing to Lemma 2.2. WithH satisfies (H.1), the
works in [27] have proven the globalized Lipschitz continuous of proxMγH (see [27, Lemma 7.4]) implying
directly (H.4) according to Lemma 2.1. Futhermore, [27, Theorem 7.1] has specified that the convergence
rate in (4.6) is of order δ/2.

6 Forward-Backward type algorithms

Let us now deal with the main goal: Computing the estimators EWA in (1.5) by sampling µ̂ defined as

µ̂(θ) ∝ exp

(
−L(Xθ,y) +Gλ(θ)

β

)
,

where L : Rn × Rn → R+ is a general loss and Gλ : RM → R is the penalty. In our framework, Gλ has
an analysis form, i.e., Gλ = Jλ ◦D where D ∈ RP×M the analysis operator and Jλ : RP → R. In the
remaining of the present paper, we set Lβ = L(X.,y)/β and Jβ,λ = Jλ/β.
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Assume that Lβ ∈ C̃1+(RM ), Jβ,λ satisfies (H.1), and proxγJβ,λ satisfies (H.2) and (H.3). Considering
µ̂ as the form (3.1), we introduce in the following two algorithms: Forward-Backward LMC Algorithm (with
F ≡ 0, H = Lβ + Jβ,λ ◦D and D̃ = IM ) and Semi Forward-Backward LMC Algorithm (with F = Lβ ,
H = Jβ,λ and D̃ = D).

6.1 Forward-backward LMC (FBLMC) Algorithm

Consider H = Lβ + Jβ,λ ◦D, F ≡ 0 and D̃ = IM (p = M ). Since (H.1), (H.2) and (H.3) are related to
Jβ,λ, a natural idea is to establish the relations between H and Jβ,λ. In the case of quadratic loss, i.e.,

Lβ(θ) =

∥∥y −Xθ∥∥2

2

β
,

this idea is carried out in the following lemma.

Lemma 6.1 ([27, Lemma 7.1]). Assume that γ ≤ β/(2|||X|||2) and (H.1) holds for H , define Mγ
def
=

IM − (2γ/β)XTX , which is symmetric positive definite. Then

prox
Mγ

γH = proxγJβ,λ◦D ◦ (IM − γ∇Lβ). (6.1)

Assume thatD is invertible, operating a simple change of variablesu = Dθ and replaceLβ withLβ◦D−1

and Jβ,λ ◦D with Jβ,λ, Relation (6.1) becomes

prox
Mγ

γH = proxγJβ,λ ◦ (IM − γ∇Lβ). (6.2)

From (6.2), one can see that prox
Mγ

γH satisfies (H.2) and (H.3). Again, owing to (6.2), let us impose the
following assumption which equivalent to the fact that prox

Mγ

γH satisfies (H.4).

(H.5) For some K > 0,
〈

proxγJβ,λ ◦ (IM − γ∇Lβ)(Dθ),Dθ
〉
Mγ

≤ K(1 +
∥∥θ∥∥2

2
).

From lemmas 3.2 and 6.1, we get

∇Mγ ,γH = γ−1Mγ

(
IM − prox

Mγ

γH

)
= γ−1Mγ

(
IM − proxγJβ,λ(IM − γ∇Lβ)

)
.

Then, the Euler discretization of SDE (4.1) is defined as

Lk+1 = Lk −
δ

2γ
Mγ

(
Lk − proxγJβ,λ(Lk − γ∇Lβ(Lk))

)
+
√
δZk, t > 0, L0 = l0, (6.3)

Thus, θ̂ is approximated byD−1(δ/T
∑bT/δc−1

k=1 Lk).

Remark 6.1. In fact, the “true” Forward-Backward algorithm is established from the SDE (4.7) with the
Euler discretization defined as

Lk+1 = Lk −
δ

2γ

(
Lk − proxγJβ,λ(Lk − γ∇Lβ(Lk))

)
+
√
δZk, t > 0, L0 = l0. (6.4)

Observe that, compared to (6.3), there is not the multiplication with matrixMγ that reduces the complexity
of algorithm.

11



6.2 Semi forward-backward LMC (Semi FBLMC) Algorithm

Consider F = Lβ , H = Jβ,λ, D̃ = D (p = P ) and M = IP . Since Jβ,λ (resp. proxγJβ,λ) satisfies (H.1)
(resp. (H.2)), from Lemma 3.2 we get that

∇(γH) ◦ D̃(θ) = D̃
T
∇γH(D̃θ) = γ−1D̃

T
(D̃θ − proxγH(D̃θ)) = γ−1DT (Dθ − proxγJβ,λ(Dθ)).

Moreover proxγJβ,λ satisfies (H.3). By imposing (H.4) on proxγJβ,λ , the theoretical properties on SDE (4.1)
are validated in the metricM = IP .

We define the Euler discretization of SDE (4.1) as

Lk+1 = Lk −
δ

2
∇Lβ(Lk)−

δ

2γ
DT
(
DLk − proxγJβ,λ(DLk)

)
+
√
δZk, t > 0, L0 = l0. (6.5)

7 Applications

We exemplify now our algorithms for some popular penalties Gλ = βJβ,λ ◦ D in literature where Jβ,λ
statisfies Assumption (H.1). The main goal is to calculate proxγJβ,λ and verify the assumptions (H.2) to
(H.5) on proxγJβ,λ . After that, the computation of our algorithms follows automatically via the Euler schemes
(6.4) and (6.5). The computation of proxγJβ,λ with a general Jβ,λ in high dimensional framework is crucial.
We focus on a class of penalties where Jβ,λ is defined as

Jβ,λ(u) =
∑L

l=1wβ,λ
(∥∥uGl∥∥2

)
,

for some partitions set (Gl)l∈{1,...,L} of {1, . . . , P}, i.e., G1 ⊕ · · · ⊕ GL = {1, . . . , P}, and wβ,λ : R+ → R.
In other words, Jβ,λ is separated into the sum of L independent functions, each depends only on the `2 norm
of the group. Let us set the following assumptions for wβ,λ.

(H.6) wβ,λ is non decreasing functions on (0,+∞).

(H.7) wβ,λ is continuously differentiable on (0,+∞) and the problem mint∈[0,+∞){t + γwβ,λ
′(t)} has a

unique solution at 0 for a given γ.

The proximal operator of Jβ,λ can be separated by group by the following lemma.

Lemma 7.1. Assume that (H.6) hold. For any u ∈ RP and γ > 0, we have

proxγJβ,λ(u) =


proxγwβ,λ(‖uG1‖2)

uG1
‖uG1‖2

...
proxγwβ,λ

(
‖uGL‖2

) uGL
‖uGL‖2

 .

The computation of proxγwβ,λ is treated in the following lemma.

Lemma 7.2. Assume that (H.6) and (H.7) hold for some γ > 0. Then, proxγwβ,λ are the single-valued
continuous mappings, and satisfy, for t ∈ [0,+∞),

proxγwβ,λ(t) =

{
0 if t ≤ γwβ,λ′(0+),

t− γwβ,λ′
(

proxγwβ,λ(t)
)

if t > γwβ,λ
′(0+).

(7.1)
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Since proxγwβ,λ are the single-valued continuous mappings, according to Lemma 7.1, one can see that
proxγJβ,λ satisfies (H.2) and (H.3). Let us check (H.4) and (H.5) in the proof of the following lemma.

Lemma 7.3. Assume that (H.6) and (H.7) hold for some γ > 0, then

(i) proxγJβ,λ satisfies (H.4) associated with D̃ = D,

(ii) proxγJβ,λ satisfies (H.5) for anyD ∈ RM×M .

Let us discuss some popular penalties with wβ,λ satisfying (H.6) and (H.7) for some γ > 0. These
penalties are considered on a very general form taking into account the effects of groups and analysis operators
D. To retrieve its classical counterpart, it suffices to setD = IM and the size of groups to 1.

`1 penalty The `1 penalty is the most popular penalty in literature which is introduced by the works in [60]
and defined as follow

Gλ(θ) = λ
∑L

l=1

∥∥[Dθ]Gl
∥∥

2
.

Thenwβ,λ(t) = λt/β, ∀t ≥ 0, satisfies (H.6) and (H.7) for any γ > 0, and the proximal operator corresponds
to a soft thresholding, i.e.,

proxγwβ,λ(t) = (t− α)+, ∀t ≥ 0,

where α = γλ/β.

FIRM penalty The FIRM penalty is given by Gλ(θ) =
∑L

l=1 βwβ,λ
(∥∥[Dθ]Gl

∥∥
2

)
where

wβ,λ(t) =

{
λ
β

(
t− t2

2µ

)
if t ≤ µ,

λµ
2β if t > µ,

(7.2)

for any t ≥ 0. See [66] for a comprehensible review. Since wβ,λ′(t) = λ
β

(
1− t

µ

)
+

, wβ,λ satisfies (H.6) and
(H.7) for any γ < βµ/λ. The operator proxγwβ,λ can be constructed from [66, Definition II.3]. Its formula
is defined as

proxγwβ,λ(t) =


0 if t ≤ α,
µ

µ−α(t− α) if α < t ≤ µ,
t if t > µ,

(7.3)

where α = γλ/β, for any t ≥ 0. The formula (7.3) can also be found using Lemma 7.2. Observe that the
thresholding (7.3) is a generalization of both hard (see [66, Definition II.2]) and soft thresholding. Indeed,
(7.3) coincides to a soft (resp. hard) thresholding when µ→∞ (resp. µ→ λ). That is the interest of FIRM
penalty.

SCAD penalty The SCAD penalty is proposed in [30] with Gλ(θ) =
∑L

l=1 βwβ,λ(
∥∥[Dθ]Gl

∥∥
2
) where

wβ,λ(t) =


λ
β t if t ≤ λ,
− t2−2aλt+λ2

2β(a−1) if λ < t ≤ aλ,
(a+1)λ2

2β if t > aλ,

(7.4)

for any t ≥ 0, with a > 2 and λ > 0. The following lemma provides the validity of wβ,λ and the formula of
its proximal operator.
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Lemma 7.4. Let wβ,λ defined in (7.4). For any γ < (a− 1)β,

(i) wβ,λ satisfies (H.6) and (H.7),

(ii) let κ = γ/β, for any t ≥ 0,

proxγwβ,λ(t) =


(t− κλ)+ if t ≤ (κ+ 1)λ,
(a−1)t−kaλ
a−1−κ if (κ+ 1)λ < t ≤ aλ,

t if t > aλ.

(7.5)

Since a > 2, one can set κ = 1. In this case, (7.5) becomes the classical solution of (1.2) to SCAD penalty
which is detailed in [30, Equation (2.8)].

`∞ penalty The `∞ penalty has found applications in several fields [36, 40, 58] which is suitable to estimate
the signal expected to be flat. It is defined as

Gλ(θ) = λ max
l∈{1,...,L}

{∥∥[Dθ]Gl
∥∥

2

}
. (7.6)

Since Jβ,λ can not be separated into the sum of independent functions by group, Lemma 7.1 is now not
applicable. However, its proximal operator can be described via the projection in the `1 unit ball, i.e.,

proxγJβ,λ(u) = u− proj{
x:α

∑
l

∥∥xGl∥∥2
≤1

}(u), (7.7)

where α = γλ/β. One can see that Jβ,λ satisfies (H.1), and proxγJβ,λ satisfies (H.2) and (H.3). We report
the verification of (H.4) and (H.5) in the proof of the following lemma.

Lemma 7.5. Let Jβ,λ = (λ/β) maxl∈{1,...,L}
{∥∥uGl∥∥2

}
for any β > 0 and λ > 0, then

(i) proxγJβ,λ satisfies (H.4) associated with D̃ = D,

(ii) proxγJβ,λ satisfies (H.5) for anyD ∈ RM×M .

8 Numerical experiments

In this section, some numerical experiments are conducted to illustrate and validate our algorithms.

8.1 Problem statement

Let us consider the following linear regression

y = f(θ0) + ε, (8.1)

where θ0 is a 2-D image which is a matrix in R128×128 (a close up of the image Cameraman.tif, see Figure
2-(a)), f : R128×128 → Rn, n ≤ 1282 and ε ∼ N (0, σ2In) (the noise level σ is chosen according to the
simulated θ0). Let us denote vec the vectorization operator, then vec(θ0) ∈ RM with M = 1282. From
(8.1), we obtain the model (1.1) with vec(θ0) is the unknown regression vector and X = [X1, . . . ,XM ],
Xk = f(Ek) where [Ek]i,j = 1 when k = 128(i−1)+j and [Ek]i,j = 0 otherwise. The goal is estimating
θ0 by computing the EWA estimators via the functions proposed in Section 7. Three numerical problems
are considered: Compressed sensing, inpainting and deconvolution whose regression function described in
what follows.
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Compressed sensing This problem consists in reconstructing the signal via undetermined linear systems,
i.e.,

f(θ) = X vec(θ),

where X ∈ Rn×M . In our experiments, X is drawn uniformly at random from the Rademacher ensemble,
i.e., its entries are i.i.d. variates valued in {−1, 1} with equal probabilities and n = 9M/16.

Inpainting The goal is to recover a masked image (see Figure 2-(b)). LetM ⊂ {1, . . . ,M} containing
the index of masked pixels, the regression function is defined by

f(θ) = [vec(θ)]j,j∈{1,...,M}\M.

In our numerical experiments, we mask 20% of image, thus n = M − b20%Mc. The masked positions are
chosen randomly from the uniform distribution.

Deconvolution The deconvolution problem (see Figure 2-(c)) is introduced in [41, Section 13.3]. Let
p ∈ RM defined as

pi = exp

(
− v2

i

2λ2

)
, i ∈ {1, . . . ,M},

where v = [−M/2,−M/2 + 1, . . . ,M/2]T ∈ RM and λ > 0. In our experiments, we set λ = 1.
The regression function corresponds to the convolution operator, i.e.,

[f(θ)]i =
∑M

j=1[vec(θ)]ju(j − i), i ∈ {1, . . . ,M},

where u(−k) = u(k) = pk+1, for any k ∈ {0, . . . ,M − 1}. Observe that n = M .

Figure 2: (a): Original image. (b): Masked image (20 percent). (c): Convolved image.

8.2 Analysis operator

Since (8.1) is ill-posed, we need an analysis operator D : RM → RP and a partitions set of {1, . . . , P}
which gives the sparsity for θ0. Indeed, since the targeted image is piecewise constant, a popular prior is so
called isotropic total variation [53]. Let us now clarify that.
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Let Dc : R
√
M×
√
M → R

√
M×
√
M and Dr : R

√
M×
√
M → R

√
M×
√
M the finite difference operators

along, respectively, the columns and rows, with appropriate boundary conditions. We define D1 as

D1 : θ ∈ R
√
M×
√
M 7→ (Dr(θ), Dc(θ)) ∈ R

√
M×
√
M × R

√
M×
√
M .

Moreover, the image θ0 is assumed to be formed by the blocks which overlap. We define the analysis
operator as D = D2 ◦D1 where D2 separates the overlapping blocks. Namely,

D2 : (θ1,θ2) ∈ R
√
M×
√
M × R

√
M×
√
M → (B(θ1), B(θ2)) ∈ RL × RL,

where B is defined as

B(θ) = (Bi vec(θ))i∈I ∈ RL =
∏
i∈I

RLi ,

withBi : RM → RLi are the localization operators whose index belong to the set I which is countable, and
L =

∑
i∈I Li.

By defining the set of groups by

G =
⋃

i∈{1,...,L}

{(i, 1), (i, 2)},

one immediately realizes that measuring sparsity of the above vectorized form is equivalent to group sparsity
of D(θ0) with groups of size 2 along the third dimension.

8.3 Numerical results

EWA with `1, FIRM and SCAD penalties Since the analysis operator D is not invertible, we use Semi
FBLMC algorithm. Numerical results for `1 and SCAD penalties are respectively shown in figures 3 and 5.

Figure 3: (a): Inpainting with EWA - `1 penalty. (b): Compressed Sensing with EWA - `1 penalty. (c)
Deconvolution with EWA - `1 penalty.
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Figure 4: (a): Inpainting with EWA - FIRM penalty. (b): Compressed Sensing with EWA - FIRM penalty.
(c) Deconvolution with EWA - FIRM penalty.

Figure 5: (a): Inpainting with EWA - SCAD penalty. (b): Compressed Sensing with EWA - SCAD penalty.
(c) Deconvolution with EWA - SCAD penalty.

EWA with `∞ penalty `∞ penalty is a anti-sparsity penalty which is suitable to estimate a flat signal. Thus,
let us create a signal whose coordinates are valued in {−1, 1}. However, we setD = IM and do not consider
the effect of groups, i.e., the size of groups is 1. In this case, we can use FBLMC algorithm. The EWA
estimator is implemented in a non-overfitting Compressed Sensing problem, i.e., n > M . This condition is
classic in literature which guarantees the performance of an estimator with `∞ penalty. Numerical results
are shown in Figure 6.
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Figure 6: Compressed Sensing with EWA - `∞ penalty.

9 Proofs

9.1 Proof of Lemma 2.1

Let x∗ ∈ Ω, by Young’s inequality and the Lipschitz continuous of V , we obtain

〈V (x),x〉 ≤
∥∥V (x)

∥∥2

2
/2 +

∥∥x∥∥2

2
/2

≤
∥∥V (x)− V (x∗)

∥∥2

2
+
∥∥V (x∗)

∥∥2

2
+
∥∥x∥∥2

2
/2

≤ K̃
∥∥x− x∗∥∥2

2
+
∥∥V (x∗)

∥∥2

2
+
∥∥x∥∥2

2
/2

≤
(

2K̃ + 1/2
)∥∥x∥∥2

2
+
(

2K̃
∥∥x∗∥∥2

2
+
∥∥V (x∗)

∥∥2

2

)
≤ K(1 +

∥∥x∥∥2

2
),

for some K̃ > 0, with K ≥ max
{

2K̃ + 1/2, 2K̃
∥∥x∗∥∥2

2
+
∥∥V (x∗)

∥∥2

2

}
. That concludes the proof of

Lemma 2.1.

9.2 Proof of Proposition 4.1

In view of Lemma 3.2, the drift coefficient becomes

D(θ) = −1

2
∇(F + (M ,γH) ◦ D̃)(θ) = −1

2
∇F (θ)− 1

2γ
D̃
T
MD̃θ +

1

2γ
D̃
T
MproxMγH(D̃θ).
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Since F ∈ C̃1+ and (H.4) hold, there exist K1 > 0 and K2 > 0 such that

〈D(θ),θ〉 = −1

2
〈∇F (θ),θ〉 − 1

2γ

∥∥D̃θ∥∥2

M
+

1

2

〈
proxMγH(D̃θ), D̃θ

〉
M

≤ K1(1 +
∥∥θ∥∥2

2
) +

∣∣∣∣∣∣∣∣∣D̃∣∣∣∣∣∣∣∣∣2|||M |||/(2γ)
∥∥θ∥∥2

2
+K2(1 +

∥∥θ∥∥2

2
)

≤ K(1 +
∥∥θ∥∥2

2
).

where K ≥ K1 + K2 +
∣∣∣∣∣∣∣∣∣D̃∣∣∣∣∣∣∣∣∣2|||M |||/(2γ). Moreover, the local Lipschitz continuous of D follows from

(H.3) and the local Lipschitz continuous of∇F . This ends the proof of Proposition 4.1.

9.3 Proof of Proposition 4.3

Recall that we denote with the same symbol the measure and its density with respect to the Lebesgue measure.
Thus ∥∥µγ − µ∥∥TV

=

∫
RM

∣∣µγ(θ)− µ(θ)
∣∣dθ,

where

µγ(θ) = exp
(
−
(
F (θ) + (M ,γH) ◦ D̃(θ)

))
/Zγ and µ(θ) = exp

(
−
(
F (θ) +H ◦ D̃(θ)

))
/Z,

and Z =
∫
RM exp

(
−(F (θ′) +H ◦ D̃(θ′))

)
dθ′. In view of Lemma 3.1(ii), applying the monotone con-

vergence theorem, we conclude that Zγ → Z. This together with Lemma 3.1(ii) yield that µγ converges to
µ pointwise. We conclude using Scheffé(-Riesz) theorem [37, 55].

9.4 Proof of Theorem 4.1

From (4.2), owing to [67, Theorem 4.1, Chapter II], we get that the p-th moments of L(t) are finite (i.e.,
E
[∥∥L(t)

∥∥p
2

]
<∞) for any p ≥ 2 and t ≥ 0. The same property holds for Lδ because Lδ is the continuous-

time extension to the discrete time chain ofL. According to the local Lipschitz continuous ofD, we conclude
the proof of Theorem 4.1 using [35, Theorem 2.2] and Jensen’s inequality.

9.5 Proof of Lemma 5.1

The proof of Lemma 5.1 is based on the one of [51, Proposition 13.37] and generalizes to the proximal
mapping in metricM for anyM ∈ Rp×p symmetric positive definite.

Without loss of generality, we perform the proof on a neighbourhood of x̄ where H is lsc. Let x̄ ∈ Rp,
v̄ ∈ ∂H(x̄), sinceH is prox-regular at x̄ for v̄ andH is prox-bounded, owing to [5, Lemma 4.1], there exist
ε > 0 and λ0 > 0 such that

H(x′) > H(x) +
〈
v,x′ − x

〉
− 1

2λ0

∥∥x′ − x∥∥2

2

> H(x) +
〈
v,x′ − x

〉
− 1

2λ0σmin(M)

∥∥x′ − x∥∥2

M
, (9.1)

for any x′ 6= x and (x,v) ∈ gph TH
ε,x̄,v̄. Let γ0 = λ0σmin(M), γ ∈ (0, γ0) and u = x + γM−1v, (9.1)

becomes
H(x′) +

1

2γ

∥∥x′ − u∥∥2

M
> H(x) +

1

2γ

∥∥x− u∥∥2

M
.
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Therefore, proxMγH(u) = x where (x,v) ∈ gph TH
ε,x̄,v̄. That yields proxMγH(x̄+ γM−1v̄) = x̄.

Since H is lsc, proper and prox-bounded, from [51, Theorem 1.17(c)] (see also [51, Theorem 1.25]), we
have

x ∈ proxMγH(u),u→ x̄+ γM−1v̄ =⇒

{
x→ proxMγH(x̄+ γM−1v̄) = x̄,

H(x) = M ,γH(u)− 1
2γ

∥∥x− u∥∥2

2
→ H(x̄).

(9.2)

For any x ∈ proxMγH(u), by Fermat rules we get

v =
M

γ
(u− x) ∈ ∂H(x). (9.3)

For any γ ∈ (0, γ0), owing to (9.2) and (9.3), there exists Nγ,x̄,v̄ a neighbourhood of x̄ + γM−1v̄ such
that for any u ∈ Nγ,x̄,v̄,

∥∥x− x̄∥∥
2
≤ ε,

∥∥H(x)−H(x̄)
∥∥

2
≤ ε and

∥∥v − v̄∥∥
2
≤ ε. We get then

proxMγH(u) = x =⇒ v =
M

γ
(u− x) ∈ TH

ε,x̄,v̄(x).

So that
proxMγH = (M + γTH

ε,x̄,v̄)−1 ◦M = (M + δ−1S)−1 ◦ (γδ)−1M ,

where δ = 1/γ − 1/γ0, S = TH
ε,x̄,v̄ + 1/γ0M . From (9.1), S is maximal monotone, the latter operator

is well defined as a single valued operator (see [4, Proposition 3.22 (ii)(d)]). Let p = proxMγH(x) and
p′ = proxMγH(x′). It then follows that

Mx− γδMp ∈ γS(p) andMx′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(x′ − x)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwarz’s inequality, we obtain∥∥p′ − p∥∥
2
≤ K

∥∥x′ − x∥∥
2
,

where K−1 = γδσmin(M)/|||M ||| =
(
1− γ/γ0

)
σmin(M)/|||M |||.

Let us note that when γ decrease, Inequality (9.1) can be hold for a larger ε that enlarges Nγ,x̄,v̄ and
x̄+ γM−1v̄ concentrate to x̄ for any v̄. Thus, when γ is small enough, there exists a neighbourhood x̄ that
includes in Nγ,x̄,v̄ for any v̄ ∈ ∂H(x̄). That concludes the proof of Lemma 5.1.

9.6 Proof of Lemma 7.3

Before proceeding, let us discuss about the term proxγwβ,λ . In view of (H.6), wβ,λ′ is positive of (0,+∞).
According to Lemma 7.2 we get that, for any t ≥ 0, proxγwβ,λ(t) = 0 if t ≤ γwβ,λ′(0) and proxγwβ,λ(t) =

t− γwβ,λ′(proxγwβ,λ(t)) ≤ t otherwise. That yields the following bound on proxγwβ,λ which is useful for
next steps of the proof

0 ≤ proxγwβ,λ(t) ≤ t, ∀t > 0. (9.4)
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(i) Set u = Dθ, from Lemma 7.1 and (9.4), we get that〈
proxγJβ,λ(u),u

〉
=
∑L

l=1

〈
[proxγJβ,λ(u)]Gl ,uGl

〉
=
∑L

l=1

proxγwβ,λ
(∥∥uGl∥∥2

)∥∥uGl∥∥2

∥∥uGl∥∥2

2
≤
∥∥u∥∥2

2
.

(ii) Set u = Dθ, v = 2γXTy/β and tu = (IM − γ∇Lβ) ◦ (Dθ) = Mγu+ v, by Young’s inequality,
we obtain that〈

proxγJβ,λ(tu),u
〉
Mγ

=
〈
MγproxγJβ,λ(tu),u

〉
≤ 1

2
|||Mγ |||2

∥∥proxγJβ,λ(tu)
∥∥2

2
+

1

2

∥∥u∥∥2

2
.

Moreover, owing to Lemma 7.1 and (9.4), we get that

∥∥proxγJβ,λ(tu)
∥∥2

2
=
∥∥∑L

l=1

proxγJβ,λ(
∥∥[tu]Gl

∥∥
2
)∥∥[tu]Gl

∥∥
2

[tu]Gl
∥∥2

2
≤
(∑L

l=1

∣∣proxγJβ,λ(
∥∥[tu]Gl

∥∥
2
)
∣∣)2

≤
(∑L

l=1

∥∥[tu]Gl
∥∥

2

)2

≤ L
∥∥tu∥∥2

2

≤ 2L
(
|||Mγ |||2

∥∥u∥∥2

2
+
∥∥v∥∥2

2

)
.

According to the fact that
∥∥u∥∥2

2
=
∥∥Dθ∥∥2

2
≤ |||D|||2

∥∥θ∥∥2

2
, we conclude the proof of the assertions (i),

(ii) and also Lemma 7.3.

9.7 Proof of Lemma 7.4

(i) Observe that wβ,λ is continuously differentiable with

γwβ,λ
′(t) = κλ

(
I(t ≤ λ) +

(aλ− t)+

(a− 1)λ
I(t > λ)

)
.

Since wβ,λ′ is positive on (0,+∞), wβ,λ satisfies (H.6). Let u(t) = t+ γwβ,λ
′(t), we obtain that

• u(0) = κλ,
• if 0 < t ≤ λ, u(t) = t+ κλ > κλ,

• if λ < t ≤ aλ, since a > 2, u(t) = t+ κ(aλ−t)
a−1 = a−1+κ

a−1 t+ κaλ > t+ κaλ > λ+ κaλ > κλ,
• if t > aλ, since a− 1 > κ, u(t) = t > aλ > κλ.

Thus, t = 0 is the unique mimimum in [0,+∞) of t+ p′λ(t). According to the continuous differentia-
bility of wβ,λ, wβ,λ satisfies (H.7).

(ii) For the sake of simplified notation, we denote p = proxγwβ,λ(t). Owing to Lemma 7.2, we obtain that

p =

{
0 if t ≤ κλ,
t− κλ

(
I(p ≤ λ) + (aλ−p)+

(a−1)λ I(p > λ)
)

otherwise.
(9.5)

From (9.5), we get the following assertions when t > κλ,
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• if p ≤ λ, p = t− κλ and t = p+ κλ ≤ (κ+ 1)λ,
• if λ < p ≤ aλ, p = t − κ(aλ − p)/(a − 1) implies that p = (((a− 1)t− κaλ)/(a− 1− κ)).

Since λ < p ≤ aλ, κ < a− 1 and a > 2, we get also that

(1 + κ)λ < t =
a− 1− κ
a− 1

p+
κaλ

a− 1
≤ aλ,

• if p > aλ, p = t implies that t > aλ.

That concludes the proof of (ii), Lemma 7.4.

9.8 Proof of Lemma 7.5

(i) Set u = Dθ and pu = proj{
x:α

∑
l

∥∥xGl∥∥2
≤1

}(u). Owing to (7.7) and Young’s inequality, we obtain

that〈
u, proxγJβ,λ(u)

〉
= 〈u,u− pu〉 ≤

∥∥u∥∥2

2
+
∥∥u∥∥

2

∥∥pu∥∥2
≤ 3

2

∥∥u∥∥2

2
+

1

2

∥∥pu∥∥2

2
≤ 3

2

∥∥u∥∥2

2
+

1

2α2
.

(ii) Set u = Dθ, v = 2γXTy/β, tu = (IM − γ∇Lβ) ◦ (Dθ) = Mγu+ v and
ptu = proj{

x:α
∑
l

∥∥xGl∥∥2
≤1

}(tu). By Young’s inequality, we obtain that

〈
proxγJβ,λ(tu),u

〉
Mγ

=
〈
MγproxγJβ,λ(tu),u

〉
≤ 1

2
|||Mγ |||2

∥∥proxγJβ,λ(tu)
∥∥2

2
+

1

2

∥∥u∥∥2

2
.

Moreover, owing to (7.7), we get that

∥∥proxγJβ,λ(tu)
∥∥2

2
=
∥∥tu − ptu∥∥2

2
≤ 2
∥∥tu∥∥2

2
+ 2
∥∥ptu∥∥2

2
≤ 4|||Mγ |||2

∥∥u∥∥2

2
+

(
4
∥∥v∥∥2

2
+

2

α2

)
.

According to the fact that
∥∥u∥∥2

2
=
∥∥Dθ∥∥2

2
≤ |||D|||2

∥∥θ∥∥2

2
, we conclude the proof of the assertions (i), (ii)

and also Lemma 7.5.
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