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Sampling from non-smooth distributions through Langevin
diffusion

Tung Duy Luu∗ Jalal Fadili∗ Christophe Chesneau†

Abstract

In this paper, we propose proximal splitting-type algorithms for sampling from distributions whose
densities are not necessarily smooth nor log-concave. Our approach brings together tools from, on the
one hand, variational analysis and non-smooth optimization, and on the other hand, stochastic diffusion
equations, and in particular the Langevin diffusion. We establish in particular consistency guarantees
of our algorithms seen as discretization schemes in this context. These algorithms are then applied to
compute the exponentially weighted aggregates for regression problems involving non-smooth priors
encouraging some notion of simplicity/complexity. Some popular priors are detailed and implemented
on some numerical experiments.

1 Introduction

1.1 Problem statement

We consider the linear regression problem

y = Xθ0 + ξ, (1.1)

where y ∈ Rn is the vector of observations, X ∈ Rn×p is the design matrix, ξ is the vector of errors, and
θ0 ∈ Rp is the unknown regression vector we wish to estimate. X ∈ Rn×p can be seen as the sensing or
degradation operator in inverse problems raising in, e.g., signal and image processing, or the design matrix for
a regression problem in statistics and machine learning. Generally, problem (1.1) is either under-determined
(p < n), or determined (p = n) butX is ill-conditioned. In both cases, (1.1) is ill-posed.

The idea of aggregating elements in a dictionary has been introduced in machine learning to combine
different techniques (see [43, 66]) with some procedures such as bagging [12], boosting [34, 58] and random
forests [1, 8–10, 13, 36]. In the recent years, there has been a flurry of research on the use of low-complexity
regularization (among which sparsity and low-rank are the most popular) in various areas including statis-
tics and machine learning in high dimension. The idea is that θ0 generally conforms to some notions of
sparsity/low-complexity. Namely, it has either a simple structure or a small intrinsic dimension. This makes
it possible to build an estimateXθ̂with good provable performance guarantees under appropriate conditions.
In literature, the information of sparsity/low-complexity has been taken into account through two families of
estimators: Penalized Estimators and Exponentially Weighted Aggregates (EWA).
∗Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, France, Email: {duy-tung.luu, Jalal.Fadili}@ensicaen.fr.
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1.2 Variational/Penalized Estimators

The penalized approach consists in imposing on the set of candidate solutions some prior structure on the
object to be estimated. The class of estimators are obtained by solving the convex optimization problem

θ̂
PEN

n ∈ Argmin
θ∈Rp

{
V (θ)

def
= F (Xθ,y) + Jλ(θ)

}
, (1.2)

where F : Rn × Rn → R is a general loss function assumed to be differentiable, Jλ : Rp → R is the
regularizing penalty promoting some specific notion of simplicity/low-complexity which depends on a vector
of parameters λ. Regularization is now a central theme in many fields including statistics, machine learning
and inverse problems. A prominent member covered by (1.2) is the Lasso [11, 14, 15, 19, 27, 47, 61] and
its variants such the analysis/fused Lasso [56, 62] or group Lasso [3, 4, 21, 67, 71]. Another example is the
nuclear norm minimization for low rank matrix recovery motivated by various applications including robust
PCA, phase retrieval, control and computer vision [16, 17, 33, 52]. See [14, 45, 64, 65] for generalizations
and comprehensive reviews.

1.3 Exponential Weighted Aggregation (EWA)

An alternative to the variational estimator (1.2) is the aggregation by exponential weighting which combines
all of candidate solutions with the aggregators promoting the prior information. The aggregators are defined
via the probability density function

µ̂(θ) =
exp (−V (θ)/β)∫

Θ exp (−V (ω)/β)dω
, (1.3)

where β > 0 is called temperature parameter. If all θ are candidates to estimate the true vector θ0, then
Θ = Rp. The aggregate is thus defined by

θ̂
EWA

n =

∫
Rp
θµ̂(θ)dθ. (1.4)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning
literatures, see e.g. [22, 23, 25, 26, 30, 37, 42, 46, 53, 70] to name a few.

1.4 The Langevin diffusion

In this paper, we focus on the computation of EWA. Computing θ̂
EWA

n in (1.4) corresponds to an integra-
tion problem which becomes very involved to solve analytically or even numerically in high-dimension. A
classical alternative is to approximate it via a Markov chain Monte-Carlo (MCMC) method which consists
in sampling from µ̂ by constructing an appropriate Markov chain whose stationary distribution is µ̂, and to
compute sample path averages based on the output of the Markov chain. The theory of MCMC methods is
based on that of Markov chains on continuous state space. As in [26], we here use the Langevin diffusion
process; see [54].

Continuous dynamics A Langevin diffusion L in Rp, p ≥ 1 is a homogeneous Markov process defined
by the stochastic differential equation (SDE)

dL(t) =
1

2
ρ(L(t))dt+ dW (t), t > 0, L(0) = l0, (1.5)
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where ρ = ∇ logµ, µ is everywhere non-zero and suitably smooth target density function on Rp, W is a
p-dimensional Brownian process and l0 ∈ Rp is the initial value. Under mild assumptions, the SDE (1.5) has
a unique strong solution and, L(t) has a stationary distribution with density precisely µ [54, Theorem 2.1].
L(t) is therefore interesting for sampling from µ. In particular, this opens the door to approximating integrals∫
Rp f(θ)µ(θ)dθ, where f : Rp → R, by the average value of a Langevin diffusion, i.e., 1

T

∫ T
0 f(L(t))dt for

a large enough T . Under additional assumptions on µ, the expected squared error of the approximation can
be controlled [69].

Forward Euler discretization In practice, in simulating the diffusion sample path, we cannot follow ex-
actly the dynamic defined by the SDE (1.5). Instead, we must discretize it. A popular discretization is given
by the forward (Euler) scheme, which reads

Lk+1 = Lk +
δ

2
ρ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization step-size and {Zk}k are iid ∼ N (0, Ip). The
average value 1

T

∫ T
0 L(t)dt can then be naturally approximated via the Riemann sum

δ

T

∑bT/δc−1
k=0 Lk, (1.6)

where bT/δc denotes the interger part of T/δ. It is then natural to approximate θ̂ by applying this dis-
cretization strategy to the Langevin diffusion with µ as the target density. However, quantitative consistency
guarantees of this discretization require µ (hence ρ) to be sufficiently smooth. For a comprehensive review of
sampling by Langevin diffusion from smooth and log-concave densities, we refer the reader to e.g. [24]. To
cope with non-smooth densities, several works have proposed to replace logµwith a smoothed version (typi-
cally involving the Moreau-Yosida regularization/envelope, see Definition 2.2) [26, 28, 29, 48]. In [29, 48] for
instance, the authors proposed proximal-type algorithms to sample from possibly non-smooth log-concave
densities µ using the forward Euler discretization and the Moreau-Yosida regularization. In [48]1, − logµ is
replaced with its Moreau envelope, while in [29], it is assumed that− logµ = L+H , L is convex Lipschitz
continuously differentiable, and H is a proper closed convex function replaced by its Moreau envelope. In
both these works, convexity plays a crucial role to get quantitative convergence guarantees. Proximal steps
within MCMC methods have been recently proposed for some simple (convex) signal processing problems
[18], though without any guarantees.

1.5 Contributions

Our main contributions are summarized as follows.

• We aim to enlarge the family of µ covered by [26, 28, 29, 48] by relaxing some underlying conditions.
Especially, in our study, µ is structured as µ̂ in (1.3), and it is not necessarily differentiable nor log-
concave.

• We propose two algorithms based on forward-backward proximal splitting for which we prove theo-
retical consistency guarantees.

1The author however applied it to problems where − logµ = L+H . But the gradient of the Moreau envelope of a sum, which
amounts to computing the proximity operator of − logµ does not have an easily implementable expression even if those of L and
H do.
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• These algorithms are applied to compute EWA estimators with several popular penalties in the litera-
ture, and illustrated on some numerical problems.

1.6 Paper organization

Some preliminaries, definitions and notations are introduced in Section 2. Section 3 establishes key prop-
erties of a Moreau-Yosida regularized version of µ under mild assumptions of the latter. In turn we will
consider the SDE (1.5) with such the smoothed density. Well-posedness of this SDE and consistency guar-
antees for its discrete approximations are proven in Section 4. Section 5 provides a large class of functions,
namely prox-regular functions, for which the previous theoretical analysis applies. From this analysis, two
algorithms are derived in Section 6 and applied in Section 7 to compute the EWA estimator with several
penalties. The numerical experiments are described in Section 8. The proofs of all results are collected in
Section 9.

2 Notations and Preliminaries

Before proceeding, let us introduce some notations and definitions.

Vectors and matrices F or a d-dimensional Euclidean space Rd, we endow it with its usual inner product
〈·, ·〉 and associated norm ‖·‖2. Id is the identity matrix on Rd. For r ≥ 1, ‖·‖r will denote the `r norm of a
vector with the usual adaptation for r = +∞.

LetM ∈ Rd×d symmetric positive definite, we denote 〈·, ·〉M = 〈·,M ·〉 and ‖·‖M its associated norm.
For a matrix M , we denote σmin(M) its smallest singular value and |||M ||| its spectral norm. Of course,
‖·‖M and ‖·‖2 are equivalent.

Let x ∈ Rd and the subset of indices I ⊂ {1, . . . , d}. We denote xI the subvector whose entries are
those of x indexed by I. For any matrixM ,M> denotes its transpose.

Sets For a set C, denote IC its characteristic function, i.e., 1 if the argument is in C and 0 otherwise, and
ιC its its indicator function, i.e., 0 if the argument is in C and +∞ otherwise. For an index set I,

∣∣I∣∣ is its
cardinality.

Functions We will denote (·)+ = max(·, 0) the positive part of a real number. For a function f : Rd → R∪
{−∞,+∞}, its effective domain is dom(f) =

{
x ∈ Rd : f(x) < +∞

}
and f is proper if f(x) > −∞

for all x and dom(f) 6= ∅ as is the case when it is finite-valued. A function f : Rd → R ∪ {−∞,+∞} is
lower semi continuous (lsc) at x0 if lim infx→x0 f(x) ≥ f(x0).

For a differentiable function f ,∇f is its (Euclidean) gradient. Define C1,+(Rd) (resp. C1,1(Rd)) the set
of differentiable functions in Rd whose gradient is locally (resp. globally) Lipschitz continuous. We also
define C̃1,+(Rd) def

=
{
f ∈ C1,+(Rd) : ∃K > 0, ∀x ∈ Rd, 〈x,∇f(x)〉 ≤ K(1 + ‖x‖22)

}
. The following

lemma shows that C1,1(Rd) ⊂ C̃1,+(Rd).

Lemma 2.1. Assume that f : Rd → Rd is Lipschitz continuous, then there exists K > 0 such that

〈f(x),x〉 ≤ K(1 + ‖x‖22), ∀x ∈ Rd.

Let us also consider some definitions and properties of variational analysis. A more comprehensive ac-
count on variational analysis in finite-dimensional Eudlidean spaces can be found in [55].
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Definition 2.1 (Subdifferential). Given a point x ∈ Rd where a function f : Rd → R ∪ {+∞} is finite, the
subdifferential of f at x is defined as

∂f(x) =
{
v ∈ Rd : ∃xk → x, f(xk)→ f(x),v ← vk ∈ ∂F f(xk)

}
,

where the Fréchet subdifferential ∂F f(x) of f at x, is the set of vectors v such that

f(w) ≥ f(x) + 〈v,w − x〉+ o
(∥∥w − x∥∥

2

)
.

We say that f is subdifferentially regular at x if and only if f is locally lsc there with ∂f(x) = ∂F f(x).

Let us note that ∂f(x) and ∂F f(x) are closed, with ∂F f(x) convex and ∂F f(x) ⊂ ∂f(x) [55, The-
orem 8.6]. In particular, if f is a proper lsc convex function, ∂F f(x) = ∂f(x) and f is subdifferentially
regular at any point x where ∂f(x) 6= ∅.

Definition 2.2 (Proximal mapping and Moreau envelope). Let M ∈ Rd×d symmetric positive definite. For
a proper lsc function f and γ > 0, the proximal mapping and Moreau envelope in the metricM are defined
respectively by

proxMγf (x)
def
= Argmin

w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

M ,γf(x)
def
= inf
w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

proxMγf here is a set-valued operator since the minimizer, if it exists, is not necessarily unique. WhenM = Ip,
we simply write proxγf and γf .

Operators For a set-valued operator S : Rd ⇒ Rd, its graph is gph(S) =
{

(x,v) : v ∈ S(x)
}

.

Definition 2.3 (Hypomonotone and monotone operators). A set-valued operator S : Rd ⇒ Rd is hypomono-
tone of modulus r > 0 if〈

x′ − x,v′ − v
〉
≥ −r

∥∥x′ − x∥∥2

2
, ∀(x,v) ∈ gph(S), (x′,v′) ∈ gph(S).

It is monotone if the inequality holds with r = 0.

3 Moreau-Yosida regularization

In our framework, the target distribution µ is defined as

µ(θ) ∝ exp
(
−
(
L(θ) +H ◦D>(θ)

))
, (3.1)

where L ∈ C̃1,+(Rp), D ∈ Rp×q and H : Rq → R. Moreover, H is assumed neither differentiable nor
convex. To overcome these difficulties, we invoke arguments from variational analysis [55]. Namely, we will
replace H by its Moreau envelope and state the following assumptions to exploit some key properties of the
latter. To avoid trivialities, from now on, we assume that Argmin(H) 6= ∅.

(H.1) H : Rq → R is lsc and bounded from below.

5



(H.2) proxMγH is single valued.

Let us start with some key properties of the Moreau envelope.

Lemma 3.1. Let M ∈ Rq×q depending on γ ∈]0, γ0[ with γ0 > 0, we denote it Mγ , such that Mγ is
symmetric positive definite for any γ ∈]0, γ0[, and γ 7→

∥∥θ∥∥
Mγ

, ∀θ ∈ Rq, is a decreasing mapping on
]0, γ0[. Assume that (H.1) holds.

(i) prox
Mγ

γH (x) are non-empty compact sets for any x, and

x ∈ Argmin(H)⇒ x ∈ prox
Mγ

γH (x).

(ii) Mγ ,γH(θ) is finite and depends continuously on (x, γ) ∈ Rq×]0, γ0[, and
(
Mγ ,γH(x)

)
γ∈]0,γ0[

is a
decreasing net. More precisely,

Mγ ,γH(x)↗ H(x) for all x as γ ↘ 0.

The fixed points of this proximal mapping include minimizers ofH . They are not equal however in general,
unless for instance H is convex.

Lemma 3.2. LetMγ ∈ Rq×q symmetric positive definite, assume that (H.1) and (H.2) hold. Then prox
Mγ

γH

is continuous on (x, γ) ∈ Rq×]0, γ0[, and Mγ ,γH ∈ C1(Rq) with gradient

∇Mγ ,γH = γ−1Mγ

(
Iq − prox

Mγ

γH

)
.

In plain words, Lemma 3.2 tells us that under (H.1)-(H.2), the Moreau envelope is a smooth function,
hence the name Moreau-Yosida regularization. Moreover, the action of the operator prox

Mγ

γH is equivalent
to a gradient descent on the Moreau envelope of H in the metricMγ with step-size γ.

Remark 3.1. When the metric matrix does not depend on γ, Lemmas 3.1 and 3.2 hold with γ0 = +∞.

Let us now define the smoothed density

µγ(θ) =
exp

(
−
(
L(θ) + (M ,γH) ◦D>(θ)

))
Zγ

, (3.2)

where

Zγ =

∫
Rp

exp
(
−
(
L(θ′) + (M ,γH) ◦D>(θ′)

))
dθ′.

The following proposition answers the natural question on the behaviour of µγ − µ as a function of γ.

Proposition 3.1. Assume that (H.1) holds. Then, µγ converges to µ in total variation as γ → 0.
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4 Langevin diffusion with Moreau-Yosida regularization

Let us define the following SDE with the Moreau-Yosida regularized version of H

dL(t) = ψ(L(t))dt+ dW (t), t > 0,

where ψ : θ ∈ Rp 7→ −1

2
∇
(
L+ (M ,γH) ◦D>

)
(θ),

(4.1)

ψ is the drift coefficient.
Recall that (H.1) and (H.2) were mild assumptions required to establish key properties of Moreau-Yosida

regularization, which in turn allow to compute ∇M ,γH by exploiting its the relation between ∇M ,γH and
proxMγH as stated in Lemma 3.2. Now, to guarantee well-posed (existence and uniqueness) and discretization
consistency of the SDE (4.1), we will also need the following assumptions.

(H.3) proxMγH is locally Lipschitz continuous.

(H.4) There exists C > 0 such that
〈
D>θ,proxMγH(D>θ)

〉
M
≤ C(1 + ‖θ‖22), ∀θ ∈ Rp.

4.1 Well-posedness

We start with the following characterization of the drift ψ.

Proposition 4.1. Assume that (H.1)-(H.4) hold. Then,

〈ψ(θ),θ〉 ≤ K(1 + ‖θ‖22), for some K > 0, (4.2)

and
ψ is locally Lipschitz continuous. (4.3)

The following proposition guarantees the well-posedness of the SDE (4.1).

Proposition 4.2. Assume that (4.2) and (4.3) hold. Then, for every initial pointL(0) such thatE
[
‖L(0)‖22

]
<

∞,

(i) there exists a unique solution to the SDE (4.1) which is strongly Markovian, and the diffusion is non-
explosive, i.e., E

[
‖L(t)‖22

]
<∞ for all t > 0,

(ii) L admits an (unique) invariant measure having the density µγ in (3.2).

4.2 Discretization

Approach 1 Inserting the identities of Lemma 3.2 into (4.1), we get the SDE

dL(t) = −1

2

(
∇L+ γ−1DM

(
Iq − proxMγH

)
◦D>

)
(L(t))dt+ dW (t), L(0) = l0, t > 0. (4.4)

Consider now the forward Euler discretization of (4.4) with step-size δ > 0, which can be rearranged as

Lk+1 = Lk −
δ

2
∇L(Lk)−

δ

2γ
DM

(
D>Lk − proxMγH(D>Lk)

)
+
√
δZk, t > 0, L0 = l0. (4.5)
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Note that by Lemma 3.2, and without the stochastic term
√
δZk, (4.5) amounts to a relaxed form of gradient

descent on L and the Moreau envelope of H in the metricM with step-size δ.
From (4.5), an Euler approximate solution is defined as

Lδ(t)
def
= L0 −

1

2

∫ t

0

(
∇L(L(s))− γ−1DM

(
D>L(s)− proxMγH(D>L(s))

))
ds+

∫ t

0
dW (s),

where L(t) = Lk for t ∈ [kδ, (k + 1)δ[. Observe that Lδ(kδ) = L(kδ) = Lk, hence Lδ(t) and L(t) are
continuous-time extensions to the discrete-time chain {Lk}k.

Mean square convergence of the pathwise approximation (4.5) and of its first-order moment can be estab-
lished as follows.

Theorem 4.1. Assume that (4.2) and (4.3) hold and E [‖L(0)‖r2] <∞ for any r ≥ 2. Then

∥∥∥E[Lδ(T )
]
− E [L(T )]

∥∥∥
2
≤ E

[
sup

0≤t≤T

∥∥∥Lδ(t)−L(t)
∥∥∥

2

]
−→
δ→0

0. (4.6)

The convergence rate is of order δ1/2 when proxMγH is globally Lipschitz continuous.

Approach 2 Assume now that the metric also depends on γ ∈ (]0, γ0[ with γ0 > 0, and we emphasize
this by denoting it Mγ such that Mγ is symmetric positive definite for any γ ∈]0, γ0[, γ →

∥∥θ∥∥
Mγ

, for
any θ ∈ Rq, is a decreasing mapping on ]0, γ0[, andMγ →

γ→0
Iq (such a choice is motivated by the scheme

described in Section 6.1). One can consider an alternative version of the SDE (4.1), i.e.,

dL(t) = −1

2
∇
((
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2
)

(L(t))dt+Mγ
1/2dW (t), t > 0. (4.7)

Denote the drift coefficient of (4.7) by φ, we get that

〈φ(θ),θ〉 = 〈ψ(u),u〉,

where u = Mγ
−1/2θ. Therefore, it is easily seen that φ also satisfies (4.2) and (4.3) under assumptions

(H.1)-(H.4). In turn, Proposition 4.2 applies to (4.7) the diffusion L is unique, non explosive and admits an
unique invariant measure µγ having density

θ 7→ exp
(
−
(
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2(θ)
)
/Zγ

where Zγ =
√

det(Mγ)
∫
Rp exp

(
−
(
L+ (Mγ ,γH) ◦D>

)
(u)
)
du. Since det(Mγ) →

γ→0
1, applying the

reasoning in the proof of Proposition 3.1, we also deduce that µγ converges to µ in total variation as γ → 0.
By the change of variable U(t) = Mγ

−1/2L(t), we get the following SDE

dU(t) = −1

2
Mγ

−1∇
(
L+ (Mγ ,γH) ◦D>

)
(U(t))dt+ dW (t), t > 0. (4.8)

In an analogous way to (4.5), the forward Euler discretization of (4.8) has a deterministic part which is a
relaxed gradient descent in the metricMγ

−1. In turn, mean square convergence of the Euler discretizations
of both (4.7) and (4.8) and of their first-order moments can be established exactly in the same way as in
Theorem 4.1. We omit the details here for the sake of brevity.
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5 Prox-regular penalties

We now present a large class of penalties, namely prox-regular functions, which satisfy the key assumptions
(H.2) and (H.3).

Roughly speaking, a lsc function f is prox-regular at x̄ ∈ dom(f) if it has a “local quadratic support” at
x̄ for all (x,v) ∈ gph(∂f) close enough to (x̄, v̄) ∈ gph(∂f) with f(x) nearby f(x̄). This is formalized
in the following definition.

Definition 5.1 (Prox-regularity). Let f : Rd → R ∪ {+∞}, given a point x̄ ∈ dom(f). f is prox-regular
at x̄ for v̄, with v̄ ∈ ∂f(x̄) if f is locally lsc at x̄, there exist ε > 0 and r > 0 such that

f(x′) > f(x) + (x′ − x)>v − 1

2r

∥∥x′ − x∥∥2

2
,

when
∥∥x′ − x̄∥∥

2
< ε and

∥∥x − x̄∥∥
2
< ε with x′ 6= x and

∥∥f(x) − f(x̄)
∥∥

2
< ε while

∥∥v − v̄∥∥
2
< ε with

v ∈ ∂f(x). When this holds for all v̄ ∈ ∂f(x̄), f is said prox-regular at x̄. When f is prox-regular at every
x ∈ dom(f), f is said prox-regular.

Example 5.1. The class of prox-regular functions is large enough to include many of those used in statistics.
For instance, here examples where prox-regularity is fullfilled (see [55, Chapter 13, Section F] and [51]):

(i) Proper lsc convex functions.

(ii) Proper lsc lower-C2 (or semi-convex) functions, i.e., f is such that f + 1
2r

∥∥ · ∥∥2

2
is convex, r > 0.

(iii) Strongly amenable functions, i.e., f = g ◦R, R : Rd → Rq ∈ C2(Rd) and g : Rq → R ∪ {+∞}
proper lsc convex.

(iv) A closed set C ⊂ Rd is prox-regular if, and only if, ιC is a prox-regular function. This is also equivalent
to: for any x ∈ Rd and for any γ > 0,

PC(x) = Argmin
v∈Rd

{
1

γ

∥∥x− v∥∥2

2
+ ιC(v)

}
= proxγιC(x)

is single valued and continuous, or equivalently, to

d2
C = min

v∈Rd

{
1

γ

∥∥ · −v∥∥2

2
+ ιC(v)

}
= γιC ∈ C1,+(Rd).

The following lemma summarizes a fundamental property of prox-regular functions.

Lemma 5.1 ([50, Theorem 3.2]). When f : Rd → R ∪ {+∞} is locally lsc at x̄ ∈ Rd, the following are
equivalent

(i) f is prox-regular at x̄ for v̄ ∈ ∂f(x̄).

(ii) v̄ is a proximal subgradient to f at x̄, i.e., there exist r > 0 and ε > 0 such that

f(x) ≥ f(x̄) + 〈v̄,x− x̄〉 − r

2
‖x− x̄‖22 , ∀x such that

∥∥x− x̄∥∥
2
< ε.
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Moreover, there exist r > 0 and an f -attentive ε-localization (with ε > 0) of ∂f around (x̄, v̄) defined
by

Tf
ε,x̄,v̄(x) =

{{
v ∈ ∂f(x) : ‖v − v̄‖2 < ε

}
if ‖x− x̄‖2 < ε and ‖f(x)− f(x̄)‖2 < ε,

∅ otherwise,

such that Tf
ε,x̄,v̄ + rId is monotone.

Let us consider a prox-regular function satisfying (H.1). Owing to the following lemma, such type of
functions also fullfills (H.2) and (H.3).

Lemma 5.2. Let M ∈ Rp×p symmetric positive definite and γ small enough, assume that H : Rp → R is
prox-regular and satisfies (H.1). Then proxMγH is single-valued and locally Lipschitz continuous.

Lower-C2 (or semi-convex) functions, see Example 5.1-(ii), satisfy the global counterpart of Lemma 5.1-
(ii). For a lower-C2 penaltyH satisfying (H.1), the following lemma shows that proxMγH is globally Lipschitz
continuous with a proper choice of γ which in turn implies directly (H.4) according to Lemma 2.1.

Lemma 5.3. Assume that H is lower-C2 (with constant r) satisfying (H.1) and γ ∈]0, rσmin(M)[, proxMγH

is single-valued and Lipschitz continuous with constant |||M |||
σmin(M)

(
1− γ

rσmin(M)

)−1
.

When proxMγH is globally Lipschitz continuous, the optimal convergence rate in (4.6) is of order δ1/2 in
view of Theorem 4.1.

6 Forward-Backward type LMC algorithms

Let us now deal with our main goal: computing the EWA estimator in (1.4) by sampling from µ̂. Remind
that

µ̂(θ) ∝ exp

(
−F (Xθ,y) + Jλ(θ)

β

)
,

where F : Rn × Rn → R is a general loss and Jλ : Rp → R is the penalty. Assume that F (X·,y) ∈
C̃1,+(Rp) and the penalty takes the form Jλ = Wλ ◦D>. Let us impose the following assumptions on Wλ.

(H.1’) Wλ : Rq → R is lsc and bounded from below.

(H.2’) proxγWλ
is single valued.

(H.3’) proxγWλ
is locally Lipschitz continuous.

To lighten notation, we will write Fβ
def
= F (X·,y)/β. This section aims to describe our Forward-

Backward type Langevin Monte-Carlo (LMC) algorithms to implement (1.4). These algorithms are based
on wise specializations of the results reported in Section 4.
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6.1 Forward-backward LMC (FBLMC)

In (3.1), we set D = Ip (hence Jλ = Wλ), L ≡ 0, and H = Fβ + Jλ/β, where F is a quadratic loss, i.e.,
Fβ(θ) =

∥∥y −Xθ∥∥2

2
/β. Observe that H satisfies (H.1) by assumption (H.1’). To check (H.2)-(H.4), we

need to design a metric in which proxMγH is expressed as a function of proxγJλ/β . This idea is formalized in
the following lemma.

Lemma 6.1. Assume that 0 < γ < β/(2|||X|||2) and (H.1’) holds. DefineMγ
def
= Ip−(2γ/β)X>X , which

is symmetric positive definite. Then

prox
Mγ

γH = proxγJλ/β ◦ (Ip − γ∇Fβ). (6.1)

In view of Lemma 6.1, (H.2’) and (H.3’), it is immediate to check that (H.2) and (H.3) are satisfied.
It remains now to verify (H.4) which is fulfilled by imposing the following assumption on Wλ (or Jλ).

(H.4’-FB) There exists C ′FB > 0 such that〈
proxγWλ/β

◦ (Ip − γ∇Fβ)(θ),θ
〉
Mγ

≤ C ′FB(1 + ‖θ‖22), ∀θ ∈ Rp.

By Lemma 2.1, a sufficient condition for (H.4’-FB) to hold is that the proximal mapping of Wλ is Lipschitz
continuous.

From Lemmas 3.2 and 6.1, we get

∇Mγ ,γH = γ−1Mγ

(
Ip − prox

Mγ

γH

)
= γ−1Mγ

(
Ip − proxγJλ/β(Ip − γ∇Fβ)

)
.

With this expression at hand, the forward Euler discretization of the SDE (4.1), specialized to the current
case, reads

Lk+1 = Lk −
δ

2γ
Mγ

(
Lk − proxγJλ/β(Lk − γ∇Fβ(Lk))

)
+
√
δZk, t > 0, L0 = l0, (6.2)

Similarly, the forward Euler discretization of the SDE (4.8) is given by

Uk+1 = (1− δ
2γ )Uk +

δ

2γ
proxγJλ/β(Uk − γ∇Fβ(Uk)) +

√
δZk, t > 0, U0 = l0. (6.3)

The familiar reader may have recognized that the deterministic part of (6.3) is nothing but the relaxed form
of the so-called Forward-Backward proximal splitting algorithm [6]. This terminology reflects that there is
a forward Euler discretization on Fβ and a Euler backward discretization on Jλ.

6.2 Semi-Forward-Backward LMC (Semi-FBLMC)

The main limitation of (6.2) is that the proximal mapping of Jλ must be easy to compute. This may not be
true even if the proximal mapping ofWλ is accessible as, for for example, whenD does not have orthogonal
rows [6]. Our goal is to circumvent this difficulty.

Toward this goal, in (3.1), consider now L = Fβ , H = Wλ/β andM = Iq. Owing to (H.1’)-(H.3’), one
can check that (H.1)-(H.3) are fulfilled. Assumption (H.4) is verified by imposing the following on Wλ.
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(H.4’-SFB) There exists C ′SFB > 0 such that
〈

proxγWλ/β
(u),u

〉
≤ C ′SFB(1 + ‖u‖22), ∀u ∈ Rq.

From Lemma 3.2, we obtain

∇
(

(γH) ◦D>
)

(θ) = γ−1D(D>θ − proxγWλ/β
(D>θ)).

Thus, the forward Euler discretization of SDE (4.1) now reads

Lk+1 = Lk −
δ

2
∇Fβ(Lk)−

δ

2γ
D
(
D>Lk − proxγWλ/β

(D>Lk)
)

+
√
δZk, t > 0, L0 = l0. (6.4)

In the case whereD = Ip, Fβ and Wλ are convex, we recover the scheme studied in [29].

7 Applications to penalties in statistics

In this section, we exemplify our LMC sampling algorithms for some popular penalties in the statistical and
machine learning literature. Our goal is by no means to be exhaustive, but rather to be illustrative and show
the versatility of our framework. For each penalty, we aim at checking that assumptions (H.1’)-(H.3’), (H.4’-
FB) and (H.4’-SFB) hold, and to compute proxγWλ/β

. In turn, this allows to apply our algorithms (6.3) and
(6.4) to compute EWA with such penalties.

7.1 Analysis group-separable penalties

We first focus on a class of penalties where Jλ is analysis group-separable, i.e.,

Jλ(θ) = Wλ(D>θ) where Wλ(u) =
∑L

l=1wλ
(
‖uGl‖2

)
, (7.1)

for wλ : R+ → R, and some uniform partition (Gl)l∈{1,...,L} of {1, . . . , q}, i.e., ∪Ll=1Gl = {1, . . . , q} and
Gl ∩ Gl′ , ∀l 6= l′.

Remark 7.1. It is worth mentioning that separability of Wλ does not entail that of Jλ. In fact, overlapping
groups can be easily taken intro account as any overlapping-group penalty can be written as the composition
of Wλ with a linear operator, sayB, such thatB>B is diagonal, andB acts as a group extractor, see [20,
49].

A first consequence of separability is that proxγWλ/β
is also separable under the following mild assump-

tions on wλ.

(W.1) wλ is bounded from below on ]0,+∞[.

(W.2) wλ is non-decreasing functions on ]0,+∞[.

Lemma 7.1. Assume that Assumptions (W.1) and (W.2) hold, and wλ is continuous on ]0,+∞[. For any
u ∈ Rq and γ > 0, we have

proxγWλ/β
(u) =


proxγwλ/β

(‖uG1‖2)
uG1
‖uG1‖2

...
proxγwλ/β

(
‖uGL‖2

) uGL
‖uGL‖2

 .
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Our aim is now to design a family of penalties that will allow to establish (H.1’)-(H.3’), (H.4’-FB) and
(H.4’-SFB), while involving a form of shrinkage which is ubiquitous in low-complexity regularization. In-
spired by the work of [2], we make the following assumptions on wλ.

(W.3) wλ is continuously differentiable on ]0,+∞[ and the problem mint∈[0,+∞[{t+ γ
βwλ

′(t)} has a unique
solution at 0 for a given γ.

Under these assumptions, proxγwλ/β
has a indeed convenient shrinkage-type form.

Lemma 7.2 ([2, Theorem 1]). Assume that (W.2) and (W.3) hold for some γ > 0. Then, proxγwλ/β
are the

single-valued continuous mappings, and satisfy, for t ∈ [0,+∞[,

proxγwλ/β
(t) =

{
0 if t ≤ γ

βwλ
′(0+),

t− γ
βwλ

′
(

proxγwλ/β
(t)
)

if t > γ
βwλ

′(0+).
(7.2)

Let us turn to check our assumptions. (H.1’)-(H.3’) are fulfilled thanks to (W.1)-(W.3). It remains to
check (H.4’-FB) and (H.4’-SFB). This is the subject of the following lemma.

Lemma 7.3. Assume that (W.2) and (W.3) hold for some γ > 0, then (H.4’-FB) and (H.4’-SFB) also hold.

We now discuss some popular penalties wλ that satisfy (W.1)-(W.3) for some γ > 0.

7.2 Examples

`1 penalty Take wλ : t ∈ R+ 7→ λt. This entails the analysis group Lasso penalty

Jλ(θ) = λ
∑L

l=1

∥∥[D>θ]Gl
∥∥

2
.

Clearly, wλ is a continuous positive convex function which verifies (W.1)-(W.3) for any γ > 0, and its
proximal mapping corresponds to soft-thresholding, i.e.,

proxγwλ/β
(t) = (t− γλ/β)+, ∀t ≥ 0.

FIRM penalty The FIRM penalty is given by [35]

wλ(t) =

{
λ
(
t− t2

2µ

)
if 0 ≤ t ≤ µ,

λµ
2 if t > µ.

(7.3)

which entails the corresponding analysis group FIRM penalty Jλ. Since wλ′(t) = λ
(
1− t

µ

)
+
≥ 0, wλ is

non-decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[. Thus, wλ satisfies (W.1) and (W.2).
Assumption (W.3) also holds for any γ < βµ/λ. The operator proxγwλ/β

can be constructed from [68,
Definition II.3]. Its formula is defined as

proxγwλ/β
(t) =


0 if 0 ≤ t ≤ α,
µ

µ−α(t− α) if α < t ≤ µ,
t if t > µ,

(7.4)

where α = γλ/β. The formula (7.4) can also be found using Lemma 7.2. Observe that the FIRM shrinkage
(7.4) interpolates between hard- (see [68, Definition II.2]) and soft-thresholding. In particular, (7.4) coincides
with soft-thresholding when µ→∞.
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SCAD penalty The SCAD penalty, proposed in [32] is parameterized by λ = (λ, a) ∈]0,+∞[×]2,+∞[
as

wλ(t) =


λt if 0 ≤ t ≤ λ,
− t2−2aλt+λ2

2(a−1) if λ < t ≤ aλ,
(a+1)λ2

2 if t > aλ,

(7.5)

The following lemma establishes the validity of wλ and computes proxγwλ/β
.

Lemma 7.4. Let wλ defined in (7.5), and κ = γ/β. For any γ < (a− 1)β,

(i) wλ satisfies (W.1) - (W.3),

(ii) The proximal mapping of the SCAD penalty is given by the shrinkage

proxγwλ/β
(t) =


(t− κλ)+ if 0 ≤ t ≤ (κ+ 1)λ,
(a−1)t−kaλ
a−1−κ if (κ+ 1)λ < t ≤ aλ,

t if t > aλ.

(7.6)

Since a > 2, one can set κ = 1. In this case, (7.6) specializes to [32, Equation (2.8)].

`∞ penalty The `∞ norm penalty is convex and continuous but is not separable, unlike the previous ones.
It is a suitable prior to promote flat vectors, and has found applications in several fields [39, 44, 60]. It entails
the following penalty Wλ:

Jλ(θ) = Wλ(D>θ) where Wλ(u) = λ max
l∈{1,...,L}

{∥∥[u]Gl
∥∥

2

}
, (7.7)

where λ = λ > 0. Since Wλ is not separable, Lemma 7.1 is not applicable. Nevertheless, the proximal
mapping of Wλ can still be obtained easily from the projector on the `1 unit ball, i.e.,

proxγWλ/β
(u) = u− P{

x :
∑
l‖xGl‖2≤

β
λγ

}(u). (7.8)

This projector can be obtained from [31, Proposition 2] (see also references therein). One can see that (H.1’)-
(H.3’) hold. We report the verification of (H.4’-FB) and (H.4’-SFB) in the proof of the following lemma.

Lemma 7.5. Let Wλ in (7.7). Then (H.4’-FB) and (H.4’-SFB) hold.

8 Numerical experiments

In this section, some numerical experiments are conducted to illustrate and validate our LMC algorithms.

8.1 Image processing experiments

Let θ0 is a 2-D image which is a matrix in R128×128. Let us denote vec : R
√
p×√p → Rp the vectorization

operator, i.e. the operator which stacks the columns of its arguments. We then consider the following linear
regression problem

y = X vec(θ0) + ξ. (8.1)
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Here p = 1282 and ξ ∼ N (0, σ2In). The noise level σ is chosen according to the simulated θ0 through the
signal-to-noise ratio SNR, i.e. σ = n−1/2

∥∥Xθ0

∥∥
2
/10SNR/10. In our experiments, we take SNR = 5.

The goal is estimating θ0 by computing the EWA estimators via the penalties proposed in Section 7.
Three types of problems are considered: compressed sensing, inpainting and deconvolution whose regression
function described in what follows.

• Compressed sensing: in this case X is drawn from a random ensemble. In our experiments, X is
drawn uniformly at random from the Rademacher ensemble, i.e., its entries are iid Rademacher random
variables. We also set n = 9p/16.

• Inpainting In this case,X acts as a masking operator. LetM⊂ {1, . . . , p} be the set indexing masked
pixels. Thus

X vec(θ0) =
(
vec(θ)j∈{1,...,p}\M

)
.

In our numerical experiments, we mask out 20% of the pixels, and thus n = p−b20%pcwhere bpc the
stands of integer part of p. The masked positions are chosen randomly from the uniform distribution.

• Deconvolution In this caseX is the convolution operator with a Gaussian kernel with periodic bound-
ary conditions, such thatX is diagonalized in the discrete Fourier basis. In this experiment, the stan-
dard deviation of the kernel is set to 1.

Assuming that the targeted image is piecewise smooth, a popular prior is the so-called isotropic total
variation [57]. To cas this into our framework, define Dc : R

√
p×√p → R

√
p×√p and Dr : R

√
p×√p →

R
√
p×√p the finite difference operators along, respectively, the columns and rows of an image, with Neumann

boundary conditions. We defineDTV as

DTV : θ ∈ R
√
p×√p 7→ vec

(
(vec(Dr(θ)), vec(Dc(θ)))>

)>
∈ R2p.

With this notation, our prior penalty Jλ reads

Jλ(θ) =

p∑
l=1

wλ

(√
vec(Dr(θ))2

l + vec(Dc(θ))2
l

)
= Wλ(DTVθ), (8.2)

which clearly has the form (7.1) with p blocks of equal size 2.
To estimate θ0 from (8.1), we employ the EWA estimator (1.4) with F (Xθ,y) = ‖y −X vec(θ)‖22

and Jλ in (8.2). For each problem instance (compressed sensing, inpainting or deconvolution), we tested
wλ as the `1, SCAD and FIRM penalties. The corresponding EWA estimators are denoted respectively
EWA-`1, EWA-SCAD and EWA-FIRM. Because of the presence of the analysis operator DTV, which is
not unitary, we applied Semi-FBLMC scheme (6.4) to compute EWA with β = 1/(pn), γ = β, and δ ={

5β/103, 5β/102, 5β/106
}

respectively associated to inpainting, deconvolution and compressed sensing
problems. The results are depicted in Figure 1.

8.2 Signal processing experiments

Here we consider reconstructing a piecewise flat 1D signal from compressed sensing measurements using
EWA. For this, we create a p = 128 sample signal whose coordinates are valued in {−1, 1} and compute the
observations (8.1) where X is drawn from the Rademacher ensemble with n > p 2. We set F (Xθ,y) =
‖y −Xθ‖22, Jλ(θ) = ‖θ‖∞, i.e. D = Ip and the size of groups is 1. We can then use the FBLMC scheme
(6.3), where we choose β = 1/(pn), γ = β, and δ = 5/102. The results are shown in Figure 2.

2The overdetermined regime is known to yield good performance for the `∞ penalty [63].
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Figure 1: (a): Original image. (b,c) Observed masked and blurry images. (d, e, f): EWA-`1 estimated images
from masked image, compressed sensing measurements, and blurry image. (g, h, i): EWA-FIRM estimated
images from masked image, compressed sensing measurements, and blurry image. (j, k, l): EWA-SCAD
estimated images from masked image, compressed sensing measurements, and blurry image.
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Figure 2: Compressed sensing with EWA using the `∞ penalty. ′∗′ is the original signal and ′◦′ is the the
estimated one.

9 Proofs

Proof of Lemma 2.1 Let x∗ ∈ C, a bounded subset of Rd. Using Young and Jensen inequalities as well as
K̃-Lipschitz continuity of f , we obtain

〈f(x),x〉 ≤ ‖f(x)‖22 /2 + ‖x‖22 /2
≤ ‖f(x)− f(x∗)‖22 + ‖f(x∗)‖22 + ‖x‖22 /2
≤ K̃ ‖x− x∗‖22 + ‖f(x∗)‖22 + ‖x‖22 /2

≤
(

2K̃ + 1/2
)
‖x‖22 +

(
2K̃ ‖x∗‖22 + ‖f(x∗)‖22

)
≤ K(1 + ‖x‖22),

with K ≥ max
{

2K̃ + 1/2, 2K̃ ‖x∗‖22 + ‖f(x∗)‖22
}

. Recalling that f is bounded on bounded sets con-
cludes the proof.

Proof of Lemma 3.1

(i) In view of (H.1), H is prox-bounded by [55, Exercise 1.24] for any γ ∈]0, γ0[, and then for any x,
1

2γ

∥∥x−·∥∥2

Mγ
+H is proper lsc and level-bounded uniformly in (x, γ) ∈ Rq×]0, γ0[. This entails that

the set of minimizers of this function, i.e. prox
Mγ

γH (x), is a non-empty compact set. For the last claim,
suppose that x ∈ Argmin(H) 6= ∅ and bounded but x /∈ prox

Mγ

γH (x). Thus, for any p ∈ prox
Mγ

γH (x),
we have p 6= x and

H(p) <
1

2γ

∥∥p− x∥∥2

Mγ
+H(p) ≤ H(x),
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leading to a contradiction with x is a minimizer of H .

(ii) The continuity and finiteness properties follow from [55, Theorem 1.17(c)] (see also[55, Theorem 1.25]),
where we use (H.1). For the second claim, we have ∀x ∈ Rq

−∞ < inf H ≤ Mγ ,γH(x) ≤ H(x).

Moreover, let p ∈ prox
Mγ

γH (x). Then, ∀δ > γ,

Mδ,δH(x) = inf
w∈Rq

1

2δ

∥∥w − x∥∥2

Mδ
+H(w)

≤ 1

2δ

∥∥p− x∥∥2

Mδ
+H(p)

≤ 1

2γ

∥∥p− x∥∥2

Mγ
+H(p)

= Mγ ,γH(x).

This together with continuity concludes the proof of Assertion (ii).

Proof of Lemma 3.2 By virtue of Lemma 3.1-(i) and (H.2), prox
Mγ

γH is clearly non-empty and single
valued. The continuity property follows from [55, Theorem 1.17(b)] (see also [55, Theorem 1.25]) and
single-valuedness. By Lemma 3.1-(ii), Mγ ,γH(θ) is finite. Since (H.1) holds, H is prox-bounded with
threshold∞ by [55, Exercise 1.24]. Invoking [55, Example 10.32], we get that−Mγ ,γH is locally Lipschitz
continuous, subdifferentially regular and

∂
(
−Mγ ,γH

)
(θ) =

{
γ−1Mγ

(
prox

Mγ

γH (θ)− θ
)}
, ∀θ ∈ Rp.

Combining this with [55, Theorem 9.18] applied to−Mγ ,γH , we obtain that Mγ ,γH is differentiable and its
gradient is precisely as given.

Proof of Proposition 3.1 Recall that we denote with the same symbol the measure and its density with
respect to the Lebesgue measure. Thus

‖µγ − µ‖TV =

∫
RM

∣∣µγ(θ)− µ(θ)
∣∣dθ,

where

µγ(θ) = exp
(
−
(
L(θ) + (M ,γH) ◦D>(θ)

))
/Zγ and µ(θ) = exp

(
−
(
L(θ) +H ◦D>(θ)

))
/Z,

and Z =
∫
RM exp

(
−(L(θ′) +H ◦D>(θ′))

)
dθ′. In view of Lemma 3.1(ii), applying the monotone con-

vergence theorem, we conclude that Zγ → Z when γ → 0. This together with Lemma 3.1(ii) again yield
that µγ converges to µ pointwise. We conclude using Scheffé(-Riesz) theorem [41, 59].
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Proof of Proposition 4.1 In view of Lemma 3.2, the drift term reads

ψ(θ) = −1

2
∇(L+ (M ,γH) ◦D>)(θ) = −1

2
∇L(θ)− 1

2γ
DMD>θ +

1

2γ
DMproxMγH(D>θ).

Since L ∈ C̃1,+(Rp) and (H.4) holds, there exist K1 > 0 and K2 > 0 such that

〈ψ(θ),θ〉 = −1

2
〈∇L(θ),θ〉 − 1

2γ

∥∥D>θ∥∥2

M
+

1

2

〈
proxMγH(D>θ),D>θ

〉
M

≤ K1(1 + ‖θ‖22) + |||D|||2|||M |||/(2γ) ‖θ‖22 +K2(1 + ‖θ‖22)

≤ K(1 + ‖θ‖22),

where K ≥ K1 + K2 + |||D|||2|||M |||/(2γ). Moreover, under (H.3), (M ,γH) ◦ D> is locally Lipschitz
continuous by virtue of Lemma 3.2, which applies thanks to assumptions (H.1)-(H.2). Clearly (M ,γH) ◦
D> ∈ C̃1,+(Rp). Since C̃1,+(Rp) is closed under addition, we conclude the proof.

Proof of Proposition 4.2 Claim (i) follows by combining Proposition 4.1 and [69, Theorem 3.6, Chapter
II]. Claim (ii) is a consequence of Proposition 4.1 and [54, Theorem 2.1].

Proof of Theorem 4.1 Owing to Proposition 4.1 and [69, Theorem 4.1, Chapter II], we get that the r-th
moments ofL(t) are bounded for any r ≥ 2 and t ≥ 0. A similar reasoning also entails that the r-th moments
of the continuous-time extension Lδ are also bounded. Moreover, according to Proposition 4.1, the drift ψ
is locally Lipschitz continuous. The claim then follows from [38, Theorem 2.2] and Jensen’s inequality. In
the globally Lipschitz continuous case, we get the claimed rate by putting together Lemma 2.1, Jensen’s
inequality and [69, Theorem 7.3, Chapter II] or [40, Theorem 10.2.2 and Remark 10.2.3].

Proof of Lemma 5.2 The proof of Lemma 5.3 is based on the one of [55, Proposition 13.37] and generalizes
to the proximal mapping in metricM for anyM ∈ Rp×p symmetric positive definite.

Without loss of generality, we prove the claim on a neighbourhood of x̄ where H is lsc. Let x̄ ∈ Rp,
v̄ ∈ ∂H(x̄), sinceH is prox-regular at x̄ for v̄ andH is prox-bounded, owing to [7, Lemma 4.1], there exist
ε > 0 and λ0 > 0 such that

H(x′) > H(x) +
〈
v,x′ − x

〉
− 1

2λ0

∥∥x′ − x∥∥2

2

> H(x) +
〈
v,x′ − x

〉
− 1

2λ0σmin(M)

∥∥x′ − x∥∥2

M
, (9.1)

for any x′ 6= x and (x,v) ∈ gph TH
ε,x̄,v̄. Let γ0 = λ0σmin(M), γ ∈]0, γ0[ and u = x + γM−1v, (9.1)

becomes
H(x′) +

1

2γ

∥∥x′ − u∥∥2

M
> H(x) +

1

2γ
‖x− u‖2M .

Therefore, proxMγH(u) = x where (x,v) ∈ gph TH
ε,x̄,v̄. That yields proxMγH(x̄+ γM−1v̄) = x̄.

Since H is lsc, proper and prox-bounded, from [55, Theorem 1.17(c)] (see also [55, Theorem 1.25]), we
have

x ∈ proxMγH(u),u→ x̄+ γM−1v̄ =⇒

{
x→ proxMγH(x̄+ γM−1v̄) = x̄,

H(x) = M ,γH(u)− 1
2γ ‖x− u‖

2
2 → H(x̄).

(9.2)
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For any x ∈ proxMγH(u), by Fermat rules we get

v =
M

γ
(u− x) ∈ ∂H(x). (9.3)

For any γ ∈]0, γ0[, owing to (9.2) and (9.3), there exists Nγ,x̄,v̄ a neighbourhood of x̄ + γM−1v̄ such
that for any u ∈ Nγ,x̄,v̄, ‖x− x̄‖2 ≤ ε, ‖H(x)−H(x̄)‖2 ≤ ε and ‖v − v̄‖2 ≤ ε. We get then

proxMγH(u) = x =⇒ v =
M

γ
(u− x) ∈ TH

ε,x̄,v̄(x).

So that
proxMγH = (M + γTH

ε,x̄,v̄)−1 ◦M = (M + δ−1S)−1 ◦ (γδ)−1M ,

where δ = 1/γ − 1/γ0, S = TH
ε,x̄,v̄ + 1/γ0M . From (9.1), S is maximal monotone, the latter operator

is well defined as a single valued operator (see [5, Proposition 3.22 (ii)(d)]). Let p = proxMγH(x) and
p′ = proxMγH(x′). It then follows that

Mx− γδMp ∈ γS(p) andMx′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(x′ − x)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwarz’s inequality, we obtain∥∥p′ − p∥∥
2
≤ K

∥∥x′ − x∥∥
2
,

where K−1 = γδσmin(M)/|||M ||| =
(
1− γ/γ0

)
σmin(M)/|||M |||.

Let us note that when γ decrease, Inequality (9.1) can be hold for a larger ε that enlarges Nγ,x̄,v̄ and
x̄+ γM−1v̄ concentrate to x̄ for any v̄. Thus, when γ is small enough, there exists a neighbourhood x̄ that
includes in Nγ,x̄,v̄ for any v̄ ∈ ∂H(x̄). That concludes the proof of Lemma 5.3.

Proof of Lemma 5.3 From [55, Example 12.28(b)], ∂H is hypomonotone of modulus 1
r . In turn S =

∂H + 1
γ0
M = ∂

(
H + 1

2γ0

∥∥ · ∥∥2

M

)
is monotone with γ0 = rσmin(M), or equivalently thatH + 1

2γ0

∥∥ ·∥∥2

M

is convex [55, Example 12.28(b)]. Let δ = 1
γ −

1
γ0

and W (w,θ) = H(w) + r′

2

∥∥w − θ∥∥2

M
. Thus

H(w) +
1

2γ

∥∥w − θ∥∥2

M
= W (w,θ) +

δ

2

∥∥w − θ∥∥2

M
.

W (·,θ) is a convex function on Rp and δ > 0 as γ < γ0. Altogether, this entails that W (·,θ) + δ
2

∥∥ · −θ∥∥2

M

is strongly convex uniformly in θ and γ complying with γ < γ0. It then follows that proxMγH is single-valued.
We have

M + γ∂H = γ(δM + S) = γδ
(
M + δ−1S

)
.

By Fermat’s rule, we then get

proxMγH = (M + γ∂H)−1 ◦M =
(
M + δ−1S

)−1 ◦ (γδ)−1M ,
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and the latter operator is well-defined as a single-valued operator since S is maximal monotone; see [5,
Proposition 3.22 (ii)(d)]. Let p = proxMγH(θ) and p′ = proxMγH(θ′). It then follows that

Mθ − γδMp ∈ γS(p) andMθ′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(θ′ − θ)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwartz inequality, we then obtain∥∥p′ − p∥∥
2
≤ κ

∥∥θ′ − θ∥∥
2
,

where κ−1 = γδσmin(M)
|||M ||| = σmin(M)

|||M |||

(
1− γ

γ0

)
= σmin(M)

|||M |||

(
1− γ

rσmin(M)

)
. That concludes the proof of

Lemma 5.3.

Proof of Lemma 6.1 We have

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2γ

∥∥w − θ∥∥2

Mγ
+H(w)

= Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
− γ

β

∥∥X(w − θ)
∥∥2

2
+
γ

β

∥∥y −Xw∥∥2

2
+
γ

β
Jλ(w).

By the Pythagoras relation, we then get

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
+
γ

β

(
1

2

∥∥y −Xθ∥∥2

2
− 〈X(θ −w),Xθ − y〉

)
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
− γ

β

〈
w − θ,XT (y −Xθ)

〉
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2

∥∥w − (θ − 2γ

β
XT

(
Xθ − y

))∥∥2

2
+
γ

β
Jλ(w)

= proxγJλ/β(θ − γ∇F (θ)).

We conclude the proof of Lemma 6.1.

Proof of Lemma 7.1 This is a probably known result, for which we provide a simple proof. Since Wλ is
separable and wλ is continuous and lower-bounded, we have

min
w∈Rq

1

2
‖w − u‖22 +

γ

β
Wλ(w) =

L∑
l=1

min
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2),

and thus, ∀l ∈ {1, . . . , L},[
proxγWλ/β

(u)
]
Gl

= Argmin
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2). (9.4)
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If uGl = 0, then as wλ is an increasing function,
[
proxγWλ/β

(u)
]
Gl

= 0. For uGl 6= 0, by isotropy of
problem (9.4), we can write

min
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2) = min

t≥0

γ

β
wλ(t) +

(
min
‖v‖2=t

1

2
‖v − uGl‖

2
2

)
. (9.5)

The inner minimization problem amounts to solving for the orthogonal projector on the `2 sphere in RG of
radius t, which is obviously v = t

uGl
‖uGl‖2

since uGl 6= 0. Inserting this into (9.5) and rearranging the terms,
(9.4) becomes[

proxγWλ/β
(u)
]
Gl

=
uGl
‖uGl‖2

Argmin
t≥0

1

2

(
t− ‖uGl‖2

)2
+
γ

β
wλ(t) =

uGl
‖uGl‖2

proxγwλ/β
(‖uGl‖2),

where we used even-symmetry of wλ.

Proof of Lemma 7.3 Before proceeding, let us discuss about the term proxγwλ/β
. In view of (W.2),wλ′/β

is positive on ]0,+∞[. According to Lemma 7.2 we get that, for any t ≥ 0, proxγwλ/β
(t) = 0 if t ≤ γ

βwλ
′(0)

and proxγwλ/β
(t) = t− γ

βwλ
′(proxγwλ/β

(t)) ≤ t otherwise. Hencem for any t ≥ 0,

0 ≤ proxγwλ/β
(t) ≤ t, ∀t ≥ 0. (9.6)

Set u = D>θ, from Lemma 7.1 and (9.6), we get that

〈
proxγWλ/β

(u),u
〉

=
∑L

l=1

〈
[proxγWλ/β

(u)]Gl ,uGl

〉
=
∑L

l=1

proxγwλ/β

(
‖uGl‖2

)
‖uGl‖2

‖uGl‖
2
2 ≤ ‖u‖

2
2 .

According to the fact that ‖u‖22 =
∥∥D>θ∥∥2

2
≤ |||D|||2 ‖θ‖22, Assumption (H.4’-SFB) holds.

Set v = 2γX>y/β and tθ = θ − γ∇Fβ(θ) = Mγθ + v, by Young’s inequality, we obtain that

〈
proxγWλ/β

(tθ),θ
〉
Mγ

=
〈
MγproxγWλ/β

(tθ),θ
〉
≤ 1

2
|||Mγ |||2

∥∥∥proxγWλ/β
(tθ)

∥∥∥2

2
+

1

2
‖θ‖22 .

Moreover, owing to Lemma 7.1 and (9.6), we get that

∥∥∥proxγWλ/β
(tθ)

∥∥∥2

2
=

∥∥∥∥∑L
l=1

proxγWλ/β
(‖[tθ]Gl‖2)

‖[tθ]Gl‖2
[tθ]Gl

∥∥∥∥2

2

≤
(∑L

l=1

∣∣proxγWλ/β
(‖[tθ]Gl‖2)

∣∣)2

≤
(∑L

l=1 ‖[tθ]Gl‖2
)2

≤ L ‖tθ‖22
≤ 2L

(
|||Mγ |||2 ‖θ‖22 + ‖v‖22

)
.

Thus, Assumption (H.4’-FB) holds and we conclude the proof of Lemma 7.3.
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Proof of Lemma 7.4
(i) Observe that wλ is continuously differentiable on ]0,+∞[ with

wλ
′(t) = κλ

(
I(t ≤ λ) +

(aλ− t)+

(a− 1)λ
I(t > λ)

)
≥ 0,

wλ is then non decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[. Thus, wλ satisfies
(W.1) and (W.2). Let us check (W.3). Let u(t) = t+ κwλ

′(t), we obtain that

• u(0) = κλ,
• if 0 < t ≤ λ, u(t) = t+ κλ > κλ,
• if λ < t ≤ aλ, since a− 1 > κ > 0, u(t) = t+ κ(aλ−t)

a−1 = κλ+ a−1−κ
a−1 t+ κλ

a−1 > κλ,
• if t > aλ, since a− 1 > κ, u(t) = t > aλ > κλ.

Thus, t = 0 is the unique mimimum in [0,+∞[ of t+ p′λ(t). In other words, wλ satisfies (W.3).

(ii) For the sake of simplified notation, we denote p = proxγwλ/β
(t). Owing to Lemma 7.2, we obtain

that

p =

{
0 if t ≤ κλ,
t− κλ

(
I(p ≤ λ) + (aλ−p)+

(a−1)λ I(p > λ)
)

otherwise.
(9.7)

From (9.7), we get the following assertions when t > κλ,

• if p ≤ λ, p = t− κλ, and t = p+ κλ ≤ (κ+ 1)λ,
• if λ < p ≤ aλ, p = t − κ(aλ − p)/(a − 1) implies that p = (a−1)t−κaλ

a−1−κ . Since λ < p ≤ aλ,
κ < a− 1 and a > 2, we also get that

(1 + κ)λ < t =
a− 1− κ
a− 1

p+
κaλ

a− 1
≤ aλ,

• if p > aλ, p = t, and t > aλ.

That concludes the proof of (ii), Lemma 7.4.

Proof of Lemma 7.5 Set u = D>θ, α = γλ/β and pu = P{
x : α

∑
l‖xGl‖2≤1

}(u). Owing to (7.8) and
Young’s inequality, we obtain that〈

u,proxγWλ/β
(u)
〉

= 〈u,u− pu〉 ≤ ‖u‖
2
2 + ‖u‖2 ‖pu‖2 ≤

3

2
‖u‖22 +

1

2
‖pu‖

2
2 ≤

3

2
‖u‖22 +

1

2α2
.

According to the fact that ‖u‖22 =
∥∥D>θ∥∥2

2
≤ |||D|||2 ‖θ‖22, (H.4’-SFB) holds.

Set v = 2γX>y/β, tθ = θ− γ∇Fβ(θ) = Mγθ+ v and ptθ = P{
x : α

∑
l‖xGl‖2≤1

}(tθ). By Young’s
inequality, we obtain that〈

proxγWλ/β
(tθ),θ

〉
Mγ

=
〈
MγproxγWλ/β

(tθ),θ
〉
≤ 1

2
|||Mγ |||2

∥∥∥proxγWλ/β
(tθ)

∥∥∥2

2
+

1

2
‖θ‖22 .

Moreover, owing to (7.8), we get that∥∥∥proxγWλ/β
(tθ)

∥∥∥2

2
=
∥∥tθ − ptθ∥∥2

2
≤ 2 ‖tθ‖22 + 2

∥∥ptθ∥∥2

2
≤ 4|||Mγ |||2 ‖θ‖22 +

(
4 ‖v‖22 +

2

α2

)
.

Thus, Assumption (H.4’-FB) holds and we conclude the proof of Lemma 7.5.
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