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Abstract

This paper considers the identification of the modules of a network of locally controlled systems (multi-agent systems). Its
main contribution is to determine the least perturbing identification experiment that will nevertheless lead to sufficiently
accurate models of each module for the global performance of the network to be improved by a redesign of the decentralized
controllers. Another contribution is to determine the experimental conditions under which sufficiently informative data (i.e.
data leading to a consistent estimate) can be collected for the identification of any module in such a network.

Key words: Experiment Design, Identification for Control, Interconnected systems.

1 Introduction

In this paper, we consider the problem of designing an identification experiment that will allow to improve the
global performance of a network made up of the interconnection of locally controlled systems. The identification
experiment will be designed in such a way that we obtain a sufficiently accurate model of each module in the
network to be able to improve the global performance of the network by redesigning the local controllers. The type
of networks considered in this paper is usual in the literature on multi-agent systems (see e.g. [10,19]).

This paper contributes to the efforts of developing techniques for the identification of large-scale or interconnected
systems when the topology of the network is known. In many papers, the problem is seen as a multivariable iden-
tification problem and structural properties of the system are then used to simplify this complex problem (see e.g.
[15]). The identifiability of the multivariable structure is studied in a prediction error context in [26] while this
multivariable structure is exploited in other papers to reduce the variance of a given module in the network (see
[16,14,9]). Unlike most of these papers, we consider here a network whose interconnection is realized by exchanging
the measured (and thus noisy) output of neighbouring modules. Another important difference is that, in our setting,
all modules can be identified independently using single-input single-output identification. Consequently, we are
close to the situation considered in our preceding papers on dynamic network identification (see e.g. [6]). In these
contributions, we have developed conditions for consistent estimation of one given module in a dynamic network.
Since general networks were considered in these contributions, the data informativity was tackled with a classical
condition on the positivity of the spectral density matrix [21]. The first contribution of this paper is to extend these
results for the considered type of networks by giving specific conditions for data informativity. In particular, we show
that it is not necessary to excite a specific module i to consistently identify it as long as there exists at least one path
from another module j to that particular module i. In this case, the noise present in the noisy output measurement
yj will give sufficient excitation for consistent estimation.

However, the main contribution of this paper is to tackle the problem of optimal experiment design for (decentral-
ized) control in a network context. More precisely, our contribution lies in the design of the identification experiment
that will lead to sufficiently accurate models of each module of the network to guarantee a certain level of global
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performance via the design of local controllers. The identification experiment consists of simultaneously applying an
excitation signal in each module (i.e. in each closed-loop system) and our objective is to design the spectra of each
of these excitations signals in such a way that the global control objective is achieved with the least total injected
power. In this sense, we extend the results in [4,1] considering one local loop with a local performance objective to
the case of network of closed-loop systems with (both a local and) a global performance objectives. Like in [4,1], the
uncertainty of an identified model will be represented via its covariance matrix. The difference is that this covariance
matrix will here be a function of the excitation signals injected in each module that has a path to the considered
module and of course that there will be a covariance matrix per identified module. Like in [4,1], the maximal allowed
uncertainty will be determined using tools from robustness analysis. To avoid heavy computational loads linked to a
high number of modules Nmod and to structured uncertainties characterized by Nmod uncertain parameter vectors,
the uncertainty is first projected into an unstructured uncertainty on the complementary sensitivity describing each
connected closed-loop system and then the robustness analysis is based on the interconnection of these unstructured
uncertainties. This approach (called hierarchical approach) to analyze the robustness of large-scale (interconnected)
systems has been introduced in [23] and further developed in [7]. A technical contribution of this paper is to develop a
methodology that allows the use of the hierachical approach in the presence of the nonstandard uncertainty delivered
by system identification.

Note that the framework considered here is much different than the frameworks of [25,17] which is, to our knowl-
edge, the only other papers treating the optimal experiment design problem in a network. In [25], the authors consider
input design for nonparametric identification of static nonlinearities embedded in a network. The main purpose of
[17] lies in the use of measurable disturbances in optimal experiment design.
Notations. The matrix 

X1 0 0

0
. . . 0

0 0 XN


will be denoted diag(X1, ..., XN ) if the elements Xi (i = 1, ..., N) are scalar quantities while it will be denoted
bdiag(X1, ..., XN ) if the elements Xi (i = 1, ..., N) are vectors or matrices.

2 Identification of interconnected systems

2.1 Description of the network configuration

We consider a network made up of Nmod single-input single-output (SISO) systems Si (i = 1...Nmod) operated in
closed loop with a SISO decentralized controller Ki (i = 1...Nmod):

Si : yi(t) = Gi(z, θi,0)ui(t) + vi(t) (1)

ui(t) = Ki(z)(yref,i − yi(t)) (2)

ȳref (t) = A ȳ(t) + B refext(t) (3)

Let us describe these equations in details. The signal ui is the input applied to the system Si and yi is the measured
output. This output is made up of a contribution of the input ui and of a disturbance term vi(t) = Hi(z, θi,0)ei(t)
that represents both process and measurement noises. The different systems are thus described by two stable transfer
functions Gi(z, θi,0) and Hi(z, θi,0), the later being also minimum-phase and monic. The signals ei (i = 1...Nmod)

defining vi are all white noise signals. Moreover, the vector ē
∆
= (e1, e2, ..., eNmod)T has the following property:

Eē(t)ēT (t) = Λ

Eē(t)ēT (t− τ) = 0 for τ 6= 0
(4)

with E the expectation operator and with Λ a strictly positive definite matrix. With (4), the power spectrum Φē(ω) of
ē is given by Φē(ω) = Λ for all ω. We will further assume that the signals ei (i = 1...Nmod) are mutually independent.
The matrix Λ is then diagonal 1 i.e. Λ = diag(Λ1,1,Λ2,2, ...,ΛNmod,Nmod) > 0.

The systems Si in (1) may all represent the same type of systems (e.g. drones). However, due to industrial
dispersion, the unknown parameter vectors θi,0 ∈ Rnθi can of course be different for each i, as well as the order of
the transfer functions Gi and Hi. Consequently, it will be necessary to identify a model for each of the systems Si
in the sequel.

1 We will nevertheless see in the sequel that many of the results of this paper also apply to the case of spatially-correlated
noises ei i.e. to the case where (4) holds with a matrix Λ = ΛT > 0 that is not necessarily diagonal.
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Fig. 2. Local closed-loop system (see (1)-(2)). The signal ri is used for identification purpose (see (5)).

In this paper, we consider the type of interconnections used in formation control or multi-agent systems (see e.g.
[10,19]). As shown in (2), each system Si is operated with a decentralized controller Ki(z). In (2), the signal yref,i is
a reference signal that will be computed via (3). The matrix A and the vector B in (3) represent the interconnection
(flow of information) in the network and we have ȳref = (yref,1, yref,2, ..., yref,Nmod)T and ȳ = (y1, y2, ..., yNmod)T .
The signal refext is a (scalar) external reference signal that should be followed by all outputs yi and that is generally
only available at one node of the network.

As an example, let us consider the network in Figure 1. In this network, we have Nmod = 6 systems/modules, all
of the form (1) and all operated as in (2) with a decentralized controller Ki. These local closed loops are represented
by a circle/node in Figure 1 and are further detailed in Figure 2 (consider ri = 0 for the moment in this figure). The
objective of this network is that the outputs yi of all modules follow the external reference refext even though this
reference is only available at Node 1. For this purpose, a number of nodes are allowed to exchange information (i.e.
their measured output) with some other neighbouring nodes. The arrows between the nodes in Figure 1 indicate
the flow of information. For example, Node 5 receives the output of two nodes (i.e. Nodes 3 and 4) and sends its
output (i.e. y5) to three nodes (Nodes 3, 4 and 6). The reference signal yref,i of Node i will be computed as a linear
combination of the received information at Node i. For Node 5, yref,5 will thus be a linear combination of y3 and
y4. More precisely, for all outputs yi to be able to follow the external reference refext, A and B in (3) are chosen as
[10,19]:

A =



0 0 0 0 0 0

1/3 0 1/3 1/3 0 0

0 0.5 0 0 0.5 0

0 0.5 0 0 0.5 0

0 0 0.5 0.5 0 0

0 0 0 0 1 0


B = (1, 0, ..., 0)T .

The matrix A is called the normalized adjacency matrix in the literature [10]. Using (3), we, e.g., see that
the tracking error signals yref,1 − y1 and yref,2 − y2 of Nodes 1 and 2 are respectively given by refext − y1and
1/3 ((y1 − y2) + (y3 − y2) + (y4 − y2)). Similar relations can be found for all the other nodes. If the different loops
[Ki Gi] are designed to make the tracking error yref,i − yi as small as possible, it can be proven that such an
interconnection allows good tracking of refext at all nodes. A normalized adjacency matrix can be defined for any
information flow using the following rules. Row i of A is zero if no output is sent to node i. If yj is sent to node i,
entry (i, j) of A will be nonzero. Finally, all nonzero entries in a row are equal and sum up to one.
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2.2 Network identification procedure

In this paper, our objective is to redesign the local controllersKi (i = 1...Nmod) in order to improve the performance
of the network by identifying sufficiently accurate models of each interconnected system Si (i = 1...Nmod). Let us
first consider the identification procedure. An identification experiment is performed by adding an excitation signal
ri(t) (t = 1...N) having spectrum Φri at the output of each decentralized controller (see Figure 2). Since the external
reference signal refext is, as we will see, not required for identification purpose, refext is put to zero during the
identification experiment. This transforms Equations (2) and (3) into:

ui(t) = ri(t) +Ki(z)(yref,i − yi(t)) (5)

ȳref (t) = A ȳ(t) (6)

This experiment allows to collect the input-output data sets ZNi = {ui(t), yi(t) | t = 1...N} (i = 1...Nmod)
corresponding to each of the Nmod modules.

Instead of using one single global MIMO identification criterion to identify in one step all systems Si (i = 1...Nmod)
with all data sets ZNi (i = 1...Nmod), we will here use a simpler, but equivalent identification procedure. Indeed, we

will show that a consistent estimate θ̂i of the true parameter vector θi,0 of system Si can be identified using only the
data set ZNi . For this purpose, we use the classical SISO prediction-error identification criterion [21] with a full-order
model structure Mi = {Gi(z, θi), Hi(z, θi)} (i.e. a model structure such that Si ∈Mi):

θ̂i = arg min
θi

1

N

N∑
t=1

ε2i (t, θi) (7)

εi(t, θi) = H−1
i (z, θi) (yi(t)−Gi(z, θi)ui(t)) (8)

This approach is simple since it only involves Nmod individual SISO prediction-error identification criteria. This can
be an important advantage when Nmod is large. Moreover, we will show in Subsection 2.3 that this simple approach
is in fact equivalent to the global MIMO prediction error identification criterion.

Before going further, one should verify that θ̂i obtained in this way is indeed a consistent estimate of θi,0 or, in
other words that θi,0 is the unique solution of the asymptotic identification criterion θ∗i = arg minθ Ēε

2
i (t, θi) where

Ēε2i (t, θi) is defined as limN→∞
1
N

∑N
t=1Eε

2
i (t, θi). For this purpose, we will need to make a number of classical

structural assumptions; assumptions that have also to be made when we consider classical (direct) closed-loop
identification (see e.g. [12]).
Assumptions. (A.1) For all i, θi = θi,0 is the only parameter vector for which the models Gi(z, θi) and Hi(z, θi)
correspond to the true system Si. (A.2) For all i, the product Ki(z)Gi(z, θi,0) contains (at least) one delay. (A.3)
For all i, the excitation signal ri is statistically independent of ē = (e1, e2, ..., eNmod)T .

Conditions for consistent identification of a module in an arbitrary network are given in [6]. Because arbitrary net-
works are considered in [6], more attention is given to the selection of the right predictor inputs for the identification
criterion. Other important aspects as the informativity of the input-output data are dealt by the classical condition
of the positivity of the spectral density matrix. However, as mentioned in [13], there is very little information in [6]
on how to obtain informative data by an appropriate design of the experiment (i.e. the application of the excitation
signals ri)

2 . In particular, this condition is very far away from the very detailed conditions deduced in e.g. [12] to
guarantee the consistency of (7) when the data ZNi are collected in a simple closed loop i.e. when the system Si in (1)
is operated with ui(t) = ri(t) −Ki(z)yi(t) (yref,i = 0). Indeed, under the assumptions (A.1), (A.2) and (A.3), [12]
shows that (7) is a consistent estimate of θi,0 if and only if the number of frequencies, at which the spectrum Φri(ω)
is nonzero, is larger than a given threshold. This threshold uniquely depends on the order of the controller Ki(z)
and on the respective parametrization and the orders of Gi(z, θi) and Hi(z, θi). If the order of Ki(z) is large, this
threshold can be negative and consistency is then also guaranteed when ri = 0. Moreover, choosing ri as a filtered
white noise is always a sufficient choice to guarantee consistency when considering a single closed-loop system.

In Theorem 1, we will extend these conditions to the case where the closed-loop systems are interconnected in the
manner presented above. Before presenting this result, let us observe that, due to the interconnection (6), the input

2 The same observation can be made for the conditions derived in the paper [27] which considers the identification of all the
modules in an arbitrary network.
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signals ui (i = 1...Nmod) during the identification experiment can be expressed as:

ui(t) =

Nmod∑
j=1

(Rij(z) rj(t) + Sij(z) ej(t)) (9)

for given transfer functions Rij and Sij (i, j = 1...Nmod) that can easily be computed using (1), (5), (6) and LFT
algebra [8]. The transfer functions Rii and Sii are always nonzero. Excluding pathological cases, the transfer functions
Rij and Sij for i 6= j are both nonzero if and only if there exists a path from node j to node i. In the example of
Figure 1, we can e.g. say that R31 and S31 will be nonzero. Indeed, there exists a path from Node 1 to Node 3 since
y1 is sent to Node 2 and y2 is in turn sent to Node 3. Consequently, u3 will be, via yref,3, a function of y1 which is
in turn a function of r1 and e1. As another example, R56 and S56 will be zero because there is no path from Node 6
to Node 5. Indeed, y6 is not sent to any node and can therefore not influence u5.
Theorem 1 Consider the data set ZNi = {ui(t), yi(t) | t = 1...N} collected in one arbitrary node i of a network
made up Nmod modules (1). The modules in this network are operated as in (5) and the interconnection of the
network is defined via an adjacency matrix (see (6)). Consider furthermore (4) with a matrix Λ = ΛT that is strictly

positive definite and consider also the assumptions (A.1), (A.2) and (A.3). Then, the estimate θ̂i obtained via (7)
is a consistent estimate of θi,0 if and only if one of the following two conditions are satisfied

(i) there exists at least one path from one node j 6= i to the considered node i (i.e. Rij(z) 6= 0 and Sij(z) 6= 0)
(ii) the excitation signal ri satisfies the signal richness condition of [12] that guarantees consistency of (7) in a simple

closed loop (i.e. when the system Si (see (1)) is operated with ui(t) = ri(t)−Ki(z)yi(t)). This condition uniquely
depends on the order of the controller Ki(z) and on the respective parametrization and the orders of Gi(z, θi) and
Hi(z, θi).

Proof. Without loss of generality, let us suppose that i = 1. Moreover, for conciseness, let us drop the argument z in
the transfer functions. Using (1) and (8), the prediction error ε1(t, θ1) is given by:

ε1(t, θ1) = e1(t) +
∆H1(θ1)

H1(θ1)
e1(t) +

∆G1(θ1)

H1(θ1)
u1(t) (10)

with ∆H1(θ1) = H1(θ1,0)−H1(θ1) and ∆G1(θ1) = G1(θ1,0)−G1(θ1). Inserting (9) into (10) and using the notation
ē = (e1, e2, ..., eNmod)T and r̄ = (r1, r2, ..., rNmod)T , ε1(t, θ1) can be rewritten as:

ε1(t, θ1) = e1(t) + L1(θ1) ē(t) +R1(θ1) r̄(t) (11)

L1(z, θ1) =

(
V1(θ1),

∆G1(θ1)

H1(θ1)
S12, ...,

∆G1(θ1)

H1(θ1)
S1Nmod

)
R1(z, θ1) =

∆G1(θ1)

H1(θ1)
(R11, R12, ..., R1Nmod)

with V1(θ1)
∆
= ∆H1(θ1)

H1(θ1) + ∆G1(θ1)
H1(θ1) S11. (A.2) implies that, when nonzero, the transfer functions ∆G1(θ1)

H1(θ1) S1j ∀j all

contain at least one delay. Moreover, when nonzero, ∆H1(θ1) also contains one delay since H1 is monic. Combining
these two facts and (A.3) and recalling that Φē(ω) = Λ, the power Ēε21(t, θ1) of ε1(t, θ1) is equal to:

Λ1,1 +
1

2π

∫ π

−π
L1(ejω, θ1)ΛL∗1(ejω, θ1)dω + ....

...+
1

2π

∫ π

−π
R1(ejω, θ1)Φr̄(ω)R∗1(ejω, θ1)dω

with Λ1,1 the (1,1) entry of Λ (i.e. the variance of e1) and Φr̄(ω) ≥ 0 the power spectrum of r̄.
Note that, for all θ1, Ēε21(t, θ1) ≥ Λ1,1. Consequently, since we have that ε1(t, θ1,0) = e1(t) and thus that

Ēε21(t, θ1,0) = Λ1,1, all minimizers θ∗1 of Ēε21(t, θ1) must be such that Ēε21(t, θ∗1) = Λ1,1.
To prove this theorem, we will first show that Condition (i) is sufficient to guarantee that θ∗1 = θ1,0 is the unique

minimizer of Ēε21(t, θ1) i.e. that θ∗1 = θ1,0 is the only parameter vector such that Ēε21(t, θ∗1) = Λ1,1. For this purpose,
let us start by the following observation. Due to our assumption that Λ > 0, any parameter vector θ∗1 such that
Ēε21(t, θ∗1) = Λ1,1 must satisfy:

L1(θ∗1) ≡ 0 (12)
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If Condition (i) holds (i.e. if there is a path from a node j 6= 1 to node 1), we have that S1j 6= 0. To satisfy (12), it

must in particular hold that
∆G1(θ∗1 )
H1(θ∗1 ) S1j ≡ 0. Since S1j 6= 0, this yields ∆G1(θ∗1) = 0. Using ∆G1(θ∗1) = 0 and the

fact that the first entry V1(θ∗1) of L1(θ∗1) must also be equal to zero to satisfy (12), we obtain ∆H1(θ∗1) = 0. Since,
by virtue of (A.1), θ1,0 is the unique parameter vector making both ∆G1 and ∆H1 equal to 0, we have thus proven
the consistency under Condition (i). Note that this result is irrespective of Φr̄ i.e. it holds for any choice of Φr̄.

In order to conclude this proof, it remains to be proven that, if Condition (i) does not hold, Condition (ii) is a
necessary and sufficient condition for consistency. This part is straightforward. Indeed, if Condition (i) does not hold,
yref,1 = 0 and the data set ZN1 = {u1(t), y1(t) | t = 1...N} is generated as in an isolated closed-loop system. The
result is thus proven since the paper [12] gives necessary and sufficient conditions on the richness of r1 to guarantee
consistency in an isolated closed-loop system.

Theorem 1 shows that the network configuration considered in this paper is in fact beneficial for identification.
Indeed, consistency of (7) is not only guaranteed in all situations where consistency is guaranteed in the simple
closed-loop case (i.e. when yref,i = 0), but also in many other cases (via Condition (i)). Indeed, Condition (i) shows
that, due to the interconnection, disturbances vj in other nodes connected via a path to node i are sufficient to lead
to consistency of (7) and this even in the extreme case where all excitations signals rj (j = 1...Nmod) are set to zero.
For example, in the network of Figure 1, Condition (i) applies to Nodes 2, 3, 4, 5 and 6. Consequently, the richness

condition of [12] has only to be respected to identify a consistent estimate θ̂1 of the module S1 which is the only
isolated module in this network.
Remark 1. Note that the result of Theorem 1 only requires that Λ = ΛT > 0. Consequently, it not only applies to
signals ei that are mutually independent, but also to signals ei that are spatially correlated. This is an interesting
observation since the independence of the disturbances having a path to Node i is an assumption in [6].

2.3 SISO criterion vs. MIMO criterion

Let us define θ̂ = (θ̂T1 , θ̂
T
2 , ..., θ̂

T
Nmod

)T using the different estimates θ̂i (i = 1...Nmod) obtained using the in-

dividual SISO criteria (7) for all modules in the network. In this subsection, we show that this estimate θ̂ of

θ0 = (θT1,0, ..., θ
T
Nmod,0

)T is equal to the estimate θ̂mimo obtained with the prediction error criterion using all data

sets ZNi (i = 1...Nmod). Using (1), the optimally weighted MIMO prediction error identification criterion [21] is

θ̂mimo = arg minθ V (θ) with

V (θ) =
1

N

N∑
t=1

ε̄T (t, θ)Λ−1ε̄(t, θ) (13)

ε̄(t, θ) = H−1(z, θ) (ȳ(t)−G(z, θ)ū(t)) (14)

with θ = (θT1 , θ
T
2 , ..., θ

T
Nmod

)T , G(z, θ) a diagonal transfer matrix equal to diag(G1(θ1), G2(θ2), ..., GNmod(θNmod)) and

H(z, θ) defined similarly as G(z, θ). The data ȳ
∆
= (y1, ..., yNmod)T and ū

∆
= (u1, ..., uNmod)T are the data collected in

ZNi (i = 1...Nmod).
Let us observe that ε̄(t, θ) = (ε1(t, θ1), ..., εNmod(t, θNmod))T with εi(t, θi) as in (8). Using this expression for ε̄(t, θ)

and the assumption that Λ is diagonal, we can rewrite V (θ) as:

V (θ) =

Nmod∑
i=1

1

Λi,i
Vi(θi) (15)

with Λi,i the (i, i)-entry of Λ (i.e. the variance of ei) and Vi(θi) = 1
N

∑N
t=1 ε

2
i (t, θi) the cost function used in the

SISO criterion (7). This last expression shows that minimizing the individual cost functions Vi(θi) (as done in (7)) is

equivalent to minimizing V (θ) and thus that θ̂ = θ̂mimo. Consequently, when Λ is diagonal, there is no disadvantage
whatsoever in using the individual SISO criteria (7) instead of the MIMO criterion (13).

If the global experiment is designed such that consistency is guaranteed for each Module i (see Theorem 1), the

estimate θ̂ = θ̂mimo of θ0 has the property that
√
N(θ̂− θ0) is asymptotically normally distributed around zero [21].

The covariance matrix of θ̂ is moreover given by Pθ = 1
N

(
ĒΨ(t, θ0)Λ−1ΨT (t, θ0)

)−1
where Ψ(t, θ) = −∂ε̄T (t,θ)

∂θ [21].
Let us observe that Ψ(t, θ) is a block-diagonal matrix:

Ψ(t, θ) = bdiag(ψ1(t, θ1), ψ2(t, θ2), ..., ψNmod(t, θNmod))
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with ψi(t, θi) = −∂εi(t,θi)
∂θi

. Consequently, Pθ has the following block-diagonal structure:

Pθ = bdiag(Pθ1 , Pθ2 , ..., PθNmod ) (16)

Pθi =
Λi,i
N

(
Ēψi(t, θi,0)ψTi (t, θi,0)

)−1
i = 1...Nmod

The covariance matrices Pθi in Pθ are the covariance matrices of the individual estimates θ̂i for each i. Note that

Pθi can be estimated from the data ZNi and θ̂i [21]. However, for further use, we also derive an expression of Pθi as
a function of the experimental conditions. For this purpose, we recall (see e.g. [4]) that ψi(t, θi,0) = Fi(z, θi,0)ui(t) +

Li(z, θi,0)ei(t) with Fi(θi) = H−1
i (θi)

∂G(θi)
∂θi

and Li(θi) = H−1
i (θi)

∂H(θi)
∂θi

. Using (9) and assuming that the excitation

signals rj (j = 1...Nmod) are all mutually independent, we obtain:

P−1
θi

=
N

2πΛi,i

∫ π

−π
Zi(ejω)ΛZ∗i (ejω)dω + ... (17)

...
N

2πΛi,i

∫ π

−π
Fi(e

jω)F ∗i (ejω)

(
Nmod∑
j=1

|Rij(ejω)|2Φrj (ω)

)
dω

with Zi(z) a matrix of transfer functions of dimension nθi × Nmod whose ith column is Li + FiSii and whose
jth-column (j 6= i) is equal to FiSij . Note that this expression depends not only on θi,0, but also, via the nonzero
transfer functions Sij , Rij , on the true parameter vector θj,0 of the systems Sj (j 6= i) having a path to node i.

It is also important to note that not only the excitation signal ri but also all rj in nodes having a path to i

contributes to the accuracy P−1
θi

of θ̂i. In the network of Figure 1, the accuracy P−1
θ6

of the model of S6 will thus

be influenced by the excitations signals rj (j = 1...6) in all nodes. Moreover, due to the structure of (17), we could

also theoretically obtain any accuracy P−1
θ6

for that model by e.g. only exciting at Node 1 (i.e. r1 6= 0 and rj = 0

for j = 2...6). It is nevertheless to be noted that a larger excitation power (or a longer experiment) will then be
typically necessary to guarantee this accuracy because of the attenuation of the network.

2.4 Uncertainty bounding

Suppose we have made an experiment leading to informative data ZNi for all modules Si (i = 1...Nmod). We

can thus obtain the estimate θ̂ of θ0 using the individual identification criteria (7). Given the properties of θ̂ given

above, the ellipsoid U = {θ | (θ − θ̂)TP−1
θ (θ − θ̂) < χ} with Pr(χ2(nθ) < χ) = β (nθ is the dimension of θ) will for

sufficiently large sample size N be a β%-confidence region for the unknown parameter vector θ0 (say β = 95%). For
the robustness analysis via the hierarchical approach that will be presented in the next section, we will also need
the projections Ui of U into the parameter space θi of each of the modules i = 1...Nmod. Using (16) and the fact
that θ = (θT1 , θ

T
2 , ..., θ

T
Nmod

)T , the projection Ui = {θi | θ ∈ U} (i = 1...Nmod) is an ellipsoid given by (see e.g. [2]):

Ui = {θi | (θi − θ̂i)TP−1
θi

(θi − θ̂i) < χ} (18)

3 Controller validation

In the previous section, we have seen that models Gi(z, θ̂i) of the systems Si (i = 1...Nmod) can be obtained
using a global identification experiment on an interconnected network. The identified models can now be used to
design improved decentralized controllers K̂i for each module (see e.g. [24]). Note that, if the different systems Si
are homogeneous i.e. they are identical up to industrial dispersion, one could design a common controller K̂i = K̂
∀i using an average of the identified models (see e.g. [19]).

In any case, the decentralized controllers K̂i are designed to guarantee both a nominal local performance (per-

formance of the loop [K̂i Gi(z, θ̂i)]) and a nominal global performance (performance of the network). In [24,19],
the H∞ framework is used to measure both the local and global performance. As usual in classical H∞ control
design, a sufficient level of local performance is ensured by imposing, for all i, a frequency-dependent threshold on

the modulus of the frequency responses of transfer functions such as 1/(1 + K̂iGi(z, θ̂i)) and K̂i/(1 + K̂iGi(z, θ̂i)).
This indeed allows e.g. to guarantee a certain tracking ability for each local loop (since the first transfer function is
the one between yref,i and yi − yref,i) and to limit the control efforts (since the second transfer function is the one

between yref,i and ui). Since the loops [K̂i Gi(z, θ̂i)] are not isolated, but interconnected as in (3), the control design
method in [24,19] also imposes specific constraints on the global performance by imposing a frequency-dependent
threshold on the modulus of the frequency responses of transfer functions P describing the behaviour of the network

7



as a whole. Examples of such global transfer functions P are the transfer functions between the external reference
refext and the tracking error yi − refext at each node of the network. Other examples are the transfer functions
between refext and the input signal ui at each node of the network. Finally, we can also consider the transfer func-
tions between a disturbance vi in one node and an output signal yj in the same or another node. It is clear that
these transfer functions reflect the performance of the whole network with respect to tracking, control efforts and
disturbance rejection, respectively.

For the design of K̂i, the thresholds (weightings) corresponding to each transfer function described in the previous
paragraph must be chosen in such a way that they improve the performance of the original network. The performance
of the original network can be evaluated by computing the frequency responses of these transfer functions in the

network made up of the interconnection of the loops [Ki Gi(z, θ̂i)].

Since the decentralized controllers K̂i are designed based on the models Gi(z, θ̂i) of the true systems Si (i =
1...Nmod), it is important to verify whether these decentralized controllers will also lead to a satisfactory level
of performance both at the local level and at the global level when they will be applied to the true systems Si
(i = 1...Nmod). Since both the local and the global performance may be described by different transfer functions, the
verification that will be presented below must be done for each of these transfer functions. For the transfer functions
describing the local performance, the robustness analysis results of [3] can be used. In the sequel, we will thus restrict
attention to the global performance and show how to perform this verification for one arbitrary transfer function P
describing the global performance. The input of this transfer function will be denoted by w (e.g. w = refext) and

its output will be denoted by s (e.g. s = yi − refext for some i). Let us thus denote by P (z, θ̂) the value of this

transfer function for the network made up of the interconnection of the loops [K̂i Gi(z, θ̂i)]. Similarly, let us denote

by P (z, θ0) its value for the network made up of the loops [K̂i Gi(z, θi,0)]. In order to verify the robustness of the

designed controllers K̂i with respect to this global transfer function P , we have thus to verify whether, for all ω,:

|P (ejω, θ0)| < W (ω) (19)

where W (ω) is the threshold that defines the desired global performance (wrt. P ) in the redesigned network. Since
the unknown θ0 lies in U (modulo the confidence level β), (19) will be deemed verified if supθ∈U |P (ejω, θ)| < W (ω)
at each ω. Note that a necessary condition for the latter to hold is obviously that the designed transfer function

P (z, θ̂) satisfies |P (ejω, θ̂)| < Wnom(ω) with Wnom(ω) < W (ω) for all ω. For a successful redesign of the network, the

controller K̂i must thus be designed with a nominal performance that is (at least slightly) better than the desired
performance.

Computing supθ∈U |P (ejω, θ)| exactly is not possible. However, we can deduce upper bounds for this quantity.
One possible approach to do this is to use µ-analysis based on the parametric uncertainty set U [28,1]. However,
since networks can in practice be made up of a large number Nmod of modules yielding a parametric uncertainty set
of large dimension, this direct approach could reveal impractical from a computational point-of-view [23,7] and the
computed upper bound could possibly turn out to be relatively conservative. Consequently, we will here consider
the two-step hierarchical approach proposed in [23,7] and show how this two-step approach can be applied for the
type of parametric uncertainties delivered by network identification.

As a first step, we will give a convenient expression of the global transfer function P (z, θ0). For this purpose, note
that P (z, θ0) pertains to a network characterized by the interconnection equation (3) and the following equation

describing the local loop [K̂i Gi(z, θi,0)]:

yi(t) = vi(t) + Ti(z, θi,0)(yref,i(t)− vi(t)) (20)

with Ti(z, θi,0) =
K̂iGi(z,θi,0)

1+K̂iGi(z,θi,0)
. Consequently, the usually used global performance transfer functions P (z, θ0) can

be written as an LFT of T (z, θ0) = diag(T1(z, θ1,0), T2(z, θ1,0), ..., TNmod(z, θNmod,0)) i.e. we can determine vectors of
signals p and q such that the transfer function P (z, θ0) between w and s can be written as:

p = T (z, θ0)q and

(
q

s

)
= I(z)

(
p

w

)
(21)

for a given matrix of transfer functions I(z) that does not depend on θ0 (i.e. that does not depend on Gi(z, θi,0)
(i = 1...Nmod)). For this LFT representation, we will use the shorthand notation: P (z, θ0) = F(I(z), T (z, θ0)).

As an example, in the network of Figure 1, let us consider the transfer function between w = refext and s =
y6 − refext and let us consequently pose vi = 0 (i = 1...Nmod). This transfer function can be described as in (21)
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with q = ȳref , p = ȳ and the following constant matrix I:

I =

(
A B

(0, 0, 0, 0, 0, 1) −1

)

The matrix T (z, θ0) depends on the unknown true parameter vector θ0. Since θ0 ∈ U (modulo the confidence level
β), T (z, θ0) obviously lies in the parametric uncertainty set T s = {T (z, θ) | θ ∈ U}. Note that supθ∈U |P (ejω, θ)| =
supT∈T s |F(I(ejω), T (ejω))|. Computing an upper bound of the latter expression remains as complicate as with
the former since Ts is still a parametric uncertainty set of large dimension (if Nmod is large). However, this LFT
representation of P (z, θ0) enables the use of the hierarchical approach. The idea of the hierarchical approach is to
embed T s into an uncertainty set T having a structure for which the robustness analysis of the global performance
is tractable even if Nmod is large. For this purpose, we can choose the following structure for T :

T = {T (z) | T (z) = (INmod + ∆(z)) T (z, θ̂) with

... ∆(ejω) ∈∆(ω) ∀ω} (22)

where ∆(z) = diag(∆1(z),∆2(z), ...,∆Nmod(z)) is the (stable) uncertainty made up of Nmod scalar transfer functions
∆i(z) (i = 1...Nmod). The set ∆(ω) will have a similar diagonal structure: ∆(ω)
= diag(∆1(ω),∆2(ω), ...,∆Nmod

(ω)). The elements ∆i(ω) constrain the frequency response ∆i(e
jω) of ∆i(z) as

follows:
∆i(ω) = {∆i(e

jω) | |∆i(e
jω)− ci(ω)| < ρi(ω)} (23)

i.e. ∆i(ω) is a disk (in the complex plane) of radius ρi(ω) and of (complex) center ci(ω).
Since, as mentioned above, T will be determined in such a way that T s ⊆ T , T (z, θ0) will also lie in T and we

will thus be able to verify (19) by verifying at each ω that Pwc(ω, T ) < W (ω) with

Pwc(ω, T )
∆
= sup
T (z)∈T

|F(I(ejω), T (ejω))| (24)

Since T (z) = (INmod + ∆(z)) T (z, θ̂) is an LFT in ∆(z), F(I(z), T (z)) can be rewritten in an LFT in ∆(z) i.e.

F(I(z), T (z)) = F(M(z),∆(z)) with M(z) a function of I(z) and T (z, θ̂). Consequently, (24) is also given by:

Pwc(ω, T ) = sup
∆(ejω)∈∆(ω)

|F(M(ejω),∆(ejω))| (25)

Before presenting how we can evaluate (25), we will first present how the uncertainty set T can be determined in
practice. First note that we can decompose the uncertainty set T into Nmod SISO (unstructured) uncertainty sets
Ti defined as follows:

Ti = {Ti(z) | Ti(z) = (1 + ∆i(z)) Ti(z, θ̂i) with

... ∆i(e
jω) ∈∆i(ω) ∀ω} (26)

with ∆i(ω) as defined in (23). Ensuring T s ⊆ T can thus be obtained by determining the sets Ti in such a way that,
for all i = 1...Nmod, T si ⊆ Ti with T si defined as follows:

T si = {Ti(z, θi) | Ti(z, θi) =
K̂i(z)Gi(z, θi)

1 + K̂i(z)Gi(z, θi)
with θi ∈ Ui}. (27)

with Ui as in (18). In order to achieve this in an optimal way, the frequency functions ρi(ω) and ci(ω) defining,
via (23), the size of Ti will be determined in such a way that Ti is the smallest set for which it still holds that T si ⊆ Ti.
By doing so, we indeed reduce as much as possible the conservatism linked to the embedding of the uncertainty set
T si (that follows from the identification experiment) into the unstructured uncertainty set Ti. Consequently, for a
given i and for a given ω, ρi(ω) and ci(ω) have to be chosen as the solution of the following optimization problem:

min ρi(ω)

s.t. |T̃i(ejω, θi)− ci(ω)| < ρi(ω) ∀θi ∈ Ui (28)

with T̃i(e
jω, θi) =

Ti(e
jω, θi)− Ti(ejω, θ̂i)
Ti(ejω, θ̂i)
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with Ti(z, θi) as defined in (27). As shown in the following theorem, the solution of the optimization problem (28)
can be efficiently determined using LMI optimization [5]. Before presenting this result, let us first give an expression

of T̃i(e
jω, θi) as a function of θi using the following notation for Gi(e

jω, θi) =
Z1,i(e

jω)θi
1+Z2,i(ejω)θi

. In the last expression,

Z1,i(z) and Z2,i(z) are row vectors containing only delays or zeros (see [3]). This yields

T̃i(e
jω, θi) =

−1 + ZN,i(e
jω)θi

1 + ZD,i(ejω)θi
(29)

with ZD,i = Z2,i + K̂iZ1,i and ZN,i =
K̂iZ1,i

Ti(ejω,θ̂i)
− ZD,i.

Theorem 2 Consider the notation T̃i(e
jω, θi) =

−1+ZN,i(e
jω)θi

1+ZD,i(ejω)θi
given in (29). The optimization problem (28) at

a given ω and at a given i is equivalent to the following LMI optimization problem having as decision variable a
positive real scalar αi(ω), a complex scalar ci(ω), a positive real scalar ξi(ω) and a skew-symmetric matrix Xi(ω) ∈
R(nθi+1)×(nθi+1):

min αi(ω) subject to−αi(ω) λi(ω)

λ∗i (ω) −Ai(ω)− ξi(ω)Bi + jXi(ω)

 < 0 (30)

with λi(ω) =
(
ZN,i − ZD,ici −1− ci

)
and

Ai(ω) =

 Z∗D,iZD,i Z
∗
D,i

ZD,i 1

 Bi =

 P−1
θi

−P−1
θi
θ̂i

−θ̂Ti P−1
θi

θ̂Ti P
−1
θi
θ̂i − χi


The above optimization problem is not explicitly function of ρi(ω). However, the optimal ρi(ω) can be obtained by

taking the square root of the optimal αi(ω).
Proof. For conciseness, we will drop the frequency argument ω in the variables. Using the notations ρ2

i = αi and
θ̄i = (θTi 1)T and using (29), we can rewrite the constraint in (28) as:

θ̄Ti

(
Ai − λ∗i

−1

αi
λi

)
θ̄i < 0 ∀θi ∈ Ui (31)

while the constraint θi ∈ Ui is equivalent to θ̄Ti Biθ̄i < 0. Consequently, by virtue of the S-procedure [5] and Lemma
2 in [4], (31) holds if and only if there exist ξi > 0 and Xi = −X Ti such that

Ai − λ∗
−1

αi
λ− ξiBi + jXi < 0 (32)

Since αi > 0, an application of the Schur complement [5] shows that (32) is equivalent to (30). This concludes the
proof.

Remark 2. The novelty of this theorem resides in the determination of the (complex) center ci of the unstructured

uncertainty. Given the definition of T̃ (ejω, θi), one could of course consider that this center is zero and just compute
the radius ρi(ω). In this case, the LMI optimization above is the same as the one in [3]. However, since the mapping

between θi and T̃i(e
jω, θi) is in general not linear, this could lead to larger embedding sets Ti and thus to more

conservative results for the robustness analysis (as will be illustrated in Section 5).
Using Theorem 2, we can determine ρi(ω) and ci(ω) for any value of i (i = 1...Nmod) and for any value of ω. In

this way, we fully determine the sets Ti (see (26)) for all values of i and therefore also the set T (see (22)). With
this information, we will be able, as shown in the following theorem, to evaluate the worst case global performance
Pwc(ω, T ) defined in (25) for any value of ω.
Theorem 3 Consider a given frequency ω and and the set T (see (22)) with a diagonal uncertainty ∆(ejω) whose
elements ∆i(e

jω) are constrained to lie in a disk ∆i(ω) of radius ρi(ω) and of center ci(ω) (see (23)). Define Rω
(resp. Cω) as a diagonal matrix of dimension Nmod whose elements are ρ2

i (ω) (resp. ci(ω)) (i = 1...Nmod). Then, an

upper bound Pwc,ub(ω, T ) of the worst case global performance Pwc(ω, T ) defined in (25) is given by
√
γopt(ω) where
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γopt(ω) is the solution of the following LMI optimization problem. This LMI optimization problem has as decision

variables a real scalar γ(ω) > 0 and a strictly positive definite diagonal matrix Tω ∈ RNmod×Nmod .

min γ(ω)

s.t.

M(ejω)

I

∗N (γ(ω))

M(ejω)

I

 < 0 (33)

with N (γ(ω))
∆
=



 Tω(Rω − C∗ωCω) 0

0 1

  TωC
∗
ω 0

0 0

 TωCω 0

0 0

 −Tω 0

0 −γ(ω)



 (34)

This theorem can be straightforwardly deduced from the separation of graph theorem [22] and from the results
in [7]. It follows from the fact that the constraint (33) is a sufficient condition for |F(M(ejω),∆(ejω))|2 < γ(ω)
∀∆(ejω) ∈∆(ω) to hold.
Remark 3. The so-called hierarchical approach for robustness analysis presented above is preferred upon a direct
µ-analysis approach based on the structured uncertainty U when the number Nmod of modules is large. Indeed, even
in this case, its computational complexity remains low while the µ-analysis approach would involve very complex
multipliers of large dimensions. The radius ρi(ω) and the center ci(ω) are indeed computed at the local level and
the computation of (the upper bound of) the worst case performance Pwc(ω, T ) in Theorem 3 uses a very simple
multiplier Tω. This approach of course only yields an upper bound of supθ∈U |P (ejω, θ)|. However, the µ-analysis
approach that would be used to compute supθ∈U |P (ejω, θ)| would also only lead to an upper bound of this quantity
which can turn out to be conservative for large Nmod . In the simulation example, we will show that the conservatism
linked to the hierarchical approach remains limited.
Remark 4. Like the µ-analysis approach, the proposed robustness analysis approach is a frequency-wise approach (i.e.
the upper bound Pwc,ub(ω, T ) on the worst case performance is computed frequency by frequency). Consequently,
the performance constraint (19) can only be verified for a finite amount of frequencies of the frequency interval [0 π].

4 Optimal experiment design for networks

Given an arbitrary identification experiment, the obtained confidence ellipsoid U and the corresponding uncertainty
set T can be such that the upper bound Pwc,ub(ω, T ) (computed using Theorem 3) is larger than the threshold W (ω)
for some frequencies. In this section, we will design the experiment in order to avoid such a situation. More precisely,
we will design the spectra Φri of the signals ri (i = 1...Nmod) for an identification experiment of (fixed) duration N
in such a way that the total injected power is minimized while guaranteeing that the obtained uncertainty region T
is small enough to guarantee

Pwc,ub(ω, T ) < W (ω) (35)

at each frequency ω. Note that, for conciseness, we restrict attention to one single global performance objective (see
also Remark 5 below). Note also that we here suppose that the signals ri (i = 1...Nmod) are all mutually independent.
Consequently, the experiment is thus indeed entirely described by the spectra Φri (i = 1...Nmod).

An important step is to parametrize these spectra Φri(ω). Here, we will use the parametrization [18] i.e.: Φri(ω) =

σi,0 + 2
∑M
l=1 σi,l cos(lω) (i = 1...Nmod) for which Φri(ω) > 0 ∀ω can be guaranteed using an extra LMI constraint

on the decision variables σi,l (i = 1...Nmod, l = 0...M) [18]. With this parametrization, the cost function in our
optimization problem is a linear function of the decision variables:

J =

Nmod∑
i=1

1

2π

∫ π

−π
Φri(ω)dω =

Nmod∑
i=1

σi,0 (36)

Using (17), we see also that the matrices P−1
θi

that determines the size ρi(ω) of the elements Ti of T via the LMI (30)

are all affine functions of the to-be-designed spectra and thus of the decisions variables σj,l (j = 1...Nmod, l = 0...M).
By reducing J , we increase the size of U and we thus increase ρi(ω) ∀i. By increasing ρi, we increase Pwc,ub(ω, T ).

Our goal is thus to find the spectra Φri(ω) minimizing J while leading to ρi(ω) that are sufficient small for (35) to
hold for each ω in an user-chosen grid Ω of the frequency range. For this purpose, we propose the following optimal
identification experiment design problem. This optimization problem has the following decision variables: σi,l, Tω,
αi(ω) = ρ2

i (ω), ci(ω), ξi(ω), Xi(ω) with the same structure as in Theorems 2 and 3 and defined for all i = 1...Nmod,
for all l = 0...M and for all ω ∈ Ω.
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minJ under the constraints that, for all ω ∈ Ω,(
M(ejω)

I

)∗
N (W 2(ω))

(
M(ejω)

I

)
< 0

E(ρ2
i (ω), ci(ω), ξi(ω),Xi(ω), P−1

θi
) < 0 i = 1...Nmod

(37)

The constraints of the above optimization have to be completed by the Nmod constraints on σi,l guaranteeing that

Φri(ω) > 0 ∀ω (i = 1...Nmod). The matrix E(ρ2
i (ω), ci(ω), ξi(ω),Xi(ω), P−1

θi
) above is the matrix defined in (30) in

which P−1
θi

is replaced by its affine expression in the decision variables σj,l defining the identification spectra Φrj ∀j.
This optimization problem will lead to the least costly identification experiment (according to J ) that nevertheless
guarantees that the identified models will be sufficiently accurate to deliver an acceptable global performance. Indeed,
the combination of the set of constraints in (37) at a given ω guarantee that (35) holds for the uncertainty T defined
based on the uncertainty U delivered via the identification.

There are two issues with this optimization problem. First, as in all optimal identification experiment design

problem, it depends on the unknown parameter vectors θi,0 via P−1
θi

, on the to-be identified parameter vectors θ̂i

(via e.g. Ai) and on the to-be-designed controllers K̂i (via e.g. Bi). Those unknown variables will be replaced by
initial guesses such as in [4,1]. In particular, we need to pre-select a control design method which, based on a model
of the modules, leads to decentralized controllers achieving a nominal performance that is (slightly) better than the

desired one. This control design method will be used to determine the initial guesses for K̂i based on the initial
guesses for the modules.

The second issue is that the optimization problem is a bilinear problem via the products Tω(Rω − CωC∗w), TωCω
in N (see (34)) and ξiBi (and thus ξiP

−1
θi

) in the constraint E < 0 (see (30)). Indeed, here, unlike in Section 3, all
these variables are together decision variables in the same optimization problem. To tackle this issue, we propose the
following iterative algorithm inspired by the so called D-K iterations [28]. Before presenting the algorithm, we note
that, if we arbitrarily choose spectra Φri(ω) (i = 1...Nmod), we can compute the corresponding Pθi (i = 1...Nmod)
via (17). With these Pθi , we can compute Pwc,ub(ω, T ) via Theorems 2 and 3 and we can therefore verify whether (35)
holds at each ω ∈ Ω. If that is the case, we will say that the spectra Φri(ω) (i = 1...Nmod) are validated.
Algorithm 1. The algorithm is made up of an initialization step (step 0) and each iteration consists of three steps.

S.0. We initialize the algorithm by arbitrarily choosing the spectra Φri (i = 1...Nmod) (e.g. Φri(ω) = 1).
S.1. Using a subdivision algorithm, we determine, using the notion of validation defined above, the minimal positive

scalar γ ∈ R such that the spectra γΦri(ω) (i = 1...Nmod) remain validated. Denote this minimal γ by γmin.
S.2. To validate γminΦri(ω), the optimization problems in Theorems 2 and 3 have been used. The corresponding decision

variables are αi = ρ2
i (ω), ci(ω), ξi(ω), Xi(ω) and Tw (i = 1...Nmod, ω ∈ Ω). From those decisions variables, ξi(ω),

ci(ω) and Tω (i = 1...Nmod, ω ∈ Ω) are conserved for Step 3.
S.3. The optimal experiment design problem (37) is transformed into an LMI optimization problem by fixing the decision

variables ξi(ω), ci(ω) and Tω (i = 1...Nmod, ω ∈ Ω) to the ones determined in Step 2. The solution of this
transformed optimization problem define, via σi,l, new spectra Φri(ω). These new spectra Φri(ω) can then be used
in Step 1 for a new iteration.

The algorithm is stopped when the optimal cost Jopt in Step 3 no longer decreases significantly after each iteration.
The optimal spectra Φri(ω) are then the ones corresponding to this last iteration (Step 1 can be used a last time to
further refine these spectra).

Remark 5. The optimal experiment design problem has been presented in the case where the objective is to guarantee
a certain level of global performance described by one transfer function P . However, it is straightforward to extend
it to the case where different transfer functions P are considered and, using the results in [4], also to the case where,
in addition, a certain level of local performance has to be guaranteed.
Remark 6. Let us now consider briefly the case where the noises ei in (1) are not independent, but spatially correlated
with a strictly positive covariance matrix Λ. We had already observed in Remark 1 that Theorem 1 also holds in that
case. As opposed to this, the individual SISO identification criteria (7) are, for ei having that property, no longer
equivalent to the global MIMO identification criterion (13) and will therefore not lead to the smallest variance.

However, since εi(t, θi,0) remains equal to ei(t),
√
N(θ̂i − θi,0) will in that case too be asymptotically normally

distributed around zero and the covariance matrix Pθi of θ̂i will be still given by (17). We also observe that the
hierarchical approach only uses the ellipsoids Ui (and not U). Consequently, the controller validation and experiment
design results can also be applied when the white noises ei (i = 1...Nmod) are spatially correlated. Indeed, even though

the covariance matrix Pθ of θ̂ is no longer block-diagonal in that case, the projections Ui = {θi | θ ∈ U} are still
given by (18) [2].
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5 Numerical illustration

In this numerical illustration, we consider the network of Figure 1 made up of six nodes (Nmod = 6). We consider
here the case of nodes made up of homogenous systems and, for simplicity, the true systems Si that will be identified
will all be identical and given by the following ARX system [20]: yi(t) = (z−3B0(z))/(A0(z))ui(t) + (1)/(A0(z))ei(t)
with B0(z) = 0.10276 + 0.18123z−1, A0(z) = 1−1.99185z−1 + 2.20265z−2−1.84083z−3 + 0.89413z−4. The variances
Λi,i of the white noises ei(t) are all equal to one i.e. Λ = I6. We suppose that these true systems are all controlled
by the same local controller K that is designed using the local method in [11]. The global performance P (z, θ0) that
we consider in this example is the transfer function between w = refext and s = y6 − refext. Our objective is to
determine the identification experiment leading to models whose uncertainty U is small enough to guarantee (35)
with the threshold W represented in Figure 3. This threshold requires a global bandwidth that is higher than the
one achieved with the controller K present in the network. We suppose that, based on the identified models, the
method of [19] will be used to design a unique controller K̂ that satisfies the global performance defined by W (but
also a certain level of local performance).

Using the methodology presented in Section 4, we design the spectra Φri (M = 10) that have to be applied
to each module for the identification. For this design, we fix the experiment length to N = 2000 and we need
to have initial guesses of the true systems, the identified models and K̂. We have here used for this purpose an
ARX system having the same structure as the true systems, but described by Binit(z) = 0.1192 + 0.1651z−1 and
Ainit(z) = 1 − 2.009z−1 + 2.23z−2 − 1.859z−3 + 0.9004z−4. With this initial guess Sinit for the system, we have
designed a controller Kinit using the same global method that will be used with the identified models. This controller
Kinit has been used as initial guess for the controller K̂. The worst-case performance Pwc,ub(ω, T ) corresponding to
these designed spectra and these initial guesses is given in Figure 3 (black dashed) and we see that the performance
objective is satisfied. The optimal cost Jopt is equal to 108. This result has been obtained by considering the centers
ci(ω) as decision variables. This is important since the optimal cost would be equal to 133 if we would force these
centers to be zero for all i and for all frequencies. We have also verified that the conservatism linked to the chosen
hierarchical robustness analysis approach remains limited. For this purpose, we have computed a lower bound of
the exact worst-case performance supθ∈U |P (ejω, θ)| by randomly generating parameter vectors θ on the contour of
the obtained uncertainty ellipsoid U and by computing, for each ω, the largest value of |P (ejω, θ)| for those random
values of θ. When generating 10000 random θ, the relative error between this lower bound and Pwc,ub(ω, T ) is,
for each ω, smaller than 20% (the maximal relative error is attained at ω ≈ 1.5) and has a mean of 3% over the
frequencies.

In order to further verify the validity of our results, we realize the optimal spectra and apply the corresponding

excitation signals ri (i = 1...6) of length N = 2000 to the network. The models G(z, θ̂i) are identified using

the procedure of Section 2 and a controller K̂ is designed with the average of these six models using the chosen
global control design method. Finally, using the covariance matrices Pθi determined along with the models, we use
the procedure of Section 3 to determine the worst-case global performance. This worst-case global performance
Pwc,ub(ω, T ) is given in Figure 3 (red solid). We observe that, even if the optimal spectra have been designed

with initial guesses for the identified parameter vectors and for K̂ as well as with the asymptotic formula (9)
for the covariance matrices Pθi , the worst-case performance actually obtained after the identification experiment
satisfies (35).

i σi,0 Vi

i = 1 16.2 481

i = 2 19.5 238

i = 3 18.1 179

i = 4 18.6 181

i = 5 22.6 154

i = 6 13.8 101

Table 1
Distribution of power and of uncertainty among the nodes

Consequently, our methodology leads to models that are sufficiently accurate to guarantee a certain level of global
performance in this example. Let us analyze how the excitation power and the uncertainty is distributed among the
nodes. For this purpose, we give in Table 1 the power injected for each node (i.e. σi,0) and a normalized image of the
volume of Ui i.e. Vi = det(105Pθi). Since Vi is only one of the possible measures to evaluate the size of the uncertainty,
we also represent, in Figure 4, the radius ρi(ω) (representing the size of Ti and computed using Theorem 2) for Nodes
i = 1 (black dotted), i = 5 (black circles) and i = 6 (black solid). We observe that both the excitation powers and
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Fig. 3. Desired global performance W (ω) (black dotted), expected worst case performance Pwc,ub(ω, T ) after optimal exper-
iment design and using the initial guesses (black dashed), obtained worst case performance Pwc,ub(ω, T ) after identification
and redesign of the controllers (red solid)

Fig. 4. ρ1(ω) (black dotted), ρ5(ω) (black circles), ρ6(ω) (black solid) and ρ6(ω) if Node 6 would be isolated (red dashed) in
the frequency range [0 1]

the sizes of the obtained uncertainties are different at different nodes. As an example, more uncertainty is allowed in
Node 1 than in Node 6. Interestingly, the smaller uncertainty in Node 6 is obtained with less power than the larger
uncertainty in Node 1: σ6,0 < σ1,0. This is a consequence of the network configuration. Indeed, the uncertainty of
Node 6 is not only function of Φr,6, but also of all the other spectra applied during the identification experiment
(see (17)). To illustrate this, we have also represented, in red dashed in Figure 4, the radius ρ6(ω) that would have
been obtained if Node 6 would have been isolated as Node 1 (and thus if Pθ6 would have been determined uniquely
with Φr,6). We observe that the obtained uncertainty would have been much larger.

6 Concluding remarks

This paper is one of the first contributions on optimal experiment design in a network context. The type of
networks considered in this paper is usual in the literature on multi-agent systems. We have seen that many results
of this paper not only apply to systems Si with independent white noises ei, but also to spatially correlated ones.
However, as mentioned in Remark 6, if the white noises ei are spatially correlated, our identification procedure using
individual SISO criteria is no longer optimal since it is no longer equivalent to the global MIMO prediction error
identification criterion. Future work will therefore consider the question of how to deal with this MIMO criterion in
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the case of spatially correlated noises without increasing too much the computational complexity. This complexity
is indeed an important feature when the number Nmod of modules is large.
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