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Introduction

In this paper, we consider the problem of designing an identification experiment that will allow to improve the global performance of a network made up of the interconnection of locally controlled systems. The identification experiment will be designed in such a way that we obtain a sufficiently accurate model of each module in the network to be able to improve the global performance of the network by redesigning the local controllers. The type of networks considered in this paper is usual in the literature on multi-agent systems (see e.g. [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF][START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF]).

This paper contributes to the efforts of developing techniques for the identification of large-scale or interconnected systems when the topology of the network is known. In many papers, the problem is seen as a multivariable identification problem and structural properties of the system are then used to simplify this complex problem (see e.g. [START_REF] Haber | Moving horizon estimation for large-scale interconnected systems[END_REF]). The identifiability of the multivariable structure is studied in a prediction error context in [START_REF] Weerts | Identifiability in dynamic network identification[END_REF] while this multivariable structure is exploited in other papers to reduce the variance of a given module in the network (see [START_REF] Hägg | On identification of parallel cascade serial systems[END_REF][START_REF] Gunes | A variance reduction technique for identification in dynamic networks[END_REF][START_REF] Everitt | On the variance analysis of identified linear MIMO models[END_REF]). Unlike most of these papers, we consider here a network whose interconnection is realized by exchanging the measured (and thus noisy) output of neighbouring modules. Another important difference is that, in our setting, all modules can be identified independently using single-input single-output identification. Consequently, we are close to the situation considered in our preceding papers on dynamic network identification (see e.g. [START_REF] Dankers | Identification of dynamic models in complex networks with prediction error methods -predictor input selection[END_REF]). In these contributions, we have developed conditions for consistent estimation of one given module in a dynamic network. Since general networks were considered in these contributions, the data informativity was tackled with a classical condition on the positivity of the spectral density matrix [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. The first contribution of this paper is to extend these results for the considered type of networks by giving specific conditions for data informativity. In particular, we show that it is not necessary to excite a specific module i to consistently identify it as long as there exists at least one path from another module j to that particular module i. In this case, the noise present in the noisy output measurement y j will give sufficient excitation for consistent estimation.

However, the main contribution of this paper is to tackle the problem of optimal experiment design for (decentralized) control in a network context. More precisely, our contribution lies in the design of the identification experiment that will lead to sufficiently accurate models of each module of the network to guarantee a certain level of global performance via the design of local controllers. The identification experiment consists of simultaneously applying an excitation signal in each module (i.e. in each closed-loop system) and our objective is to design the spectra of each of these excitations signals in such a way that the global control objective is achieved with the least total injected power. In this sense, we extend the results in [START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF] considering one local loop with a local performance objective to the case of network of closed-loop systems with (both a local and) a global performance objectives. Like in [START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF], the uncertainty of an identified model will be represented via its covariance matrix. The difference is that this covariance matrix will here be a function of the excitation signals injected in each module that has a path to the considered module and of course that there will be a covariance matrix per identified module. Like in [START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF], the maximal allowed uncertainty will be determined using tools from robustness analysis. To avoid heavy computational loads linked to a high number of modules N mod and to structured uncertainties characterized by N mod uncertain parameter vectors, the uncertainty is first projected into an unstructured uncertainty on the complementary sensitivity describing each connected closed-loop system and then the robustness analysis is based on the interconnection of these unstructured uncertainties. This approach (called hierarchical approach) to analyze the robustness of large-scale (interconnected) systems has been introduced in [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] and further developed in [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]. A technical contribution of this paper is to develop a methodology that allows the use of the hierachical approach in the presence of the nonstandard uncertainty delivered by system identification.

Note that the framework considered here is much different than the frameworks of [START_REF] Vincent | Input design for structured nonlinear system identification[END_REF][START_REF] Hägg | On optimal input design for networked systems[END_REF] which is, to our knowledge, the only other papers treating the optimal experiment design problem in a network. In [START_REF] Vincent | Input design for structured nonlinear system identification[END_REF], the authors consider input design for nonparametric identification of static nonlinearities embedded in a network. The main purpose of [START_REF] Hägg | On optimal input design for networked systems[END_REF] lies in the use of measurable disturbances in optimal experiment design.

Notations. The matrix      X 1 0 0 0 . . . 0 0 0 X N     
will be denoted diag(X 1 , ..., X N ) if the elements X i (i = 1, ..., N ) are scalar quantities while it will be denoted bdiag(X 1 , ..., X N ) if the elements X i (i = 1, ..., N ) are vectors or matrices.

Identification of interconnected systems 2.1 Description of the network configuration

We consider a network made up of N mod single-input single-output (SISO) systems S i (i = 1...N mod ) operated in closed loop with a SISO decentralized controller K i (i = 1...N mod ):

S i : y i (t) = G i (z, θ i,0 )u i (t) + v i (t) (1) 
u i (t) = K i (z)(y ref,i -y i (t)) (2) ȳref (t) = A ȳ(t) + B ref ext (t)
(3) Let us describe these equations in details. The signal u i is the input applied to the system S i and y i is the measured output. This output is made up of a contribution of the input u i and of a disturbance term v i (t) = H i (z, θ i,0 )e i (t) that represents both process and measurement noises. The different systems are thus described by two stable transfer functions G i (z, θ i,0 ) and H i (z, θ i,0 ), the later being also minimum-phase and monic. The signals e i (i = 1...N mod ) defining v i are all white noise signals. Moreover, the vector ē ∆ = (e 1 , e 2 , ..., e N mod ) T has the following property:

Eē(t)ē T (t) = Λ Eē(t)ē T (t -τ ) = 0 for τ = 0 (4) 
with E the expectation operator and with Λ a strictly positive definite matrix. With (4), the power spectrum Φ ē(ω) of ē is given by Φ ē(ω) = Λ for all ω. We will further assume that the signals e i (i = 1...N mod ) are mutually independent. The matrix Λ is then diagonal

1 i.e. Λ = diag(Λ 1,1 , Λ 2,2 , ..., Λ N mod ,N mod ) > 0.
The systems S i in (1) may all represent the same type of systems (e.g. drones). However, due to industrial dispersion, the unknown parameter vectors θ i,0 ∈ R n θ i can of course be different for each i, as well as the order of the transfer functions G i and H i . Consequently, it will be necessary to identify a model for each of the systems S i in the sequel. 2)). The signal ri is used for identification purpose (see ( 5)).

In this paper, we consider the type of interconnections used in formation control or multi-agent systems (see e.g. [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF][START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF]). As shown in (2), each system S i is operated with a decentralized controller K i (z). In [START_REF] Bombois | Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification[END_REF], the signal y ref,i is a reference signal that will be computed via [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF]. The matrix A and the vector B in (3) represent the interconnection (flow of information) in the network and we have ȳref = (y ref,1 , y ref,2 , ..., y ref,N mod ) T and ȳ = (y 1 , y 2 , ..., y N mod ) T . The signal ref ext is a (scalar) external reference signal that should be followed by all outputs y i and that is generally only available at one node of the network.

As an example, let us consider the network in Figure 1. In this network, we have N mod = 6 systems/modules, all of the form (1) and all operated as in (2) with a decentralized controller K i . These local closed loops are represented by a circle/node in Figure 1 and are further detailed in Figure 2 (consider r i = 0 for the moment in this figure). The objective of this network is that the outputs y i of all modules follow the external reference ref ext even though this reference is only available at Node 1. For this purpose, a number of nodes are allowed to exchange information (i.e. their measured output) with some other neighbouring nodes. The arrows between the nodes in Figure 1 indicate the flow of information. For example, Node 5 receives the output of two nodes (i.e. Nodes 3 and 4) and sends its output (i.e. y 5 ) to three nodes (Nodes 3, 4 and 6). The reference signal y ref,i of Node i will be computed as a linear combination of the received information at Node i. For Node 5, y ref,5 will thus be a linear combination of y 3 and y 4 . More precisely, for all outputs y i to be able to follow the external reference ref ext , A and B in (3) are chosen as [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF][START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF]:

A =            
0 0 0 0 0 0 1/3 0 1/3 1/3 0 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0 0.5 0.5 0 0 0 0 0 0 1 0

            B = (1, 0, ..., 0) T .
The matrix A is called the normalized adjacency matrix in the literature [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF]. Using (3), we, e.g., see that the tracking error signals y ref,1 -y 1 and y ref,2 -y 2 of Nodes 1 and 2 are respectively given by ref ext -y 1 and 1/3 ((y 1 -y 2 ) + (y 3 -y 2 ) + (y 4 -y 2 )). Similar relations can be found for all the other nodes. If the different loops [K i G i ] are designed to make the tracking error y ref,i -y i as small as possible, it can be proven that such an interconnection allows good tracking of ref ext at all nodes. A normalized adjacency matrix can be defined for any information flow using the following rules. Row i of A is zero if no output is sent to node i. If y j is sent to node i, entry (i, j) of A will be nonzero. Finally, all nonzero entries in a row are equal and sum up to one.

Network identification procedure

In this paper, our objective is to redesign the local controllers K i (i = 1...N mod ) in order to improve the performance of the network by identifying sufficiently accurate models of each interconnected system S i (i = 1...N mod ). Let us first consider the identification procedure. An identification experiment is performed by adding an excitation signal r i (t) (t = 1...N ) having spectrum Φ ri at the output of each decentralized controller (see Figure 2). Since the external reference signal ref ext is, as we will see, not required for identification purpose, ref ext is put to zero during the identification experiment. This transforms Equations ( 2) and (3) into:

u i (t) = r i (t) + K i (z)(y ref,i -y i (t)) (5) ȳref (t) = A ȳ(t) (6) 
This experiment allows to collect the input-output data sets

Z N i = {u i (t), y i (t) | t = 1...N } (i = 1...N mod ) corresponding to each of the N mod modules.
Instead of using one single global MIMO identification criterion to identify in one step all systems S i (i = 1...N mod ) with all data sets Z N i (i = 1...N mod ), we will here use a simpler, but equivalent identification procedure. Indeed, we will show that a consistent estimate θi of the true parameter vector θ i,0 of system S i can be identified using only the data set Z N i . For this purpose, we use the classical SISO prediction-error identification criterion [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] with a full-order model structure

M i = {G i (z, θ i ), H i (z, θ i )} (i.e. a model structure such that S i ∈ M i ): θi = arg min θi 1 N N t=1 2 i (t, θ i ) (7) i (t, θ i ) = H -1 i (z, θ i ) (y i (t) -G i (z, θ i )u i (t)) (8) 
This approach is simple since it only involves N mod individual SISO prediction-error identification criteria. This can be an important advantage when N mod is large. Moreover, we will show in Subsection 2.3 that this simple approach is in fact equivalent to the global MIMO prediction error identification criterion.

Before going further, one should verify that θi obtained in this way is indeed a consistent estimate of θ i,0 or, in other words that θ i,0 is the unique solution of the asymptotic identification criterion θ * i = arg min θ Ē2 i (t, θ i ) where

Ē 2 i (t, θ i ) is defined as lim N →∞ 1 N N t=1 E 2 i (t, θ i ).
For this purpose, we will need to make a number of classical structural assumptions; assumptions that have also to be made when we consider classical (direct) closed-loop identification (see e.g. [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF]). Assumptions. (A.1) For all i, θ i = θ i,0 is the only parameter vector for which the models G i (z, θ i ) and H i (z, θ i ) correspond to the true system S i . (A.2) For all i, the product K i (z)G i (z, θ i,0 ) contains (at least) one delay. (A.3) For all i, the excitation signal r i is statistically independent of ē = (e 1 , e 2 , ..., e N mod ) T .

Conditions for consistent identification of a module in an arbitrary network are given in [START_REF] Dankers | Identification of dynamic models in complex networks with prediction error methods -predictor input selection[END_REF]. Because arbitrary networks are considered in [START_REF] Dankers | Identification of dynamic models in complex networks with prediction error methods -predictor input selection[END_REF], more attention is given to the selection of the right predictor inputs for the identification criterion. Other important aspects as the informativity of the input-output data are dealt by the classical condition of the positivity of the spectral density matrix. However, as mentioned in [START_REF] Gevers | Identification in dynamic networks: identifiability and experiment design issues[END_REF], there is very little information in [START_REF] Dankers | Identification of dynamic models in complex networks with prediction error methods -predictor input selection[END_REF] on how to obtain informative data by an appropriate design of the experiment (i.e. the application of the excitation signals r i ) 2 . In particular, this condition is very far away from the very detailed conditions deduced in e.g. [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF] to guarantee the consistency of ( 7) when the data Z N i are collected in a simple closed loop i.e. when the system

S i in (1) is operated with u i (t) = r i (t) -K i (z)y i (t) (y ref,i = 0)
. Indeed, under the assumptions (A.1), (A.2) and (A.3), [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF] shows that ( 7) is a consistent estimate of θ i,0 if and only if the number of frequencies, at which the spectrum Φ ri (ω) is nonzero, is larger than a given threshold. This threshold uniquely depends on the order of the controller K i (z) and on the respective parametrization and the orders of G i (z, θ i ) and H i (z, θ i ). If the order of K i (z) is large, this threshold can be negative and consistency is then also guaranteed when r i = 0. Moreover, choosing r i as a filtered white noise is always a sufficient choice to guarantee consistency when considering a single closed-loop system.

In Theorem 1, we will extend these conditions to the case where the closed-loop systems are interconnected in the manner presented above. Before presenting this result, let us observe that, due to the interconnection (6), the input signals u i (i = 1...N mod ) during the identification experiment can be expressed as:

u i (t) = N mod j=1 (R ij (z) r j (t) + S ij (z) e j (t)) (9) 
for given transfer functions R ij and S ij (i, j = 1...N mod ) that can easily be computed using ( 1), ( 5), ( 6) and LFT algebra [START_REF] Doyle | Review of LFT's, LMI's and µ[END_REF]. The transfer functions R ii and S ii are always nonzero. Excluding pathological cases, the transfer functions R ij and S ij for i = j are both nonzero if and only if there exists a path from node j to node i. In the example of Figure 1, we can e.g. say that R 31 and S 31 will be nonzero. Indeed, there exists a path from Node 1 to Node 3 since y 1 is sent to Node 2 and y 2 is in turn sent to Node 3. Consequently, u 3 will be, via y ref,3 , a function of y 1 which is in turn a function of r 1 and e 1 . As another example, R 56 and S 56 will be zero because there is no path from Node 6 to Node 5. Indeed, y 6 is not sent to any node and can therefore not influence u 5 .

Theorem 1 Consider the data set

Z N i = {u i (t), y i (t) | t = 1.
..N } collected in one arbitrary node i of a network made up N mod modules [START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF]. The modules in this network are operated as in [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] and the interconnection of the network is defined via an adjacency matrix (see ( 6)). Consider furthermore (4) with a matrix Λ = Λ T that is strictly positive definite and consider also the assumptions (A.1), (A.2) and (A.3). Then, the estimate θi obtained via ( 7) is a consistent estimate of θ i,0 if and only if one of the following two conditions are satisfied (i) there exists at least one path from one node j = i to the considered node i (i.e. R ij (z) = 0 and S ij (z) = 0) (ii) the excitation signal r i satisfies the signal richness condition of [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF] that guarantees consistency of ( 7) in a simple closed loop (i.e. when the system S i (see ( 1)) is operated with

u i (t) = r i (t) -K i (z)y i (t))
. This condition uniquely depends on the order of the controller K i (z) and on the respective parametrization and the orders of G i (z, θ i ) and H i (z, θ i ). Proof. Without loss of generality, let us suppose that i = 1. Moreover, for conciseness, let us drop the argument z in the transfer functions. Using ( 1) and ( 8), the prediction error 1 (t, θ 1 ) is given by:

1 (t, θ 1 ) = e 1 (t) + ∆H 1 (θ 1 ) H 1 (θ 1 ) e 1 (t) + ∆G 1 (θ 1 ) H 1 (θ 1 ) u 1 (t) (10) 
with

∆H 1 (θ 1 ) = H 1 (θ 1,0 ) -H 1 (θ 1 ) and ∆G 1 (θ 1 ) = G 1 (θ 1,0 ) -G 1 (θ 1 )
. Inserting ( 9) into (10) and using the notation ē = (e 1 , e 2 , ..., e N mod ) T and r = (r 1 , r 2 , ..., r N mod ) T , 1 (t, θ 1 ) can be rewritten as:

1 (t, θ 1 ) = e 1 (t) + L 1 (θ 1 ) ē(t) + R 1 (θ 1 ) r(t) (11) 
L 1 (z, θ 1 ) = V 1 (θ 1 ), ∆G 1 (θ 1 ) H 1 (θ 1 ) S 12 , ..., ∆G 1 (θ 1 ) H 1 (θ 1 ) S 1N mod R 1 (z, θ 1 ) = ∆G 1 (θ 1 ) H 1 (θ 1 ) (R 11 , R 12 , ..., R 1N mod ) with V 1 (θ 1 ) ∆ = ∆H1(θ1) H1(θ1) + ∆G1(θ1) H1(θ1) S 11 . (A.
2) implies that, when nonzero, the transfer functions ∆G1(θ1) H1(θ1) S 1j ∀j all contain at least one delay. Moreover, when nonzero, ∆H 1 (θ 1 ) also contains one delay since H 1 is monic. Combining these two facts and (A.3) and recalling that Φ ē(ω) = Λ, the power Ē 2 1 (t, θ 1 ) of 1 (t, θ 1 ) is equal to:

Λ 1,1 + 1 2π π -π L 1 (e jω , θ 1 )ΛL * 1 (e jω , θ 1 )dω + .... ... + 1 2π π -π R 1 (e jω , θ 1 )Φ r (ω)R * 1 (e jω , θ 1 )dω
with Λ 1,1 the (1,1) entry of Λ (i.e. the variance of e 1 ) and Φ r (ω) ≥ 0 the power spectrum of r. Note that, for all θ 1 , Ē 2 1 (t, θ 1 ) ≥ Λ 1,1 . Consequently, since we have that 1 (t, θ 1,0 ) = e 1 (t) and thus that Ē

2 1 (t, θ 1,0 ) = Λ 1,1 , all minimizers θ * 1 of Ē 2 1 (t, θ 1 ) must be such that Ē 2 1 (t, θ * 1 ) = Λ 1,1 .
To prove this theorem, we will first show that Condition (i) is sufficient to guarantee that θ * 1 = θ 1,0 is the unique minimizer of Ē 2 1 (t, θ 1 ) i.e. that θ * 1 = θ 1,0 is the only parameter vector such that Ē 2 1 (t, θ * 1 ) = Λ 1,1 . For this purpose, let us start by the following observation. Due to our assumption that Λ > 0, any parameter vector θ *

1 such that Ē 2 1 (t, θ * 1 ) = Λ 1,1 must satisfy: L 1 (θ * 1 ) ≡ 0 ( 12 
)
If Condition (i) holds (i.e. if there is a path from a node j = 1 to node 1), we have that S 1j = 0. To satisfy [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF], it must in particular hold that ∆G1(θ * 1 ) H1(θ * 1 ) S 1j ≡ 0. Since S 1j = 0, this yields ∆G 1 (θ * 1 ) = 0. Using ∆G 1 (θ * 1 ) = 0 and the fact that the first entry V 1 (θ * 1 ) of L 1 (θ * 1 ) must also be equal to zero to satisfy [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF], we obtain ∆H 1 (θ * 1 ) = 0. Since, by virtue of (A.1), θ 1,0 is the unique parameter vector making both ∆G 1 and ∆H 1 equal to 0, we have thus proven the consistency under Condition (i). Note that this result is irrespective of Φ r i.e. it holds for any choice of Φ r .

In order to conclude this proof, it remains to be proven that, if Condition (i) does not hold, Condition (ii) is a necessary and sufficient condition for consistency. This part is straightforward. Indeed, if Condition (i) does not hold, y ref,1 = 0 and the data set

Z N 1 = {u 1 (t), y 1 (t) | t = 1.
..N } is generated as in an isolated closed-loop system. The result is thus proven since the paper [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF] gives necessary and sufficient conditions on the richness of r 1 to guarantee consistency in an isolated closed-loop system.

Theorem 1 shows that the network configuration considered in this paper is in fact beneficial for identification. Indeed, consistency of ( 7) is not only guaranteed in all situations where consistency is guaranteed in the simple closed-loop case (i.e. when y ref,i = 0), but also in many other cases (via Condition (i)). Indeed, Condition (i) shows that, due to the interconnection, disturbances v j in other nodes connected via a path to node i are sufficient to lead to consistency of [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] and this even in the extreme case where all excitations signals r j (j = 1...N mod ) are set to zero. For example, in the network of Figure 1, Condition (i) applies to Nodes 2, 3, 4, 5 and 6. Consequently, the richness condition of [START_REF] Gevers | Informative data: how to get just sufficiently rich?[END_REF] has only to be respected to identify a consistent estimate θ1 of the module S 1 which is the only isolated module in this network. Remark 1. Note that the result of Theorem 1 only requires that Λ = Λ T > 0. Consequently, it not only applies to signals e i that are mutually independent, but also to signals e i that are spatially correlated. This is an interesting observation since the independence of the disturbances having a path to Node i is an assumption in [START_REF] Dankers | Identification of dynamic models in complex networks with prediction error methods -predictor input selection[END_REF].

SISO criterion vs. MIMO criterion

Let us define θ = ( θT 1 , θT 2 , ..., θT N mod ) T using the different estimates θi (i = 1...N mod ) obtained using the individual SISO criteria [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] for all modules in the network. In this subsection, we show that this estimate θ of θ 0 = (θ T 1,0 , ..., θ T N mod ,0 ) T is equal to the estimate θmimo obtained with the prediction error criterion using all data sets Z N i (i = 1...N mod ). Using (1), the optimally weighted MIMO prediction error identification criterion [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] is θmimo = arg min θ V (θ) with

V (θ) = 1 N N t=1 ¯ T (t, θ)Λ -1 ¯ (t, θ) (13) 
¯ (t, θ) = H -1 (z, θ) (ȳ(t) -G(z, θ)ū(t)) (14) 
with θ = (θ T 1 , θ T 2 , ..., θ T N mod ) T , G(z, θ) a diagonal transfer matrix equal to diag(G 1 (θ 1 ), G 2 (θ 2 ), ..., G N mod (θ N mod )) and H(z, θ) defined similarly as G(z, θ). The data ȳ ∆ = (y 1 , ..., y N mod ) T and ū ∆ = (u 1 , ..., u N mod ) T are the data collected in

Z N i (i = 1...N mod ).
Let us observe that ¯ (t, θ) = ( 1 (t, θ 1 ), ..., N mod (t, θ N mod )) T with i (t, θ i ) as in [START_REF] Doyle | Review of LFT's, LMI's and µ[END_REF]. Using this expression for ¯ (t, θ) and the assumption that Λ is diagonal, we can rewrite V (θ) as:

V (θ) = N mod i=1 1 Λ i,i V i (θ i ) (15) 
with Λ i,i the (i, i)-entry of Λ (i.e. the variance of e i ) and

V i (θ i ) = 1 N N t=1
2 i (t, θ i ) the cost function used in the SISO criterion [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]. This last expression shows that minimizing the individual cost functions V i (θ i ) (as done in [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]) is equivalent to minimizing V (θ) and thus that θ = θmimo . Consequently, when Λ is diagonal, there is no disadvantage whatsoever in using the individual SISO criteria (7) instead of the MIMO criterion [START_REF] Gevers | Identification in dynamic networks: identifiability and experiment design issues[END_REF].

If the global experiment is designed such that consistency is guaranteed for each Module i (see Theorem 1), the estimate θ = θmimo of θ 0 has the property that √ N ( θ -θ 0 ) is asymptotically normally distributed around zero [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. The covariance matrix of θ is moreover given by

P θ = 1 N ĒΨ(t, θ 0 )Λ -1 Ψ T (t, θ 0 ) -1 where Ψ(t, θ) = -∂¯ T (t,θ)
∂θ [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. Let us observe that Ψ(t, θ) is a block-diagonal matrix:

Ψ(t, θ) = bdiag(ψ 1 (t, θ 1 ), ψ 2 (t, θ 2 ), ..., ψ N mod (t, θ N mod )) with ψ i (t, θ i ) = -∂ i(t,θi)
∂θi . Consequently, P θ has the following block-diagonal structure: P θ = bdiag(P θ1 , P θ2 , ..., P θ N mod ) ( 16)

P θi = Λ i,i N Ēψ i (t, θ i,0 )ψ T i (t, θ i,0 ) -1 i = 1...N mod
The covariance matrices P θi in P θ are the covariance matrices of the individual estimates θi for each i. Note that P θi can be estimated from the data Z N i and θi [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. However, for further use, we also derive an expression of P θi as a function of the experimental conditions. For this purpose, we recall (see e.g. [START_REF] Bombois | Least costly identification experiment for control[END_REF]) that

ψ i (t, θ i,0 ) = F i (z, θ i,0 )u i (t) + L i (z, θ i,0 )e i (t) with F i (θ i ) = H -1 i (θ i ) ∂G(θi) ∂θi and L i (θ i ) = H -1 i (θ i ) ∂H(θi)
∂θi . Using [START_REF] Everitt | On the variance analysis of identified linear MIMO models[END_REF] and assuming that the excitation signals r j (j = 1...N mod ) are all mutually independent, we obtain:

P -1 θ i = N 2πΛi,i π -π
Zi(e jω )ΛZ * i (e jω )dω + ...

.

.. N 2πΛi,i π -π Fi(e jω )F * i (e jω ) N mod j=1 |Rij(e jω )| 2 Φr j (ω) dω
with Z i (z) a matrix of transfer functions of dimension n θi × N mod whose i th column is L i + F i S ii and whose j th -column (j = i) is equal to F i S ij . Note that this expression depends not only on θ i,0 , but also, via the nonzero transfer functions S ij , R ij , on the true parameter vector θ j,0 of the systems S j (j = i) having a path to node i.

It is also important to note that not only the excitation signal r i but also all r j in nodes having a path to i contributes to the accuracy P -1 θi of θi . In the network of Figure 1, the accuracy P -1 θ6 of the model of S 6 will thus be influenced by the excitations signals r j (j = 1...6) in all nodes. Moreover, due to the structure of ( 17), we could also theoretically obtain any accuracy P -1 θ6 for that model by e.g. only exciting at Node 1 (i.e. r 1 = 0 and r j = 0 for j = 2...6). It is nevertheless to be noted that a larger excitation power (or a longer experiment) will then be typically necessary to guarantee this accuracy because of the attenuation of the network.

Uncertainty bounding

Suppose we have made an experiment leading to informative data Z N i for all modules S i (i = 1...N mod ). We can thus obtain the estimate θ of θ 0 using the individual identification criteria [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]. Given the properties of θ given above, the ellipsoid U = {θ | (θ -θ) T P -1 θ (θ -θ) < χ} with P r(χ 2 (n θ ) < χ) = β (n θ is the dimension of θ) will for sufficiently large sample size N be a β%-confidence region for the unknown parameter vector θ 0 (say β = 95%). For the robustness analysis via the hierarchical approach that will be presented in the next section, we will also need the projections U i of U into the parameter space θ i of each of the modules i = 1...N mod . Using [START_REF] Hägg | On identification of parallel cascade serial systems[END_REF] and the fact that θ = (θ T 1 , θ T 2 , ..., θ T N mod ) T , the projection

U i = {θ i | θ ∈ U } (i = 1...N mod
) is an ellipsoid given by (see e.g. [START_REF] Bombois | Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification[END_REF]):

U i = {θ i | (θ i -θi ) T P -1 θi (θ i -θi ) < χ} (18) 
3 Controller validation In the previous section, we have seen that models G i (z, θi ) of the systems S i (i = 1...N mod ) can be obtained using a global identification experiment on an interconnected network. The identified models can now be used to design improved decentralized controllers Ki for each module (see e.g. [START_REF] Scorletti | An LMI approach to decentralized H∞ control[END_REF]). Note that, if the different systems S i are homogeneous i.e. they are identical up to industrial dispersion, one could design a common controller Ki = K ∀i using an average of the identified models (see e.g. [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF]).

In any case, the decentralized controllers Ki are designed to guarantee both a nominal local performance (performance of the loop [ Ki G i (z, θi )]) and a nominal global performance (performance of the network). In [START_REF] Scorletti | An LMI approach to decentralized H∞ control[END_REF][START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF], the H ∞ framework is used to measure both the local and global performance. As usual in classical H ∞ control design, a sufficient level of local performance is ensured by imposing, for all i, a frequency-dependent threshold on the modulus of the frequency responses of transfer functions such as 1/(1 + Ki G i (z, θi )) and Ki /(1 + Ki G i (z, θi )). This indeed allows e.g. to guarantee a certain tracking ability for each local loop (since the first transfer function is the one between y ref,i and y i -y ref,i ) and to limit the control efforts (since the second transfer function is the one between y ref,i and u i ). Since the loops [ Ki G i (z, θi )] are not isolated, but interconnected as in (3), the control design method in [START_REF] Scorletti | An LMI approach to decentralized H∞ control[END_REF][START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] also imposes specific constraints on the global performance by imposing a frequency-dependent threshold on the modulus of the frequency responses of transfer functions P describing the behaviour of the network as a whole. Examples of such global transfer functions P are the transfer functions between the external reference ref ext and the tracking error y i -ref ext at each node of the network. Other examples are the transfer functions between ref ext and the input signal u i at each node of the network. Finally, we can also consider the transfer functions between a disturbance v i in one node and an output signal y j in the same or another node. It is clear that these transfer functions reflect the performance of the whole network with respect to tracking, control efforts and disturbance rejection, respectively.

For the design of Ki , the thresholds (weightings) corresponding to each transfer function described in the previous paragraph must be chosen in such a way that they improve the performance of the original network. The performance of the original network can be evaluated by computing the frequency responses of these transfer functions in the network made up of the interconnection of the loops [K i G i (z, θi )].

Since the decentralized controllers Ki are designed based on the models G i (z, θi ) of the true systems S i (i = 1...N mod ), it is important to verify whether these decentralized controllers will also lead to a satisfactory level of performance both at the local level and at the global level when they will be applied to the true systems S i (i = 1...N mod ). Since both the local and the global performance may be described by different transfer functions, the verification that will be presented below must be done for each of these transfer functions. For the transfer functions describing the local performance, the robustness analysis results of [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF] can be used. In the sequel, we will thus restrict attention to the global performance and show how to perform this verification for one arbitrary transfer function P describing the global performance. The input of this transfer function will be denoted by w (e.g. w = ref ext ) and its output will be denoted by s (e.g. s = y i -ref ext for some i). Let us thus denote by P (z, θ) the value of this transfer function for the network made up of the interconnection of the loops [ Ki G i (z, θi )]. Similarly, let us denote by P (z, θ 0 ) its value for the network made up of the loops [ Ki G i (z, θ i,0 )]. In order to verify the robustness of the designed controllers Ki with respect to this global transfer function P , we have thus to verify whether, for all ω,:

|P (e jω , θ 0 )| < W (ω) ( 19 
)
where W (ω) is the threshold that defines the desired global performance (wrt. P ) in the redesigned network. Since the unknown θ 0 lies in U (modulo the confidence level β), [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] will be deemed verified if sup θ∈U |P (e jω , θ)| < W (ω) at each ω. Note that a necessary condition for the latter to hold is obviously that the designed transfer function P (z, θ) satisfies |P (e jω , θ)| < W nom (ω) with W nom (ω) < W (ω) for all ω. For a successful redesign of the network, the controller Ki must thus be designed with a nominal performance that is (at least slightly) better than the desired performance.

Computing sup θ∈U |P (e jω , θ)| exactly is not possible. However, we can deduce upper bounds for this quantity. One possible approach to do this is to use µ-analysis based on the parametric uncertainty set U [START_REF] Zhou | Essentials of Robust Control[END_REF][START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF]. However, since networks can in practice be made up of a large number N mod of modules yielding a parametric uncertainty set of large dimension, this direct approach could reveal impractical from a computational point-of-view [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF][START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] and the computed upper bound could possibly turn out to be relatively conservative. Consequently, we will here consider the two-step hierarchical approach proposed in [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF][START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] and show how this two-step approach can be applied for the type of parametric uncertainties delivered by network identification.

As a first step, we will give a convenient expression of the global transfer function P (z, θ 0 ). For this purpose, note that P (z, θ 0 ) pertains to a network characterized by the interconnection equation ( 3) and the following equation describing the local loop [ Ki G i (z, θ i,0 )]:

y i (t) = v i (t) + T i (z, θ i,0 )(y ref,i (t) -v i (t)) (20) 
with

T i (z, θ i,0 ) = KiGi(z,θi,0) 1+ KiGi(z,θi,0)
. Consequently, the usually used global performance transfer functions P (z, θ 0 ) can be written as an LFT of T (z, θ 0 ) = diag(T 1 (z, θ 1,0 ), T 2 (z, θ 1,0 ), ..., T N mod (z, θ N mod ,0 )) i.e. we can determine vectors of signals p and q such that the transfer function P (z, θ 0 ) between w and s can be written as:

p = T (z, θ 0 )q and q s = I(z) p w ( 21 
)
for a given matrix of transfer functions I(z) that does not depend on θ 0 (i.e. that does not depend on G i (z, θ i,0 ) (i = 1...N mod )). For this LFT representation, we will use the shorthand notation: P (z, θ 0 ) = F(I(z), T (z, θ 0 )).

As an example, in the network of Figure 1, let us consider the transfer function between w = ref ext and s = y 6 -ref ext and let us consequently pose v i = 0 (i = 1...N mod ). This transfer function can be described as in [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] with q = ȳref , p = ȳ and the following constant matrix I:

I = A B
(0, 0, 0, 0, 0, 1) -1

The matrix T (z, θ 0 ) depends on the unknown true parameter vector θ 0 . Since θ 0 ∈ U (modulo the confidence level β), T (z, θ 0 ) obviously lies in the parametric uncertainty set T s = {T (z, θ) | θ ∈ U }. Note that sup θ∈U |P (e jω , θ)| = sup T ∈T s |F(I(e jω ), T (e jω ))|. Computing an upper bound of the latter expression remains as complicate as with the former since T s is still a parametric uncertainty set of large dimension (if N mod is large). However, this LFT representation of P (z, θ 0 ) enables the use of the hierarchical approach. The idea of the hierarchical approach is to embed T s into an uncertainty set T having a structure for which the robustness analysis of the global performance is tractable even if N mod is large. For this purpose, we can choose the following structure for T :

T = {T (z) | T (z) = (I N mod + ∆(z)) T (z, θ) with ... ∆(e jω ) ∈ ∆(ω) ∀ω} (22) where ∆(z) = diag(∆ 1 (z), ∆ 2 (z), ..., ∆ N mod (z))
is the (stable) uncertainty made up of N mod scalar transfer functions ∆ i (z) (i = 1...N mod ). The set ∆(ω) will have a similar diagonal structure: ∆(ω) = diag(∆ 1 (ω), ∆ 2 (ω), ..., ∆ N mod (ω)). The elements ∆ i (ω) constrain the frequency response ∆ i (e jω ) of ∆ i (z) as follows: 23) i.e. ∆ i (ω) is a disk (in the complex plane) of radius ρ i (ω) and of (complex) center c i (ω).

∆ i (ω) = {∆ i (e jω ) | |∆ i (e jω ) -c i (ω)| < ρ i (ω)} (
Since, as mentioned above, T will be determined in such a way that T s ⊆ T , T (z, θ 0 ) will also lie in T and we will thus be able to verify [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] by verifying at each ω that P wc (ω, T ) < W (ω) with

P wc (ω, T ) ∆ = sup T (z)∈T |F(I(e jω ), T (e jω ))| (24) 
Since

T (z) = (I N mod + ∆(z)) T (z, θ) is an LFT in ∆(z), F(I(z), T (z) 
) can be rewritten in an LFT in ∆(z) i.e. F(I(z), T (z)) = F(M (z), ∆(z)) with M (z) a function of I(z) and T (z, θ). Consequently, ( 24) is also given by:

P wc (ω, T ) = sup ∆(e jω )∈∆(ω)
|F(M (e jω ), ∆(e jω ))|

Before presenting how we can evaluate (25), we will first present how the uncertainty set T can be determined in practice. First note that we can decompose the uncertainty set T into N mod SISO (unstructured) uncertainty sets T i defined as follows:

T i = {T i (z) | T i (z) = (1 + ∆ i (z)) T i (z, θi ) with ... ∆ i (e jω ) ∈ ∆ i (ω) ∀ω} (26) 
with ∆ i (ω) as defined in [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF]. Ensuring T s ⊆ T can thus be obtained by determining the sets T i in such a way that, for all i = 1...N mod , T s i ⊆ T i with T s i defined as follows:

T s i = {Ti(z, θi) | Ti(z, θi) = Ki(z)Gi(z, θi) 1 + Ki(z)Gi(z, θi) with θi ∈ Ui}. ( 27 
)
with U i as in [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. In order to achieve this in an optimal way, the frequency functions ρ i (ω) and c i (ω) defining, via [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF], the size of T i will be determined in such a way that T i is the smallest set for which it still holds that T s i ⊆ T i . By doing so, we indeed reduce as much as possible the conservatism linked to the embedding of the uncertainty set T s i (that follows from the identification experiment) into the unstructured uncertainty set T i . Consequently, for a given i and for a given ω, ρ i (ω) and c i (ω) have to be chosen as the solution of the following optimization problem:

min ρ i (ω) s.t. | Ti (e jω , θ i ) -c i (ω)| < ρ i (ω) ∀θ i ∈ U i (28) 
with Ti (e jω , θ i ) = T i (e jω , θ i ) -T i (e jω , θi )

T i (e jω , θi )
with T i (z, θ i ) as defined in [START_REF] Weerts | Identifiability of dynamic networks with part of the nodes noise-free[END_REF]. As shown in the following theorem, the solution of the optimization problem (28) can be efficiently determined using LMI optimization [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF]. Before presenting this result, let us first give an expression of Ti (e jω , θ i ) as a function of θ i using the following notation for G i (e jω , θ i ) = Z1,i(e jω )θi 1+Z2,i(e jω )θi . In the last expression, Z 1,i (z) and Z 2,i (z) are row vectors containing only delays or zeros (see [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF]). This yields

Ti (e jω , θ i ) = -1 + Z N,i (e jω )θ i 1 + Z D,i (e jω )θ i (29) with Z D,i = Z 2,i + Ki Z 1,i and Z N,i = KiZ1,i
Ti(e jω , θi)

-Z D,i .

Theorem 2 Consider the notation Ti (e jω , θ i ) = -1+Z N,i (e jω )θi 1+Z D,i (e jω )θi given in (29). The optimization problem (28) at a given ω and at a given i is equivalent to the following LMI optimization problem having as decision variable a positive real scalar α i (ω), a complex scalar c i (ω), a positive real scalar ξ i (ω) and a skew-symmetric matrix

X i (ω) ∈ R (n θ i +1)×(n θ i +1) : min α i (ω) subject to   -α i (ω) λ i (ω) λ * i (ω) -A i (ω) -ξ i (ω)B i + jX i (ω)   < 0 ( 30 
)
with λ i (ω) = Z N,i -Z D,i c i -1 -c i and Ai(ω) =   Z * D,i ZD,i Z * D,i ZD,i 1 
  Bi =   P -1 θ i -P -1 θ i θi -θT i P -1 θ i θT i P -1 θ i θi -χi  
The above optimization problem is not explicitly function of ρ i (ω). However, the optimal ρ i (ω) can be obtained by taking the square root of the optimal α i (ω).

Proof. For conciseness, we will drop the frequency argument ω in the variables. Using the notations ρ 2 i = α i and θi = (θ T i 1) T and using (29), we can rewrite the constraint in (28) as:

θT i A i -λ * i -1 α i λ i θi < 0 ∀θ i ∈ U i (31) 
while the constraint θ i ∈ U i is equivalent to θT i B i θi < 0. Consequently, by virtue of the S-procedure [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] and Lemma 2 in [START_REF] Bombois | Least costly identification experiment for control[END_REF], (31) holds if and only if there exist ξ i > 0 and X i = -X T i such that

A i -λ * -1 α i λ -ξ i B i + jX i < 0 (32) 
Since α i > 0, an application of the Schur complement [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] shows that (32) is equivalent to (30). This concludes the proof.

Remark 2. The novelty of this theorem resides in the determination of the (complex) center c i of the unstructured uncertainty. Given the definition of T (e jω , θ i ), one could of course consider that this center is zero and just compute the radius ρ i (ω). In this case, the LMI optimization above is the same as the one in [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF]. However, since the mapping between θ i and Ti (e jω , θ i ) is in general not linear, this could lead to larger embedding sets T i and thus to more conservative results for the robustness analysis (as will be illustrated in Section 5).

Using Theorem 2, we can determine ρ i (ω) and c i (ω) for any value of i (i = 1...N mod ) and for any value of ω. In this way, we fully determine the sets T i (see [START_REF] Weerts | Identifiability in dynamic network identification[END_REF]) for all values of i and therefore also the set T (see [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF]). With this information, we will be able, as shown in the following theorem, to evaluate the worst case global performance P wc (ω, T ) defined in [START_REF] Vincent | Input design for structured nonlinear system identification[END_REF] for any value of ω. Theorem 3 Consider a given frequency ω and and the set T (see [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF]) with a diagonal uncertainty ∆(e jω ) whose elements ∆ i (e jω ) are constrained to lie in a disk ∆ i (ω) of radius ρ i (ω) and of center c i (ω) (see [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF]). Define R ω (resp. C ω ) as a diagonal matrix of dimension N mod whose elements are ρ 2 i (ω) (resp. c i (ω)) (i = 1...N mod ). Then, an upper bound P wc,ub (ω, T ) of the worst case global performance P wc (ω, T ) defined in [START_REF] Vincent | Input design for structured nonlinear system identification[END_REF] is given by γ opt (ω) where γ opt (ω) is the solution of the following LMI optimization problem. This LMI optimization problem has as decision variables a real scalar γ(ω) > 0 and a strictly positive definite diagonal matrix T ω ∈ R N mod ×N mod . with N (γ(ω))

∆ =           Tω(Rω -C * ω Cω) 0 0 1     TωC * ω 0 0 0     TωCω 0 0 0     -Tω 0 0 -γ(ω)           (34) 
This theorem can be straightforwardly deduced from the separation of graph theorem [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] and from the results in [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]. It follows from the fact that the constraint (33) is a sufficient condition for |F(M (e jω ), ∆(e jω ))| 2 < γ(ω) ∀∆(e jω ) ∈ ∆(ω) to hold. Remark 3. The so-called hierarchical approach for robustness analysis presented above is preferred upon a direct µ-analysis approach based on the structured uncertainty U when the number N mod of modules is large. Indeed, even in this case, its computational complexity remains low while the µ-analysis approach would involve very complex multipliers of large dimensions. The radius ρ i (ω) and the center c i (ω) are indeed computed at the local level and the computation of (the upper bound of) the worst case performance P wc (ω, T ) in Theorem 3 uses a very simple multiplier T ω . This approach of course only yields an upper bound of sup θ∈U |P (e jω , θ)|. However, the µ-analysis approach that would be used to compute sup θ∈U |P (e jω , θ)| would also only lead to an upper bound of this quantity which can turn out to be conservative for large N mod . In the simulation example, we will show that the conservatism linked to the hierarchical approach remains limited. Remark 4. Like the µ-analysis approach, the proposed robustness analysis approach is a frequency-wise approach (i.e. the upper bound P wc,ub (ω, T ) on the worst case performance is computed frequency by frequency). Consequently, the performance constraint [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] can only be verified for a finite amount of frequencies of the frequency interval [0 π].

Optimal experiment design for networks

Given an arbitrary identification experiment, the obtained confidence ellipsoid U and the corresponding uncertainty set T can be such that the upper bound P wc,ub (ω, T ) (computed using Theorem 3) is larger than the threshold W (ω) for some frequencies. In this section, we will design the experiment in order to avoid such a situation. More precisely, we will design the spectra Φ ri of the signals r i (i = 1...N mod ) for an identification experiment of (fixed) duration N in such a way that the total injected power is minimized while guaranteeing that the obtained uncertainty region T is small enough to guarantee P wc,ub (ω, T ) < W (ω) (35) at each frequency ω. Note that, for conciseness, we restrict attention to one single global performance objective (see also Remark 5 below). Note also that we here suppose that the signals r i (i = 1...N mod ) are all mutually independent. Consequently, the experiment is thus indeed entirely described by the spectra Φ ri (i = 1...N mod ).

An important step is to parametrize these spectra Φ ri (ω). Here, we will use the parametrization [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] i.e.: Φ ri (ω) = σ i,0 + 2 M l=1 σ i,l cos(lω) (i = 1...N mod ) for which Φ ri (ω) > 0 ∀ω can be guaranteed using an extra LMI constraint on the decision variables σ i,l (i = 1...N mod , l = 0...M ) [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. With this parametrization, the cost function in our optimization problem is a linear function of the decision variables:

J = N mod i=1 1 2π π -π Φ ri (ω)dω = N mod i=1 σ i,0 (36) 
Using [START_REF] Hägg | On optimal input design for networked systems[END_REF], we see also that the matrices P -1 θi that determines the size ρ i (ω) of the elements T i of T via the LMI (30) are all affine functions of the to-be-designed spectra and thus of the decisions variables σ j,l (j = 1...N mod , l = 0...M ).

By reducing J , we increase the size of U and we thus increase ρ i (ω) ∀i. By increasing ρ i , we increase P wc,ub (ω, T ). Our goal is thus to find the spectra Φ ri (ω) minimizing J while leading to ρ i (ω) that are sufficient small for (35) to hold for each ω in an user-chosen grid Ω of the frequency range. For this purpose, we propose the following optimal identification experiment design problem. This optimization problem has the following decision variables: σ i,l , T ω , α i (ω) = ρ 2 i (ω), c i (ω), ξ i (ω), X i (ω) with the same structure as in Theorems 2 and 3 and defined for all i = 1...N mod , for all l = 0...M and for all ω ∈ Ω. min J under the constraints that, for all ω ∈ Ω,

M (e jω ) I * N (W 2 (ω)) M (e jω ) I < 0 E(ρ 2 i (ω), c i (ω), ξ i (ω), X i (ω), P -1 θi ) < 0 i = 1...N mod (37) 
The constraints of the above optimization have to be completed by the N mod constraints on σ i,l guaranteeing that Φ ri (ω) > 0 ∀ω (i = 1...N mod ). The matrix E(ρ 2 i (ω), c i (ω), ξ i (ω), X i (ω), P -1 θi ) above is the matrix defined in (30) in which P -1 θi is replaced by its affine expression in the decision variables σ j,l defining the identification spectra Φ rj ∀j. This optimization problem will lead to the least costly identification experiment (according to J ) that nevertheless guarantees that the identified models will be sufficiently accurate to deliver an acceptable global performance. Indeed, the combination of the set of constraints in (37) at a given ω guarantee that (35) holds for the uncertainty T defined based on the uncertainty U delivered via the identification.

There are two issues with this optimization problem. First, as in all optimal identification experiment design problem, it depends on the unknown parameter vectors θ i,0 via P -1 θi , on the to-be identified parameter vectors θi (via e.g. A i ) and on the to-be-designed controllers Ki (via e.g. B i ). Those unknown variables will be replaced by initial guesses such as in [START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF]. In particular, we need to pre-select a control design method which, based on a model of the modules, leads to decentralized controllers achieving a nominal performance that is (slightly) better than the desired one. This control design method will be used to determine the initial guesses for Ki based on the initial guesses for the modules.

The second issue is that the optimization problem is a bilinear problem via the products 34)) and ξ i B i (and thus ξ i P -1 θi ) in the constraint E < 0 (see (30)). Indeed, here, unlike in Section 3, all these variables are together decision variables in the same optimization problem. To tackle this issue, we propose the following iterative algorithm inspired by the so called D-K iterations [START_REF] Zhou | Essentials of Robust Control[END_REF]. Before presenting the algorithm, we note that, if we arbitrarily choose spectra Φ ri (ω) (i = 1...N mod ), we can compute the corresponding P θi (i = 1...N mod ) via [START_REF] Hägg | On optimal input design for networked systems[END_REF]. With these P θi , we can compute P wc,ub (ω, T ) via Theorems 2 and 3 and we can therefore verify whether (35) holds at each ω ∈ Ω. If that is the case, we will say that the spectra Φ ri (ω) (i = 1...N mod ) are validated. Algorithm 1. The algorithm is made up of an initialization step (step 0) and each iteration consists of three steps. S.0. We initialize the algorithm by arbitrarily choosing the spectra Φ ri (i = 1...N mod ) (e.g. Φ ri (ω) = 1). S.1. Using a subdivision algorithm, we determine, using the notion of validation defined above, the minimal positive scalar γ ∈ R such that the spectra γΦ ri (ω) (i = 1...N mod ) remain validated. Denote this minimal γ by γ min . S.2. To validate γ min Φ ri (ω), the optimization problems in Theorems 2 and 3 have been used. The corresponding decision variables are α i = ρ 2 i (ω), c i (ω), ξ i (ω), X i (ω) and T w (i = 1...N mod , ω ∈ Ω). From those decisions variables, ξ i (ω), c i (ω) and T ω (i = 1...N mod , ω ∈ Ω) are conserved for Step 3. S.3. The optimal experiment design problem (37) is transformed into an LMI optimization problem by fixing the decision variables ξ i (ω), c i (ω) and T ω (i = 1...N mod , ω ∈ Ω) to the ones determined in Step 2. The solution of this transformed optimization problem define, via σ i,l , new spectra Φ ri (ω). These new spectra Φ ri (ω) can then be used in Step 1 for a new iteration. The algorithm is stopped when the optimal cost J opt in Step 3 no longer decreases significantly after each iteration. The optimal spectra Φ ri (ω) are then the ones corresponding to this last iteration (Step 1 can be used a last time to further refine these spectra). Remark 5. The optimal experiment design problem has been presented in the case where the objective is to guarantee a certain level of global performance described by one transfer function P . However, it is straightforward to extend it to the case where different transfer functions P are considered and, using the results in [START_REF] Bombois | Least costly identification experiment for control[END_REF], also to the case where, in addition, a certain level of local performance has to be guaranteed. Remark 6. Let us now consider briefly the case where the noises e i in (1) are not independent, but spatially correlated with a strictly positive covariance matrix Λ. We had already observed in Remark 1 that Theorem 1 also holds in that case. As opposed to this, the individual SISO identification criteria [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] are, for e i having that property, no longer equivalent to the global MIMO identification criterion (13) and will therefore not lead to the smallest variance. However, since i (t, θ i,0 ) remains equal to e i (t), √ N ( θi -θ i,0 ) will in that case too be asymptotically normally distributed around zero and the covariance matrix P θi of θi will be still given by [START_REF] Hägg | On optimal input design for networked systems[END_REF]. We also observe that the hierarchical approach only uses the ellipsoids U i (and not U ). Consequently, the controller validation and experiment design results can also be applied when the white noises e i (i = 1...N mod ) are spatially correlated. Indeed, even though the covariance matrix P θ of θ is no longer block-diagonal in that case, the projections U i = {θ i | θ ∈ U } are still given by [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] [START_REF] Bombois | Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification[END_REF]. the sizes of the obtained uncertainties are different at different nodes. As an example, more uncertainty is allowed in Node 1 than in Node 6. Interestingly, the smaller uncertainty in Node 6 is obtained with less power than the larger uncertainty in Node 1: σ 6,0 < σ 1,0 . This is a consequence of the network configuration. Indeed, the uncertainty of Node 6 is not only function of Φ r,6 , but also of all the other spectra applied during the identification experiment (see [START_REF] Hägg | On optimal input design for networked systems[END_REF]). To illustrate this, we have also represented, in red dashed in Figure 4, the radius ρ 6 (ω) that would have been obtained if Node 6 would have been isolated as Node 1 (and thus if P θ6 would have been determined uniquely with Φ r,6 ). We observe that the obtained uncertainty would have been much larger.
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Concluding remarks

This paper is one of the first contributions on optimal experiment design in a network context. The type of networks considered in this paper is usual in the literature on multi-agent systems. We have seen that many results of this paper not only apply to systems S i with independent white noises e i , but also to spatially correlated ones. However, as mentioned in Remark 6, if the white noises e i are spatially correlated, our identification procedure using individual SISO criteria is no longer optimal since it is no longer equivalent to the global MIMO prediction error identification criterion. Future work will therefore consider the question of how to deal with this MIMO criterion in the case of spatially correlated noises without increasing too much the computational complexity. This complexity is indeed an important feature when the number N mod of modules is large.
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 2 Fig. 1. Example of a network

Fig. 3 .

 3 Fig.3. Desired global performance W (ω) (black dotted), expected worst case performance P wc,ub (ω, T ) after optimal experiment design and using the initial guesses (black dashed), obtained worst case performance P wc,ub (ω, T ) after identification and redesign of the controllers (red solid)

We will nevertheless see in the sequel that many of the results of this paper also apply to the case of spatially-correlated noises ei i.e. to the case where (4) holds with a matrix Λ = Λ T > 0 that is not necessarily diagonal.

The same observation can be made for the conditions derived in the paper[START_REF] Weerts | Identifiability of dynamic networks with part of the nodes noise-free[END_REF] which considers the identification of all the modules in an arbitrary network.

Numerical illustration

In this numerical illustration, we consider the network of Figure 1 made up of six nodes (N mod = 6). We consider here the case of nodes made up of homogenous systems and, for simplicity, the true systems S i that will be identified will all be identical and given by the following ARX system [START_REF] Landau | A flexible transmission system as a benchmark for robust digital control[END_REF]: y i (t) = (z -3 B 0 (z))/(A 0 (z))u i (t) + (1)/(A 0 (z))e i (t) with B 0 (z) = 0.10276 + 0.18123z -1 , A 0 (z) = 1 -1.99185z -1 + 2.20265z -2 -1.84083z -3 + 0.89413z -4 . The variances Λ i,i of the white noises e i (t) are all equal to one i.e. Λ = I 6 . We suppose that these true systems are all controlled by the same local controller K that is designed using the local method in [START_REF] Ferreres | H∞ control for a flexible transmission system[END_REF]. The global performance P (z, θ 0 ) that we consider in this example is the transfer function between w = ref ext and s = y 6 -ref ext . Our objective is to determine the identification experiment leading to models whose uncertainty U is small enough to guarantee (35) with the threshold W represented in Figure 3. This threshold requires a global bandwidth that is higher than the one achieved with the controller K present in the network. We suppose that, based on the identified models, the method of [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] will be used to design a unique controller K that satisfies the global performance defined by W (but also a certain level of local performance).

Using the methodology presented in Section 4, we design the spectra Φ ri (M = 10) that have to be applied to each module for the identification. For this design, we fix the experiment length to N = 2000 and we need to have initial guesses of the true systems, the identified models and K. We have here used for this purpose an ARX system having the same structure as the true systems, but described by B init (z) = 0.1192 + 0.1651z -1 and

. With this initial guess S init for the system, we have designed a controller K init using the same global method that will be used with the identified models. This controller K init has been used as initial guess for the controller K. The worst-case performance P wc,ub (ω, T ) corresponding to these designed spectra and these initial guesses is given in Figure 3 (black dashed) and we see that the performance objective is satisfied. The optimal cost J opt is equal to 108. This result has been obtained by considering the centers c i (ω) as decision variables. This is important since the optimal cost would be equal to 133 if we would force these centers to be zero for all i and for all frequencies. We have also verified that the conservatism linked to the chosen hierarchical robustness analysis approach remains limited. For this purpose, we have computed a lower bound of the exact worst-case performance sup θ∈U |P (e jω , θ)| by randomly generating parameter vectors θ on the contour of the obtained uncertainty ellipsoid U and by computing, for each ω, the largest value of |P (e jω , θ)| for those random values of θ. When generating 10000 random θ, the relative error between this lower bound and P wc,ub (ω, T ) is, for each ω, smaller than 20% (the maximal relative error is attained at ω ≈ 1.5) and has a mean of 3% over the frequencies.

In order to further verify the validity of our results, we realize the optimal spectra and apply the corresponding excitation signals r i (i = 1...6) of length N = 2000 to the network. The models G(z, θi ) are identified using the procedure of Section 2 and a controller K is designed with the average of these six models using the chosen global control design method. Finally, using the covariance matrices P θi determined along with the models, we use the procedure of Section 3 to determine the worst-case global performance. This worst-case global performance P wc,ub (ω, T ) is given in Figure 3 (red solid). We observe that, even if the optimal spectra have been designed with initial guesses for the identified parameter vectors and for K as well as with the asymptotic formula [START_REF] Everitt | On the variance analysis of identified linear MIMO models[END_REF] for the covariance matrices P θi , the worst-case performance actually obtained after the identification experiment satisfies (35). Distribution of power and of uncertainty among the nodes Consequently, our methodology leads to models that are sufficiently accurate to guarantee a certain level of global performance in this example. Let us analyze how the excitation power and the uncertainty is distributed among the nodes. For this purpose, we give in Table 1 the power injected for each node (i.e. σ i,0 ) and a normalized image of the volume of U i i.e. V i = det(10 5 P θi ). Since V i is only one of the possible measures to evaluate the size of the uncertainty, we also represent, in Figure 4, the radius ρ i (ω) (representing the size of T i and computed using Theorem 2) for Nodes i = 1 (black dotted), i = 5 (black circles) and i = 6 (black solid). We observe that both the excitation powers and