Marc Briant 
email: briant.maths@gmail.com
  
Amit Einav 
email: a.einav@dpmms.cam.ac.uk
  
  
  
ON THE CAUCHY PROBLEM FOR THE HOMOGENEOUS BOLTZMANN-NORDHEIM EQUATION FOR BOSONS: LOCAL EXISTENCE, UNIQUENESS AND CREATION OF MOMENTS

Keywords: Boltzmann-Nordheim equation, Kinetic model for bosons, Bose-Einstein condensattion, Subcritical solutions, Local Cauchy Problem

published or not. The documents may come     On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

The collision kernel B contains all the information about the interaction between two particles and is determined by physics. We mention, at this point, that one can derive this type of equations from Newtonian mechanics (coupled with quantum effects in the case of the Boltzmann-Nordheim equation), at least formally (see [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] or [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF] for the classical case and [START_REF] Nordheim | On the kinetic method in the new statistics and its application in the electron theory of conductivity[END_REF] or [START_REF] Chapman | An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[END_REF] for the quantum case). However, while the validity of the Boltzmann equation from Newtonian laws is known for short times (Landford's theorem, see [START_REF] Lanford | Time evolution of large classical systems[END_REF] or more recently [START_REF] Gallagher | From Newton to Boltzmann: hard spheres and short-range potentials[END_REF][START_REF] Pulvirenti | On the validity of the Boltzmann equation for short range potentials[END_REF]), we do not have, at the moment, the same kind of proof for the Boltzmann-Nordheim equation.

1.1. The problem and its motivations. Throughout this paper we will assume that the collision kernel B can be written as

B(v, v * , θ) = Φ (|v -v * |) b (cos θ) ,
which covers a wide range of physical situations (see for instance [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] Chapter 1).

Moreover, we will consider only kernels with hard potentials, that is

(1.1) Φ(z) = C Φ z γ , γ ∈ [0, 1],
where C Φ > 0 is a given constant. Of special note is the case γ = 0 which is usually known as Maxwellian potentials. We will assume that the angular kernel b • cos is positive and continuous on (0, π), and that it satisfies a strong form of Grad's angular cut-off:

(1.2) b ∞ = b L ∞ [-1,1]
< ∞

The latter property implies the usual Grad's cut-off [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]:

(1.3) l b = S d-1 b (cos θ) dσ = S d-2 π 0 b (cos θ) sin d-2 θ dθ < ∞.
Such requirements are satisfied by many physically relevant cases. The hard spheres case (b = γ = 1) is a prime example.

With the above assumption we can rewrite the Boltzmann-Nordheim equation for bosonic gas as (1.4)

∂ t f = C Φ R d ×S d-1 |v -v * | γ b (cos θ) [f ′ f ′ * (1 + f + f * ) -f f * (1 + f ′ + f ′ * )] dv * dσ.
and break it into obvious gain and loss terms

∂ t f = Q + (f ) -f Q -(f )
where

Q + (f ) = C Φ R d ×S d-1 |v -v * | γ b (cos θ) f ′ f ′ * (1 + f + f * ) dv * dσ, (1.5) Q -(f ) = C Φ R d ×S d-1 |v -v * | γ b (cos θ) f * (1 + f ′ + f ′ * ) dv * dσ. (1.6)
The goal of this work is to show local in time existence and uniqueness of solutions to the Boltzmann-Nordheim equation for bosonic gas. The main difficulty with the problem is the possible appearance of a Bose-Einstein condensation, i.e. a concentration of mass in the mean velocity, in finite time. In mathematical terms, this can be seen as the appearance of a Dirac function in the solution of the equation (1.4), noticeable by a blow-up in finite time.

Such concentration is physically expected, based on various experiments and numerical simulations, as long as the temperature T of the gas is below a critical temperature T c (M 0 ) which depends on the mass M 0 of the bosonic gas. We refer the interested reader to [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF] for an overview of these results.

1.2.

A priori expectations for the creation of a Bose-Einstein condensation. In this subsection, we explore some properties of the Boltzmann-Nordheim equation bosonic gas in order to motivate why a concentration phenomenon is expected. We emphasize that everything is stated a priori and should not be considered a rigorous proof.

We start by noticing the symmetry property of the Boltzmann-Nordheim operator.

Lemma 1.1. Let f be such that Q(f ) is well-defined. Then for all Ψ(v) we have

R d Q(f )Ψ dv = C Φ 2 R d ×R d ×S d-1 q(f )(v, v * ) [Ψ ′ * + Ψ ′ -Ψ * -Ψ] dσdvdv * , with q(f )(v, v * ) = |v -v * | γ b (cos θ) f f * (1 + f ′ + f ′ * ) .
This result is well-known for the Boltzmann equation and is a simple manipulation of the integrand using changes of variables (v, v * ) → (v * , v) and (v, v * ) → (v ′ , v ′ * ), as well as using the symmetries of the operator q(f ). A straightforward consequence of the above is the a priori conservation of mass, momentum and energy for a solution f of (1.4) associated to an initial data f 0 . That is (1.7)

R d   1 v |v| 2   f (v) dv = R d   1 v |v| 2   f 0 (v) dv =   M 0 u M 2   .
The entropy associated to (1.4) is the following functional

S(f ) = R d [(1 + f )log(1 + f ) -f log(f )] dv
which is, a priori, always increasing in time. It has been proved in [START_REF] Huang | Statistical mechanics[END_REF] that for given mass M 0 , momentum u and energy M 2 , there exists a unique maximizer of S with these prescribed values which is of the form

(1.8) F BE (v) = m 0 δ(v -u) + 1 e β 2 (|v-u| 2 -µ) -1
, where • m 0 0.

• β ∈ (0, +∞] is the inverse of the equilibrium temperature.

• -∞ < µ 0 is the chemical potential.

• µ • m 0 = 0. This suggests that for a given initial data f 0 , the solution of the Boltzmann-Nordheim equation (1.4) should converge, in some sense, to a function of the form F BE with constants that are associated to the physical quantities of f 0 . Hence, we can expect the appearance of a Dirac function at u if m 0 = 0.

One can show (see [START_REF] Lu | A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior[END_REF] or [START_REF] Escobedo | On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons[END_REF]) that for a given (M 0 , u, M 2 ) we have that if d = 3, m 0 = 0 if and only if where ζ denotes the Riemann Zeta function. Equivalent formulas can be obtained in a similar way for any higher dimension.

According to [START_REF] Chapman | An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[END_REF] Chapter 2, the kinetic temperature of a bosonic gas is given by

T = m 3k B M 2 M 0 ,
where k B is the physical Boltzmann constant. This implies, using (1.9), that m 0 = 0 if and only if T T c (M 0 ) where

T c (M 0 ) = mζ(5/2) 2πk B ζ(3/2) M 0 ζ(3/2) 2/3
. Initial data satisfying (1.9) is called subcritical (or critical in case of equality).

From the above discussion, we expect that for low temperatures, T < T c (M 0 ), our solution to the Boltzmann-Nerdheim equation will split into a regular part and a highly concentrated part around u as it approaches its equilibrium F BE . In [START_REF] Spohn | Kinetics of the Bose-Einstein condensation[END_REF], Spohn used this idea of a splitting to derive a physical quantitative study of the Bose-Einstein condensation and its interactions with normal fluid, in the case of radially symmetric (isotropic) solutions. 1.3. Previous studies. The issue of existence and uniqueness for the homogeneous bosonic Boltzmann-Nordheim equation has been studied recently in the setting of hard potentials with angular cut-off, especially by X. Lu [START_REF] Lu | A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior[END_REF][START_REF] Lu | On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles[END_REF][START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium[END_REF][START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: regularity and condensation[END_REF], and M. Escobedo and J. J. L. Velázquez [START_REF] Escobedo | On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons[END_REF][START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF]. It is important to note, however, that these developments have been made under the isotropic setting assumption. We present a short review of what have been done in these works.

In his papers [START_REF] Lu | A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior[END_REF] and [START_REF] Lu | On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles[END_REF], X. Lu managed to develop a global-in-time Cauchy theory for isotropic initial data with bounded mass and energy, and extended the concept of solutions for isotropic distributions. Under these assumptions, Lu proved existence and uniqueness of radially symmetric solutions that preserve mass and energy. Moreover, he showed that if the initial data has a bounded moment of order s > 2, then this property will propagate with the equation. Additionally, Lu showed moment production for all isotropic initial data in L 1 2 . More recently, M. Escobedo and J. J. L. Velázquez used an idea developed by Carleman for the Boltzmann equation [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF] in order to obtain uniqueness and existence locally in time for radially symmetric solutions in the space L ∞ (1 + |v| 6+0 ) (see [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF]). As a condensation effect can occur, we can't expect more than local-in-time results in L ∞ spaces in the general setting.

The issue of the creation of a Bose-Einstein condensation has been extensively studied experimentally and numerically in physics [START_REF] Semikov | Kinetics Bose condensation[END_REF] [START_REF] Semikov | Condensation of Bosons in the kinetic regime[END_REF][15] [START_REF] Lacaze | Dynamical formation of a boseeinstein condensate[END_REF]. Mathematically, a formal derivation of some properties of this condensation, as well as its interactions with the regular part of the solution, has been studied in [START_REF] Spohn | Kinetics of the Bose-Einstein condensation[END_REF] in the isotropic framework. In the series of papers, [START_REF] Lu | A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior[END_REF][START_REF] Lu | On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles[END_REF][START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium[END_REF], X. Lu managed to show a condensation phenomenon, under appropriate initial data and in the isotropic setting, as the time goes to infinity. He has shown that at the low temperature case, the isotropic solutions to ((1.4)) converge to the regular part of F BE , which has a smaller mass than the initial data. This loss of mass is attributed to the creation of a singular part in the limit, i.e. the desired condensation. It is interesting to notice, as was mentioned in [START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium[END_REF], that this argument does not require the solution to be isotropic and that this created condensation neither proves, or disproves, creation of a Bose-Einstein condensation in finite time.

In a recent breakthroughs, [START_REF] Escobedo | On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons[END_REF][START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF], the appearance of Bose-Einstein condensation in finite time has finally been shown. In [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF] the authors showed that if the initial data is isotropic in L ∞ (1 + |v| 6+0 ) with some particular conditions for its distribution of mass near |v| 2 = 0, then the associated isotropic solution exists only in finite time, and its L ∞ -norm blows up. This was done by a thorough study of the concentration phenomenon occurring in a bosonic gas. In [START_REF] Escobedo | On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons[END_REF], the authors showed that supercritical initial data indeed satisfy the blow-up assumptions in the case of the isotropic setting.

More precisely, in [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF] the authors showed that there exist R blowup , Γ blowup > 0 such that if the isotropic initial satisfies

|v| R blowup f 0 (|v| 2 ) dv Γ blowup ,
measuring concentration around |v| = 0, then there will be a blow-up in the L ∞norm in finite time. This should be compared with the very recent proof of Lu [START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: regularity and condensation[END_REF] showing global existence of solutions in the isotropic setting when

R d f 0 (|v| 2 ) |v| dv Γ global
for a known Γ global > 0 and d = 3. The above gives us a measure of lack of concentration near the origin at t = 0. At this point we would like to mention that the problem of finite time condensation, intimately connected to the Boltzmann-Nordheim equations for bosons, is far from being fully resolved, and the aforementioned results by Lu, Escobedo and Velázquez are a paramount beginning of the investigation of this problem.

1.4. Our goals and strategy. The a priori conservation of mass, momentum and energy seems to suggest that a natural space to tackle the Cauchy problem is L 1 2 , the space of positive functions with bounded mass and energy. While this is indeed the right space for the regular homogeneous Boltzmann equation (see [START_REF] Lu | Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]), the possibility of sharp concentration implies that the L ∞ -norm is an important part of the mix as it can measure the condensation blow up. Additionally, one can see that for short times, when no condensation is created, the boundedness of the L ∞ -norm implies a strong connection between the trilinear gain term in the homogeneous Boltzmann-Nordheim equation and the quadratic gain term in the homogeneous Boltzmann equation. Thus, it seems that the right space to look at, when one investigates the Boltzmann-Nordheim equation, is in fact L 1 2 ∩ L ∞ , or the intersection of L 1 2 with some weighted L ∞ space.

The main goal of the present work is to prove that the above intuition is valid by showing a local-in-time existence and uniqueness result for the Boltzmann-Nordheim equation when initial data in L 1 2 ∩ L ∞ (1 + |v| s ) for a suitable s, without any isotropic assumption. One of the main novelty of the present paper is the highlighting of the role played by the L ∞ -norm not only on the control of possible blow-ups, but also on the gain of regularity of the solutions. This L ∞ investigation is an adaptation of the work of Arkeryd [START_REF] Arkeryd | L estimates for the space-homogeneous boltzmann equation[END_REF] for the classical Boltzmann operator. A core difference between Arkeryd's work and ours lies in the control of the loss term, Q -, which can no longer be controlled above zero using the entropy, as well as more complexities arising from dealing with a trilinear term.

We tackle the issue of the existence of solutions with an explicit Euler scheme for a family of truncated Boltzmann-Nordheim operators, a natural approach when one wants to propagate boundedness. The sequence of functions we obtain is then shown to converge to a solution of (1.4). The key ingredients we use are a new control on the gain term, Q + , for large and small relative velocities v -v * , estimations of 'gain of regularitiy at infinity' due to having the initial data in L ∞ (1 + |v| s ), and a refinement and an extension to higher dimensions of a Povzner-type inequality for the evolution of convex and concave functions under a collision.

The issue of uniqueness is being dealt by an adaptation of the strategy developed by Mischler and Wennberg in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] for the homogeneous Boltzmann equation. The main difficulty in this case is the control of terms of the form |v -v * | 2+γ that appear when one studies the evolution of the energy of solutions. Besides our local theorems, we also show the appearance of moments of all orders to the solution of (1.4). As can seen from the above discussion, as well as the proofs to follow, we treat the Cauchy theory, and the creation of moments, for the Boltzmann-Nordheim equation as an 'extension' of known results and methods for the Boltzmann equation -though the technicalities involved are far from trivial. 1.5. Organisation of the article. Section 2 is dedicated to the statements and the descriptions of the main results proved in this paper.

In Section 3 we derive some key properties of the gain and loss operators Q + and Q -, and show several a priori estimates on solutions to (1.4). We end up by proving a gain of regularity at infinity for solutions to the homogeneous Boltzmann-Nordheim equation.

As moments of solutions to (1.4) are central in the proof of uniqueness, Section 4 is dedicated to their investigation. We show an extension of a Povzner-type inequality and use it to prove the instantaneous appearance of bounded moments of all order. Lastly, we quantify the blow-up near t = 0 for the moment of order 2 + γ.

In Section 5 we show the uniqueness of bounded solutions that preserve mass and energy and then we turn our attention to the proof of local-in-time existence of such bounded, mass and energy preserving solutions in Section 6.

Main results

We begin by introducing a few notation that will be used throughout this work. As we will be considering spaces in the variables v and t separately at times, we will index by v or t the spaces we are working on. The subscript v will always refer to

R d . For instance L 1 v refers to L 1 (R d ) and L ∞ [0,T ],v refers to L ∞ ([0, T ] × R d ).
We define the following spaces, when p ∈ {1, ∞} and s ∈ N:

L p s,v = f ∈ L p v , ( 1 
+ |v| s )f L p v <
+∞ Lastly, we denote the moment of order α, where α 0, of a function f of t and v by (2.1)

M α (t) = R d |v| α f (t, v) dv.
Note that when f 0 the case α = 0 corresponds to the mass of f while the case α = 2 corresponds to its energy.

The main result of the work presented here is summed up in the next theorems:

Theorem 2.1. Let f 0 0 be in L 1 2,v ∩ L ∞ s,v when d 3 and d -1 < s. Then if a non-negative solution to the Boltzmann-Nordheim equation on [0, T 0 ) × R d , f ∈ L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v
, that preserves mass and energy exists it must be unique. Moreover, this solution satisfies

• For any 0 s ′ < s, where s = min s , d 1+γ s -d + 1 + γ + 2(1+γ) d , we have that f ∈ L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ s ′ ,v , • if γ > 0 then for all α > 0 and for all 0 < T < T 0 , M α (t) ∈ L ∞ loc ([T, T 0 )) . Theorem 2.2. Let f 0 0 be in L 1 2,v ∩ L ∞ s,v when d 3 and d -1 < s. Then, if (i) γ = 0 and s > d, or (ii) 0 < γ 1 and s > d + 2 + γ, there exists T 0 > 0 depending on d, s, C Φ , b ∞ , l b , γ, f 0 L 1 2,v
and f 0 L ∞ s,v , such that there exists a non-negative solution to the Boltzmann-Nordheim equation on

[0, T 0 ) × R d , f ∈ L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v
, that preserves mass and energy. Moreover T 0 = +∞ or lim sup

T →T - 0 f L ∞ [0,T ]×R d = +∞.
Remark 2.3. We mention a few remarks in regards to the above theorem:

(1) It is easy to show that s = s if d = 3 or s d.

(2) The difference between conditions (i) and (ii) in Theorem 2.2 arises from the explicit Euler scheme we employ. To show the existence, we start by solving an appropriate truncated equation. However, any 'regularity at infinity' that may be gained due to the term |v -v * | γ for γ > 0 is lost due to this truncation. Thus, an additional assumption on the weighted L ∞ norm is required. Note that the case d = 3, γ = 1 gives the same condition as that of [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF]. (3) Of great importance is the observation that the above theorems identifies an appropriate norm in the general non-isotropic setting, the L ∞ norm, under which a study of the appearance of a blow up in finite time is possiblegiving rise to a proof of local existence and uniqueness. We would like to mention that this blow up may not be the Bose-Einstein condensation itself and additional assumptions, such as the ones presented in [10] [START_REF] Escobedo | On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons[END_REF], may be needed to fully characterise the condensation phenomena. (4) Much like the classical Boltzmann equation, higher order moments are created immediately, but unlike it, M α (t) are only locally bounded. We also emphasize here that this creation of moments only requires f 0 to be in L 1 2,v ∩ L ∞ v as we shall see in Section 4.

(5) Lastly, let us mention that our proofs still hold in d = 2, but only in the special case γ = 0. This is due to the use of the Carleman representation for Q + .

3.

A priori estimate: control of the regularity by the L ∞ v -norm This section is dedicated to proving an a priori estimate in the L ∞ v space for solutions to (1.4), locally in time. As was mentioned before, we cannot expect more than this as we know from [START_REF] Escobedo | Finite time blow-up for the bosonic Nordheim equation[END_REF] that even for radially symmetric solutions there are solutions with a blow-up in finite time.

Many results in this section are an appropriate adaptation of the work of Arkeryd [START_REF] Arkeryd | L estimates for the space-homogeneous boltzmann equation[END_REF]. Nonetheless, we include full proofs to our main claims for the sake of completion.

The main theorem of the section, presented shortly, identifies the importance of the L ∞ v requirement as an indicator for blow-ups. Indeed, as we shall see, the boundedness of the solution, along with appropriate initial conditions, immediately implies higher regularity at infinity.

Theorem 3.1. Let f 0 0 in L 1 2,v ∩ L ∞ s,v when d 3 and d -1 < s. Let f be a non-negative solution of (1.4) in L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v ,
with initial value f 0 , satisfying the conservation of mass and energy. Define

(3.1) s = min s ; d 1 + γ s -d + 1 + γ + 2(1 + γ) d .
Then for all 0 T < T 0 and all s ′ < s there exists an explicit C T > 0 such that following holds

∀t ∈ [0, T ], f (t, •) L ∞ s ′ ,v C T .
The constant C T depends only on T , d, the collision kernel,

f L ∞ [0,T ],v , f 0 L 1 2,v ∩L ∞ s,v , s and s ′ .
The entire section is devoted to the proof of this result. We start by stating a technical lemma that will be used throughout the entire section, whose proof we leave to the Appendix.

Lemma 3.2. Let s 1 , s 2 0 be such that s 2 -s 1 < d and let f ∈ L 1 s 1 ,v ∩ L ∞ s 2 ,v . Then, for any 0 α < d we have R d f (v * ) |v -v * | -α dv * C d,α f L 1 s 1 ,v + f L ∞ s 2 ,v (1 + |v|) -b where b = min α, s 1 + α(s 2 -s 1 ) d
and C d,α > 0 depends only on d and α.

3.1. Key properties of the gain and loss operators. In this subsection we gather and prove some useful properties of the gain and loss operators Q -and Q + that will be used in what is to follow. First, we have the following control on the loss operator.

Lemma 3.3. Let f 0 be in L 1 2,v . Then (3.2) ∀v ∈ R d , Q -(f )(v) C Φ l b (1 + |v| γ ) f L 1 v -C Φ C γ l b f L 1 2,v
, where

(3.3) C γ = sup x 0 1 + x γ 1 + x 2 .
Proof of Lemma 3.3. Using the fact that for any x, y > 0 and 0 γ 1 we have

|x| γ -|y| γ |x -y| γ we find that for any v ∈ R d Q -(f )(v) C Φ R d ×S d-1 [(1 + |v| γ ) -(1 + |v * | γ )] b (cos θ) f * dv * dσ C Φ l b (1 + |v| γ ) f L 1 v -C Φ C γ l b f L 1 2,v
.

Remark 3.4. Had we had a uniform in time control over the entropy, R d f log dv, we would have been able to find a strictly positive lower bound for the loss operator, much like in the case of the Boltzmann equation. However, for the Boltzmann-Nordheim equation the appropriate decreasing entropy is given by

R d ((1 + f ) log(1 + f ) -f log f ) dv,
which is not as helpful.

An essential tool in the investigation of the L ∞ properties of solutions to the Boltzmann equation is the so-called Carleman representation. This representation of the gain operator has been introduced by Carleman in [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF] and consisted of changing the integration variables in the expression for it from dv * dσ to dv ′ dv ′ * on R d and appropriate hyperplanes. As shown in [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF], the representation reads as: (3.4)

R d ×S d-1 Lemma 3.5. Let f 0 be in L 1 2,v ∩ L ∞ v . If γ ∈ [0, d -2], then Q + (f ) L ∞ v C + 1 + 2 f L ∞ v sup v,v ′ ∈R d E vv ′ f ′ * dE(v ′ * ) R d f ′ |v -v ′ | d-1-γ dv ′ ,
where

C + = 2 d-1 C Φ b ∞ .
Remark 3.6. Note that the requirement of having γ in [0, d-2] prevents our method from working in d = 2 unless γ = 0.

Lemma 3.7. Let f 0 be in L 1 v ∩ L ∞ v .
For any given v ∈ R d we have that almost everywhere in the direction of v -v ′ (3.5)

E vv ′ Q + (f )(v ′ * ) dE(v ′ * ) C +E 1 + 2 f L ∞ v f L 1 v sup v 1 ∈R d R d f (v) |v -v 1 | 1-γ dv ,
where

C +E > 0 depends only on d, C Φ and b ∞ . Proof of Lemma 3.7. Denote by ϕ n (v) = n 2π 1 2 e - nD ( v,E vv ′ ) 2 2
, where D (v, A) is the distance of v from the set A.

Using the standard change of variables (v, v * , σ) → (v ′ , v ′ * , σ) we find that

R d ϕ n (v)Q + (f )(v) dv C Φ b ∞ 1 + 2 f L ∞ v R d ×R d ×S d-1 ϕ ′ n |v -v * | γ f f * dvdv * dσ.
We have that

S d-1 ϕ n (v ′ ) dσ = 2 d-1 |v -v * | d-1 Svv * ϕ n (x) ds(x)
where ds is the uniform measure on S vv * which is the sphere of radius |v - 

v * | /2 centred at (v + v * )/2.
R d ϕ n (v)Q + (f )(v) dv C Φ S d-2 b ∞ 1 + 2 f L ∞ v R d ×R d f f * |v -v * | 1-γ dvdv * dσ.
Using the fact that ϕ n converge to the delta function of E vv ′ we conclude that

E vv ′ Q + (f )(v ′ * ) dE(v ′ * ) = lim n→+∞ R d ϕ n (v)Q + (f )(v) dv S d-2 C Φ b ∞ 1 + 2 f L ∞ v R d ×R d f f * |v -v * | 1-γ dvdv * S d-2 C Φ b ∞ 1 + 2 f L ∞ v f L 1 v sup v 1 ∈R d R d f |v -v 1 | 1-γ dv,
which is the desired result. 

ψ a (v) = 0 |v| < |a| 1 |v| |a| . If f ∈ L 1 s,v ∩ L ∞ v when s d d-1 then for almost every hyperplane E vv ′ E vv ′ ψ a (v ′ * )Q + (f )(v ′ * ) dE(v ′ * ) C Φ C d,γ b ∞ f L 1 s,v + f L ∞ v 3 (1 + |a|) -s+γ-1
where C d,γ > 0 is a constant depending only on d and γ.

Proof of Lemma 3.8. The proof follows the same lines of the proof of Lemma 3.7.

We define ϕ n to be the approximation of the delta function on the appropriate hyperplane. Then

R d ϕ n (v)ψ(v)Q + (f )(v) dv C Φ b ∞ 1 + 2 f L ∞ v × R d ×R d ×S d-1 ϕ n (v ′ )ψ(v ′ )f (v)f (v * ) |v -v * | γ dvdv * dσ Since |v| |a| /2 and |v * | |a| /2 implies ψ(v ′ ) = 0 (as |v ′ | |v| + |v * |)
we conclude that the above is bounded by

C Φ b ∞ 1 + 2 f L ∞ v {|v| |a| 2 ∨|v * | |a| 2 }×S d-1 ϕ n (v ′ )f (v)f (v * ) |v -v * | γ dvdv * dσ C Φ S d-2 b ∞ 1 + 2 f L ∞ v {|v| |a| 2 ∨|v * | |a| 2 } f (v)f (v * ) |v -v * | γ-1 dvdv * dσ C Φ S d-2 b ∞ 1 + 2 f L ∞ v |v|> |a| 2 f (v) dv   sup |v|> |a| 2 R d f (v * ) |v -v * | γ-1 dv *   C Φ C d,γ b ∞ 1 + 2 f L ∞ v f L 1 s,v (1 + |a|) s f L 1 s,v + f L ∞ v (1 + |v|) b for b = min 1 -γ ; s 1 - 1 -γ d
where we have used Lemma 3.2. The result follows from taking n to infinity as

s d/(d -1) implies max 0 γ 1 1 -γ 1 -1-γ d s.

3.2.

A priori properties of solutions of (1.4). The first step towards the proof of Theorem 3.1 is to obtain some a priori estimates on f when f is a bounded solution of the Boltzmann-Nordheim equation. We first derive an estimation of the growth of the moments of f when f 0 has moments higher than 2. Proposition 3.9. Assume that f is a solution to the Boltzmann-Nordheim equation with initial conditions f 0 ∈ L 1 s,v for s > 2. Then, for any T < T 0 we have that

f (t, •) L 1 s,v e 2C Φ Csb∞ 1+2 sup t∈(0,T ] f L ∞ v f 0 L 1 2,v t f 0 L 1 s,v .
Proof of Proposition 3.9. We have that

d dt R d (1 + |v| s ) f (v, t) dv = C Φ 2 R d ×R d ×S d-1 q(f )(v, v * ) |v ′ | s + |v ′ * | s -|v| s -|v * | s dvdv * dσ C Φ C s b ∞ 1 + 2 sup t∈(0,T ] f L ∞ v R d ×R d |v| s-1 |v * | (|v| γ + |v * | γ ) f (v)f (v * ) dvdv * C Φ C s b ∞ 1 + 2 sup t∈(0,T ] f L ∞ v R d ×R d |v| s |v * | + |v| s-1 |v * | 2 f (v)f (v * ) dvdv * 2C Φ C s b ∞ 1 + 2 sup t∈(0,T ] f L ∞ v f 0 L 1 2,v R d (1 + |v| s ) f (v) dv
where we have used the known inequality

|v ′ | s + |v ′ * | s -|v| s -|v * | s C s |v| s-1 |v * |
for s > 2 and some C s depending only on s, the fact that γ 1 and the inequality

|v| α 1 + |v| α+1
for any α 0. The result follows.

The next stage in our investigation is to show that under the conditions of Theorem 3.1 one can actually bound the integral of f over E vv ′ uniformly in time, which will play an important role in the proof of the mentioned theorem, and more. Proposition 3.10. Let f be a solution to the Boltzmann-Nordheim equation that satisfies the conditions of Theorem 3.1 and let 0 T < T 0 . Then there exists C E > 0 and C 0 ∈ R * such that for any given v ∈ R d we have that almost everywhere in the direction of v -v ′ and for all t ∈ [0, T ]

E vv ′ f ′ * (t) dE(v ′ * ) C E e -C 0 t f 0 L ∞ s,v + C E 1 -e -C 0 T C 0 f 0 L 1 v 1 + 2 sup τ ∈[0,T ] f (τ, •) L ∞ v f 0 L 1 v + sup τ ∈[0,T ] f (τ, •) L ∞ v
where the constant C E only depends on d, s and the collision kernel, and C 0 depends also on f 0 and satisfies

Q -(f )(v) C 0 .
Remark 3.11. From Lemma 3.3 we know that we can choose

C 0 = C Φ l b (C γ f 0 L 1 2,v - f 0 L 1 v )
but the theorem can be stated more generally, as presented. Notice that the choice above can satisfy C 0 < 0, which will imply an exponential growth in the bound.

Proof of Proposition 3.10. Define ϕ n as in Lemma 3.7. Since f is a solution to the Boltzmann-Nordheim equation and that

Q -(f )(v) C 0 we find that (3.7) d dt R d ϕ n (v)f (t, v) dv -C 0 R d f (t, v)ϕ n (v) dv + R d ϕ n (v)Q + (f )(v) dv.
Using (3.6) we conclude that

R d ϕ n (v)Q + (f (t, •))(v) dv S d-2 C Φ b ∞ 1 + 2 sup τ ∈[0,T ] f (τ, •) L ∞ v R d ×R d |v -v * | γ-1 f (t, v)f (t, v * ) dvdv * S d-2 C Φ b ∞ 1 + 2 sup τ ∈[0,T ] f (τ, •) L ∞ v f 0 L 1 v sup τ ∈[0,T ], v 1 ∈R d R d f (τ, v * ) |v 1 -v * | 1-γ dv * , (3.8)
where we used that f is mass preserving. We notice that for γ > 1 -

d and v ∈ R d R d f (v * ) |v -v * | 1-γ dv * f L ∞ v |x|<1 dx |x| 1-γ + f L 1 v implying R d ϕ n (v)Q + (f (t, •))(v) dv C d,γ C Φ b ∞ 1 + 2 sup τ ∈[0,T ] f (τ, •) L ∞ v f 0 L 1 v f 0 L 1 v + sup τ ∈[0,T ] f (τ, •) L ∞ v ,
for an appropriate C d,γ . The resulting differential inequality from (3.7) is

d dt R d ϕ n (v)f (t, v) dv -C 0 R d ϕ n (v)f (t, v) dv + C T
with an appropriate C T , which implies by a Grönwall lemma that (3.9)

R d ϕ n (v)f (t, v) dv R d ϕ n (v)f 0 dv e -C 0 t + C T C 0 1 -e -C 0 t . Since lim n→∞ R d ϕ n (v)f 0 dv = E vv ′ f 0 (v ′ * ) dE(v ′ * ) f 0 L ∞ s,v E vv ′ dE(v ′ * ) 1 + |v ′ * | s = C d,s f 0 L ∞ s,v
as s > d -1, we take the limit as n goes to infinity in (3.9) which yields (3.10)

E vv ′ f (t, v ′ * ) dE(v ′ * ) C d,s f 0 L ∞ s,v e -C 0 t + C T C 0 1 -e -C 0 t
which is the desired result.

Lastly, before proving Theorem 3.1, we give one more a priori type of estimates on the family of hyperplanes E vv ′ . Proposition 3.12. Let f be a solution to the Boltzmann-Nordheim equation that satisfies the conditions of Theorem 3.1 and let 0 T < T 0 . For any a ∈ R d define

ψ a (v) = 0 |v| < |a| 1 |v| |a| .
Then for almost every hyperplane E vv ′ and t ∈ [0, T ]

E vv ′ ψ v (v ′ * )f (t, v ′ * ) dE(v ′ * ) E vv ′ ψ v (v ′ * )f 0 (v ′ * ) dE(v ′ * ) + C T,α (1 + |v|) -α with α = 3 if s d + 2 and α = s ′ + 1 for any s ′ < s -d if s > d + 2. The constant C T,α > 0 depends only on T , d, the collision kernel, sup t∈(0,T ] f (t, •) L ∞ v , f 0 L 1 2,v ∩L ∞ s,v , s and s ′ .
Proof of Proposition 3.12. We start by noticing that if s -s ′ > d then

R d 1 + |v| s ′ f 0 (v) dv C s,s ′ f 0 L ∞ s,v R d dv 1 + |v| s-s ′ = C s,s ′ f 0 L ∞ s,v Thus, if s > d + 2 we can conclude that f 0 ∈ L 1 s ′ ,v for any 2 < s ′ < s -d, improving the initial assumption on f 0 .
We continue as in Lemma 3.8 and define ϕ n to be the approximation of the delta function on E vv ′ . Denoting by

I n (t) = R d ϕ n (v * )ψ v (v * )f (t, v * ) dv *
we find that, using Lemma 3.8, Proposition 3.9 and denoting by C T the appropriate constant from the mentioned lemma and proposition,

d dt I n (t) -C Φ l b (1 + |v| γ ) f 0 L 1 v + C Φ C γ l b f 0 L 1 2,v I n (t) + C T    (1 + |v|) -s ′ +γ-1 if s > d + 2 and s ′ < s -d (1 + |v|) γ-3 if s d + 2.
The above differential inequality implies (see Lemma A.3 in Appendix) that for any

|v| 2C γ f 0 L 1 2,v f 0 L 1 v 1 γ -1,
the following holds:

I n (t) I n (0) + C T    (1 + |v|) -s ′ -1 if s > d + 2 and s ′ < s -d (1 + |v|) -3 if s d + 2.
Taking n to infinity along with Proposition 3.10 yields the desired result as when

|v| < 2C γ f 0 L 1 2,v f 0 L 1 v 1 γ -1
the following holds:

E vv ′ ψ v (v ′ * )f (t, v ′ * ) dE(v ′ * ) 2C γ f 0 L 1 2,v f 0 L 1 v β γ 1 (1 + |v|) β E vv ′ f (t, v ′ * ) dE(v ′ * ).
Remark 3.13. We notice that since

f 0 ∈ L ∞ s,v E vv ′ ψ v (v ′ * )f 0 (v ′ * ) dE(v ′ * ) f 0 L ∞ s,v E vv ′ ψ v (v ′ * ) 1 + |v ′ * | s dE(v ′ * ) C s,s ′′ ,d (1 + |v|) -(s-s ′′ )
for any d -1 < s ′′ < s. This implies that Proposition 3.12 can be rewritten as

E vv ′ ψ v (v ′ * )f (t, v ′ * ) dE(v ′ * ) C T (1 + |v|) -(s-d+1-ǫ) s > d + 2 (1 + |v|) -min(3,s-d+1-ǫ) s d + 2
where we have picked s ′′ = d -1 + ǫ and s ′ = s -d -ǫ for an arbitrary ǫ small enough. As s -d + 1 -ǫ 3 -ǫ when s d + 2 for any ǫ we conclude that

(3.11) E vv ′ ψ v (v ′ * )f (t, v ′ * ) dE(v ′ * ) C T (1 + |v|) -(s-d+1-ǫ)
3.3. Gain of regularity at infinity. This subsection is entirely devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. We start by noticing that the function

f l,v (v * ) = 1 -ψ v √ 2 (v * ) f (v * )
, where ψ a was defined in Lemma 3.8, satisfies

f l,v (v ′ ) f l,v (v ′ * ) = 0. Indeed, as |v ′ | 2 + |v ′ * | 2 = |v| 2 + |v * | 2 |v| 2 we find that |v ′ | |v| / √ 2 or |v ′ * | |v| / √ 2. This implies that Q + (f l,v )(v) = 0
and thus, by setting

f h,v = f -f l,v we have that Q + (f )(v) C Φ b ∞ 1 + 2 sup (0,T ] f L ∞ v R d ×S d-1 |v -v * | γ f (v ′ ) f (v ′ * ) dv * dσ = C Φ b ∞ 1 + 2 sup (0,T ] f L ∞ v Q + B,γ (f h,v , f h,v ) + 2Q + B,γ (f l,v , f h,v ) 3C Φ b ∞ 1 + 2 sup (0,T ] f L ∞ v Q + B,γ (f, f h,v )
where

Q + B,γ (f, g) = R d ×S d-1 |v -v * | γ f (v ′ ) g (v ′ * ) dv * dσ.
and we have used the fact that Q + (f, g) is symmetric under exchanging f and g.

Using Carleman's representation (3.4) for Q + B,γ along with Lemma 3.2 and Remark 3.13 we find that

Q + B,γ (f, f h,v )(v) R d f (v ′ ) dv ′ |v -v ′ | d-1-γ E vv ′ f h,v (v ′ * ) dE(v ′ * ) C T f 0 L 1 2,v + sup (0,T ] f L ∞ v f 0 L 1 2,v (1 + |v|) -δ , (3.12) 
where C T > 0 is a constructive constant depending only on d, s, f 0 , the collision kernel and T and where

δ = min (s -γ -ǫ 1 , ξ) with ξ = s -d + 1 -ǫ 1 + 2(1+γ) d
and ǫ 1 to be chosen later.

As f solves the Boltzmann-Nordheim equation, we find that it must satisfy the following inequality:

(3.13) ∂ t f 3C Φ b ∞ C T 1 + 2 sup (0,T ] f L ∞ v f 0 L 1 2,v + sup (0,T ] f L ∞ v f 0 L 1 2,v (1 + |v|) -δ -C Φ l b (1 + |v| γ ) f L 1 v -C Φ C γ l b f L 1 2,v f
where we have used Lemma 3.3 and (3.12). Solving (3.13) (see Lemma A.3 in the Appendix) with abusive notation for C T , we find that for any δ δ

f (t, •) L ∞ γ+ δ,v f 0 L ∞ γ+ δ,v + C T (3.14)
Let s ′ < s be given and denote by ǫ = s -s ′ . We shall show that the L ∞ s ′ ,v -norm of f can be bounded uniformly in time by a constant depending only on the initial data, dimension and collision kernel.

If δ s -γ -ǫ the result follows from (3.14). Else, the same equation implies that

f (t, •) ∈ L ∞ ξ+γ uniformly in t ∈ (0, T ].
Repeating the same arguments leading to (3.14) but using Lemma 3.2 with an L ∞ weight of s 2 = ξ + γ instead of s 2 = 0 yields an improved version of (3.14) where sup

τ ∈(0,T ] f (τ, •) L ∞ v is replaced with sup τ ∈(0,T ] f (τ, •) L ∞ ξ+γ,v
, and δ is replaced with

δ 1 = min s -γ -ǫ 1 , ξ + d -1 -γ d (ξ + γ) .
We continue by induction. Defining

δ n = min s -γ -ǫ 1 , ξ + (ξ + γ) n j=1 d -1 -γ d j .
we assume that for any δ δ n

(3.15) f (t, •) L ∞ γ+ δ,v C T where C T depends only on C Φ , b ∞ , l b , T , sup t∈(0,T ] f (t, •) L ∞ v , f 0 L ∞ s,v , f 0 L 1 2,v , γ, s, d
and ǫ 1 .

If δ n = s -γ -ǫ the proof is complete, else we can reiterate the proof to find that (3.15) is valid for δ δ n+1 .

Since

ξ + (ξ + γ) ∞ j=1 d -1 -γ d j = d 1 + γ (ξ + γ) -γ = d 1 + γ s -d + 1 + γ + 2(1 + γ) d -ǫ 1 -γ
we conclude that we can bootstrap our L ∞ weight up to

d 1 + γ s -d + 1 + γ + 2(1 + γ) d -ǫ s -ǫ
in finitely many steps with an appropriate choice of ǫ 1 . This completes the proof.

Creation of moments of all order

This section is dedicated to proving the immediate creation of moments of all order to the Boltzmann-Nordheim equation, as long as they are in

L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v .
This will play an important role in the proof of the uniqueness of the solutions, as when one deals with the difference of two solutions one cannot assume any fixed sign and usual control on the gain and loss terms fails. Higher moments of the solutions will be required to give a satisfactory result, due to the kinetic kernel |v -v * | γ .

The instantaneous generation of moments of all order is a well known and important result for the Boltzmann equation (see [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]). As for finite times, assuming no blow ups in the solution, the Boltzmann-Nordheim's gain and loss terms control, and are controlled, by the appropriate gain and loss terms of the Boltzmann equation, one can expect that a similar result would be valid for the bosonic gas evolution.

We would like to emphasize at this point that our proofs follow the arguments used in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] with the key difference of a newly extended Povzner-type inequality, from which the rest follows. The reader familiar with the work of Mischler and Wennberg may just skim through the statements and skip to the next section of the paper.

The study of the generation of higher moments will be done in three steps: The first subsection is dedicated to a refinement of a Povzner-type inequality [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF][START_REF] Povzner | On the Boltzmann equation in the kinetic theory of gases[END_REF] which captures the geometry of the collisions in the Boltzmann kernel. Such inequalities control the evolution of convex and concave functions under the effect of a collision, which is what we are looking for in the case of moments.

In the second subsection we will prove the appearance of moments for solutions to Boltzmann-Nordheim equation for bosons in

L 1 2,v ∩ L ∞ v .
We conclude by quantifying the rate of explosion of the (2 + γ) th moment as the time goes to 0. This estimate will be of great importance in the proof of the uniqueness. 

F ∈ L ∞ (R d ×R d ×S d-1 ) be such that F a > 0.
Given a function ψ we define.

K ψ (v, v * ) = S d-1 F (v, v * , σ)b(θ) ψ(|v ′ * | 2 ) + ψ(|v ′ | 2 ) -ψ(|v * | 2 ) -ψ(|v| 2 ) dσ.
Then, denoting by χ(v, v * ) = 1 -1 {|v|/2<|v * |<2|v|} , we find the following decomposition for K:

K ψ (v, v * ) = G ψ (v, v * ) -H ψ (v, v * )
, where G and K satisfy the following properties:

(i) If ψ(x) = x 1+α with α > 0 then |G(v, v * )| C G α (|v| |v * |) 1+α and H(v, v * ) C H α |v| 2+2α + |v * | 2+2α χ(v, v * ). (ii) If ψ(x) = x 1+α with -1 < α < 0 then |G(v, v * )| C G |α| (|v| |v * |) 1+α and -H(v, v * ) C H |α| |v| 2+2α + |v * | 2+2α χ(v, v * ). (iii)
If ψ is a positive convex function that can be written as ψ(x) = xφ(x) for a concave function φ that increases to infinity and satisfies that for any ε > 0 and α ∈ (0, 1)

(φ(x) -φ(αx)) x ε -→ x→∞ ∞ Then, for any ε > 0, |G(v, v * )| C G |v| |v * | 1 + φ |v| 2 1 + φ |v * | 2 and H(v, v * ) C H |v| 2-ε + |v * | 2-ε χ(v, v * ). In addition, there is a constant C > 0 such that φ ′ (x) C/(1 + x) implies G(v, v * ) C G |v| |v * |.
The constants C G and C H are positive and depend only on α, ψ, ε, b, a and

F L ∞ v,v * ,σ .
Remark 4.2. The operator H ψ in the above lemma can be chosen to be monotonous in ψ in the following sense:

if ψ = ψ 1 -ψ 2 0 is convex then H ψ 1 -H ψ 2 0
. This property will prove itself extremely useful later on in the paper.

Proof of Lemma 4.1. The proof follows similar arguments to the one presented in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] where We start by recalling the definition of v ′ , v ′ * and cos θ:

F
       v ′ = v + v * 2 + |v -v * | 2 σ v ′ * = v + v * 2 - |v -v * | 2 σ , cos θ = v -v * |v -v * | , σ .
One can see that

|v ′ | 2 = |v| 2 1 2 + 1 2 v -v * |v -v * | , σ + |v * | 2 1 2 - 1 2 v -v * |v -v * | , σ + |v -v * | 2 v + v * , σ - 1 2 v -v * |v -v * | , σ |v| 2 -|v * | 2 . = β(σ) |v| 2 + (1 -β(σ)) |v * | 2 + Z(σ) = Y (σ) + Z(σ),
where

β(σ) = 1 2 + 1 2 v -v * |v -v * | , σ ∈ [0, 1], (4.1) 
Y (σ) = β(σ) |v| 2 + (1 -β(σ)) |v * | 2 , (4.2) Z(σ) = |v -v * | 2 v + v * , σ - 1 2 v -v * |v -v * | , σ |v| 2 -|v * | 2 (4.3)
Similarly, one has

|v ′ * | 2 = Y (-σ) + Z(-σ).
As Z is an odd function in σ, we can split the integration over S d-1 to the domains where Z is positive and negative. By changing σ to -σ and adding and subtracting the term ψ(Y (σ)) + ψ(Y (-σ)), as well as using the fact that β(-σ) + β(σ) = 1 we conclude that

K ψ = σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y + Z) -ψ(Y )] dσ + σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y (-σ) -Z(σ)) -ψ(Y (-σ))] dσ - S d-1 [b(θ)F (σ) + b(π -θ)F (-σ)] βψ(|v| 2 ) + (1 -β)ψ(|v * | 2 ) -ψ(Y ) dσ, (4.4) 
We define (4.5)

H ψ = S d-1 [b(θ)F (σ) + b(π -θ)F (-σ)] βψ(|v| 2 ) + (1 -β)ψ(|v * | 2 ) -ψ(Y ) dσ
and notice that due to the definition of Y (σ) and the convexity or concavity of ψ, H ψ always has a definite sign. As such

(4.6) H ψ a S d-1 [b(θ) + b(π -θ)] βψ(|v| 2 ) + (1 -β)ψ(|v * | 2 ) -ψ(Y ) dσ,
when ψ is convex and (4.7)

-H ψ F L ∞ v,v * ,σ S d-1 [b(θ) + b(π -θ)] βψ(|v| 2 ) + (1 -β)ψ(|v * | 2 ) -ψ(Y ) dσ,
when ψ is concave. At this point the proof of (i) and (ii) for H ψ follows the arguments presented in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF].

We now turn our attention to the remaining two integrals in (4.4). Due to the positivity of b and F , and the monotonicity of ψ both integrals will be dealt similarly and we restrict our attention to the first. One sees that

σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y + Z) -ψ(Y )] dσ 2b ∞ F L ∞ v,v * ,σ σ: Z(σ) 0 [ψ(Y + Z) -ψ(Y )] dσ. (4.8)
The rest of the proof will rely on a careful investigation of the integrand. To do so, we start by noticing that

2 β 1 -β |v| |v * | Y (σ) |v| 2 + |v * | 2 |Z(σ)| 4 |v| |v * | . (4.9)
Case (i): In that case we have for all σ on S d-1 such that Z(σ) 0

ψ(Y + Z) -ψ(Y ) = (1 + α)Z (C(σ)) α (1 + α)Z (Y + Z) α . As Y + Z = |v ′ | 2 |v| 2 + |v * | 2 we find that ψ(Y + Z) -ψ(Y ) 4 |v| |v * | |v| 2 + |v * | 2 α (1 + α)          4 1+2α (|v| |v * |) 1+α if |v| 2 |v * | 2 |v| 4 ε 1 α |v| 2 + |v * | 2 1+α + 4ε (|v| |v * |) 1+α otherwise.
where we have used Hölder inequality in the second term. As ǫ is arbitrary, one can choose it such that 8

(1 + α)b ∞ F L ∞ v,v * .σ ε 1 α C H 2 ,
where C H is the constant associated to H ψ . Defining

H ψ = H ψ + 8(1 + α)b ∞ F L ∞ v,v * .σ ε 1 α |v| 2 + |v * | 2 1+α χ(v, v * )
and G ψ to be what remains, the proof is completed for this case.

Case (ii): In that case we have for all σ on S d-1 such that Z(σ) 0

ψ(Y + Z) -ψ(Y ) = (1 + α)Z (C(σ)) α (1 + α)ZY α .
Using (4.9) we find that (4.10)

ψ(Y + Z) -ψ(Y ) C (|v| |v * |) 1+α 1 [β(σ)(1 -β(σ))] α/2 . Since S d-1 dσ [β(σ)(1 -β(σ))] α/2 = C d π 2 0 sin d-2 θ cos d-2 θ (cos θ sin θ) α dθ < ∞
This yields the desired result with the choice H ψ = H ψ and G ψ the remaining terms.

Case (iii): This case will be slightly more complicated and we will deal with the first two integrations in (4.4) separately. We start with the second integral. As Z 0 in the domain of integration and Y 0 always, we find that

σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y (-σ) -Z(σ)) -ψ(Y (-σ))] dσ 2b ∞ F L ∞ v,v * ,σ σ: Z(σ) 0 Z(σ)ψ ′ (Y (-σ)) dσ
where we have used the fact that ψ is convex. As ψ ′ (x) = φ(x) + xφ ′ (x) and

φ(x) -φ(0) xφ ′ (x)
when x > 0, due to the concavity of φ, we have that (4.11)

σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y (-σ) -Z(σ)) -ψ(Y (-σ))] dσ 16b ∞ F L ∞ v,v * ,σ |v| |v * | σ: Z(σ) 0 φ(Y (-σ)) dσ
where we have used (4.9) and the positivity of φ.

to deal with the first integral in (4.4) we notice that for Z 0

|ψ(Y (σ) + Z(σ)) -ψ(Y (σ))| Y (σ)Z(σ)φ ′ (Y (σ)) + Z(σ)φ(Y (σ) + Z(σ))
where we have used to concavity of φ. Like before we can conclude that (4.12)

σ: Z(σ) 0 [b(θ)F (σ) + b(π -θ)F (-σ)] [ψ(Y (σ) + Z(σ)) -ψ(Y (σ))] dσ 8b ∞ F L ∞ v,v * ,σ |v| |v * | σ: Z(σ) 0 (φ(Y (σ)) + φ(Y (σ) + Z(σ))) dσ .
Adding (4.11) and (4.12) and using the positivity and concavity of φ we find that by choosing H ψ = H ψ we have that

G ψ (v, v * ) 16b ∞ F L ∞ v,v * ,σ |v| |v * | φ S d-1 Y (σ)dσ + φ S d-1 (Y (σ) + Z(σ)) dσ = 32b ∞ F L ∞ v,v * ,σ |v| |v * | φ |v| 2 + |v * | 2 2 32b ∞ F L ∞ v,v * ,σ |v| |v * | max φ(|v| 2 ), φ(|v * | 2 )
which completes the estimation for G ψ in the general case. Property (iii) for H ψ is proved along the same lines of the proof of Mischler and Wennberg in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF], as well as the second part of the case.

4.2.

A priori estimate on the moments of a solution. The immediate appearance of moments of any order is characterized by the following proposition.

Proposition 4.3. Let f be a non-negative solution of (1.4) in L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v
, with initial data f 0 , satisfying the conservation of mass and energy. If γ > 0 then for all for all α > 0 and for all 0 < T < T 0 ,

R d |v| α f (t, v) dv ∈ L ∞ loc ([T, T 0 )) .
The proof of that proposition is done by induction and requires two lemmas. The first lemma proves a certain control of the L 1 2+γ/2,v -norm and will be the base case for the induction, while the second lemma will prove an inductive bound on the moments.

In what follows we will rely heavily on the following technical lemma, proved in the appendix of [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]:

Lemma 4.4. Let f 0 ∈ L 1 2,v .
Then, there exists a positive convex function ψ defined on R + such that ψ(x) = xφ(x) with φ a concave function that increases to infinity and satisfies that for any ε > 0 and α ∈ (0, 1)

(φ(x) -φ(αx)) x ε -→ x→∞ ∞,
and such that

R d ψ |v| 2 f 0 (v) dv < ∞.
In what follows we will denote by ψ and φ, the associated functions given by Lemma 4.4 for the initial data f 0 . Lemma 4.5. Let f satisfy the conditions of Proposition 4.3. Then for any T in [0, T 0 ) there exist c T , C T > 0 such that for all 0 t T ,

R d f (t, v)ψ |v| 2 dv + c T t 0 R d f (τ, v) M 2+ γ 2 (τ ) + ψ |v| 2 dvdτ R d f 0 (v)ψ |v| 2 dv + C T t. (4.13)
Proof of Lemma 4.5. We fix T in [0, T 0 ) and we consider 0 t T .

As seen in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF], one can construct an increasing sequence of convex functions, (ψ n ) n∈N , that converges pointwise to ψ and satisfies that ψ n+1 -ψ n is convex. Moreover, there exists a sequence of polynomials of order 1, (p n ) n∈N , such that ψ n -p n is of compact support.

The properties of ψ n imply that for a given F as in Lemma 4.1 we have that the associated operators H ψn , G ψn satisfy:

• H ψn is positive and increasing (due to Remark 4.2).

• H ψn converges pointwise to H ψ (this follows from the appropriate representation of H, see [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]).

• |G ψn (v, v * )| C G |v| |v * | for all n.
As f preserves mass and energy and p n is of order 1:

R d [f (t, v) -f 0 (v)] ψ n |v| 2 dv = R d [f (t, v) -f 0 (v)] ψ n |v| 2 -p n |v| 2 dv.
Since ψ n -p n is compactly supported and f solves the Boltzmann-Nordheim equation, we use Lemma 1.1 to conclude

R d [f (t, v) -f 0 (v)] ψ n |v| 2 dv = C Φ 2 t 0 R d ×R d ×S d-1 q(f )(τ, v, v * ) [ψ ′ n * + ψ ′ n -ψ n * -ψ n ] dvdv * dτ, with q(f )(τ, v, v * ) = |v -v * | γ b (cos θ) f (τ )f * (τ ) (1 + f ′ (τ ) + f ′ * (τ )) . Using Lemma 4.1 with F = 1 + f ′ + f ′
* we find that the above implies, using the decomposition stated in the lemma, that

R d f (t, v)ψ n |v| 2 dv + C φ 2 t 0 R d ×R d f (τ )f (τ ) * |v -v * | γ H ψn dv * dvdτ = R d f 0 (v)ψ n |v| 2 dv + C φ 2 t 0 R d ×R d f (τ )f (τ ) * |v -v * | γ G ψn dv * dvdτ.
At this point the proofs follows much like in the work of Mischler and Wennberg. We concisely outline the steps for the sake of completion.

Using the uniform bound on G ψn and the properties of H ψn we find that by the monotone convergence theorem

R d f (t, v)ψ |v| 2 dv + C φ 2 t 0 R d ×R d f (τ )f (τ ) * |v -v * | γ H ψ dv * dvdτ = R d f 0 (v)ψ |v| 2 dv + C φ C G 2 t 0 R d ×R d f (τ )f (τ ) * |v -v * | γ |v| |v * | dv * dvdτ.
Using Lemma 4.1 again for H ψ and picking ǫ = γ 2 in the relevant case we have that

R d ×R d f (τ )f (τ ) * |v -v * | γ H ψ dv * dv C R d ×R d f (τ )f (τ ) * |v| 2+ γ 2 dv * dv -c R d ×R d f (τ )f (τ ) * (|v| |v * |) 1+ γ 4 dv * dv. As M β (f )(τ ) f (τ ) L 1 2,v = f 0 L 1 2,v
for any β 2 we conclude that due to the conservation of mass and energy we have that

R d f (t, v)ψ |v| 2 dv + c T 2 f 0 L 1 v t 0 M 2+ γ 2 (τ )dτ R d f 0 (v)ψ |v| 2 dv + C T t.
The above also implies that

R d f (t, v)ψ |v| 2 dv R d f 0 (v)ψ |v| 2 dv + C T T,
which is enough to complete the proof.

Next we prove the lemma that governs the induction step. Again, the proof follows [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] closely, yet we include it for completion. Lemma 4.6. Let T be in (0, T 0 ). For any n ∈ N there exists T n > 0 as small as we want such that M 2+(2n+1)γ/2 (T n ) < ∞. Moreover, for any t ∈ [T n , T ] there exists C T > 0 and c Tn,T > 0 such that (4.14)

M 2+(2n+1)γ/2 (t) + c T t Tn M 2+(2n+1)γ/2 (τ ) + M 2+(2n+3)γ/2 (τ ) dτ C Tn,T (1 + t),
Proof of Lemma 4.6. We start by noticing that since M 2+γ/2 ∈ L 1 loc ([0, T 0 )), according to Lemma 4.5 and the conservation of mass, we can find t 0 , as small as we want, such that

M 2+γ/2 (t 0 ) < ∞.
We repeat the proof of Lemma 4.5 with the function ψ(x) = x 1+ γ 4 on the interval [t 0 , T ], as we can still find the same polynomial approximation and a uniform bound on the associated H and G, to find that for almost any t ∈ [t 0 , T 0 )

R d ×R d f (t) |v| 2+γ/2 dvdv * + C T t t 0 f (τ )f * (τ ) |v| 2+3γ/2 dvdv * dτ c t t t 0 f (τ )f * (τ ) |v| 2+γ/2 |v * | γ dvdv * dτ + R d ×R d f (t 0 ) |v| 2+γ/2 dvdv * .
This completes the proof in the case n = 0 using Lemma 4.5 again. Notice that as the right hand side is a uniform bound in t we can conclude that the inequality is valid for any t in the appropriate interval.

We continue in that manner, using Lemma 4.1 with ψ(x) = x 1+(2n+3)γ/4 , assuming we have shown the result for M 2+(2n+1)γ/2 , and conclude the proof.

We now posses the tools to prove the main proposition of this section.

Proof of Proposition 4.3. We start by noticing, that since f conserves mass and energy f is in L 1 2,v for all t ∈ [0, T 0 ) and therefore the Proposition is valid for all α ∈ [0, 2].

Given α > 2 and 0 < T < T 1 < T 0 we know by Lemma 4.6 that we can construct an increasing sequence (T n ) n∈N such that T n < T for all n and

M 2+(2n+1)γ/2 (t) < C Tn,T (1 + T 1 ) when t ∈ [T n , T 1 ] ⊂ [T, T 1 ]
. This completes the proof. Remark 4.7. We would like to emphasize at this point that this result is slightly different from the one for the Boltzmann equation. Indeed, in the case when T 0 = +∞ in the Boltzmann equation the bounds on the moments on [T, ∞) depend only on T ,while for the Boltzmann-Nordheim equation in our settings we can only find local bounds on the moments since we require the boundedness of the solution f .

4.3.

The rate of blow up of the L 1 2+γ,v -norm at t = 0. In this subsection we will investigate the rate by which the (2 + γ) th moment blows up as t approaches zero. This will play an important role in the proof of the uniqueness to the Boltzmann-Nordheim equation. 

∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v
satisfying the conservation of mass and energy. Then, given T < T 0 , if M 2+γ (t) is unbounded on (0, T ] there exists a constant C T > 0 such that ∀t ∈ (0, T ], M 2+γ (t) C T t .

C T depends only on γ, d, the collision kernel, sup t∈(0,T ] f L ∞ v and the appropriate norms of f 0 Proof of Proposition 4.8. Let 0 < t < T < T 0 . We start by mentioning that due to Proposition 4.3 we know that all the moments considered in what follows are defined and finite. Using Lemma 1.1 we find that

(4.15) d dt M 2+γ (t) = C φ 2 R d ×R d |v -v * | γ f f * K 1+γ/2 (v, v * ) dv * dv,
where K 1+γ/2 (v, v * ) is given by Lemma 4.1 with the choice ψ(x) = x 1+γ/2 . From the same lemma we have

K 1+γ/2 (v, v * ) C 1,T |v| 1+γ/2 |v * | 1+γ/2 -C 2,T |v| 2+γ + |v * | 2+γ + C 3,T |v| 2+γ + |v * | 2+γ 1 {|v|/2<|v * |<2|v|} for constants C 1,T , C 2,T , C 3,T depending only on γ, T, d, f L ∞ [0,T ],v
and the appropriate norms of f 0 .

On

{|v| /2 < |v * | < 2 |v|} |v| 2+γ + |v * | 2+γ 2 2+γ/2 |v| 1+γ/2 |v * | 1+γ/2 .
Therefore, (4.15) yields

d dt M 2+γ (t) R d ×R d |v -v * | γ f f * C 1,T |v| 1+γ/2 |v * | 1+γ/2 -C 2,T |v| 2+γ dv * dv.
Since f preserves the mass and energy, and 0 γ 1, we find that with abusing notations for relevant constants (4. [START_REF] Lacaze | Dynamical formation of a boseeinstein condensate[END_REF])

d dt M 2+γ (t) C 1,T M 1+3γ/2 -C 2,T M 2+γ ,
where we have used the fact that

||v| γ -|v * | γ | |v -v * | γ |v| γ + |v * | γ .
As, for any ǫ > 0

|v| 1+3γ/2 = |v| 1+γ/2 |v| γ ε |v| 2+γ + 1 4ε |v| 2γ ε 1 + |v| 2+2γ + 1 4ε |v| 2γ .
we conclude that since 2γ 2 we can take ε to be small enough such that (4.16) becomes

d dt M 2+γ (t) c T -C T M 2+2γ (t).
where c T , C T > 0 are independent of t and depend only on the relevant known quantities.

Due to Holder's inequality we know that

M 2+γ M 1/2 2 M 1/2 2+2γ implying that d dt M 2+γ (t) c T -C T M 2 2+γ (t).
As M 2+γ (t) is unbounded in (0, T ], we know that there exists t 0 ∈ (0, T ] such that

M 2+γ (t 0 ) max 2c T C T , M 2+γ (T )
. We find that

d dt M 2+γ (t 0 ) C T 2 M 2 2+γ (t 0 ) -C T M 2 2+γ (t 0 ) < 0
implying that there exists a neighbourhood of t 0 where M 2+γ (t) decreases. As this means that M 2+γ (t) 2c T C T to the left of t 0 we can repeat the above argument and conclude that M 2+γ (t) decreases on (0, t 0 ]. Moreover, in this interval we have

d dt M 2+γ - C T 2 M 2 2+γ .

The above inequality is equivalent to

d dt 1 M 2+γ C T 2 ,
which implies, by integrating over (0, t) and remembering that M 2+γ is unbounded, that 1 M 2+γ (t)

C T 2 t
on (0, t 0 ], from which the result follows.

Uniqueness of solution to the Boltzmann-Nordheim equation

This section is dedicated to proving that if a solution to the Boltzmann-Nordheim equation exists, with appropriate conditions on the initial data, then it must be unique. The main theorem we will prove in this section is the following:

Theorem 5.1. Let f 0 be in L 1 2,v ∩ L ∞ s,v
, where d -1 < s. If f and g are two nonnegative mass and energy preserving solutions of the Boltzmann-Nordheim equation with the same initial data

f 0 that are in L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v then f = g on [0, T 0 ).
The proof relies on precise estimates of the L 1 v , the L 1 2,v and the L ∞ v -norms of the difference of two solutions. As the difference of solutions may not have a fixed sign, these estimations require some delicacy due to a possible gain of a |v| γ weight from the collision operator.

In what follows we will repeatedly denote by C T constants that depend on d, s, the collision kernel, f 0 L 1 2,v ∩L ∞ s,v , sup t∈(0,T ] f L ∞ v , sup t∈(0,T ] g L ∞ v and T . Other instances will be clear form the context. We would like to point out that if f is a weak solution to the Boltzmann-Nordheim equation, i.e.

(5.1)

f (t, v) = f 0 (v) + t 0 Q (f (s, •)) ds,
with the required conservation and bounds, then similarly to Lemma 3.3, and using Lemma 3.5 together with Proposition 3.10 show us that for a fixed v ∈ R d we have that

Q (f (s, v)) ∈ L ∞ t ([0, T ]
). This implies that f is actually absolutely continuous with respect to t and as such we can differentiate (5.1) strongly with respect to t. The above gives validation to the techniques used in the next few subsection.

Evolution of

f -g L 1 v .
The following algebraic identity will serve us many times in what follows:

(5.2) abc -def = 1 2 (a -d)(bc + ef ) + a + d 4 [(b -e)(c + f ) + (c -f )(b + e)] .
Lemma 5.2. Let 0 T < T 0 . Then, there exists C T > 0 such that for all t ∈ [0, T ]:

d dt f -g L 1 v C T f -g L 1 2,v + f -g L ∞ v .
Proof of Lemma 5.2. Given T ∈ [0, T 0 ) we have, due to Lemma 1.1:

d dt f -g L 1 v = R d sgn(f -g)∂ t (f -g) dv = R d sgn(f -g) (Q(f ) -Q(g)) dv = C Φ 2 R d ×R d ×S d-1 b (cos θ) |v -v * | γ P (f, g) [Ψ ′ * + Ψ ′ -Ψ * -Ψ] dσdv * dv, (5.3) 
where Ψ(t, v) = sgn(f -g)(t, v) and

(5.4)

P (f, g) = f f * (1 + f ′ + f ′ * ) -gg * (1 + g ′ + g ′ * )
It is simple to see that |Ψ ′ * + Ψ ′ -Ψ * -Ψ| 4 and using the algebraic identity (5.2) we also note that

|P (f, g)| C T |f -g| (f * + g * ) + (f + g) |f * -g * | + (f + g)(f * + g * ) |f ′ -g ′ | + |f ′ * -g ′ * | .
Using the above with (5.3), along with known symmetry properties, we find that

d dt f -g L 1 v C T R d ×R d |v -v * | γ |f -g| (f * + g * ) dv * dv + R d ×R d ×S d-1 b (cos θ) |v -v * | γ (f + g)(f * + g * ) |f ′ -g ′ | dv * dvdσ . As |v -v * | γ 1 + |v| 2 1 + |v * | 2 ,
since γ ∈ [0, 1], and using the conservation of mass and energy, as well as the fact that f and g has the same initial condition f 0 , we conclude that

d dt f -g L 1 v C T f 0 L 1 2,v f -g L 1 2,v + f 0 2 L 1 2,v f -g L ∞ v ,
proving the desired result.

Evolution of

f -g L 1 2,v
. The most problematic term to appear in our evolution equation is that of the L 1 2,v -norm. We have the following:

Lemma 5.3. Let 0 T < T 0 . Then, there exists C T > 0 such that for all t ∈ [0, T ]:

d dt f -g L 1 2,v C T M 2+γ (t) f -g L 1 v + f -g L 1 2,v + (1 + M 2+γ (t)) f -g L ∞ v ,
where M 2+γ is the (2 + γ) th moment of f + g.

Proof of Lemma 5.3. We proceed like the proof of Lemma 5.2. For a given fixed T ∈ [0, T ) ) we have:

(5.5)

d dt f -g L 1 2,v = C Φ 2 R d ×R d ×S d-1 b|v -v * | γ P (f, g) [Ψ ′ * + Ψ ′ -Ψ * -Ψ] dv * dvdσ,
with Ψ(t, v) = sgn(f -g)(t, v) 1 + |v| 2 and P (f, g) given by (5.4).

Using the algebraic identity (5.2) and known symmetry properties we obtain

(5.6) d dt f -g L 1 v = C Φ 1 2 I 1 + 1 4 I 2 + 1 8 I 3 + 1 4 I 4
with

I 1 = R d ×R d ×S d-1 b|v -v * | γ [G(Ψ) -Ψ] (f -g)(f * + g * ) dσdv * dv, I 2 = R d ×R d ×S d-1 b|v -v * | γ [G(Ψ) -Ψ] (f -g)(f * (f ′ + f ′ * ) + g * (g ′ + g ′ * )) dσdv * dv, I 3 = R d ×R d ×S d-1 b|v -v * | γ [G(Ψ) -Ψ] (f + g)(f * -g * )(f ′ + f ′ * + g ′ + g ′ * ) dσdv * dv, I 4 = R d ×R d ×S d-1 b|v -v * | γ [G(Ψ) -Ψ] (f + g)(f * + g * )(f ′ * -g ′ * ) dσdv * dv,
and where we defined

G(Ψ) = Ψ ′ * + Ψ ′ -Ψ * . It is immediate to verify that (5.7) |G(Ψ)| 3 + |v ′ | 2 + |v ′ * | 2 + |v * | 2 = 2 1 + |v * | 2 + 1 + |v| 2 .
Thanks to the latter bound on G(Ψ) and the fact Ψ • (f -g) = 1 + |v| 2 |f -g| we find that

I 1 2l b R d ×R d 1 + |v * | 2 (|v| γ + |v * | γ ) |f -g| (f * + g * ) dvdv * 4l b f 0 L 1 2,v f -g L 1 2,v + 2l b M 2+γ f -g L 1 v . (5.8)
where we have used similar estimation as in Lemma 5.2.

The term I 2 is dealt similarly:

(5.9)

I 2 C T f 0 L 1 2,v f -g L 1 2,v + C T M 2+γ f -g L 1 v .
When dealing with I 3 we make the symmetric change of (v, v * ) → (v * , v) and obtain:

(5.10)

I 3 C T f 0 L 1 2,v f -g L 1 2,v + C T M 2+γ f -g L 1 v
. Lastly, we find that using similar methods

|I 4 | 4l b R d ×R d (1 + |v| 2 ) (|v| γ + |v * | γ ) (f + g)(f * + g * ) dv * dv f -g L ∞ v 4l b 2 f 0 2 L 1 2,v + 4 f 0 L 1 v M 2+γ f -g L ∞ v . (5.11)
To conclude we just add (5.8), (5.9), (5.10) and (5.11) with appropriate coefficients.

Control of

f -g L ∞ v .
Lastly, we deal with the evolution of the L ∞ -norm.

Lemma 5.4. Let 0 T < T 0 . Then, there exists C T > 0 such that for all t ∈ [0, T ]:

f -g L ∞ v C T t 0 f -g L 1 2,v (u) + f -g L ∞ v (u) du.
Proof of Lemma 5.4. Given T ∈ [0, T 0 ) and t ∈ [0, T ], we have that since f (0) = g(0):

|f (t) -g(t)| = t 0 sgn(f -g)(s) (Q(f (s)) -Q(g(s)))ds = C Φ t 0 R d ×S d-1 b (cos θ) |v -v * | γ sgn(f -g)P (f ′ , g ′ ) dσdv * ds -C Φ t 0 R d ×S d-1 b (cos θ) |v -v * | γ sgn(f -g)P (f, g) dσdv * ds = J 1 + J 2 .
where P is given by (5.4), and we have used the convention f ′′ = f and g ′′ = g.

Using the algebraic identity (5.2) and the definition of P we find that:

|P (f ′ , g ′ )| C T [|f ′ -g ′ | (f ′ * + g ′ * ) + |f ′ * -g ′ * | (f ′ + g ′ )] + 1 4 |f * -g * | (f ′ + g ′ )(f ′ * + g ′ * ) + 1 4 |f -g| (f ′ + g ′ )(f ′ * + g ′ * ).
The change of variable σ → -σ sends v ′ to v ′ * and vice versa. Thus we find that:

|J 1 | C T t 0 R d ×S d-1 b (cos θ) |v -v * | γ |f ′ -g ′ | (f ′ * + g ′ * ) dσdv * ds + 1 4 t 0 R d ×S d-1 b (cos θ) |v -v * | γ (f ′ * + g ′ * )(f ′ + g ′ ) |f * -g * | dσdv * ds + 1 4 f -g L ∞ v R d ×S d-1 b (cos θ) |v -v * | γ (f ′ * + g ′ * )(f ′ + g ′ ) dσdv * ds,
where we defined b(x) = b(x) + b(-x). The first term can be dealt with using the appropriate Carleman change of variables, leading to the Carleman representation (3.4). Indeed, one can show that

R d ×S d-1 b (cos θ) |v -v * | γ |f ′ -g ′ | (f ′ * + g ′ * ) dσdv * = R d |f ′ -g ′ | |v -v ′ | E vv ′ b(cos θ) |v -v * | γ |v ′ * -v ′ | d-2-γ (f ′ * + g ′ * ) dE(v ′ * ) 2 b L ∞ E vv ′ (f ′ * + g ′ * ) dE(v ′ * ) L ∞ v R d |f ′ -g ′ | |v -v ′ | d-1-γ dv ′ L ∞ v C T f -g L ∞ v + f -g L 1 v
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R d f (v) |v -v ′ | β dv C β f L ∞ v + f L 1 v , when β < d.
The same technique will work for the third term in J 1 , yielding

R d ×S d-1 b (cos θ) |v -v * | γ (f ′ * + g ′ * )(f ′ + g ′ ) dσdv * b L ∞ E vv ′ (f ′ * + g ′ * ) dE(v ′ * ) L ∞ v R d |f ′ + g ′ | |v -v ′ | d-1-γ dv ′ L ∞ v C T .
We are only left with the middle term of J 1 . Using the simple inequality

|v -v * | γ = |v ′ -v ′ * | γ 1 + |v ′ | γ 1 + |v ′ * | γ .
we find that

R d ×S d-1 b (cos θ) |v -v * | γ (f ′ * + g ′ * )(f ′ + g ′ ) |f * -g * | dσdv * l b f + g 2 L ∞ γ,v f -g L 1 v C T f -g L 1 v ,
where we have used Theorem 3.1 and the fact that γ < d -1 < s.

Combining the above yields (5.12)

|J 1 | C T t 0 f -g L ∞ v + f -g L 1 v ds.
The term J 2 requires a more delicate treatment. Starting again with the algebraic identity (5.2) we find that:

P (f, g) - 1 2 (f -g) (f * (1 + f ′ + f ′ * ) + g * (1 + g ′ + g ′ * )) C T (f + g) |f * -g * | + 1 4 (f + g)(f * + g * ) |f ′ -g ′ | + 1 4 (f + g)(f * + g * ) |f ′ * -g ′ * | Thus, -sgn(f -g)P (f, g) - 1 2 |f -g| (f * (1 + f ′ + f ′ * ) + g * (1 + g ′ + g ′ * )) +C T (f + g) |f * -g * | + 1 4 (f + g)(f * + g * ) |f ′ -g ′ | + 1 4 (f + g)(f * + g * ) |f ′ * -g ′ * | implying that J 2 C T t 0 R d ×S d-1 b (cos θ) |v -v * | γ |f * -g * | (f + g) dσdv * ds + 1 2 t 0 f -g L ∞ v R d ×S d-1 b (cos θ) |v -v * | γ (f * + g * )(f + g) dσdv * ds C T t 0 f + g L ∞ v,γ f -g L 1 2,v + f + g 2 L ∞ v,γ f -g L ∞ v ds C T t 0 f -g L 1 2,v + f -g L ∞ v ds.
Combining the estimations for J 1 and J 2 yields the desired result.

5.4. Uniqueness of the Boltzmann-Nordheim equation. We are finally ready to prove our main theorem for this section.

Proof of Theorem 5.1. : Combining Lemma 5.2, 5.3 and 5.4 we find that for any given T ∈ [0, T 0 ) the following inequalities hold:

(5.13)                    d dt f -g L 1 v C T f -g L 1 2,v + f -g L ∞ v d dt f -g L 1 2,v C T M 2+γ (t) f -g L 1 v + f -g L 1 2,v + (1 + M 2+γ (t)) f -g L ∞ v f -g L ∞ v C T t 0 f -g L 1 2,v (u) + f -g L ∞ v (u) du.
, where C T can be chosen to be the same in all the inequalities. As the L 1 v , L 1 2,v and L ∞ v -norms of f and g are bounded uniformly on [0, T ] we see from (5.13

) that f -g L 1 v C T t, f -g L ∞ v C T t.
Moreover, due to Proposition 4.8 we know that the rate of blow up of M 2+γ is at worst of order 1/t. More precisely there exists a constant C 1 that may depend on

T, d, γ, sup t∈[0,T ] f L ∞ v , sup t∈[0,T ] g L ∞ v
, the appropriate norms of f 0 , or the bound of the (2 + γ) th moment if it is bounded, such that

(5.14) M 2+γ (t) C 1 t .
This, together with the middle inequality of (5.13) implies that

d dt f -g L 1 2,v C T C T C 1 + 2 f 0 L 1 2,v + C T (T + C 1 ) , from which we conclude that f -g L 1 2,v C 2 T C 1 + 2C T f 0 L 1 2,v + C 2 T (T + C 1 ) t.
Iterating this process shows that there exists

C n,T > 0 such that max f -g L 1 v , f -g L 1 2,v , f -g L ∞ v C n.T t n ,
though the dependency of C n,T on n may be slightly complicated. We will continue following the spirit of Nagumo's fixed point theorem.

Firstly, we notice that by defining t 0 = min{T, 1/(2C T )}, a simple estimation in the third inequality of (5.13) shows that for any t ∈ [0, t 0 ]:

sup t∈[0,t] f -g L ∞ v 2C T t sup t∈[0,t] f -g L 1 2,v . 
6.1. Some properties of truncated operators. The idea of approximating the collision kernel in the case of hard potentials is a common one in the Boltzmann equation literature (see for instance [START_REF] Arkeryd | On the Boltzmann equation. I. Existence[END_REF][2] or [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]). For n ∈ N, we consider the following truncated operators:

Q n (f ) = C Φ R d ×S d-1 (|v -v * | ∧ n) γ b(θ) [f ′ f ′ * (1 + f + f * ) -f f * (1 + f ′ + f ′ * )] dv * dσ.
where x ∧ y = min(x, y).

We associate the following natural decomposition to the truncated operators:

Q n (f ) = Q + n (f ) -f Q - n (f ), with Q + and Q -defined as in (1.5) -(1.6).
We have the following:

Lemma 6.1. For any f ∈ L 1 2,v ∩ L ∞ v we have that: • f Q - n (f ) L 1 2,v C Φ l b n γ 1 + 2 f L ∞ v f 2 L 1 2,v , • Q - n (f ) L ∞ v C Φ l b n γ 1 + 2 f L ∞ v f L 1 v , • if f 0, then for any v ∈ R d Q - n (f )(v) C Φ l b (n γ ∧ (1 + |v| γ )) f L 1 v -C Φ C γ l b f L 1 2,v
, where C γ > 0 is defined by (3.3).

Proof of Lemma 6.1. As

Q - n (f )(v) = C Φ R d ×S d-1 (n ∧ |v -v * |) γ b(cos θ)f * [1 + f ′ * + f ′ ] dv * dσ.
The first two inequalities are easily obtained by bounding f ′ * + f ′ by 2 f L ∞ v and the collision kernel by n γ b(cos θ).

To show the last inequality we use the non-negativity of f and mimic the proof of Lemma 3.3:

Q - n (f )(v) C Φ R d ×S d-1 (n ∧ |v -v * |) γ b(cos θ)f * dv * dσ C Φ l b |v-v * | n |v -v * | γ f * dv * + |v-v * | n n γ f * dv * C Φ l b |v-v * | n (1 + |v| γ ) -(1 + |v * | γ ) f * dv * + |v-v * | n n γ f * dv * C Φ l b (n γ ∧ (1 + |v| γ )) f L 1 v -C γ |v-v * | n (1 + |v * | 2 )f * dv * ,
where C γ was defined in (3.3). The proof is now complete.

As we saw in Section 3, the control of the integral of Q + over the hyperplanes E vv ′ is of great importance in the study of L ∞ -norm for the solutions to the Boltzmann-Nordheim equation. We thus strive to find a similar result for the Q + n operators.

Lemma 6.2. Let f be in L 1 2,v ∩ L ∞ v . Then: • Q + n (f ) L 1 2,v 2C Φ l b n γ 1 + 2 f L ∞ v f 2 L 1 2,v , • If f 0 then for almost every (v, v ′ ) E vv ′ Q + n (f )(v ′ * ) dE(v ′ * ) C +E f L 1 v 1 + 2 f L ∞ v S d-1 d + γ -1 f L ∞ v + f L 1 v ,
where C +E was defined in Lemma 3.7,

• If there exists E f > 0 such that for almost every (v, v ′ ) E vv ′ |f ′ * | dE(v ′ * ) E f then Q + n (f ) L ∞ v C + E f 1 + 2 f L ∞ v S d-1 1 + γ f L ∞ v + f L 1 v ,
where C + was defined in Lemma 3.5.

Proof of Lemma 6.2. To prove the first inequality, we notice that the change of variable (v ′ , v ′ * ) → (v, v * ) yields the following inequality:

R d (1 + |v| γ ) Q + n (f ) dv 2 R d 1 + |v| 2 f Q - n (f ) dv,
from which the result follows due to Lemma 6.1.

The last two inequalities follow respectively from the Lemma 3.7 and Lemma 3.5, as the truncated kernel is bounded by the collision kernel, and the following inequality for α < d:

R d f (v) |v -v 0 | α dv S d-1 d -α f L ∞ v + f L 1 v .
6.2. Construction of a sequence of approximate solutions to the truncated equation. In this subsection we will start our path towards showing local existence of solutions to the Boltzmann-Nordheim equation by finding solutions to the truncated Boltzmann-Nordheim equation

∂ t f n = Q n (f n )
on an interval [0, T 0 ], when n ∈ N is fixed and T 0 is independent of n. We will do so by an explicit Euler scheme.

To simplify the writing of what follows, we denote the mass and the energy of f 0 respectively by M 0 and M 2 and we introduce the following notations: (6.1)

C L = C Φ l b M 0 , (6.2) K ∞ = 2 f 0 L ∞ v min (1, C L ) , (6.3) 
E ∞ = sup (v,v ′ )∈R d ×R d E vv ′ f 0 (v ′ * ) dE(v ′ * ) + C +E M 0 (1 + 2K ∞ ) S d-1 d + γ -1 K ∞ + M 0 and (6.4) C ∞ = C Φ C γ l b (M 0 + M 2 )K ∞ + C + E ∞ (1 + 2K ∞ ) S d-1 1 + γ K ∞ + M 0 .
We are now ready to define the time interval on which we will work:

(6.5) T 0 = min 1 ; K ∞ 2C ∞ min (1, C L ) .
For a fixed n we consider the following explicit Euler scheme on [0, T 0 ]: for j ∈ N we define (6.6

)        f (0) j,n (v) = f 0 (v) f (k+1) j,n (v) = f (k) j,n (v) 1 -∆ j Q - n f (k) n + ∆ j Q + n f (k) j,n , for k ∈ 0, . . . , T 0 ∆ j ,        .
where ∆ j , the time step, is chosen as follows:

(6.7) ∆ j = min 1, 1 2C Φ l b jn γ M 0 [1 + 2K ∞ ]
.

We notice the following properties of the sequence:

Proposition 6.3. For all k in {0, . . . , [T 0 /∆ j ]}, we have that f (k) j,n satisfies: (i) f (k) j,n 0; (ii) f (k) j,n L 1 v = M 0 , |v| 2 f (k) j,n L 1 v = M 2 and R d vf (k) j,n dv = M 1 ; (iii) f (k) j,n (v) f 0 (v) -C L k-1 l=0 ∆ j (n γ ∧ (1 + |v| γ )) f (l) j,n + k∆ j C ∞ and for almost every (v, v ′ ) E vv ′ f (k) j,n (v ′ * )dE(v ′ * ) E vv ′ f 0 (v ′ * )dE(v ′ * )+k∆ j C +E M 0 (1+2K ∞ ) S d-1 d + γ -1 K ∞ + M 0 (iv) sup v∈R d f (k) j,n (v) + C L ∆ j k-1 l=0 (n γ ∧ (1 + |v| γ )) f (l) j,n (v) K ∞
and for almost every (v, v ′ ),

E vv ′ f (k) j,n (v ′ * )dE(v ′ * ) E ∞ .
Proof of Proposition 6.3. The proof of the proposition is done by induction. The case k = 0 follows directly from our definitions of K ∞ and E ∞ . We proceed to assume that the claim is valid for k such that k + 1 T 0 ∆ j . Combining Lemma 6.1 with (ii) and (iv) of Proposition 6.3 for f (k) j,n we have that

∆ j Q - n f (k) j,n L ∞ v ∆ j C Φ l b n γ M 0 (1 + 2K ∞ ) 1 2 .
Thus, by definition of f

(k+1) j,n : f (k+1) j,n (v) 1 2 f (k) j,n (v) + ∆ j Q + n f (k) j,n 0 as f (k) j,n 0, proving (i). 
Furthermore, we have

R d   1 v |v| 2   f (k+1) j,n (v)dv = R d   1 v |v| 2   f (k) j,n (v)dv+∆ j R d   1 v |v| 2   Q n (f (k) j,n )(v)dv.
Since Q n satisfies the same integral properties of Q, we find that the last term is zero. This shows that as f (k) j,n satisfies (ii), so does f (k+1) j,n .

In order to prove (iii) we will use the positivity of f (k) j,n along with Lemma 6.1, and Lemma 6.2 together with property (iv) for f (k) j,n . This shows that:

f (k+1) j,n (v) f (k) j,n (v) -C L ∆ j (n γ ∧ (1 + |v| γ )) f (k) j,n + ∆ j C ∞ proving the first part of (iii). Since Q - n (f (k) j,n
) is positive we also find for almost every (v, v ′ )

E vv ′ f (k+1) j,n (v ′ * ) dE(v ′ * ) E vv ′ f (k) j,n dE(v * ) + ∆ j E vv ′ Q + n (f (k) j,n ) dE(v * ) E vv ′ f (k) j,n dE(v * ) + ∆ j C +E M 0 (1 + 2K ∞ ) S d-1 d + γ -1 K ∞ + M 0
where we have used property (ii) of Lemma 6.2, and properties (ii) and (iv) of f (k) j,n . Thus, the second part of (iii) is valid by the same property for f

(k) j,n .
The last property (iv) is a direct consequence of (iii) along with the fact that (k + 1)∆ j T 0 , and the definition of T 0 .

As a discrete version of the Boltzmann-Nordheim equation, our apriori estimates in Section 3 led us to believe that we may be able to propagate moments and weighted L ∞ norm in our sequence. This is indeed the case, as we will state shortly. However, it is important to notice that while the truncated kernel can be thought of as a an appropriate kernel with γ = 0, in order to get bounds that are independent in n we must use estimation that use the γ given in the problem. This will lead to a drop in the power we can weight the function against. The following Lemma is easy to prove using similar methods to the ones presented in Section 3. We state it here and leave the proof to the Appendix. Lemma 6.4. Consider the sequence defined in (6.6).

(i) Let s > 2, there exists C s > 0 (uniform constant defined in Lemma B.1) such that for any j j 0 = 2(1 + M 2 )C s /M 0 we have that (6.8)

R d (1 + |v| s )f (k) j,n (v)dv (D s k∆ j + 1) R d (1 + |v| s )f 0 (v)dv,
where

D s = 4C Φ C s l b (1 + 2K ∞ )(1 + M 2 ). (ii) If f 0 ∈ L ∞ s,v when s > d + 2γ then for any s ′ < s -2γ W s ′ = sup k,j j 0 ,n f (k) j,n L ∞ s ′ ,v
< ∞.

6.3.

Convergence towards a mass and momentum preserving solution of the truncated Boltzmann-Nordheim equation. In the previous subsection we have constructed a family of functions f

(k) j,n k∈{0,...,[T 0 /∆ j ]} in L 1 2,v ∩ L ∞ s ′ ,v
, for s ′ < s -2γ, with the same mass and energy as the initial data f 0 . Our next goal is to use this family in order to find a sequence of functions, (f j,n

) j∈N in L 1 ([0, T 0 ] × R d ) ∩ L ∞ [0, T 0 ]; L ∞ s ′ ,v (R d
) that converges strongly to a solution of the truncated Boltzmann-Nordheim equation, while preserving the mass and energy of the initial data. The construction of such sequence is fairly straight forward -we view the sequence f (k) j,n k∈{0,[...,T 0 /∆ j ]+1} as a constant in time sequence of functions and construct a piecewise function using them. Indeed, we define for any j ∈ N:

(6.9) f j,n (t, v) = f (k) j,n (v) (t, v) ∈ [k∆ j , (k + 1)∆ j ) × R d
, where we replace of ([T 0 /∆ j ] + 1)∆ j by T 0 . Proposition 6.5.

Let f 0 ∈ L 1 2,v ∩ L ∞ s,v for s > d + 2γ. Then, the sequence (f j,n ) j∈N converges strongly in L 1 ([0, T 0 ] × R d ) to a function f n that belongs to L 1 ([0, T 0 ] × R d ) and L ∞ [0, T 0 ]; L ∞ s ′ ,v (R d )
. Moreover: (i) f n is a solution of the truncated Boltzmann-Nordheim equation (1.4) with Q replaced by Q n and initial data f 0 , (ii) f n is positive and for all t in [0,

T 0 ], ψ(•)f n (t, •) L 1 v = ψf 0 L 1 v for ψ(v) = 1, v, |v| 2 . (iii) f n satisfies sup t T 0 f n (t, •) L ∞ v K ∞ and sup t T 0 f n (t, •) L ∞ s ′ ,v W s ′
for any s ′ < s -2γ, where W s ′ has been defined in Lemma 6.4.

Proof of Proposition 6.5. For simplicity in the proof we will drop the subscript n. We start by noticing that by its definition and Proposition 6.3, {f j } j∈N has the same mass, energy and momentum as f 0 . We will now show that (f j ) j∈N is a Cauchy sequence in L 1 ([0, T 0 ] × R d ). Indeed, by its definition we find that

f (k) j (v) -f (0) j (v) = ∆ j k-1 l=0 Q n f (l) j (v).
This, combined with the definition of f j , shows that if t ∈ [k∆ j , (k + 1)∆ j ) we have that (6.10)

f j (t, v) = f 0 (v) + t 0 Q n (f j (s, v)) ds -(t -k∆ j ) Q n f (k) j .
For a given j l we see that

f j (t, •) -f l (t, •) L 1 v t 0 Q + n (f j (s, •)) -Q + n (f l (s, •))dvds + E j
where we have used Lemma 6.2 and Proposition 6.3 and the symmetry of the collision operators. We also denoted

E j = 4 (1 + 2K ∞ ) C + E ∞ S d-1 1 + γ K ∞ + M 0 + C Φ l b n γ (M 0 + M 2 ) ∆ j .
We conclude that, using the algebraic property (5.2),

f j (t, •) -f l (t, •) L 1 v C Φ l b n γ (1 + 2K ∞ ) t 0 R d ×R d (f j + f l ) |f j, * -f l, * | dv * dvds + 2C Φ n γ t 0 R d ×R d ×S d-1 b(cos θ)f j f j, * f ′ j -f ′ l dvdv * dσ + E j
Next, using Lemma 6.4 we have that

f i (v)f i (v * ) W 2 s ′ (1 + |v| s ′ )(1 + |v * | s ′ ) W 2 s ′ 1 + 2 2-s ′ 2 |v| 2 + |v * | 2 s ′ 2 ,
for any i ∈ N. Thus,

t 0 R d ×R d ×S d-1 b(cos θ)f j f j, * f ′ j -f ′ l dvdv * dσ l b W 2 s ′ R d ×R d |f j -f l | 1 + 2 s ′ -γ 2 |v * | s ′ dvdv * = l b C s ′ W 2 s ′ t 0 f j (s, •) -f l (s, •) L 1 v ds if s ′ > d,
where C s ′ is a uniform constant. Since s > d + 2γ and we can pick any s ′ up to s -2γ, the above is valid for s ′ = d + ǫ for ǫ > 0 small enough. Thus,

f j (t, •) -f l (t, •) L 1 v C n t 0 f j (s, •) -f l (s, •) L 1 v ds + E j
where C n > 0 is independent of j, l and t. From which we conclude that

f j (t, •) -f l (t, •) L 1 v E j e Cnt
As E j goes to zero as j goes to infinity, the above shows that {f j } j∈N converges to a function f both in L 1 v for any fixed t and in L 1 [0, T 0 ] × R d . Thanks to Passing to an appropriate subsequence, which we still denote by {f j } j∈N we can assume that f j converges pointwise to f almost everywhere. As such, the preservation of mass and (iii) follow immediately form the associated properties of the sequence. Moreover, thanks to (6.10) and the strong convergence we just showed, we conclude that

f (t, v) = f 0 (v) + t 0 Q n (f (s, v))ds,
showing (i).

We are only left with showing the conservation of momentum and energy. Using Fatou's lemma we find that

R d |v| 2 f (v)dv lim inf j→∞ R d |v| 2 f j (v)dv = R d |v| 2 f 0 (v)dv.
If we show tightness of the sequence |v| 2 f j (v) j∈N , i.e. that for any ǫ > 0 there exists R ǫ > 0 such that sup j∈N |v|>Rǫ |v| 2 f j (v)dv < ǫ then the converse will be valid and we would show the conservation of the energy.

To prove this we recall Lemma 4.4 for f 0 and denote the appropriate convex function by ψ. We claim that there exists C > 0, depending only on the initial data, γ, d and the collision kernel but not j such that for all j ∈ N, for all k ∈ {0, . . . , [T 0 /∆ j ] + 1}, (6.11)

R d f (k) j (v)ψ |v| 2 dv R d ψ |v| 2 f 0 (v) dv + Ck∆ j f 0 2 L 1 2,v
, This will imply that (6.12)

R d f j (t, v)ψ |v| 2 dv R d ψ |v| 2 f 0 (v) dv + C f 0 2 L 1 2,v
, from which the desired result follows as ψ(x) = xφ(x) for a concave, increasing to infinity function φ.

We prove (6.11) by induction. The case k = 0 is trivial and we proceed to assume that (k + 1)∆ j T 0 and that inequality (6.11) is valid for f

(k) j . Defining M (k) j = R d f (k) j (v)ψ |v| 2 dv
and using the definition of f (k) j and Lemma 1.1 we find that

M (k+1) j = M (k) j + ∆ j R d ψ |v| 2 Q n (f (k) j )(v) dv = M (k) j + C Φ ∆ j 2 R d ×R d (n ∧ |v -v * |) γ f (k) j (v)f (k) j (v * ) × S d-1 1 + f (k) j (v ′ ) + f (k) j (v ′ * ) b(cos θ) (ψ ′ * + ψ ′ -ψ * -ψ) dσ dv * dv = M (k) j + C Φ ∆ j 2 R d ×R d (n ∧ |v -v * |) γ f (k) j (v)f (k) j (v * ) [G(v, v * ) -H(v, v * )] dv * dv. (6.13)
for the appropriate G and H given by Lemma 4.1. Moreover, Lemma 4.1 implies that

G(v, v * ) C G |v| |v * | , H(v, v * ) 0,
where C G depends only on the collision kernel, γ, d and possibly the mass of f (k) j . As the latter is uniformly bounded for all j and k by K ∞ we can assume that C G is a constant that is independent of j and k. From the above we conclude that

M (k+1) j M (k) j + C Φ ∆ j 2 C G R d ×R d |v -v * | γ |v| |v * | f (k) j (v)f (k) j (v * ) dv * dv M (k) j + C Φ ∆ j 2 C G R d (1 + |v| γ ) |v| f (k) j (v) dv 2 M (k) j + C Φ ∆ j C G f (k) j 2 L 1 2,v R d ψ |v| 2 f 0 (v) + ∆ j (Ck + C Φ C G ) f 0 2 L 1 2,v
showing the desired result for the choice C = C Φ C G . A similar, yet simpler, proof (as we have bounded second moment) shows the conservation of momentum.

6.4. Existence of a solution to the Boltzmann-Nordheim equation. Now that we have solutions to the truncated equation, we are ready to show the existence theorem.

Proof of Theorem 2.2. If γ = 0 then the truncated equation is actually the full equation. As such, Proposition 6.5 shows (i). From now on we will assume that γ > 0 and s > d + 2 + γ. We notice that in that case there exists ǫ > 0 such that the f 0 ∈ L 1 2+γ+ǫ,v . We denote by {f n } n∈N the solutions to the truncated equation

∂ t f n (t) = Q n (f n ) t > 0, v ∈ R d f (0, v) = f 0 (v) v ∈ R d
given by Proposition 6.5. We will show that the sequence is Cauchy. In what follows, unless specified otherwise, constants C that appear will depend on K ∞ , E ∞ , C ∞ , T 0 and f 0 but not on n, m and t. Assuming that n m and following the same technique as the one in Lemma 5.3 we see that

d dt f n (t) -f m (t) L 1 2,v = R d sgn(f n (t) -f m (t))(1 + |v| 2 ) (Q n (f n (t)) -Q n (f m (t))) dv + R d sgn(f n (t) -f m (t))(1 + |v| 2 ) (Q n (f m (t)) -Q m (f m (t))) dv = I 1 + I 2 .
Exactly as in Lemma 5.3

I 1 C (1 + M 2+γ (f n + f m )) f n -f m L 1 2,v + f n -f m L ∞ v
Since M 2+γ (f 0 ) < ∞ we find that, due to Lemma 6.4, the sequence f

(k) j,n j,n∈N
, and as such, our f n , have a uniform bound, depending on f 0 , on their moment of order 2 + γ. Thus,

I 1 C 1 f n -f m L 1 2,v + f n -f m L ∞ v
For the second term we notice that

|Q n (f m )(v) -Q m (f m )(v)| C Φ b ∞ (1 + 2K ∞ ) {|v-v * | m}×S d-1 |v -v * | γ f ′ m f ′ m, * + f m f m, * dv * dσ (6.14) 
and as such

R d ×R d ×S d-1 (1 + |v| 2 ) |Q n (f m )(v) -Q m (f m )(v)| dv C n ε R d ×R d ×S d-1 1 + |v| 2 + |v * | 2 |v -v * | γ+ǫ f m f m, * dvdv * dσ C n ε (M 0 + M 2 + M 2+γ+ǫ ) 2
where M 2+γ+ǫ is a uniform bound on the 2 + γ + ǫ moment of all {f n } n∈N , depending only on f 0 and other parameters of the problem. We conclude that

I 2 C 2 m ǫ . Thus, (6.15) d dt f n (t) -f m (t) L 1 2,v C 1 f n -f m L 1 2,v + f n -f m L ∞ v + C 2 m ǫ .
Next, we turn our attention to the L ∞ norm. In order to do that we notice that due to Proposition 6.5

|v -v * | α f ′ m f ′ m, * C s ′ ,α W 2 s ′   1 1 + |v ′ | s ′ -α 1 1 + |v ′ * | s ′ + 1 1 + |v ′ * | s ′ -α 1 1 + |v ′ | s ′   , D s ′ ,α 1 + |v * | s ′ -α (6.16)
and the same holds replacing (v ′ , v ′ * ) by (v, v * ). We therefore see that by choosing α

= γ + ǫ, if s ′ -d > γ + ǫ we have that (6.17) |Q n (f m )(v) -Q m (f m )(v)| D s ′ ,α m ǫ .
where D s ′ ,α is a constant that depends only on the parameters on the problems. Due to Lemma 6.4 we know that we can choose s ′ as close as we want to

s -2γ > d + 2 -γ d + γ.
Using the above, and Lemma 5.4 we see that

f n (t) -f m (t) L ∞ v C t 0 f n -f m L 1 2,v + f n -f m L ∞ v ds + t 0 |Q n (f m )(v) -Q m (f m )(v)| ds C t 0 f n -f m L 1 2,v + f n -f m L ∞ v ds + D s ′ ,α T 0 m ǫ .
Following in the steps of the proof of the uniqueness in Section 5 we choose t 0 , depending only on T 0 and D 0 such that for all t t 0 sup s∈

[0,t] f n -f m L ∞ v C 3 t 0 f n -f m L 1 2,v ds + 2D s ′ ,α T 0 m ǫ .
Combining this with the integral version of (6.15) gives us that in [0, t 0 ]

f n (t) -f m (t) L 1 2,v f n (0) -f m (0) L 1 2,v + C t 0 (1 + t -s) f n (s) -f m (s) L 1 2,v ds + 1 m ε .
As f n (0) = f m (0) we find that the above is enough to show that {f n } n∈N is Cauchy in L 1 2,v as well as L 1 2,t,v for t ∈ [0, t 0 ]. As t 0 was independent of n, m and the bound that we used are valid for all t ∈ [0, T 0 ] we can use the fact that {f n (t 0 )} n∈N is Cauchy and repeat the process. This shows that the sequence is Cauchy in all of [0, T 0 ] and we denote by f its limit in L 1 2,t,v . Using the strong convergence of f n to f , and the fact that f n solves the truncated equation, we conclude that for any such φ

t 0 R d φ(t, v) f (t, v) -f 0 (v) - t 0 Q(f )(s, v)ds = 0
which shows that f is indeed the desired solution.

Since the convergence of f n to f is in L 1 2,t,v we conclude the conservation of mass, momentum and energy.

Lastly, we notice that T 0 , the time we have worked with from the sequence f (k) j,n j,n , depends only on f 0 and parameters of the collision. Thus If f (t, •) L ∞ v is bounded on [0, T 0 ] we can use Theorem 2.2 together with the conservation of mass, momentum and energy, to repeat our arguments and extend the time under which the solution exists. We conclude that we can 'push' our solution up to a time T max such that lim sup

T →T - max f L ∞ [0,T ]×R d = +∞.
This completes the proof.

We end this section with a few remarks.

Remark 6.6.

(i) As we have shown existence of a mass, momentum and energy conserving solution to the Boltzmann-Nordheim equation that is in L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ v , the a priori estimate given by Theorem 3.1 actually improve our regularity of the solution and we learn that f belongs to

L ∞ loc [0, T 0 ), L 1 2,v ∩ L ∞ s ′ ,v for all s ′ < s.
(ii) Note that we have given an explicit way to find the solution, as all our sequences converge strongly.

Appendix A. Simple Computations

We gather a few simple computations in this Appendix to make some of the proofs of the paper more coherent, without breaking the flow of the paper.

A.1. Proof of Lemma 3.2. We start by noticing that

R d f (v * ) |v -v * | -α dv * = |v-v * |<1 f (v * ) |v -v * | -α dv * + |v-v * |>1 f (v * ) dv * f L ∞ v |x|<1 |x| -α dx + f L 1 v = C d,α f L ∞ v + f L 1 v
implying that the required integral is uniformly bounded in all v as 0 α < d. Thus, in order to prove the Lemma we can assume that |v| > 1. For such a v consider the sets The last integration is finite if and only if d -2 -α > -1, which is valid in our case. The proof is thus complete. Then for any 0 < t < T and |v| Proof of Lemma A.3. Defining φ(t) = e (C 1 (1+|v|) α -C 2 )t ψ(t), we find that

A = v * ∈ R d ; |v * | |v| 2 , B = v * ∈ R d ; |v -v * | |v| s 2 -s 1 d 2 , and C = (A ∪ B) c . We have that A f (v * ) |v -v * | -α dv * 2 α |v| -α A f (v * ) dv * 2 α |v| -α f L 1 v
φ ′ C 3 (1 + |v|) β e (C 1 (1+|v|) α -C 2 )t
Using the assumption on v, which is equivalent to

C 1 (1 + |v|) α -C 2 > C 1 2 (1 + |v|) α > 0
we find that ψ(t) e -(C 1 (1+|v|) α -C 2 )t ψ(0) + C 3

(1 + |v|) β (C 1 (1 + |v|) α -C 2 ) 1 -e -(C 1 (1+|v|) α -C 2 ) t ψ(0) + 2C 3 C 1 (1 + |v|) α+β .
from which the result follows. In what follows we will drop the subscript j, n from the proofs to simplify the notation Proof. The proof, as usual, goes by induction.The step k = 0 is immediate. Assuming the claim is valid for k we have that

R d (1 + |v| s )f (k+1) (v)dv = R d (1 + |v| s )f (k) (v)dv + ∆ j R d |v| s Q n f (k) (v)dv R d (1+|v| s )f (k) (v)dv+C Φ C s l b (1+2K ∞ )∆ j R d ×R d |v| s |v * | + |v| s-1 |v * | 2 f (k) (v)f (k) (v * )dvdv *
where we have used a Povzner inequality much like Proposition 3.9. Thus, We have the following:

R d (1+|v| s )f (k+1) (v)dv (1 + 2C Φ C s l b (1 + 2K ∞ )(1 + M 2 )∆ j ) R d (1+|v| s )f (k) (v)dv (1 + 2C Φ C s l b (1 + 2K ∞ )(1 + M 2 )∆ n ) (D s k∆ n + 1)
Lemma B.2. Consider the sequence defined in (6.6). We have that (i) if r 2 is such that R d (1 + |v| r )f 0 (v)dv < ∞ then for any j j 0

E vv ′ ψ v (v ′ * )f (k) j,n (v ′ * )dE(v ′ * ) E vv ′ ψ v (v ′ * )f 0 (v ′ * )dE(v ′ * ) + B ∞ k∆ j (1 + |v|) -r+γ-1 ,
where 

B ∞ = C Φ C d,γ b ∞ (1 + D r + K ∞ )
E vv ′ ψ v (v ′ * )f (k) j,n (v ′ * )dE(v ′ * ) C s,ǫ f 0 L ∞ s,v + B ∞ k∆ j (1 + |v|) -(s-d+1-ǫ-γ) ,
where C s,ǫ is a uniform constant that depends only on s and ǫ. 

E vv ′ ψ v (v ′ * )f (k+1) (v ′ * )dE(v ′ * ) E vv ′ ψ ′ v, * f (k)′ * dE(v ′ * ) + ∆ j E vv ′ ψ ′ v, * Q + f (k)′ * dE(v ′ * ) E vv ′ ψ ′ v, * f ′ 0, * dE(v ′ * ) + B ∞ k∆ j (1 + |v|) r-γ+1 + C Φ C d,γ b ∞ (1 + D r + K ∞ ) 3 ∆ j (1 + |v|) r-γ+1
.

The choice of r follows the remark at the beginning of the proof of Proposition 3.12.

(ii) follows much like Remark 3.13. The proof of (iii) follows the same method of the proof of Theorem 3.1, with a few small changes to give a uniform bound on the weighted norm that will be independent of the truncation. As seen in the aforementioned proof, together with (ii) As such, we find that

Q + n (f (k) )(v) Q + (f (k) )(v) C 0,
f (k+1) (v) f (k) + Q + (f (k) )(v) f (k) + C 0,s,ǫ (1 + |v|) -δ ,
implying that one can prove inductively that there exists a constant W 1 that depends only on the s, ǫ, the initial data and the collision parameters such that

f (k) (v) W 1 k∆ j (1 + |v|) -δ + f 0 (v).
This implies that, with the notations of (iii), W δ < ∞. At this point we continue by induction and by using Lemma 3.2 with s 1 = δ. Note that the process can not go beyond s -2γ. Denoting by ξ = s -d + 1 -γ + 2(1+γ) d , we see that the process can continue until

s ′′ < ξ ∞ j=0 d -1 -γ d j = d 1 + γ ξ.
Because s > d + γ the above is bigger than s -2γ which means that we will reach the desired result in finitely many steps, completing the proof.
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 38 Let a ∈ R d and define
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 1 An extended version of a Povzner-type inequality. The main result of this subsection is the following Povzner-type inequality for the Boltzmann-Nordheim equation. Lemma 4.1. Let b(θ) be a positive bounded function and let

  = 1 and d = 3. Much like in the work of Mischler and Wennberg, we decompose |v ′ | 2 and |v ′ * | 2 to a convex combination of |v| 2 and |v * | 2 and a remainder term, and use convexity/concavity properties of ψ and φ.
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 48 Let f be a non-negative solution of the Boltzmann-Nordheim equation in L

2 -s 1 d 2 = |v| 1 - 1 2 2 |x| |v| s 2 -s 1 d 2 |x| -α dx = 2 s 2 S 2 -s 1 d 2 .A. 2 .|v -v 1 |and r 2 |v -a| 3r 2 . 1 dσ(v 1 )|v -v 1 | 2 dθ= C d,α r -α π 2 0

 222222222212211122 as |v -v * | |v| -|v * | |v| /2.Next, we notice that if v * ∈ B and |v| > 1 then since s 2 -s 1 < d we have that|v * | |v| -|v -v * | |v| -|v| s |v| d-(s 2 -s 1 ) d |v| 2 . Thus B f (v * ) |v -v * | -α dv * f L ∞ s 2 ,v B (1 + |v * | s 2 ) -1 |v -v * | -α dv * 2 s 2 f L ∞ s 2 ,v |v| -s d-1 d -α f L ∞ s 2 ,v |v| -s 2 + (d-α)(s 2 -s 1 ) d = C d,α f L ∞ s 2 ,v |v| -s 1 -α(s 2 -s 1 ) d . Lastly, when v * ∈ C we have that |v * | |v| 2 and |v -v * | |v| s Thus C f (v * ) |v -v * | -α dv * 2 α |v| -α(s 2 -s 1 ) d C f (v * ) (1 + |v * | s 1 ) |v * | -s 1 dv * 2 s 1 +α |v| -s 1 -α(s 2 -s 1 ) d f L 1 s 1 ,v .Combining all of the above gives the desired result. Additional estimations. Throughout this section we will denote by S d-1 r (a) the sphere of radius r and centre a ∈ R d .Lemma A.1. For any a ∈ R d and r > 0 we have that if 0 α d -1 then there existsC d,α > 0 such that -α dσ(v 1 ) C d,α r -α . Proof of Lemma A.1. We have that if v 1 ∈ S d-1 r (a) then |v -v 1 | 2 = |v -a| 2 + r 2 -2r |v -a| cos θ = (|v -a| -r) 2 + 2r |v -a| (1 -cos θ) ,where θ is the angle between the constant vector v -a and the vector v 1 . At this stage we'll look at two possibilities: ||v -a| -r| > r 2 In the first case we have that|v -v 1 | |(v -a) -= 2 α r -α .In the second case we have that |v -v 1 | 2r |v -a| (1 -cos θ) -α dσ(v 1 ) cos d-2 (θ) sin d-2 (θ) sin α (θ) dθ.

Lemma A. 2 . 1 2n 2π e -nx 2 d 2 2 2√ 2π π 0 e 2 sin d- 2 θdθr d- 2 S 3 .

 212202223 Let E be any hyperplane in R d with d 3 and let a ∈ R d and r > 0. Then ϕ n (x)ds(x) S d-2 where ϕ n (x) = n 2π e -nD(x,E) 2 2 with D(x, A) the distance of x from the set A, ds(x) is the appropriate surface measure. Proof of Lemma A.2. Due to translation, rotation and reflection with respect to E we may assume that E = x ∈ R d , x d = 0 and that a = |a| êd . In that case ϕ n (x) = and on S d-1 r (a) we find that ϕ n (a + rω) = n 2π e -n(|a|+r cos θ)where θ is the angle with respect to the êd axis.ϕ n (x)ds(x) = S d-2 √ nr -n(|a|+r cos θ) 2Using the change of variables x = √ nr cos θ yields 1 Assume that ψ satisfiedψ ′ -C 1 (1 + |v|) α ψ + C 2 ψ + C 3 (1 + |v|) -βwhen C 1 , C 2 , C 3 > 0.

2C 2 C 1 1 α - 1 ( 1 +

 111 |v|) α+β ψ(t) (1 + |v|) α+β ψ(0) + 2C 3 C 1 .
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 .11 Propagation of Weighted L ∞ Norms for the Truncated Operators Here we will discuss the propagation of the weighted L ∞ norms for the constructed sequence {f j,n } j∈N .Lemma B.1. Consider the sequence defined in (6.6). Let s > 2 and let C s be a uniform constant such that|v ′ | s + |v ′ * | s -|v| s -|v * | s C s |v| s-1 |v * |Then for any j j 0 = 2(1 + M 2 )C s /M 0 we have that(B.1) R d |v| s )f (k) j,n (v)dv (D s k∆ j + 1) R d |v| s )f 0 (v)dv,whereD s = 4C Φ C s l b (1 + 2K ∞ )(1 + M 2 ).

( 1 +

 1 |v| s )f 0 (v)dv. The proof follows form the choice of D s . Much like in Section 3 we denote by ψ a (v) = 0 |v| < |a| 1 |v| |a|

  (iii) If f 0 ∈ L ∞ s,v when s > d + 2γ then for any s ′ < s -2γ W s ′ = supk,j j 0 ,n f All the proofs will follow by induction. The step k = 0 is trivial. (i) Using Lemma B.1, Lemma 3.8, the fact that Q - n 0 and Q + n Q + we have that

  s,ǫ (1 + |v|) -δ where C 0 depends only on s, ǫ, the initial data and the collision parameters, andδ = min s -2γ -ǫ, s -d + 1 -γ -ǫ + 2(1 + γ) d .

  3 and C d,γ is a uniform constant defined in Lemma 3.8. Moreover, one can choose

	r =	2, if s d + 2 s

′ , if s > d + 2 and s ′ < s -d (ii) If ǫ is small enough

This, together with the second inequality of (5.13) and the moment bounds implies that for any t ∈ [0, t 0 ] we have (5.15)

,

where

Let n ∈ N be such that K 1 n and define

/t n . As X(t) C n+2,T t 2 and X(0) = 0 we conclude that X(t) is differentiable at t = 0 and as such, in [0, t 0 ]. We have that for t ∈ [0, t 0 ]:

Continuing by induction we conclude that for any n ∈ N and t ∈ [0, t 0 ]

Taking n to infinity shows that X(t) = 0 for all t ∈ [0, t 0 ], proving that f = g on that interval. If t 0 = T we are done, else we repeat the same arguments, starting from t 0 where the functions are equal, on the interval [t 0 , 2t 0 ]. Continuing inductively we conclude the uniqueness in [0, T ].

We finally have all the tools to show Theorem 2.1

Proof of Theorem 2.1. This follows immediately from Theorem 3.1, Proposition 4.3 and Theorem 5.1.

Local existence of solutions

In this section we will develop the theory of existence of local in time solutions to the Boltzmann-Nordheim equation and prove Theorem 2.2. From this point onwards, we assume that f 0 is not identically 0.

The method of proof we will employ to show the above theorem involves a time discretisation of equation (1.4) along with an approximation of the Boltzmann-Nordheim collision operator Q, giving rise to a sequence of approximate solutions to the equation.