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Abstract

We analyze the space of di�erentiable functions on a quad-mesh M, which are
composed of 4-split spline macro-patch elements on each quadrangular face. We de-
scribe explicit transition maps across shared edges, that satisfy conditions which
ensure that the space of di�erentiable functions is ample on a quad-mesh of arbi-
trary topology. These transition maps de�ne a �nite dimensional vector space of G1

spline functions of bi-degree 6 (k; k) on each quadrangular face of M. We deter-
mine the dimension of this space of G1 spline functions for k big enough and provide
explicit constructions of basis functions attached respectively to vertices, edges and
faces. This construction requires the analysis of the module of syzygies of univariate
b-spline functions with b-spline function coe�cients. New results on their genera-
tors and dimensions are provided. Examples of bases of G1 splines of small degree
for simple topological surfaces are detailed and illustrated by parametric surface
constructions.

Key words: geometrically continuous splines, dimension and bases of spline spaces,
gluing data, polygonal patches, surfaces of arbitrary topology

1 Introduction

Quadrangular b-spline surfaces are ubiquitous in geometric modeling. They
are represented as tensor products of univariate b-spline functions. Many of
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the properties of univariate b-splines extend naturally to this tensor represen-
tation. They are well suited to describe parts of shapes, with features orga-
nized along two di�erent directions, as this is often the case for manufactured
objects. However, the complete description of a shape by tensor product b-
spline patches may require to intersect and trim them, resulting in a geometric
model, which is inaccurate or di�cult to manipulate or to deform.

To circumvent these di�culties, one can consider geometric models composed
of quadrangular patches, glued together in a smooth way along their common
boundary. Continuity constraints on the tangent planes (or on higher osculat-
ing spaces) are imposed along the share edges. In this way, smooth surfaces
can be generated from quadrilateral meshes by gluing several simple paramet-
ric surfaces. By specifying the topology of a quad(rilateral) mesh M and the
geometric continuity along the shared edges via transition maps, we obtain a
(vector) space of smooth b-spline functions on M.

Our objective is to analyze this set of smooth b-spline functions on a quad
meshM of arbitrary topology. In particular, we want to determine the dimen-
sion and a basis of the space of smooth functions composed of tensor product
b-spline functions of bounded degree. By determining bases of these spaces,
we can represent all the smooth parametric surfaces which satisfy the geomet-
ric continuity conditions on M. Any such surface is described by its control
points in this basis, which are the coe�cients in the basis of the di�erentiable
functions used in the parametrization.

The construction of basis functions of a spline space has several applications.
For visualization purposes, smooth deformations of these models can be ob-
tained simply by changing their coe�cients in the basis, while keeping satis�ed
the regularity constraints along the edges of the quad mesh. Fitting problems
for constructing smooth models that approximate point sets or satisfy geo-
metric constraints can be transformed into least square problems on the co-
e�cient vector of a parametric model and solved by standard linear algebra
tools. Knowing a basis of the space of smooth spline functions of bounded
degree on a quad mesh can also be useful in Isogeometric Analysis. In this
methodology, the basis functions are used to describe the geometry and to ap-
proximate the solutions of partial di�erential equations on the geometry. The
explicit knowledge of a basis allows to apply Galerkin type methods, which
project the solution onto the space spanned by the basis functions.

In the last decades, several works have been focusing on the construction of G1

surfaces, including [CC78], [Pet95], [Loo94], [Rei95], [Pra97], [YZ04], [GHQ06],
[HWW+06], [FP08], [HBC08], [PF10], [BGN14], [BH14]. Some of these con-
structions use tensor product b-spline elements. In [Pet95], biquartic b-spline
elements are used on a quad mesh obtained by middle point re�nement of a
general mesh. These elements involve 25 control coe�cients. In [Rei95], bi-
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quadratic b-spline elements are used on a semi-regular quad mesh obtained
by three levels of mid-point re�nements. These correspond to 16-split macro-
patches, which involve 81 control points. In [Pet00], bicubic b-spline elements
with 3 nodes, corresponding to a 16-split of the parameter domain are used.
The macro-patch elements involve 169 control coe�cients. In [LCB07], biquin-
tic polynomial elements are used for solving a �tting problem. They involve 36
control coe�cients. Normal vectors are extracted from the data of the �tting
problem to specify the G1 constraints. In [SWY04] biquintic 5-split b-spline el-
ements are involved. They are represented by 100 control coe�cients or more.
In [FP08], bicubic 9-split b-spline elements are involved. They are represented
by 100 control coe�cients. In [PF10], it is shown that bicubic G1 splines with
linear transition maps requires at least a 9-split of the parameter domains. In
[HBC08], bicubic 4-split macro-patch elements are used. They are represented
by 36 control coe�cients. The construction does not apply for general quad
meshes. In [BH14], biquartic 4-split macro-elements are used. They involve 81
control coe�cients. The construction applies for general quad meshes and is
used to solve the interpolation problem of boundary curves. In these construc-
tions, symmetric geometric continuity constraints are used at the vertices of
the mesh.

Much less work has been developed on the dimension analysis. In [MVV16],
a dimension formula and explicit basis constructions are given for polynomial
patches of degree > 4 over a mesh with triangular or quadrangular cells. In
[BM14], a similar result is obtained for the space of G1 splines of bi-degree
> (4; 4) for rectangular decompositions of planar domains. The construction of
basis functions for spaces of C1 geometrically continuous functions restricted
to two-patch domains, has been considered in [KVJB15]. In [CST16], the ap-
proximation properties of the aforementioned spaces are explored, including
constructions over multi-patch geometries motivated by applications in isoge-
ometric analysis.

In this paper we analyze the space of G1 splines on a general quad mesh M,
with 4-split macro-patch elements of bounded bi-degree. We describe explicit
transition maps across shared edges, that satisfy conditions which ensure that
the space of di�erentiable functions is ample on the quad mesh M of arbi-
trary topology. These transition maps de�ne a �nite dimensional vector space
of G1 b-spline functions of bi-degree 6 (k; k) on each quadrangular face ofM.
We determine the dimension of this space for k big enough and provide ex-
plicit constructions of basis functions attached respectively to vertices, edges
and faces. This construction requires the analysis of the module of syzygies
of univariate b-spline functions with b-spline coe�cients. New results on their
generators and dimensions are provided. This yields a new construction of
smooth splines on quad meshes of arbitrary topology, with macro-patch ele-
ments of low degree.
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Examples of bases of G1 splines of small degree for simple topological surfaces
are detailed and illustrated by parametric surface constructions.

The techniques developed in this paper for the study of geometrically smooth
splines rely on the analysis of the syzygies of the glueing data, similarly to
the approach used in [MVV16] for polynomial patches. However an impor-
tant di�erence is that we consider here syzygies of spline functions with spline
coe�cients. The classical properties of syzygy modules over the ring of polyno-
mials used in [MVV16] do not apply to spline functions. New results on syzygy
modules over the ring of piecewise polynomial functions (with one node and
prescribed regularity) are presented in Sections 4.1, 4.2. In particular, Propo-
sition 4.8 describes a family of gluing data with additional degrees of freedom,
providing new possibilities to construct ample spaces of spline functions in
low degree. The necessary notation and constrains from the case of polyno-
mial patches are used in the course of the paper. But, properties of Taylor
maps exploited in [MVV16] are incoherent in our context. In our setting, the
construction of the spline space requires to extend the results on these Taylor
maps to the context of macro-patches. Sections 4.3, 4.4, 4.5 present an alter-
native analysis adapted to our needs. Exploiting these properties, vertex basis
functions and face basis functions can then be constructed in the same way
as in the polynomial case.

The paper is organized as follows. The next section recalls the notions of topo-
logical surface M, di�erentiable functions on M and smooth spline functions
on M. In Section 3, we detail the constraints on the transition maps to have
an ample space of di�erentiable functions and provide explicit constructions.
In Section 4, 5, 6, we analyze the space of smooth spline functions around re-
spectively an edge, a vertex and a face and describe basis functions attached
to these elements. In Section 7, we give the dimension formula for the space
of spline functions of bi-degree 6 (k; k) over a general quad mesh M and
describe a basis. Finally, in Section 7, we give examples of such smooth spline
spaces.

2 De�nitions and basic properties

In this section, we de�ne and describe the objects we need to analyze the
spline spaces on a quad mesh.

2.1 Topological surface

De�nition 2.1 A topological surface M is given by
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Fig. 1. Given an edge � of a topological surfaceM that is shared by two polygons
�0; �1 2 M, we associated a di�erent coordinate system to each of these two faces
and consider � as the pair of edges �0 and �1 in �0 and �1, respectively.

� a collection M2 of polygons (also called faces of M) in the plane that are
pairwise disjoint,

� a collection of homeomorphisms �i;j : �i 7! �j between polygonal edges from
di�erent polygons �i and �j of M2,

where a polygonal edge can be glued with at most one other polygonal edge, and
it cannot be glued with itself. The shared edges (resp. the points of the shared
edges) are identi�ed with their image by the corresponding homeomorphism.
The collection of edges (resp. vertices) is denoted M1 (resp. M0).

For a vertex  2 M0, we denote by M the submesh of M composed of the
faces which are adjacent to . For an edge � 2 M1, we denote by M� the
submesh of M composed of the faces which are adjacent to the interior of � .

De�nition 2.2 (Gluing data) For a topological surface M, a gluing struc-
ture associated to M consists of the following:

� for each edge � 2M1 of a cell �, an open set U�;� of R2 containing � ;
� for each edge � 2M1 shared by two polygons �i; �j 2M2, a C

1-di�eomorphism
called the transition map ��j ;�i : U�;�i ! U�;�j between the open sets U�;�i
and U�;�j , and also its correspondent inverse map ��i;�j ;

Let � be an edge shared by two polygons �0; �1 2 M2 , � = �0 in �0, � = �1
in �1 respectively and let  = (0; 1) be a vertex of � corresponding to 0 in
�0 and to 1 in �1. We denote by � 01 (resp. �

0
0) the second edge of �1 (resp. �0)

through 1 (resp. 0). We associate to �1 and �0 two coordinate systems (u1; v1)
and (u0; v0) such that 1 = (0; 0), �1 = f(u1; 0); u1 2 [0; 1]g, � 01 = f(0; v1); v1 2
[0; 1]g and 0 = (0; 0), �0 = f(0; v0); v0 2 [0; 1]g, � 00 = f(u0; 0); u0 2 [0; 1]g, see
Figure 1. Using the Taylor expansion at (0; 0), a transition map from U�;�1 to
U�;�0 is then of the form

��0;�1 : (u1; v1) �! (u0; v0) =

0
B@ v1 b�;(u1) + v21�1(u1; v1)

u1 + v1 a�;(u1) + v21�2(u1; v1)

1
CA (1)
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where a�;(u1); b�;(u1); �1(u1; v1); �2(u1; v1) are C
1 functions. We will refer to

it as the canonical form of the transition map �0;1 at  along � . The functions
[a�;; b�;] are called the gluing data at  along � on �1.

De�nition 2.3 An edge � 2 M which contains the vertex  2 M is called a
crossing edge at  if a�;(0) = 0 where [a�;; b�;] is the gluing data at  along
� . We de�ne c� () = 1 if � is a crossing edge at  and c� () = 0 otherwise.
By convention, c� () = 0 for a boundary edge. If  2M0 is an interior vertex
where all adjacent edges are crossing edges at , then it is called a crossing
vertex. Similarly, we de�ne c+() = 1 if  is a crossing vertex and c+() = 0
otherwise.

2.2 Di�erentiable functions

We de�ne now the di�erentiable functions on M and the spline functions on
M.

De�nition 2.4 (Di�erentiable functions) A di�erentiable function on a
topological surface M is a collection f = (f�)�2M2

of di�erentiable functions
such that for each two faces �0 and �1 sharing an edge � with �0;1 as transition
map, the two functions f�1 and f�0 � �0;1 have the same Taylor expansion of
order 1. The function f� is called the restriction of f on the face �.

This leads to the following two relations for each u1 2 [0; 1]:

f1(u1; 0)= f0(0; u1) (2)

@f1
@v1

(u1; 0)= b�;(u1)
@f0
@u0

(0; u1) + a�;(u1)
@f0
@v0

(0; u1) (3)

wheref1 = f�1 , f0 = f�0 are the restrictions of f on the faces �0, �1.

For r 2 N, let U r = Sr([0; 1
2
; 1]) be the space of piecewise univariate polynomial

functions (or splines) on the subdivision [0; 1
2
; 1], which are of class Cr. We

denote by U rk the spline functions in U
r whose polynomial pieces are of degree

6 k. We denote by R[u] the ring of polynomials in one variable u, with
coe�cients in R.

Let Rr(�) be the space of spline functions of regularity r in each parameter
over the 4-split subdivision of the quadrangle � (see Figure 2), that is, the
tensor product of U r with itself.

For k 2 N, the space of b-spline functions of degree 6 k in each variable, that
is of bi-degree 6 (k; k) is denoted Rr

k(�). A function f� 2 R
r
k(�) is represented
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Fig. 2. 4-split of the parameter domain

in the b-spline basis of � as

f� :=
X

06i;j6m

c�i;j(f�)Ni(u�)Nj(v�);

where c�i;j(f�) 2 R and N0; : : : ; Nm are the classical b-spline basis functions of
U rk with m = 2k � r. The dimension of Rr

k(�) is (m+ 1)2 = (2k � r + 1)2.

The geometric continuous spline functions on M are the di�erentiable func-
tions f on M, where each component f� on a face � 2 M2 is in R

r(�). We
denote this spline space by S1;r(M). The set of splines f 2 S1;r(M) with
f� 2 R

r
k(�) is denoted S

1;r
k (M).

2.3 Taylor maps

An important tool that we are going to use intensively is the Taylor map
associated to a vertex or to an edge of M. For each face � the space of spline
functions over a subdivision onto 4 parts as in the �gure above will be denoted
Rr(�). Let  2 M0 be a vertex on a face � 2 M2 belonging to two edges
�; � 0 2M1 of �. We de�ne the ring of  on � by R�() = R(�)=(`2� ; `

2
� 0) where

(`2� ; `
2
� 0) is the ideal generated by the squares of `� and `� 0 , the equations

`� (u; v) = 0 and `� 0(u; v) = 0 are respectively the equations of � and � 0 in
Rr(�) = Sr.

The Taylor expansion at  on � is the map

T � : f 2 Rr(�) 7! f mod (`2� ; `
2
� 0) in R�():

Choosing an adapted basis of R�(), one can de�ne T � by

T � (f) =
h
f(); @uf(); @vf(); @u@vf()

i
:

The map T � can also be de�ned in another basis of R�() in terms of the

7



b-spline coe�cients by

T � (f) =
h
c�0;0(f); c

�
1;0(f); c

�
0;1(f); c

�
1;1(f)

i

where c0;0; c1;0; c0;1; c1;1 are the �rst b-spline coe�cients associated to f on �
at  = (0; 0).

We de�ne the Taylor map T on all the faces � that contain ,

T : f = (f�) 2 ��R
r(�)! (T � (f�)) 2 ���R

�():

Similarly, we de�ne T as the Taylor map at all the vertices on all the faces of
M.

If � 2 M1 is the edge of the face �(u�; v�) 2 M2 associated to v� = 0, we
de�ne the restriction along � on � as

D�
� : Rr

k(�)!Rr
k(�)

f =
X

06i;j6m

c�i;j(f)Ni(u�)Nj(v�) 7!
X

06i6m;06j61

c�i;j(f)Ni(u�)Nj(v�):

The restrictions along the edges v� = 1, u� = 0, u� = 1 are de�ned similarly
by symmetry. By convention if � is not an edge of �, D�

� = 0.

For a face � 2M2, we de�ne the restriction along the edges of � as

D� : Rr
k(�)!Rr

k(�)

f =
X

06i; j6m

c�i;j(f)Ni(u�)Nj(v�) 7!
X

i>1; or
i<m�1; j>1;
or j<m�1

c�i;j(f)Ni(u�)Nj(v�):

The edge restriction map along all edges of M is given by

D : f = (f�) 2 ��R
r
k(�)! (D�(f�)) 2 ��R

r
k(�):

3 Transition maps

The spline space on the mesh M is constructed using the transition maps
associated to the edges shared by pair of polygons in M. The transition map
accross an edge � is given by formula (1), where a(u) = a(u)

c(u)
; b(u) = b(u)

c(u)
and

[a(u); b(u); c(u)] is a triple of functions, called gluing data. In the following,
the transition maps will be de�ned from spline functions in U rl , of class C

r and
degree l, with nodes 0; 1

2
; 1 for the gluing data. We assume that the dimension
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of U rl is bigger than 4, that is, 2l + 1� r > 4 and r > 0 so that l > 1
2
(3 + r),

which implies that l > 2.

We denote by d0(u); d1(u) 2 U rl two spline functions such that d0(0) = 1,
d0(1) = 0, d1(0) = 0, d1(1) = 1 and d00(0) = d00(1) = d01(0) = d01(1) = 0. We
can take, for instance,

d0(u) = N0(u) +N1(u) (4)

d1(u) = Nm�1(u) +Nm(u)

where m = 2l � r. For l = 2, r = 1, these functions are

d0(u) =

8<
:1� 2u2 0 6 u 6 1

2

2(1� u)2 1
2
6 u 6 1

d1(u) =

8<
:2u

2 0 6 u 6 1
2

1� 2 (1� u)2 1
2
6 u 6 1:

For l = 2, r = 0, these functions are

d0(u) =

8<
:1� 4u2 0 6 u 6 1

2

0 1
2
6 u 6 1

d1(u) =

8<
:0 0 6 u 6 1

2

1� 4 (1� u)2 1
2
6 u 6 1:

To ensure that the space of spline functions is su�ciently ample (i.e., it con-
tains enough regular functions, see [MVV16, De�nition 2.5]), we impose com-
patibility conditions.

First around an interior vertex  2M0, which is common to faces �1; : : : ; �F
glued cyclically around , along the edges �i = �i \ �i�1 for i = 2; : : : ; F + 1
(with �F+1 = �1), we impose the condition: J(�1;2) � � � � � J(�N�1;N) = I2

where J is the jet or Taylor expansion of order 1 at . It translates into the
following condition (see [MVV16]):

Condition 3.1 If  2 M0 is an interior vertex and belongs to the faces
�1; : : : ; �F that are glued cyclically around , then the gluing data [ai; bi] at 
on the edges �i between �i�1 and �i satis�es

FY
i=1

0
B@ 0 1

bi(0) ai(0)

1
CA =

0
B@ 1 0

0 1

1
CA : (5)

This gives algebraic restrictions on the values ai(0), bi(0).
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In addition to Condition 3.1, we also consider the following condition around
a crossing vertex:

Condition 3.2 If the vertex  is a crossing vertex with 4 edges �1; : : : ; �4, the
gluing data [ai; bi] i = 1 : : : 4 on these edges at  satisfy

a01(0) +
b04(0)

b4(0)
= �b1(0)

 
a03(0) +

b02(0)

b2(0)

!
; (6)

a02(0) +
b01(0)

b1(0)
= �b2(0)

 
a04(0) +

b03(0)

b3(0)

!
: (7)

Let us notice that we can write the previous conditions on the gluing data
(which in our setting is given by spline functions) as in [MVV16] since they
depend on the value of the functions de�ning the gluing data and not on the
particular type of functions. The conditions (6) and (7) were introduced in
[MVV16] in the context of gluing data de�ned from polynomial functions,
they generalize the conditions of [PF10], where bi(0) = �1. The conditions
come from the relations between the derivatives and the cross-derivatives of
the face functions across the edges at a crossing vertex.

An additional condition of topological nature is also considered in [MVV16].
It ensures that the glued faces around a vertex  are equivalent to sectors
around a point in the plane, via the reparameterization maps. We will not
need it hereafter.

To de�ne transition maps which satisfy these conditions, we �rst compute the
values of the transition functions a� ; b� of an edge � at its end points and then
interpolate the values:

(1) For all the vertices  2 M0 and for all the edges �1; : : : ; �F of M1 that
contain , choose vectors u1; : : : ;uF 2 R2 such that the cones in R2

generated by ui;ui+1 form a fan in R2 and such that the union of these
cones isR2 when  is an interior vertex. The vector ui is associated to the
edge �i, so that the sectors ui�1;ui and ui;ui+1 de�ne the gluing across
the edge �i at .
The transition map �i�1;i at  = (0; 0) on the edge �i is constructed as:

J(0;0)(�i�1;i)
t = S � [ui;ui+1]

�1 � [ui�1;ui] � S =

2
64 0 bi(0)

1 ai(0)

3
75

where S =

2
640 1

1 0

3
75, [ui;uj] is the matrix which columns are the vectors ui
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Fig. 3. The edge � = (; 0) is associated to the vectors u0 and u1 at the points 
and 0, respectively.

and uj, and jui;ujj is the determinant of the vectors ui;uj. Thus,

ai(0) =
jui+1;ui�1j

jui+1;uij
; bi(0) = �

jui;ui�1j

jui+1;uij
; (8)

so that ui�1 = ai(0)ui + bi(0)ui+1. This implies that Condition 3.1 is
satis�ed.

(2) For all the shared edges � 2M1, we de�ne the functions a� =
a�
c�
; b� =

b�
c�

on the edges � by interpolation as follows. Assume that the edge � is
associated to the vectors u0 and u1, respectively at the end point  and
0 corresponding to the parameters u = 0 and u = 1. Let us�;u

s
+ 2 R2,

s = 0; 1 be the vectors which de�ne respectively the previous and next
sectors adjacent to usi at the point  and 0, see Figure 3. We de�ne the
gluing data so that it interpolates the corresponding value (8) at u = 0
and u = 1 as:

a� (u) =
���u0

+;u
0
�

���d0(u) + ���u1
+;u

1
�

���d1(u)
b� (u) = �

���u0;u0
�

���d0(u)� ���u1;u1
�

���d1(u) (9)

c� (u) =
���u0

+;u
0
���d0(u) + ���u1

+;u
1
���d1(u)

where d0(u); d1(u) are two Hermite interpolation functions at u = 0 and
u = 1.
Since the derivatives of a� ; b� ; c� vanish at u = 0 and u = 1, the

conditions (6) and (7) are automatically satis�ed at an end point if it is
a crossing vertex.
Another possible construction, with a constant denominator c� (u) = 1

is:

a� (u) =

���u0
+;u

0
�

������u0
+;u0

��� d0(u)�
���u1

+;u
1
�

������u1
+;u1

��� d1(u)

b� (u) = �

���u0;u0
�

������u0
+;u0

���d0(u) +
���u1;u1

�

������u1
+;u1

���d1(u) (10)

c� (u) = 1

The construction (10) specializes to the symmetric gluing used for instance in
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[Hah89, �8.2], [HBC08], [BH14]:

a� = d0(u) 2 cos
2�

n0
� d1(u) 2 cos

2�

n1
b� = �1 (11)

c� = 1

where n0 (resp. n1) is the number of edges at the vertex 0 (resp. 1). It
corresponds to a symmetric gluing, where the angle of two consecutive edges
at i is

2�
ni
.

4 Splines along an edge

The space S1;r
k (M) of splines over the mesh M can be splitted into three

linearly independent components: Ek, Hk, Fk (see Section 7) attached respec-
tively to vertices, edges and faces. The objective of this section is to give a
dimension formula for the component E(�)k attached to the edge � and an
explicit base, where � is an interior edge, shared by two faces �1, �2 2 M2.
We denote by M� the sub-mesh of M composed of the two faces �1; �2.

An important step is to analyse the space Syzr;r;rk (a; b; c) of Syzygies over the
base ring U r. The relation of this space with E(�)k and a basis of Syz

r;r;r
k (a; b; c)

are presented in Sections 4.1 and 4.2.

Next in Section 4.3, we study the e�ect, on E(�)k, of the Taylor map at the
two end points of � and we determine when they can be separated by the
Taylor map.

The Section 4.4 shows how to decompose the space S1;r
k for the simple mesh

M� , using this Taylor maps at the end points of � . The same technique will
be used to decompose the space S1;r

k (M), for a general mesh M.

4.1 Relation with Syzygies

Given spline functions a; b; c 2 U sl de�ning the gluing data accross the edge
� 2M, and (f1; f2) 2 S

1
k(M� ), from (3) we have that:

A(u1)a(u1) +B(u1)b(u1) + C(u1)c(u1) = 0

12



where

A(u1) =
@f2
@v2

(0; u1) 2 U
0
k�1;

B(u1) =
@f2
@u2

(0; u1) 2 U
1
k ;

C(u1) = �
@f1
@v1

(u1; 0) 2 U
1
k :

These are the conditions imposed by the transition map across � . According
to such data, and if the topological surface M� contains two faces with one
transition map along the shared edge � , then any di�erentiable spline functions
f = (f1; f2) over M� of bi-degree 6 (k; k) is given by the formula:

f1(u1; v1) =
�
N1(v1) +N0(v1)

��
a0 +

Z u1

0
A(t)dt

�
(12)

�
1

2k
N1(v1)C(u1) + E1(u1; v1)

f2(u2; v2) =
�
N1(u2) +N0(u2)

� �
a0 +

Z v2

0
A(t)dt

�
(13)

+
1

2k
N1(u2)B(v2) + E2(u2; v2);

since N0(0) = 1, N1(0) = 0, N 0
0(0) = �2k, and N 0

1(0) = 2k.

Here a0 2 R, the functions Ei 2 kerD�i
� for i = 0; 1, and A; B; C are spline

functions of degree at most k � 1; k; k and class C0; C1; C1, respectively.

For r1; r2; r3; k 2 N and a; b; c 2 U sl , we denote

Syzr1;r2;r3k (a; b; c) =
n
(A;B;C) 2 U r1k�1 � U r2k � U r3k j Aa+B b+ C c = 0

o
:

We denote this vector space simply by Syzr1;r2;r3k when a; b; c are implicitly
given.

By (12) and (13), the splines in S1
k(M� ) with a support along the edge � are

in the image of the map:

13



�� : R� Syz0;1;1k !Srk(M� ) (14)

(a0; (A;B;C)) 7!

 �
a0 +

Z u1

0
A(t)dt

�
N0(v1)

+
�
a0 +

Z u1

0
A(t)dt�

1

2k
C(u1)

�
N1(u1);

N0(u2)
�
a0 +

Z v2

0
A(t)dt

�

+N1(u2)
�
a0 +

Z v2

0
A(t)dt+

1

2k
B(v2)

�!
:

The classical results on the module of syzygies on polynomial rings described in
[MVV16] (see Proposition 4.3. in the reference), will be used in order to prove
the corresponding statements in the context of syzygies on spline functions.
First, we recall the notation and results concerning the polynomial case. Let
a; b; c be polynomials in R = R[u], such that gcd(a; c) = gcd(b; c) = 1,
then Z = Syz(a; b; c) is the R-module de�ned by Syz(a; b; c) = f(A;B;C) 2
R[u]3 : Aa+Bb+Cc = 0g. The degree of an element in Syz(a; b; c) is de�ned
as deg(A;B;C) = maxfdeg(A); deg(B); deg(C)g, and we are interested in
studying the subspace Zk � Syz(a; b; c) of elements of degree less than or
equal to k � 1. Let us denote n = maxfdeg(a); deg(b); deg(c)g, and

e =

8<
:0 ; if min

�
n+ 1� deg(a); n� deg(b); n� deg(c)

�
= 0 and

1 ; otherwise.

Lemma 4.1 Using the notation above we have:

� Z is a free R[u]-module of rank 2.
� If � and � are the degree of the two free generators of Syz(a; b; c) with �
minimal, then �+ � = n.

� dimZk = (k � � + 1)+ + (k � n + � + e)+ where t+ = max(0; t) for any
t 2 Z.

A basis with minimal degree corresponds to what is called a �-basis in the
literature.

The proof of Lemma 4.1 can be found in [MVV16].

In the following we state the analogous to Lemma 4.1 in the context of syzygies
on spline funtions. We consider Syzr;r;rk as de�ned above, it is the set of spline
functions (A;B;C) 2 U rk�1�U

r
k�U

r
k such that Aa+B b+C c = 0. An element

of Syzr;r;rk is a triple of pairs of polynomials ((A1; A2); (B1; B2); (C1; C2)). Let
R = R[u], Rk = fp 2 R j deg(p) 6 kg, Qr = R=((2u � 1)r+1) and Qr

k =
Rk=((2u� 1)r+1).

The elements f = (f1; f2) of U
r+1
k are pairs of polynomials f1; f2 2 Rk such

14



that f1 � f2 � 0 mod (2u� 1)r+1. Let a = (a1; a2); b = (b1; b2); c = (c1; c2) 2
U r with gcd(a1; c1) = gcd(a2; c2) = gcd(b1; c1) = gcd(b2; c2) = 1. We consider
the following sequence:

0 �! Syzr;r;rk �! Syz1;k�Syz2;k
�
�! Qr

k�1�Q
r
k�Q

r
k

 
�! Qr

n1+k
�! 0 (15)

where Syz1;k = Syzk(a1; b1; c1), Syz2;k = Syzk(a2; b2; c2), and

�  (f; g; h) = a1f + b1g + c1h,
� �(A;B;C) = (A1 � A2; B1 �B2; C1 � C2) (mod (2u� 1)r+1).

Lemma 4.2 The sequence (15) is exact for k > n1+r where n1 = maxfdeg(a1);
deg(b1); deg(c1)g.

Proof. Since b1; c1 are coprime, the map  : (f; g; h) 2 Rk�1 � Rk � Rk 7!
a1f + b1g + c1h 2 Rn1+k is surjective for k > n1 � 1. The map �, obtained by
working modulo (2u� 1)r+1, remains surjective.

We have to prove that ker( ) = Im(�). If (A;B;C) 2 Syz1 � Syz2 then
 � �(A;B;C) = (A1a1 + B1b1 + C1c1) � (A2a1 + B2b1 + C2c1) = �(A2a1 +
B2b1+C2c1). Because a; b; c 2 U

r, we have a1 � a2 (mod (2u�1)r+1), b1 � b2
(mod (2u� 1)r+1) and c1 � c2 (mod (2u� 1)r+1), so that

 � �(A;B;C) � �(A2a2 +B2b2 + C2c2) � 0 (mod (2u� 1)r+1):

This implies that Im(�) � ker( ).

Conversely, if  (f; g; h) = 0 with deg(f) 6 r, deg(g) 6 r, deg(h) 6 r then
fa1+ gb1+hc1 = d (2u� 1)r+1 for some polynomial d 2 R of degree 6 n1� 1.
Since gcd(b1; c1) = 1, there exists p; q 2 Rn1�1 such that d = p b1 + q c1, we
deduce that:

(2u� 1)r+1d = (2u� 1)r+1 (p b1 + q c1) = f a1 + g b1 + h c1;

with deg((2u� 1)r+1p) 6 n1 + r. This yields

f a1 + (g � p(2u� 1)r+1) b1 + (h� (2u� 1)r+1q) c1 = 0: (16)

Since k > n1 + r, this implies that ((f; 0); (g � (2u � 1)r+1p; 0); (h � (2u �
1)r+1q; 0)) 2 Syz1;k � Syz2;k and its image by � is (f; g; h). This shows that
ker( ) � Im(�) and implies the equality of the two vector spaces.

By construction, the kernel of � is the pair of triples ((A1; B1; C1); (A2; B2; C2))
in Syz1;k � Syz2;k such that A1 � A2 � B1 � B2 � C1 � C2 � 0 (mod (2u �
1)r+1), that is, the set Syzr;r;rk of triples (A;B;C) 2 U rk�1 �U

r
k �U

r
k such that

Aa+B b+ C c = 0.
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This show that the sequence (15) is exact. 2

We deduce the dimension formula:

Proposition 4.3 Let (p1; q1) (resp. (p2; q2)) be a basis of Syz1 (resp. Syz2) of
minimal degree (�1; �1) (resp. (�2; �2)) and e1; e2 de�ned as above for (a1; b1; c1)
and (a2; b2; c2). For k > min(n1; n2) + r,

dim(Syzr;r;rk ) = (k � �1 + 1)+ + (k � n1 + �1 + e1)+ + (k � �2 + 1)+
+ (k � n2 + �2 + e2)+ �min(r + 1; k)� (r + 1):

This dimension is denoted d� (k; r).

Proof. By symmetry, we may assume that n1 = min(n1; n2). For k > n1 + r,
the sequence (15) is exact and we have

dimSyzr;r;rk = dimSyz1;k + dimSyz2;k � dimQr
k�1 � 2 dimQr

k + dimQr
n1+k

:

We have dimQr
k�1 = min(r + 1; k) and dimQr

k = dimQr
n1+k

= r + 1, since
k > n1 + r. This leads to the formula, using Lemma 4.1. 2

4.2 Basis of the syzygy module

The diagram (15) allows to construct a basis for the space of syzygies Syzr;r;rk

associated to the gluing data a; b; c 2 U r. In the rest of this section we will
show how to construct such a basis.

Lemma 4.4 Assume that k > n1 + r. Using the notation of Proposition 4.3,
we have the following assertions:

� For any p2 2 Syz2;k, there exists p1 2 Syz1;k such that (p1; p2) 2 ker(�).
� There exist t; s 2 N such that if G = f(p1(2u�1)i; 0) : 0 6 i 6 tg

S
f(q1(2u�

1)j; 0) : 0 6 j 6 lg then �(G) is a basis of the vector space ker( ).
� ker(�)

L
hGi = Syz1;k � Syz2;k.

Proof. Let p2 = (A2; B2; C2) 2 Syz2;k. As �((0; p2)) = (f; g; h) is in ker( )
(since  �� = 0), we can construct p1 2 Syz1;k such that �((p1; 0)) = �((0; p2))
as we did in the proof of Lemma 4.2 for (f; g; h) 2 ker( ) using relation
(16). This gives an element of the form (p1; 0) 2 Syz1;k � f0g, and �nally
(p1; p2) 2 ker(�), this proves the �rst point.

The second point follows from the fact that �(Syz1;k � f0g) = ker( ) (since
by Lemma 4.2, the sequence (15) is exact) and that f(p1(2u � 1)i; 0) : i 6
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k � �1g
S
f(q1(2u � 1)j; 0)j 6 k � �1g is a basis of Syz1;k � f0g as a vector

space, thus the image of this basis is a generating set for ker( ). Since it is a
R-module, it has a basis as described in the second point of this lemma.

The third point is a direct consequence of the second one. 2

Considering the map in (15), the �rst point of the lemma has an intuitive
meaning: any function de�ned on a part of M� and that satis�es the gluing
conditions imposed by a1; b1; c1 can be extended to a function over M� that
satis�es the gluing conditions a; b; c. The third point allows us to de�ne the
projection �r1 of an element on ker(�) along hGi.

Let ( ~p2; p2), ( ~q2; q2) be the two projections of (0; p2) and (0; q2) by �
r
1 respec-

tively. We denote:

� Zr
1 = f(0; (2u� 1)ip2) : r + 1 6 i 6 k � �2g

� Zr
2 = f(0; (2u� 1)iq2) : r + 1 6 i 6 k � �2g

� Zr
3 = f((2u� 1)iq1; 0) : r + 1 6 i 6 k � �1g

� Zr
4 = f((2u� 1)ip1; 0) : r + 1 6 i 6 k � �2g

� Zr
5 = f(2u� 1)i( ~p2; p2) : 0 6 i 6 rg

� Zr
6 = f(2u� 1)i( ~q2; q2) : 0 6 i 6 rg

� Zr = Zr
1

S
Zr
2

S
Zr
3

S
Zr
4

S
Zr
5

S
Zr
6

Proposition 4.5 Using the notation above we have the following:

� The set Zr is a basis of the vector space Syzr;r;rk .
� The set Y = f(0; (2u � 1)r+1p2); (0; (2u � 1)r+1q2); ( ~p2; p2); ( ~q2; q2); ((2u �

1)r+1q1; 0); ((2u� 1)r+1p1; 0)g is a generating set of the R-module Syzr;r;r.

Proof. The cardinal of Zr is equal to the dimension of Syzr;r;rk , we have to
prove that it is a free set. Let a = (ai), b = (bi), c = (ci), d = (di), e = (ei),
f = (fi) for i 2 f0; : : : ; kg a set of coe�cients. Suppose that:

0 =
rX
i=0

ai(2u� 1)i( ~p2; p2) +
rX
i=0

bi(2u� 1)i( ~q2; q2)

+
k�r��1X
i=0

ci((2u� 1)i+r+1q1; 0) +
k�r��1X
i=0

ei((2u� 1)i+r+1p1; 0)

+
k�r��2X
i=0

di(0; (2u� 1)r+i+1p2) +
k�r��2X
i=0

fi(0; (2u� 1)i+r+1q2):
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Then we have the following equations,

0 =
rX
i=0

ai(2u� 1)i ~p2 +
rX
i=0

bi(2u� 1)i ~q2 +
k�r��1X
i=0

ci(2u� 1)r+1+iq1

+
k�r��1X
i=0

ei(2u� 1)r+1+ip1 (17)

0 =
rX
i=0

ai(2u� 1)ip2 +
rX
i=0

bi(2u� 1)iq2 +
k�r��2X
i=0

di(2u� 1)r+1+ip2

+
k�r��2X
i=0

fi(2u� 1)r+1+iq2 (18)

we know that p2 and q2 are free generators of Syz2, by (18) this means that all
the coe�cients ai, bi, di, fi that are used in the equation are zero. Replacing
in the equation(17) we get in the same way that the other coe�cients ci; ei
are zero, so the set is free. Finally since the set Y does not change when k
changes, then Y generates Syzr;r;r. 2

We have similar results if we proceed in a symmetric way exchanging the role
of the �rst and second polynomial components of the spline functions. The
corresponding basis of Syzr;r;rk is denoted Z 0r and the generating set of the
R-module is

Y 0 =
n�

0; (2u� 1)r+1p2
�
;
�
0; (2u� 1)r+1q2

�
;
�
p1; ~p1

�
;�

q1; ~q1
�
;
�
(2u� 1)rq1; 0

�
;
�
(2u� 1)rp1; 0

�o
:

It remains to compute the dimension and a basis for Syzr�1;r;rk , we deduce
them those of Syzr�1;r�1;r�1k and Syzr;r;rk , and it will depend on the gluing data
as we explain in the following.

Proposition 4.6

� If a(1=2) 6= 0 then Syzr;r;rk = Syzr�1;r;rk , otherwise we have that dim(Syzr�1;r;rk ) =
dim(Syzr;r;rk ) + 1.

� For the second case, an element in Syzr�1;r;rk nSyzr;r;rk is of the form: �(2u�
1)r(0; p2) + �(2u� 1)r(0; q2), with �; � 2 R.

For the proof of this proposition we need the following lemma that can be
proven exactly in the same way as Proposition 4.5 above.

Lemma 4.7 The set ~Zr�1 = Z 0r Sf(2u�1)r(0; p2); (2u�1)r(0; q2)g is a basis
of Syzr�1;r�1;r�1k .

Proof.[Proof of Proposition 4.6.] We denote p1 = (p11; p
2
1; p

3
1), and q1 = (q11; q

2
1; q

3
1),

18



where pji and q
j
i are polynomials. Suppose that there exists (A;B;C) 2 Syzr�1;r;rk n

Syzr;r;rk , then by the previous lemma we can choose (A;B;C) = �(2u �
1)r(0; p2) + �(2u� 1)r(0; q2) with �; � 2 R, that is:

8>>>>><
>>>>>:

A = �(0; (2u� 1)rp12) + �(0; (2u� 1)rq12)

B = �(0; (2u� 1)rp22) + �(0; (2u� 1)rq22)

C = �(0; (2u� 1)rp32) + �(0; (2u� 1)rq32)

But since B;C 2 U r, we deduce:

8><
>:
(2u� 1)r+1 divides B2 �B1 = (2u� 1)r(�p22 + �q22)

(2u� 1)r+1 divides C2 � C1 = (2u� 1)r(�p32 + �q32)

This means that 8><
>:
�p22(

1
2
) + �q22(

1
2
) = 0

�p32(
1
2
) + �q32(

1
2
) = 0

As the determinant of this system is exactly p22(
1
2
)q32(

1
2
) � p32(

1
2
)q22(

1
2
) = a(1

2
),

we deduce the two points of the proposition. 2

Lemma 4.7 implies the following proposition:

Proposition 4.8 The dimension of Syzr�1;r;rk is ~d� (k; r) = d� (k; r) + �� with
�� = 1 if a(1

2
) = 0 and 0 otherwise.

4.3 Separation of vertices

We analyze now the separability of the spline functions on an edge, that is
when the Taylor map at the vertices separate the spline functions.

Let f = (f1; f2) 2 R(�1) � R(�2) of the form fi(ui; vi) = pi + qi ui + ~qi vi +
si uivi + ri u

2
i + ~ri v

2
i + � � � . Then

T(f) = [p1; q1; ~q1; s1; p2; q2; ~q2; s2]:

If f = (f1; f2) 2 Srk(M� ), then taking the Taylor expansion of the gluing
condition (3) centered at u1 = 0 yields

q2 + s1 u1=(a(0) + a0(0)u1 + � � � ) (~q2 + 2 ~r2 u1 + � � � ) (19)

+(b(0) + b0(0)u1 + � � � ) (q2 + s2 u1 + � � � )
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Combining (19) with (2) yields

p1= p2
q1= ~q2
r1= ~r2
~q1= a(0) ~q2 + b(0) q2
s1=2 a(0) ~r2 + b(0) s2 + a0(0) ~q2 + b0(0) q2:

Let H() be the linear space spanned by the vectors [p1; q1; ~q1; s1; p2; q2; ~q2; s2],
which are solution of these equations.

If a(0) 6= 0, it is a space of dimension 5 otherwise its dimension is 4. Thus
dimH() = 5� c� ().

In the next proposition we use the notation of the previous section.

Proposition 4.9 For k > �1+1 we have T(S
1;r
k (M� )) = H(). In particular

dim(T(S
1;r
k (M� ))) = 5� c� ().

Proof. By construction we have T(S
1;r
k (M� )) � H(). Let us prove that

they have the same dimension. If (A;B;C) 2 Syzr;r;rk with A = (A1; A2),B =
(B1; B2),C = (C1; C2), then (A1; B1; C1) is an element of theR-module spanned
by p1 = (p11; p

2
1; p

3
1), q1 = (q11; q

2
1; q

3
1), ie (A;B;C) = a1((1 � 2u)r+1p1; 0) +

P (p1; ~p1) +Q(q1; ~q1). Let f = (f1; f2) = �� (a0; (A;B;C)) (see (14)), then it is
easy to see that:

T(f) =

2
6666666666666664

f1()

@u1f1()

@u2f2()

�@v1f1()

@u2@v2f2()

�@u1@v1f1()

3
7777777777777775

(20)

=

2
6666666666666664

1 0 0 0 0 0

0 p11(0) p11(0) q11(0) 0 0

0 p21(0) p21(0) q21(0) 0 0

0 p31(0) p31(0) q31(0) 0 0

0 p21
0
(0)� 2(r + 1)p21(0) p

2
1
0
(0) q21

0
(0) p21(0) q

2
1(0)

0 p31
0
(0)� 2(r + 1)p31(0) p

3
1
0
(0) q31

0
(0) p31(0) q

3
1(0)

3
7777777777777775

2
6666666666666664

a0

a1

P (0)

Q(0)

P 0(0)

Q0(0)

3
7777777777777775
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The second column of the matrix is linearly dependent on the third and �fth
columns. Using the same argument as in the proof of [MVV16, Proposition
4.7] on the �rst and 4 last columns of this matrix, we prove that its rank
is 5 � c� . By taking P;Q 2 R1 of degree 6 1, which implies that k >

max(deg(P p1); deg(Qq1)) = �1 + 1, the vector [a0; P (0); Q(0); P 0(0); Q0(0)]
can take all the values of R5 and we have T(S

1;r
k (M� )) = H(). This ends

the proof. 2

We consider now the separability of the Taylor map at the two end points
; 0.

Proposition 4.10 Assume that k > max(�1+2; �2+2; �1+ r+1; �2+ r+1).
Then T;0(S1;r

k (M� )) = (H();H(0)) and dimT;0(S1;r
k (M� )) = 10�c� ()�

c� (
0).

Proof. The inclusion T;0(S1;r
k (M� )) � (H();H(0)) is clear by construction.

For the converse, we show that the image of T;0 � �� contains (H(); 0)
and then by symmetry we have that (0;H()) is in the image of T;0 � �� .
Let f = (f1; f2) = �� (a0; (A;B;C)) 2 S1;r

k (M� ) with (A;B;C) = a1((1 �
2u)r+1p1; 0) + P (p1; ~p1) +Q(q1; ~q1) and P;Q 2 U r2 . The image of f by T is of
the form (20). The image of f by T0 is of the form

T0(f) =

2
6666666666666664

f1(
0)

@u1f1(
0)

@u2f2(
0)

�@v1f1(
0)

@u2@v2f2(
0)

�@u1@v1f1(
0)

3
7777777777777775

=

2
6666666666666664

1 t1 0 0 0 0

0 0 ~p11(1) ~q11(1) 0 0

0 0 ~p21(1) ~q21(1) 0 0

0 0 ~p31(1) ~q31(1) 0 0

0 0 ~p21
0(1) ~q21

0(1) ~p21(1) ~q21(1)

0 0 ~p31
0(1) ~q31

0(1) ~p31(1) ~q31(1)

3
7777777777777775

2
6666666666666664

a0

a1

P (1)

Q(1)

P 0(1)

Q0(1)

3
7777777777777775

+

2
6666666666666664

L1(P ) + L2(Q)

0

0

0

0

0

3
7777777777777775

with t1 =
R 1=2
0 (1 � 2u)r+1p11du, L1(P ) =

R 1
0 P ~p11du, L2(Q) =

R 1
0 Q ~q11du. By

choosing P (1) = P 0(1) = Q(1) = Q0(1) = 0 and a0 + t1a1 = 0, we have an
element in the kernel of this matrix. By choosing a0; P (0); P 0(0); Q(0); Q0(0)
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and a1 such that a0 + t1a1 + L1(P ) + L2(Q) = 0, we can �nd a solution to
the system (20) for any f 2 Sk(M� ). Therefore, constructing spline coe�-
cients P;Q 2 U r2 which interpolate prescribed values and derivatives at 0; 1,
we can construct spline functions f 2 Sk(M� ) such that T(f) span H()
and T0(f) = 0. The degree of the spline is k > max(�1 + 2; �1 + r + 1). By
symmetry, for k > max(�2+2; �2+r+1), we have (0;H(0)) � T;0(S1

k(M� ),
which concludes the proof. 2

De�nition 4.11 The separability s(�) of the edge � is the minimal k such
that T;0(S1;r

k (M� )) = (T(S
1;r
k (M� )); T0(S1;r

k (M� ))).

The previous proposition shows that s(�) 6 max(�1+2; �2+2; �1+r+1; �2+
r + 1).

4.4 Decompositions and dimension

Let � 2M1 be an interior edge � shared by the cells �0; �1 2M2. The Taylor
map along the edge � of M� is

D� : Rk(�0)�Rk(�1)! Rk(�0)�Rk(�1)

(f0; f1) 7! (D�0
� (f0); D

�1
� (f1)

�
:

Its image is the set of splines ofRr
k(�1)�R

r
k(�2) with support along � . The ker-

nel is the set of splines of Rr
k(�1)�R

r
k(�2) with vanishing b-spline coe�cients

along the edge � . The elements of ker(D� ) are smooth splines in Srk(M� ). Let
Wk(�) = D� (S

r
k(M� )). It is the set of splines in S

r
k(M� ) with a support along

� . As D� is a projector, we have the decomposition

Srk(M� ) = ker(D� )�Wk(�): (21)

From the relations (12) and (13), we deduce that Wk(�) = Im�� . Since �� is
injective, thus dim(Wk(�)) = dimSyzr;r;rk�1 + 1 = d� (k; r) + 1 and Wk(�) 6= f0g
when k > �1 and k > �2 (Lemma (4.1) (iii)).

The map T;0 de�ned in Section 2.3 induces the exact sequence

0! Kk(�)! S1;r
k (M� )

T;0

�! H(�)! 0 (22)

where Kk(�) = ker(T;0) and H(�) = T;0(S1;r
k (M� )).

De�nition 4.12 For an interior edge � 2 Mo
1, let Ek(�) = ker(T;0) \

Wk(�) = ker(T;0)\ ImD� be the set of splines in Srk(M� ) with their support
along � and with vanishing Taylor expansions at  and 0. For a boundary

22



edge � 0 = (; 0), which belongs to a face �, we also de�ne Ek(�
0) as the set

of elements of Rr
k(�) with their support along � 0 and with vanishing Taylor

expansions at  and 0.

Notice that the elements of Ek(�) have their support along � and that their
Taylor expansion at  and 0 vanish. Therefore, their Taylor expansion along
all (boundary) edges of M� distinct from � also vanish.

As ker(D� ) � Kk(�), we have the decomposition

Kk(�) = ker(D� )� Ek(�): (23)

We deduce the following result

Lemma 4.13 For an interior edge � 2 Mo
1 and for k > s(�), the dimension

of Ek(�) is

dim Ek(�) = ~d� (k; r)� 9 + c� () + c� (
0):

Proof. From the relations (21), (22) and (23), we have

dim Ek(�)=dimKk(�)� dimker(D� )

=dimS1;r
k (M� )� dimHk(�)� dimS1;r

k (M� ) + dimWk(�)

=dimWk(�)� dimHk(�);

which gives the formula using Proposition 4.10. 2

Remark 4.14 When � is a boundary edge, which belongs to the face � 2M2,
we have Srk(M� ) = Rr

k(�) and dim Ek(�) = 2(m+ 1)� 8 = 4k � 2r � 6.

4.5 Basis functions associated to an edge

Suppose that Brk = f�igi=0:::l with l = dimSyzr�1;r;rk�1 and �i = (�1i ; �
2
i ; �

3
i ), is a

basis of Syzr�1;r;rk�1 . We know also that Ek = ff = �� (a0; (A;B;C)) : T;0(f) =

0; (A;B;C) 2 Syzr�1;r;rk�1 g, but we have:

T;0(f) =

0
B@T
T0

1
CA

=

0
B@ c0; A(0);�C(0);�C 0(0); c0; B(0); A(0); B0(0)

c0 +
R 1
0 A(u)du;A(1);�C(1); C 0(1); c0 +

R 1
0 A(u)du;B(1); A(1); B0(1)

1
CA
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Suppose that (A;B;C) =
�P

bi�
1
i ;
P
bi�

2
i ;
P
bi�

3
i

�
with bi 2 R, then T;0(f) =

0 is equivalent to the system:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

a0 = 0P
bi�

1
i (0) = 0P

bi�
2
i (0) = 0P

bi�
3
i (0) = 0P

bi�
20

i (0) = 0P
bi�

30

i (0) = 0P
bi
R 1
0 �i(t)dt = �a0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

P
bi�

1
i (1) = 0P

bi�
2
i (1) = 0P

bi�
3
i (1) = 0P

bi�
20

i (1) = 0P
bi�

30

i (1) = 0

(24)

The system (24) directly depends on the gluing data (1) along the edge via
equations (12) and (13), see Section 4.1 above. An explicit solution requires
the computation of a basis for the syzygy module, which is constructed in
Section 4.2. The image by �� (de�ned in (14)) of a basis of the solutions of
this system yields a basis of Ek.

5 Splines around a vertex

In this section, we analyse the spline functions, attached to a vertex, that is,
the spline functions which Taylor expansions along the edges around the vertex
vanish. We analyse the image of this space by the Taylor map at the vertex,
and construct a set of linearly independant spline functions, which images span
the image of the Taylor map. These form the set of basis functions, attached
to the vertex.

Let us consider a topological surface M composed by quadrilateral faces
�1; : : : ; �F () sharing a single vertex , and such that the faces �i and �i�1
have a common edge �i = (; �i), for i = 2; : : : ; F (). If  is an interior vertex
then we identify the indices modulo F () and �1 is the common edge of �F ()
and �1, see Fig. 4.

The gluing data attached to each of the edges �i will be denoted by ai =
ai
ci
,

bi =
bi
ci
. By a change of coordinates we may assume that  is at the origin

(0; 0), and the edge �i is on the line vi = 0, where (ui�1; vi�1) and (ui; vi)
are the coordinate systems associated to �i�1 and �i, respectively. Then the
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Fig. 4. Topological surface M composed by F () = 5 quadrilateral faces glued
around the vertex .

transition map at  across �i from �i to �i�1 is as given by

��i : (ui; vi)!

0
B@ vibi(ui)

ui + viai(ui)

1
CA ;

following the notation in (1), we have ��i = �i�1;i.

The restriction along the boundary edges of M is de�ned by

D :
F ()M
i=1

R(�i)!
M

�2@M

� 63

R�i(�)

(fi)
F ()
i=1 7!

�
D�i
� (fi)

�
� 63

where D�i
� is the Taylor expansion along � on �i, see Section 2.3.

Let Vk() be the set of spline functions of degree 6 k on M that vanish at
the �rst order derivatives along the boundary edges:

Vk() = kerD \ S
1
k(M): (25)

The gluing data and the di�erentiability conditions in (3) lead to conditions
on the coe�cients of the Taylor expansion of fi, namely

fi(ui; vi) = p+ qiui + qi+1vi + siuivi + riu
2
i + ri+1v

2
i + � � � (26)

with p; qi; si; ri 2 R, and for i = 2; : : : ; F the following two conditions are
satis�ed

qi+1 = ai(0)qi + bi(0)qi�1 (27)

si = 2ai(0)ri + bi(0)si�1 + a0i(0)qi + b0i(0)qi�1: (28)

LetH() be the space spanned by the vectors h = [p; q1; : : : ; qF (); s1; : : : ; sF ()]
such that p, q1; : : : ; qF (), s1; : : : ; sF (), r1; : : : ; rF () 2 R give a solution for (27)
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and (28). The following result was proved in [MVV16, Proposition 5.1] in the
case of polynomial splines.

Proposition 5.1 For a topological surfaceM consisting of F () quadrangles
glued around an interior vertex ,

dimH() = 3 + F ()�
X
�3

c� () + c+();

where c� (), c+() are as in De�nition 2.3.

Since the vectors in H() only depend on the Taylor expansion of f at , and
f can be seen as a polynomial spline in a neighborhood of , then the proof
of Proposition 5.1 follows the same argument as the one in [MVV16].

Proposition 5.2 For a topological surface M as before, if s(�i) denotes the
separability of the edge �i as in De�nition 4, then

T
�
Vk()

�
= H();

for every k > maxfs(�i) : i = 1; : : : ; F ()g.

Proof. By de�nition (see (25)), the elements of Vk() satisfy the conditions

(27) and (28) on the Taylor expansion of f , then T
�
Vk()

�
� H().

Let us consider a vector h = [p; q1; : : : ; qF (); s1; : : : ; sF ()] 2 H(), we need

to prove that this vector is in the image T
�
Vk()

�
. In fact, by Proposition

4.10 applied to �i = [; �i], there exists (f �ii ; f
�i
i�1) 2 S1;r

k (M�i) such that
T(f

�i
i ; f

�i
i�1) = [p; qi; qi+1; si; p; qi�1; qi; si�1] and T�i(f

�i
i ; f

�i
i�1) = 0 for k > s(�i),

for i = 2; : : : ; F . Let us notice that in such case, T �i (f �ii ) = T �i (f
�i+1
i ).

Thus, it follows that there exists gi 2 Rk(�i) such that T �i�i (gi) = f �ii and
T �i�i+1(gi) = f

�i+1
i . The spline gi is constructed by taking the coe�cients of

f �ii and f
�i+1
i in R�i(�i) and R�i(�i+1), respectively (see Section 2.3). Since

T �i�i (f
�i
i ) = T �i�i (gi) = 0 and T �i�i+1(f

�i+1
i ) = T �i�i+1(gi) = 0 then T �i� (gi) = 0 for

every edge � 2 �i such that  =2 � . Let g = [g1; g2; : : : ; gF ()] where gi 2 Rk(�i)
is as previously constructed. Then g and their �rst derivatives vanish on the
edges in @M, and g satis�es the gluing conditions along all the interior edges
�i of M, i.e. g 2 S1

k(M) \ kerD. Hence g 2 Vk(), and by construction
T(g) = h. 2

Given a topological surface M, let T be the Taylor map at all the vertices of
M, as de�ned in Section 2.3. We have the following exact sequence

0! Kk(M)! S1
k(M)

T
�! Hk(M)! 0 (29)
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where Hk(M) = T
�
S1
k(M)

�
and Kk(M) = kerT \ S1

k(M). Let us de�ne

s� = maxfs(�) : � 2 M1g. From Proposition 4.10, we know that s� 6 2 +
maxfv�i : for i = 1; 2 and � 2M1g+min(3; r), where (u�i ; v

�
i ) for i = 1; 2 are

the degrees of the generators of Syz1 and Syz2, respectively, with u
�
i 6 v�i .

Proposition 5.3 Let F () and H() be as de�ned above for each vertex  2
M0, then for every k > s� we have T (S1

k(M)) =
Q
H() and

dimT (S1
k(M)) =

X
2M0

(F () + 3)�
X
2M0

X
�3

c� () +
X
2M0

c+():

Proof. The statement follows directly applying Propositions 5.2 and 5.1 to
each vertex  2M0, with M the sub-mesh ofM which consists of the quad-
rangles in M containing the vertex . 2

5.1 Basis functions associated to a vertex

Given a topological surface M, for each vertex  2 M0, let us consider the
sub-mesh M consisting of all the faces � 2 M such that  2 �, as before,
we denote this number of such faces by F (). From Proposition 5.3 we know
the dimension of T (S1

k(M)) for k > s�. In the following, we construct a set
of linearly independent splines B0 � S1

k(M) such that spanfT (f) : f 2 B0g =
T (S1

k(M)).

Let us take a vertex  2 M0 and consider the b-spline representation of the
elements f� 2 Rk(�) for � 2 M. We construct a set B0() � S1

k(M) of
linearly independent spline function as follows:

� First we add one basis function f attached to the value at , such that
T � (f�)() = 1 for every � 2 M. Let us notice that if we de�ne g� =P

06i;j61Ni(u�)Nj(v�) for every � 2 M, and g on M such that gj� = g�,
then g() = 1. We lift g to a spline f on M such that f is in the image of
the map �� de�ned in (14), for every � 2M1 attached to .

� We add two basis functions g; h supported on M and attached to the

�rst derivatives at . Namely, let us consider g�1 = (1=2k)
�
N0(u�1) +

N1(u�1)
�
N1(v�1), and h�1 = (1=2k)N1(u�1)

�
N0(v�1) + N1(v�1)

�
. The con-

ditions (27) and (28) allow us to �nd g�i and h�i , for i = 2; : : : ; F () from
g�1 and h�1 , respectively. Thus, we de�ne g and h onM by taking gj� = g�
and hj� = h�. Since g and h by construction satisfy the gluing conditions
(2) and (3) along the edges, then they are splines in the image S1

k(M) of
�� for every interior edge � 2M.
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� For each edge �i for i = 1; : : : ; F (), let us de�ne the function g�i =
c�i1;1(g�i)N1(u�i)N1(v�i), where c

�i
1;1(g�i) = 1=4k2 if �i is not a crossing edge,

and equal to zero otherwise. Then, for every �x edge �i 2 M attached to
 we construct a spline g on M such that gj�i = g�i , and gj�j for j 6= i are
determined by g�i and the gluing data at , according to (27) and (28). The
previous construction produces F () �

P
�3 c� () (non-zero) spline func-

tions. These splines, by construction, are in the image of �� (14) along all
the edges � 2M1 attached to .

� If  is a crossing vertex, by de�nition all the edges attached to  are crossing
edges. In this case, we de�ne g�1 = (1=4k2)N1(u�1)N1(v�1), and determine
g�i for i = 2; : : : ; F () using the gluing data at  and conditions (27) and
(28). De�ning g on M by gj�i = g�i we obtain a spline in S1

k(M).

Let us notice that if �i is a crossing edge then, following the notation in the
Taylor expansion of gi(ui; vi) in (26), the coe�cient si = @u�i@v�igi(ui; vi)j
becomes dependent on si�1; qi and qi�1 and therefore there is no additional
basis function associated to the edge �i.

Applying the previous construction to every  2 M0, we obtain a collection
of splines B0() � S1

k(M) for each  2 M0. We lift the splines f 2 S1
k(M)

to functions on M by de�ning f� = 0 for every � =2 M. To simplify the
exposition, we abuse the notation, and will also call f the lifted spline on M,
and B0() the collection of those splines.

De�nition 5.4 For a topological surface M, let B0 � S1
k(M) be the set of

linearly independent functions de�ned by

B0 =
[

2M0

B0(); (30)

where B0() � S1
k(M), for each vertex  2M.

By construction, the collection of splines in B0(), for each vertex  2 M0,
and B0, are linearly independent. Moreover, the number of elements in B0

coincides with the dimension of Hk(M) and hence they constitute a basis for
the spline space S1

k(M) whose Taylor map T (29) is not zero.

6 Splines on a face

Let Fk(M) be the spline functions in Srk(M) with vanishing Taylor expansion
along all the edges of M, that is, Fk(M) = Srk(M) \ kerD.

An element f is in Fk(M) if and only if c�i;j(f) = 0 for i 6 1 or i > m � 1,
j 6 1 or j > m� 1 for all � 2M2.
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Let Fk(�) be the elements in Fk(M) with c�
0

i;j(f) = 0 for 0 6 i; j 6 m and
�0 6= �.

� The dimension of Fk(�) is (2 k � r � 3)2+.
� A basis of Fk(�) is Ni(u�)Nj(v�) for 1 < i; j < m� 1.

We easily check that Fk(M) = ��Fk(�), which implies the following result:

Lemma 6.1 The dimension of Fk(M) is (2k � r � 3)2+F2, where F2 is the
number of (quadrangular) faces of M.

Basis functions associated to a face. The set Fk(M) of basis functions
associated to faces is obtained by taking the union of the bases of Fk(�) for
all faces � 2M2, that is,

B2 := fNi(u�)Nj(v�); 1 < i; j < m� 1; � 2M2g: (31)

7 Dimension and basis of Splines on M

We have now all the ingredients to determine the dimension of S1;r
k (M) and

a basis.

Theorem 7.1 Let s� = maxfs(�) j � 2M1g. Then, for k > s�;

dimS1
k(M) = (2k � r � 3)2F2 +

P
�2M1

~d� (k; r) + 4F2 � 9F1 + 3F0 + F+

where

� ~d� (k) is the dimension of the syzygies of the gluing data along � in degree
6 k,

� F2 is the number of rectangular faces,
� F1 is the number of edges,
� F0 (resp. F+) is the number of (resp. crossing) vertices,

Proof. By construction, Kk(M) = S1;r
k (M) \ kerT is the set of splines in

S1;r
k (M), which Taylor expansion at all the vertices vanish and Hk(M) is the

image of S1;r
k (M) by the Taylor map T . Thus we have the following exact

sequence:

0! Kk(M)! S1;r
k (M)

T
�! Hk(M)! 0: (32)

By construction, Ek(M) is the set of splines in Kk(M) with a support along
the edges ofM, so that D(Kk(M)) = Ek(M). The kernel of D : ��Rk(M)!
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��Rk(M) is Fk(M). As Fk(M) � Kk(M), we have the exact sequence

0! Fk(M)! Kk(M)
D
�! Ek(M)! 0: (33)

From the exact sequences (32) and (33), we have

dimS1;r
k (M)=dimHk(M) + dimKk(M)

=dimHk(M) + dim Ek(M) + dimFk(M)

We deduce the dimension formula using Lemma 4.13, Proposition 5.1 and
Lemma 6.1, as in [MVV16, proof of Theorem 6.3]. 2

Basis of S1;r
k (M). A basis of S1;r

k (M) is obtained by taking

� the basis B0 of Vk(M) attached to the vertices of M and de�ned in (30),
� the basis B1 of Ek(M) attached to the edges of M and de�ned in (24),
� the basis B2 of Fk(M) attached to the faces of M and de�ned in (31).

8 Examples

To illustrate the construction, we detail an example of a simple mesh, where
a point of valence 3 is connected to a crossing point. The construction can be
extended to points of arbitrary valencies, in a more complex mesh.

We consider the mesh M composed of 3 rectangles �1; �2; �3 glued around an
interior vertex , along the 3 interior edges �1; �2; �3. There are 6 boundary
edges and 6 boundary vertices �1; �2; �3, �1; �2; �3. We use the symmetric glueing

γ

δ1

δ2

τ1

τ2

τ3 δ3

σ1 σ2

σ3

ǫ1 ǫ2

ǫ3

b bb

b b

b

Fig. 5. Smooth corner.

corresponding to the angle 2�
3
at  and �

2
at �1; �2; �3.

30



We choose the gluing data [a; b; c] along an edge �i given by Formula (10):

a(u) = d0(u)

b(u) = �d0(u)� d1(u)

c(u) = d0(u) + d1(u)

where d0 = ~N0(u) + ~N1(u), d1 = ~N2(u) + ~N3(u) + ~N4(u) for the b-spline basis
~N0; : : : ; ~N5 of U

0
2 and where u = 0 corresponds to . This gives

a(u) =

8>><
>>:
�1 + 4u2 0 6 u 6 1

2

0 1
2
6 u 6 1

; b(u) = �1; c(u) = 1;

The degrees of the �-bases of the di�erent components are respectively �1 =
0; �1 = 2, �2 = 0, �2 = 0. Thus the separability is reached from the degree
k > 4.

We are going to analyze the spline space S1;1
4 (M) for speci�c gluing data. An

element f 2 S1;1
4 (M) is represented on each cell �i (i = 1; 2; 3) by a tensor

product b-spline of class C1 with 8� 8 b-spline coe�cients:

fk :=
X

06i;j67

cki;j(f)Ni;j(uk; vk);

where Ni;j(u; v) = Ni(u)Nj(v) and fN0(u); : : : ; N7(u)g is the basis of U1
k . We

describe an element f 2 S1;1
4 (M) as a triple of b-spline functions" X

06i;j67

c1i;jNi;j ;
X

06i;j67

c2i;jNi;j ;
X

06i;j67

c3i;jNi;j

#
:

The separability is reached at degree 4 and we have the following basis ele-
ments, described by a triple of functions which are decomposed in the b-spline
bases of each face:

� The number of basis functions attached to  is 6 = 1 + 2 + 3.

� The basis function associated to the value at  is�
N0;0 +

1

3
N0;2 +N0;3 +N0;4 + 2N1;3 + 2N1;4 +

1

3
N2;0 +N3;0 +N4;0;

N0;0 +
1

3
N2;0 +N3;0 +N4;0 + 3N0;1 +

31

3
N0;2 + 17N0;3 + 17N0;4

+ 14N1;2 + 34N1;3 + 34N1;4;

N0;0 + 3N1;0 +
31

3
N2;0 + 17N3;0 + 17N4;0 +

1

3
N0;2 +N0;3 +N0;4

+ 2N1;3 + 2N1;4

�
:
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� The two basis functions associated to the derivatives at  are�
N0;1 +

10

3
N0;2 +

16

3
N0;3 +

16

3
N0;4 +

14

3
N1;2 +

32

3
N1;3 +

32

3
N1;4 ;

N1;0 +
10

3
N2;0 +

16

3
N3;0 +

16

3
N4;0 ;

�N0;1 �
10

3
N0;2 �

16

3
N0;3 �

16

3
N0;4 �

16

3
N1;2 �

32

3
N1;3 �

32

3
N1;4

�N1;0 �
10

3
N2;0 �

16

3
N3;0 �

16

3
N4;0

�
;

�
N1;0 +

10

3
N2;0 +

16

3
N3;0 +

16

3
N4;0 ;

�N0;1 �
10

3
N0;2 �

16

3
N0;3 �

16

3
N0;4 �

14

3
N1;2 �

32

3
N1;3 �

32

3
N1;4 ;

�N1;0 �
10

3
N2;0 �

16

3
N3;0 �

16

3
N4;0 +N0;1 +

10

3
N0;2 +

16

3
N0;3

+
16

3
N0;4 +

14

3
N1;2 +

32

3
N1;3 +

32

3
N1;4

�
:

� The three basis functions associated to the cross derivatives at  are�
�

4

3
N0;2 �

8

3
N0;3 �

8

3
N0;4 +N1;1 �

4

3
N1;2 �

16

3
N1;3 �

16

3
N1;4 ;

�
4

3
N2;0 �

8

3
N3;0 �

8

3
N4;0 ; 0

�
;

�
�

4

3
N2;0 �

8

3
N3;0 �

8

3
N4;0 ;

�
4

3
N0;2 �

8

3
N0;3 �

8

3
N0;4 �

4

3
N1;2 �

16

3
N1;3 �

16

3
N1;4 ;

�
4

3
N2;0 �

8

3
N3;0 �

8

3
N4;0 +N1;1 �

4

3
N0;2 �

8

3
N0;3 �

8

3
N0;4

�
4

3
N1;2 �

16

3
N1;3 �

16

3
N1;4

�
;

�
�
4

3
N2;0 �

8

3
N3;0 �

8

3
N4;0 ; 0 ;

�
4

3
N0;2 �

8

3
N0;3 �

8

3
N0;4 �

4

3
N1;2 �

16

3
N1;3 �

16

3
N1;4

�
:

� There are 4 = 1 + 2 + 2� 1 basis functions attached to �i:

[N0;7 ; N7;0 + 2N7;1 ; 0]; [N0;6 ; N6;0 + 2N6;1 ; 0 ]; [N1;7 ; �N7;1 ; 0 ]; [N1;6 ;�N6;1 ; 0 ]:

The basis functions associated to the other boundary points �2; �3 are obtained
by cyclic permutation.

� There are 5 = 14� 5� 4 basis functions attached to edge �1:

[�N1;2 ; N2;1 ; 0 ]; [�N1;3 ; N3;1 ; 0 ]; [�N1;4 ; N4;1 ; 0 ];
[�N1;5 ; N5;1 ; 0 ]; [N0;5 + 2N1;5 ; N5;0 ; 0 ]:
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The basis functions associated to the other edges �2; �3 are obtained by cyclic
permutation.

� For the remaining boundary points, boundary edges and faces, we have the
following 36� 3 basis functions

[Ni;j ; 0 ; 0 ]; [0 ; Ni;j ; 0 ]; [0 ; 0 ; Ni;j ]; for 2 6 i; j 6 7:

The dimension of the space S1;1
4 (M) is 6 + 3� (4 + 5 + 36) = 141.

A similar construction applies for an edge of a general mesh connecting an
interior vertex  of any valency 6= 4 to another vertex 0. If 0 is a crossing
vertex, the numbers of basis functions attached to the vertices and the edge
do not change. If 0 is not a crossing vertex, the number of basis functions
attached to the non-crossing vertex 0 becomes 5 and there are 4 basis func-
tions attached to the edges. In the case, where the edge connects two crossing
vertices, there are 4 basis functions attached to each crossing vertex and 8
basis functions attached to the edge.

The glueing data used in this construction require a degree 4 for the sepa-
rability. For the mesh of Figure 5, it is possible to use linear glueing data
and bi-cubic b-spline patches. The dimension of bi-cubic G1 splines with the
linear glueing data is 72. Depending on topology of the mesh, it is possible to
construct and the choice of the glueing data, it is possible to use low degree
b-spline patches for the construction of G1 splines. In Figure 6, examples of
G1 bicubic spline surfaces are shown, for meshes with valencies at most 3; 4
and 6. The G1 surface is obtained by least-square projection of a G0 spline
onto the space of G1 splines.

Fig. 6. Examples of bi-cubic G1 surfaces

Concluding remarks

We have studied the set of smooth b-spline functions de�ned on quadrilateral
meshes of arbitrary topology, with 4-split macro-patch elements. Our study
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has focused on determining the dimension of the space of geometrically con-
tinuous G1 splines of bounded degree. We have provided a construction for the
basis of the space composed of tensor product b-spline functions. We have also
illustrated our results with examples concerning parametric surface construc-
tion for simple topological surfaces. Further extensions include the explicit
construction of transition maps which ensure that the di�erentiability condi-
tions are ful�lled, and the study of spline spaces with di�erent macro-patch
elements leading to a lower degree of the basis functions, the analysis of the
numerical conditioning of the representation of the G1-splines in the chosen
basis, the use of these basis functions for approximation, in particular, in �t-
ting problems and in iso-geometric analysis.
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