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Among the strong approaches, the extended finite element method (XFEM) is one of the most versatile and accurate. This method has been successfully applied to static problems in two and three dimensions, (see e.g [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], Moës et al., 2002), [START_REF] Zi | New crack-tip elements for XFEM and applications to cohesive cracks[END_REF][START_REF] Zi | A method for growing multiple cracks without remeshing and its application to fatigue crack growth[END_REF], [START_REF] Gravouil | Non-planar 3D crack growth by the extended finite element and level sets -Part II : Level set update[END_REF], Moës et al., 2002)) and to dynamic problems [START_REF] Belytschko | Dynamic Crack propagation based on Loss of Hyperbolicity and a new discontinuous enrichment[END_REF], [START_REF] Zi | The extended finite element method for dynamic fractures[END_REF] in two dimensions and three dimensions including contact along the crack faces, and smallscale plasticity [START_REF] Rethore | An energy-conserving scheme for dynamic crack growth using the eXtended finite element method[END_REF]. The extended finite element method is now utilised in industrial settings to assess damage tolerance of complex structures (Bordas et al., 2006b, Bordas et al., 2006a) and open source C++ libraries are available, such as (Bordas et al., 2006c, Dunant et al., 2006). Meshfree methods benefit from a higher order of continuity which naturally smoothes the stress field in the crack tip region. Fracture simulation work using meshfree methods is extensive. [START_REF] Belytschko | Dynamic fracture using element-free Galerkin methods[END_REF], [START_REF] Lu | Element-free Galerkin method for wave-propagation and dynamic fracture[END_REF], (Belytschko et al., 1995a), (Belytschko et al., 1995b) and [START_REF] Krysl | The Element Free Galerkin Method for dynamic propagation of arbitrary 3-D cracks[END_REF] handle two and three dimensions, and treat discontinuities by the visibility criterion or some modifications of it. Other novel approaches which were able to treat kinked and curved cracks were proposed by [START_REF] Ventura | A vector level set method and new discontinuity approximations for crack growth by EFG[END_REF] and [START_REF] Duflot | A meshless method with enriched weight functions for three-dimensional crack propagation[END_REF]. They also enrich the MLS basis functions around the crack tip and improve significantly the convergence behaviour. 1 The major drawback is the need for an explicit representation of the crack. Alternate methods enrich the meshfree weight (kernel) functions [START_REF] Duflot | A meshless method with enriched weight functions for three-dimensional crack propagation[END_REF] and use the diffraction criterion to introduce the discontinuity. (Rabczuk et al., in press) propose an extended element free Galerkin (XEFG) method for cohesive crack initiation, growth and junction in three dimensional statics and dynamics, but the closure of the crack along the front is ensured through near-tip enrichment which vanishes along this front. As noted in (Rabczuk et al., in press), the polar coordinate system along a crack front is not well-defined at the kinks. While the fields spanning the space of linear elastic fracture mechanics solutions are known for small strains, this is the case neither in large strain nor for non-linear materials in general. This makes the selection of near-tip enrichment fields difficult in these circumstances, and calls for an alternate method. In the results presented in [START_REF] Bordas | Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[END_REF] we do not use front enrichment, but only discontinuous enrichment ; the crack is closed using a constraint field enforced by Lagrange multipliers. Similar accuracy compared to (Rabczuk et al., in press) is obtained on the examples treated. Furthermore, we add and test a crack branching algorithm.

For conciceness, we only present some numerical results with comparison to experiments, and the reader is referred to [START_REF] Bordas | Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[END_REF] for details.

Chalk under torsion

We analyze numerically the problem of a circular-cylindrical chalk bar under torsion. A non-uniform traction boundary condition is applied and a small pertubation is introduced on the lateral surface on the midplane normal to the cylinder's director. If the numerical chalk specimen were "perfect", the failure would happen at an arbitrary position. The experimental failure surface of the chalk is compared to the numerical failure surface in Figure 1. We note that the numerical results are relatively sensitive to boundary conditions and to the dimensions of the model specimen ; more specifically, the ratio between the length and the cross section is influencial. If the length is large compared to the diameter of the chalk bar, and the tractions applied uniformly, then the elastic strain energy stored is large, resulting in a relatively straight fracture surface. For non-uniform boundary conditions, as illustrated in Figure 1, we obtain a hellical fracture surface, comparable to the experimental failure surface.

Taylor bar impact

To test the method for multiple cracks with crack junction, we consider a Taylor bar impact. There are experimental results available, see [START_REF] Teng | Numerical prediction of fracture in the Taylor test[END_REF]. The Taylor bar has a diameter of 6mm and length 30mm. We consider an impact velocities of 600m/s. The failure mechanism is petalling. We have performed similar computations in (Rabczuk et al., in press) but for a much smaller impact velocity where relatively moderate strains occur. The material is a 2024-T351 aluminium alloy. We use the Johnson Cook model [START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[END_REF] as in the previous section with Young's modulus E = 74GPa, Poisson ratio ν = 0.3, density 0.0027g/mm 3 , a reference strain rate of 3.33 × 10 -4 , A = 352MPa, B = 440MPa, C = 0.0083, n = 0.42, m = 1, c v = 875 J/kg C, T r = 296K, T m = 775K and β = 1. We tested two different discretizations, with approximately 7,000 particles and 22,000 particles. The final deformation of the Taylor bar is shown in Figure 2 for both discretizations. As can be seen, multiple cracking occurs including crack junctions. The failure mode is similar as observed in [START_REF] Teng | Numerical prediction of fracture in the Taylor test[END_REF]. There are basically four major cracks that cause the petalling. Our failure mode is slightly too ductile, which is likely related to difficulties in the discontinuous bifurcation analysis since the Johnson Cook material does not lose stability easily. The results look almost identical for both discretizations, and agree well with [START_REF] Teng | Numerical prediction of fracture in the Taylor test[END_REF].

Conclusions

This paper presented numerical results obtained with a three-dimensional adaptive meshfree method for fracture in statics and dynamics. The initiation, growth, coallescence and branching of an arbitrary number of cracks is handled simply and effectively. The results show accurate simulation of large deformation failure problems including fragmentation, where the flexibility of the meshfree method coupled with the efficient crack interaction procedure is most clear. The simulations approach experimental results available in the literature.
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 2 Figure 2. Final crack pattern of the Taylor bar problem