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Introduction

Statistical distributions play a significant role in describing and predicting real world phenomena. In the 1970s, Camilo Dagum developed a statistical distribution to fit empirical income and wealth data that are not satisfied with the classical distributions (Pareto and lognormal distributions). He looked for a model accommodating the heavy tails appear in empirical income and wealth data distributions, where the former distribution is well captured by the Pareto but not by the lognormal and the latter by the lognormal but not the Pareto. Experimenting with a shifted log-logistic distribution [START_REF] Dagum | A model of income distribution and the conditions of existence of moments of finite order[END_REF], Dagum realized that a further parameter was needed to such distribution which led to the Dagum type I and generalizations with three-parameter and four-parameter distributions [START_REF] Dagum | A new model of personal income distribution: Specification and estimation[END_REF][START_REF] Dagum | The generation and distribution of income, the Lorenz curve and the Gini ratio[END_REF].

In the same era Mielke and Johnson [START_REF] Mielke | Some generalized beta distributions of the second kind having desirable application features in hydrology and meteorology[END_REF] proposed the generalized beta distribution of the second kind abbreviated as GBDII. This distribution is used in the flood fre-quency analysis and it has the beta-k distribution as a sub-model. After that various authors have shown that the Dagum distribution [START_REF] Dagum | A model of income distribution and the conditions of existence of moments of finite order[END_REF] and GBDII are identical and they are two different parameterizations of the same distribution (see, for example, [START_REF] Chotikapanich | Modeling income distributions and Lorenz curves[END_REF][START_REF] Kleiber | Statistical size distribution in economics and actuarial sciences[END_REF]). Domma and Perri [START_REF] Domma | Some developments on the log-Dagum distribution[END_REF] proposed the log-Dagum (LD) distribution obtained by a logarithmic transformation of the Dagum distribution. The LD distribution is defined on the real line and its shape is leptokurtic. Also, it may be symmetric and asymmetric, and hence shall be useful in modeling skewed and leptokurtic distributions which frequently occur in several areas such as finance, reliability, econometrics, insurance and hydrology.

Interpretations of the real world phenomena needs introducing new statistical distributions, namely ones defined on the whole real line and having bimodal behavior for both density and hazard rate functions. Therefore, we introduce a new model called a power log-Dagum (PLD) distribution with the cumulative distribution function (cdf)

F (x) = 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -ζ , x, ϑ ∈ , ζ > 0, ≥ 0, ( 1 
)
where sign is 1 if x > 0, 0 if x = 0 and -1 if x < 0. In addition to, it has the following representation: F (x) = G [x w(x)] where w(x) is the polynomial weight: w(x) = ϑ + ϑ |x| ϑ-1 , satisfying lim x→-∞ xw(x) = -∞ and lim x→+∞ xw(x) = +∞, and G(x) = {1 + e -x } -ζ is a cdf of the LD distribution with parameters (ζ, 1, 1).

The corresponding probability density function (pdf) and the hazard rate function (hrf) are given as

f (x) = ζ ϑ + |x| ϑ-1 e -(ϑx+sign(x) ϑ |x| ϑ ) 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -(ζ+1) , (2) 
h(x) = ζ ϑ + |x| ϑ-1 e -(ϑx+sign(x) ϑ |x| ϑ ) 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -(ζ+1) 1 -1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -ζ , (3) 
respectively.

Obviously, the PLD distribution is defined on the entire real line and this is one of the important features of it, unlike the Dagum [START_REF] Dagum | A model of income distribution and the conditions of existence of moments of finite order[END_REF] and GBDII [START_REF] Mielke | Some generalized beta distributions of the second kind having desirable application features in hydrology and meteorology[END_REF] distributions, which can only provide support on the positive real line.

The PLD distribution defined by (1) has the following submodels.

(1) When ζ = 1, then (1) reduces to the power logistic (PLo) distribution with the density

f (x) = ϑ + |x| ϑ-1 e -(ϑx+sign(x) ϑ |x| ϑ ) 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) 2 , x, ϑ ∈ , ϑ > 0, ≥ 0. ( 4 
)
(2) When ϑ = 2, then (1) reduces to the linear log-Dagum distribution with the density

f (x) = ζ (2 + |x|) 1 + e -(2x+sign(x) 2 x 2 ) -ζ-1
e -(2x+sign(x) 2 x 2 ) .

(3) When ϑ = 2 and ζ = 1, then [START_REF] Aarset | How to identify bathtub hazard rate[END_REF] gives the linear logistic distribution with the density

f (x) = (2 + |x|) e -(2x+sign(x) 2 x 2 ) 1 + e -(2x+sign(x) 2 x 2 )
2 .

(4) When ϑ = 2 and = 0, then (1) reduces to the log-Dagum distribution with parameters (ζ, 2) and the density

f (x) = 2ζ 1 + e -2x -ζ-1 e -2x ,
which is introduced by [START_REF] Domma | Some developments on the log-Dagum distribution[END_REF]. ( 5) When ϑ = 2, ζ = 1 and = 0, then (1) leads to the known logistic distribution with the density

f (x) = 2e -2x [1 + e -2x ] 2 .
[Figure 1 [Figure 2 about here.]

Plots of Figure 2 display the density functions of the PLD distribution. Figure 2 portrays that changing against the fixed ϑ and ζ shift the mode towards left. But in case of changing ζ with fixed ϑ and shift the curve towards right. However, the interesting feature of the distribution is its bimodal behavior which is frequently used in biomedical and engineering phenomenon like formation of bathtub shapes of the hazard function. Such bimodal behavior is captured while fixing ζ and and changing ϑ. Further, Figure 2 portrays that bimodality nature of the curve shift towards right as ϑ increases.

[Figure 3 about here.]

Hazard function is an important indicator for observing the deteriorating condition of a product which ranges from increasing, decreasing, bathtub (BT) to inverse bathtub (IBT) shapes. So in this regard Figure 3 speaks out it self and justifies the potential of the model. Moreover, the hazard function plots in Figure 3 also portray the deteriorating conditions of the product as time increases in terms of spontaneous spikes at the end of either increasing or decreasing hazard rate. This implies that the hazard function is sensitive against different combinations of the parameters as time changes, which seems to be a refine image of non stationarity process and hence the hazard curve does not remain stable as times passes. Moreover, Figure 3 displays increasing, decreasing, bimodal and upside down bathtub hazard shapes.

It is worth mentioning that the economic and hydrologic data analysis is based on the assumption that the data are stationary but a number of documented researches showed that these data may be non-stationary. Therefore, identification and use of non-stationary probabilistic models in practice have been recommended (See [START_REF] Salas | Revisiting the concepts of return period and risk for non-stationary hydrologic extreme events[END_REF]). In application section of this paper, Example 2 shows the merit of the PLD model for modeling and analyzing non-stationary time series data as inflation rates with positive and negative values.

The reminder of the paper is outlined as follows. We discuss some statistical properties of the PLD distribution in Section 2, including moments, moment generating function and moments of order statistics. We provide in Section 3 three estimation procedures of the PLD model parameters, namely the maximum likelihood estimation, ordinary and weighted least square estimation, and they are compared using simulations studies. Applications of the PLD model for three practical data sets are discussed in Section 4.

Some Statistical Properties

In this section, we study some statistical properties of the PLD distribution, including moments, moment generating function and moments of order statistics.

Moments and moment generating function

Let X be a PLD random variable, the r th moment of X, say µ r = E(X r ), follows from (2) as

µ r = ζ ∞ -∞ x r ϑ + |x| ϑ-1 e -(ϑx+sign(x) ϑ |x| ϑ ) 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -ζ-1 dx.
Using the series expansion

1 + e -(ϑx+sign(x) ϑ |x| ϑ ) -ζ-1 =              ∞ j=0 -ζ -1 j e -j(ϑx+ ϑ x ϑ ) , if x > 0, ∞ j=0 -ζ -1 j e (ζ+j+1)(ϑx-ϑ (-x) ϑ ) , if x < 0, (5) 
we obtain the moment as

µ r = ζ ϑ ∞ j=0 -ζ -1 j 0 -∞ x r e -(ϑx-ϑ (-x) ϑ ) e (ϑx-ϑ (-x) ϑ )(ζ+j+1) dx + ∞ 0 x r e -(ϑx+ ϑ x ϑ ) e -j(ϑx+ ϑ x ϑ ) dx + ζ ∞ j=0 -ζ -1 j 0 -∞ x r (-x) ϑ-1 e -(ϑx-ϑ (-x) ϑ ) e (ϑx-ϑ (-x) ϑ )(ζ+j+1) dx + ∞ 0
x r+ϑ-1 e -(ϑx+ ϑ x ϑ ) e -j(ϑx+ ϑ x ϑ ) dx .

By using the series expansion, we can write

µ r = ζ ϑ ∞ j,k=0 -ζ -1 j (-ϑ (ζ + j)) k k! 0 -∞ x r (-x) ϑ k e ϑ(ζ+j)x dx + (-ϑ (1 + j)) k k! ∞ 0 x r+ϑ k e -ϑ(1+j)x dx + ζ ∞ j,k=0 -ζ -1 j (-ϑ (ζ + j)) k k! 0 -∞ x r (-x) ϑ(1+k) -1 e ϑ(ζ+j)x dx + (-ϑ (1 + j)) k k! ∞ 0
x r+ϑ(1+k) -1 e -ϑ(1+j)x dx .

Hence

µ r = ζ ϑ ∞ j,k=0 -ζ -1 j 1 k! {-ϑ (ζ + j)} k (-1) r {ϑ(ζ + j)} 1+ϑk+r + {-ϑ (1 + j)} k (ϑ + ϑj) 1+ϑk+r Γ (1 + ϑk + r) + ζ ∞ j,k=0 -ζ -1 j 1 k! {-ϑ (ζ + j)} k (-1) r {ϑ(ζ + j)} ϑ+ϑk+r + {-ϑ (1 + j)} k (ϑ + ϑj) ϑ+ϑk+r Γ (ϑ + ϑk + r) .
The moment generating function (mgf) of the PLD distribution is

M (t) = ζ ∞ -∞ e tx ϑ + |x| ϑ-1 1 + e -(ϑx+sign(x) ϑ |x| ϑ ) - (ζ+1) 
e -(ϑx+sign(x) ϑ |x| ϑ ) dx, (6) and making use of (5), we have

M (t) = ζ ϑ ∞ j,k=0 -ζ -1 j 1 k! {-ϑ (ζ + j)} k {ϑ(ζ + j) + t} 1+ϑk + {-ϑ (1 + j)} k (ϑ + ϑj -t) 1+ϑk Γ (1 + ϑk) + ζ ∞ j,k=0 -ζ -1 j 1 k! {-ϑ (ζ + j)} k {ϑ(ζ + j) + t} ϑ(1+k) + {-ϑ (1 + j)} k (ϑ + ϑj -t) ϑ(1+k) Γ (ϑ + ϑk) .

Moments of order statistics

Let X 1 , X 2 , . . . , X n be a random sample from the PLD distribution and its order statistics is X 1:n , X 2:n , . . . , X n:n . Let f i:n (x) and F i:n (x) denote the pdf and the cdf of the i th order statistic X i:n , respectively. Hence, using the standard expressions of order statistics, we find that

f i:n (x) = n! (i -1)! (n -i)! n-i l=0 n -i l (-1) l [F (x)] i-1+l f (x) ,
and

F i:n (x) = n! (i -1)! (n -i)! n-i l=0 n -i l (-1) l i + l [F (x)] i+l ,
where F (x) and f (x) are given by equations ( 1) and ( 2), respectively. Hence, the r th moment of the i th order statistic X i:n is

E (X r i:n ) = ∞ -∞ x r f i:n (x) dx,
and by making use of f i:n (x) and equation ( 5) with some algebra, one find that

E (X r i:n ) = ζ n! (i -1)! (n -i)! n-i l=0 ∞ j,k=0 n -i l -ζ(i + l) -1 j (-1) l k! × ϑ { ϑ (1 + ζ(i + l) -j)} k (-1) r {ϑ(j -1 -ζ(i + l))} 1+ϑk+r + {-ϑ (1 + j)} k (ϑ + ϑj) 1+ϑk+r Γ (1 + ϑk + r) + { ϑ (1 + ζ(i + l) -j)} k (-1) r {ϑ(j -1 -ζ(i + l))} ϑ+ϑk+r + {-ϑ (1 + j)} k (ϑ + ϑj) ϑ+ϑk+r Γ (ϑ + ϑk + r) .

Estimation Procedures

In this section we investigate three estimation procedures for the PLD model parameters, namely the maximum likelihood estimation, ordinary and weighted least square estimations. Performance of those procedures is investigated by simulation studies.

Maximum likelihood estimators

Let X 1 , X 2 , • • • , X n be a random sample from the PLD distribution with parameter vector Θ=(ϑ, ζ, ) and x 1 , x 2 , • • • , x n are the corresponding observed values, then the joint probability function of X 1 , X 2 , • • • , X n as a log-likelihood function can be expressed as

(Θ) = n log (ζ) + n i=1 log ϑ + |x i | ϑ-1 - n i=1 ϑx i + sign(x i ) ϑ |x i | ϑ -(ζ + 1) n i=1 log 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ . (7) 
The associated nonlinear log-likelihood equations ∂ (Θ) ∂Θ = 0 are given by

∂ (Θ) ∂ϑ = n i=1 1 + log (|x i |) |x i | -1+ϑ ϑ + |x i | -1+ϑ - n i=1 x i + ϑ sign(x i )|x i | ϑ log(|x i |) - 1 ϑ -(1 + ζ) n i=1 e -ϑxi-sign(xi) ϑ |xi| ϑ -x i -ϑ sign(x i )|x i | ϑ log(|x i |) -1 ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ = 0, ∂ (Θ) ∂ζ = n ζ - n i=1 log 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ = 0, ∂ (Θ) ∂ = - n i=1 sign(x i ) |x i | ϑ ϑ + (1 + ζ) n i=1 e -ϑxi-sign(xi) ϑ |xi| ϑ sign(x i )|x i | ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ ϑ + n i=1 |x i | -1+ϑ ϑ + |x i | -1+ϑ = 0.
Solving the equations above simultaneously, we obtain the maximum likelihood estimators (MLEs) of the model parameters.

The information matrix is used to establish the confidence intervals for the model parameters. The elements of the 3 × 3 observed information matrix J(Θ) = J rs (Θ) for r, s = ϑ, ζ, are provided in Appendix B.

In the simulation study for the MLEs (Subsection 3.3), it is observed that the bias and mean square error of the MLEs decrease as sample sizes increase which suit the usual norms of asymptotic properties of the MLEs. However, when all the parameters posses values greater than one, a downward bias is only reflected with ϑ and , and when all the parameters posses values less than one, a downward bias is only reflected with ϑ. In addition to, an upward bias is observed for all other combinations. Those features can be observed in Table 1.

Ordinary and weighted least-square estimators

Let x 1 , x 2 , • • • , x n be an ordered sample of the random sample of size n from a distribution function F (•). Let F (•) follow the PLD distribution, then the least square estimators (LSE) can be obtained by minimizing

L(Θ) = n i=1 1 + e -ϑ xi-sign(xi) ϑ |xi| ϑ -ζ - i n + 1 2 , (8) 
with respect to the unknown parameters of the distribution. The associated nonlinear equations ∂L(Θ) ∂Θ = 0 are given by

∂L(Θ) ∂ϑ = 2ζ n i=1 e -ϑxi-sign(xi) ϑ |xi| ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n × 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -1-ζ x i + ϑ sign(x i )|x i | ϑ log(|x i |) - 1 ϑ = 0, ∂L(Θ) ∂ζ = -2 n i=1 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n × log 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ = 0, ∂L(Θ) ∂ = 2ζ ϑ n i=1 e -ϑxi-sign(xi) ϑ |xi| ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -1-ζ × 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n sign(x i )|x i | ϑ = 0.
Solving this system of nonlinear equations simultaneously will yield the LSEs of the distribution parameters.

In the simulation study, a down bias is noted in all of the parameter combination except for , when it is less than one. Moreover, fluctuation in bias and mean square error is reflected in parameter combinations which obviously approaches to zero. Table 2 shows such reflections.

On the other side, the weighted least square estimators (WLSE) of parameters of the PLD distribution can be obtained by minimizing

W(Θ) = n i=1 (n + 1) 2 (n + 2) i(n -i + 1) 1 + e -ϑ xi-sign(xi) ϑ |xi| ϑ -ζ - i n + 1 2 , (9) 
with respect to the unknown parameters. The associated nonlinear equations ∂W(Θ) ∂Θ = 0 are given by

∂W(Θ) ∂ϑ = 2ζ n i=1 (n + 1) 2 (n + 2) i(n -i + 1) e -ϑxi-sign(xi) ϑ |xi| ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -1-ζ × 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n × x i + ϑ sign(x i )|x i | ϑ log(|x i |) - 1 ϑ = 0, ∂W(Θ) ∂ζ = -2 n i=1 (n + 1) 2 (n + 2) i(n -i + 1) 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n × 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ log 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ = 0, ∂W(Θ) ∂ = 2ζ ϑ n i=1 (n + 1) 2 (n + 2) i(n -i + 1) e -ϑxi-sign(xi) ϑ |xi| ϑ 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -1-ζ × 1 + e -ϑxi-sign(xi) ϑ |xi| ϑ -ζ - i 1 + n sign(x i )|x i | ϑ = 0.
Solving the system of equations above yields the WLSEs of the distribution parameters.

A simulation work, see the next subsection, shows that a downward bias is observed in all parameter combinations except when < 1. In addition, fluctuation in bias and mean square error is remarked in all parameter combinations which approaches to zero. Table 3 exhibits such reflections.

Simulation studies

In this subsection, we perform a small simulation study to gain some results on the estimators obtained by using the above estimation methods as well as their asymptotic behavior for finite samples. All the numerical computations are performed via Mathematica 8.0 using the random numbers generator code. We consider the following different • Average mean square error (MSE) of the simulated estimates:

1 1000 1000 i=1 (Θ -Θ) 2 ,
where Θ = ( θ, ˆ , ζ) are estimates of the parameter vector Θ = (ϑ, ζ, ). The results are reported in Tables 1, 2 and 3.

[Table 1 

Evaluation Measures and Practical Data Examples

In the statistical literature, various distributions are employed for different situations. Some of them are suitable for symmetrical data, some for skewed data and others are for both aspects. In this regard, we study those distributions which are either, positively skewed, negatively skewed or symmetrical and posses increasing, decreasing, bathtub shapes (BTS) and inverse bathtub (IBT) hazard function. Moreover, comparison also requires that random variable should also be defined on the whole real line, i.e. x ∈ . The above conditions demand the following known distributions that are: Normal, Cauchy, Gumbel, Dagum. For the probability density functions of the above mentioned distributions, the reader may refer to [START_REF] Johnson | Continuous univariate distributions Volume-1 Second edition[END_REF] and [START_REF] Johnson | Continuous univariate distributions Volume-2 Second edition[END_REF], noting that the log-dagum (LD) was developed by [START_REF] Domma | Some developments on the log-Dagum distribution[END_REF].

Numerical measures

In order to demonstrate the proposed methodology, we consider three different practical data sets described below with their analysis. They represent different level of skewness ranging from negative skewness to positive skewness along with various demonstration of failure rate pattern, like increasing, decreasing, and bathtub shape.

Moreover, perfection of competing models is also tested via the chi-squared (χ 2 ), Kolmogrov-Simnorov(K S), the Anderson-Darling (A * ) and the Cramér-von Misses (W * ) statistics. The mathematical expressions for the statistics are given by

KS = max i m -z i , z i - i -1 m , χ 2 = m i=1 (o i -e i ) 2 e i , A * = 2.25 m 2 + 0.75 m + 1 -m - 1 m m i=1 (2i -1) ln(z i (1 -z m-i+1 )) , W * = m i=1 z i - 2i -1 2m 2 + 1 12m
,

where m denotes the number of classes, z i = F X (x i ), the x i 's being the ordered observations, o i and e i are the observed and expected frequencies of the i th class, respectively.

Graphical measure

A hazard or failure rate function can be considered for finding the chances of occurring a dangerous event that can lead to an emergency or disaster. It also conveys the meaning of intensity function, or risk rate, among other names. Moreover, such function also portrays different meaning of inherent characteristics of different lifetime phenomena, like increasing hazard rate (IHR), constant, decreasing hazard rate (DHR), bathtub (BT) and inverse bathtub (IBT) shapes. For modeling the above mentioned characteristic of the hazard function, researchers generally used a graphical tool known as the total time on test (TTT) plot. The TTT-plot is a graph which mainly serves to discriminate between different types of aging represented in hazard rate shapes, for details the readers are referred to [START_REF] Rinne | The Weibull distribution; A Handbook[END_REF]. The TTT plot is drawn by plotting T ( i n ) = i r=1 y r:n + (n -i)y i:n n r=1 y r:n against i n , where i = 1, . . . , n and y r:n , r = 1, . . . , n are the order statistics of the sample. An empirical TTT-plot that takes its course randomly around the 45 o -line indicates a sample from an exponential distribution, TTT-plot that is nearly concave (convex) and is mainly above (below) the 45 o -line indicates a sample from an IHR (DHR) distribution, and TTT-plot that takes concave (convex) and then convex (concave) is related to a BT (IBT) hazard rate. The TTT-plots for the next data sets are displayed in Figure 4, which reveal increasing IHRs for the first two data sets while the third data set depicts the BT hazard rate.

[Figure 4 

about here.]

Example 1. The first data set represents the strength data originally reported in [START_REF] Badar | Statistical aspects of fiber and bundle strength in hybrid composites[END_REF]. It represents the strength measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows. Carbon fiber tow is a bunch of carbon fibre, like a yarn, that is commonly woven into carbon fibre fabrics. Single fibers were tested under tension at gauge length of 10 mm. Such data have been analyzed previously by [START_REF] Gupta | Generalized logistic distributions[END_REF] and [START_REF] Asgharzadeh | A generalized skew logistic distribution[END_REF]. The data are as follows: 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

We fitted all six distributions to the above data by the method of maximum likelihood. Table 4 presents the descriptive statistics. Table 5 portrays parameter estimates, χ 2 , KS with p -values Anderson-Darling and Cramér-von Misses statistics.

[Table 4 about here.]

[Table 5 

about here.]

Analysis: From Tables 4, and 5, we see that the proposed PLD model is the most suitable model when the data is positively skewed and underdispersed with approximately equal mean deviation about mean and median as well as posses IFR behavior. Moreover, the goodness of fit statistics also show that the proposed model is the most promising one in such situations too. In addition to, the proposed model also shows promising results while comparing with the models discussed by [START_REF] Asgharzadeh | A generalized skew logistic distribution[END_REF] in terms of the smallest χ 2 value. The compared models are: logistic distribution L(µ, σ) with χ 2 = 0.8832, the type III generalized logistic distribution GL(µ, σ, α) with χ 2 = 1.1055, the skew logistic distribution SL(µ, σ, λ) with χ 2 = 0.8345, generalized skew logistic GSL(µ, σ, λ, α) with χ 2 = 0.2682 and Azzalini and Capitanio's skew t distribution ST(µ, σ, λ, α) with χ 2 = 0.2684. For the density functions of the discussed distributions the reader may refer to [START_REF] Asgharzadeh | A generalized skew logistic distribution[END_REF] and the references therein. Moreover, while comparing with [START_REF] Gupta | Generalized logistic distributions[END_REF] proportional reversed hazard logistic (PRHL) and skew logistic distributions, it is observed that PLD has the smallest χ 2 and KS values.

Example 2. The second data set displays the inflation rate of USA for the period 1965 to 1981, and it is defined as the rate at which prices increase over time, resulting in a fall in the purchasing value of currency. The data is reported by [START_REF] Gujarati | Basic econometrics, Fourth Edition[END_REF], pp. 502. The data values are: -0.4, 0.4, 2.9, 3.0, 1.7, 1.5, 1.8, 0.8, 1.8, 1.6, 1.0, 2.3, 3.2, 2.7, 4.3, 5.0, 4.4, 3.8, 3.6, 7.9, 10.8, 6.0, 4.7, 5.9, 7.9, 9.8, 10.2, 7.3.

We fitted all of the distributions except Dagum to the above data by the method of maximum likelihood. Table 6 identifies the descriptive statistics behavior, Table 7 presents the parameter estimates, χ 2 , p -values, KS, A * and W * .

[Table 6 about here.] [Table 7 about here.] Analysis: From Tables 6 and7, we observe that, the proposed model is also suitable when data are overdispersed and based on negative values. Also, the model has positive skewness and demonstrates IFR failure rates which can be visualized in TTT plot of data II. In addition to, the proposed model is also one of the appropriate model from the perspective of goodness of fit statistics. The importance of model is also identified in least χ 2 and the largest p -value.

[Figure 5 about here.] From econometrics point of view, the sample path of the data given by Figure 5 shows that the data series are non-stationary. Moreover, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test rejects the stationarity (p-value < 0.05) of the data. Also, following the Box-Ljung test, there is a structure of dependence behind those time series data (p -value < 0.001).

[Figure 6 about here.] Example 3. The third data set is the famous Aarset data which gives the uncensored practical data set and it refers to the lifetimes of 50 components reported by [START_REF] Aarset | How to identify bathtub hazard rate[END_REF]. The values of the data are: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 16, 18, 18, 18, 18, 18, 20, 21, 32, 36, 40, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. We fitted all six distributions to the data above by the method of maximum likelihood. Table 8 gives the descriptive statistics of them, Table 9 presents the parameter estimates, χ 2 , p -values, KS, A * and W * .

[Table 8 about here.]

[Table 9 about here.] Analysis: From Table 8, the data are overdispersed and negatively skewed. Moreover, the TTT plot for the Aarset's data indicates BT shapes. In Table 9, we have observed that PLD is the most suitable model based on the goodness of fit statistics with p-vaalue. Further, Figure 6 also demonstrates the flexibility of PLD distribution.

Appendices

Appendix A. Algorithm: i Generate U i , i = 1, 2, 3, ..., n from uniform distribution on the interval (0,1).

ii Generate ln U

-1 ζ i -1 -ϑ , i = 1, 2, 3, ..., n.
iii Set

E i = ln U -1 ζ i -1 -ϑ ϑ+ 2 , i = 1, 2, 3, ..., n. iv Set D i = ln U -1 ζ i -1 -ϑ 1 ϑ ϑ+ 2 , i = 1, 2, 3, ..., n. v Set Y 1 = E i , i = 1, 2, 3, ..., n. vi Set Y 2 = D i , i = 1, 2, 3, ..., n. ⇒ If U i ≤ ϑ 2 + ϑ 2 , then set X i = Y 1 otherwise set X i = Y 2 , i = 1, 2, 3, ..., n. J ϑ ϑ (Θ) = n i=1    |x i | ϑ-1 log (|x i |) 2 ϑ + |x i | ϑ-1 - 1 + |x i | ϑ-1 log (|x i |) 2 ϑ + |x i | ϑ-1 2    - n i=1 2 -2 ϑ log (|x i |) + ϑ 2 log (|x i |) 2 sign (x i ) |x i | ϑ ϑ 3 -(1 + ζ) n i=1 -e -2ϑxi-2 sign(x i) |x i | ϑ ϑ 1 + e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ × 2 -2 ϑ log (|x i |) + ϑ 2 log (|x i |) 2 sign (x i ) |x i | ϑ + ϑ 2 x i -sign (x i ) |x i | ϑ (1 -ϑ log (|x i |)) 2 -1 + e ϑxi+ sign(x i) |x i | ϑ ϑ × ϑ 2 x i -sign (x i ) |x i | ϑ (1 -ϑ log (|x i |)) 2 × 1 1 + e -ϑxi-sign(x i) |x i | ϑ ϑ 2 ϑ 4 , J ϑ ζ (Θ) = n i=1 ϑ 2 x i -sign (x i ) |x i | ϑ + ϑ log (|x i |) sign (x i ) |x i | ϑ 1 + e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ 2 , J ζ ζ (Θ) = - n ζ 2 , J ζ (Θ) = n i=1 - e -|xi| ϑ sign(x i) ϑ -ϑ xi |x i | ϑ sign (x i ) ϑ 1 + e -|xi| ϑ sign(x i) ϑ -ϑ xi , J ϑ (Θ) = - n i=1 (-1 + ϑ log (|x i |)) sign (x i ) |x i | ϑ ϑ 2 + n i=1 (-1 + ϑ log (|x i |)) sign (x i ) x i |x i | ϑ (ϑx i + sign (x i ) |x i | ϑ ) 2 -(1 + ζ) n i=1 sign (x i ) |x i | ϑ ϑ + e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ -ϑ 2 log (|x i |) -e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ 2 log (|x i |) +e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ 2 x i -e ϑxi+ sign(x i) |x i | ϑ ϑ sign (x i ) |x i | ϑ +e ϑxi+ sign(x i) |x i | ϑ ϑ ϑ log (|x i |) sign (x i ) |x i | ϑ × 1 ϑ 3 1 + e ϑxi+ sign(x i) |x i | ϑ ϑ 2 , J (Θ) = n i=1 - x 2ϑ-2 i ϑ + |x i | ϑ-1 2 -(1 + ζ) n i=1      - e -2 |xi| ϑ sign(x i) ϑ -2ϑxi x 2ϑ i ϑ 2 1 + e -|xi| ϑ sign(x i) ϑ -ϑxi 2 + e -|xi| ϑ sign(x i) ϑ -ϑxi x 2ϑ i ϑ 2 1 + e -|xi| ϑ sign(x i) ϑ -ϑ xi     ,
the remaining elements follow by symmetry. 

Figure 1

 1 Figure 1 gives the plots of the cumulative distribution function of the PLD distribution. The plots of this figure shows that for fixed ϑ and and changing ζ the curve stretch out insignificantly towards right as ζ increases. However, for fixed ζ and and changing ϑ the curve stretch out towards right significantly as ϑ increases.

  model parameters: Model-I: ϑ = 0.3642, = 2.3532, ζ = 1.2315, Model-II: ϑ = 5.8759, = 5.4314, ζ = 4.5472, Model-III: ϑ = 1.2536, = 0.4721, ζ = 1.1973 and Model-IV: ϑ = 0.0542, = 0.0135, ζ = 0.0432 for all the above discussed methods. We consider the following sample sizes n = 15, n = 25 (small), 50 (moderate), and 150 (large). For each model parameters and for each sample size, we compute the MLEs, LSEs and WLSEs of each ϑ, , ζ. We repeat this process 1000 times and compute the average bias and mean square error (MSE) for all replications in the relevant sample sizes. The analysis computes the coming values: • Average bias of the simulated estimates:

Figure 2 .Figure 3 .

 23 Figure 2.: Density plots of PLD

  

  1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139,

Table 1 .

 1 : Average Bias and MSE Values of MLEs from Simulation of the PLD Distribution

	Parameter	Sample Size Bias( θ) Bias(ˆ ) Bias( ζ) MSE( θ) MSE(ˆ ) MSE( ζ)
	ϑ = 0.3642 = 2.3532 ζ = 1.2315	n = 15 n = 25 n = 50 n = 150	3.2184 3.0733 3.0236 2.9609	2.6517 2.1018 2.0380 1.4949	5.7929 4.6184 3.2913 3.1971	11.6709 10.2525 10.0582 9.4931	13.4664 6.7234 6.1874 2.4417	49.1715 24.3536 11.189 10.4433
	ϑ = 5.8759 = 5.4314 ζ = 4.5472	n = 15 n = 25 n = 50 n = 150	-3.0702 -3.1834 -3.3497 -3.2656	-3.9940 -3.5111 -3.7332 -3.6214	9.4900 9.3246 3.4478 3.3609	10.0832 10.0536 11.2945 10.7069	16.0354 13.5562 13.9725 13.1413	536.739 474.913 15.2051 13.1649
	ϑ = 1.2536 = 0.4721 ζ = 1.1973	n = 15 n = 25 n = 50 n = 150	0.3297 0.3081 0.1806 0.1768	1.1955 0.8850 0.8443 0.6552	0.2712 0.2221 0.1125 0.1088	0.2526 0.2371 0.1390 0.1577	1.5412 0.9822 0.9056 0.5455	0.2954 0.1724 0.0798 0.0534
	ϑ = 0.0542 = 0.0135 ζ = 0.0432	n = 15 n = 25 n = 50 n = 150	-0.0476 -0.0448 -0.0483 -0.0494	0.0856 0.0750 0.0647 0.0629	0.0509 0.0332 0.0143 0.0114	0.0023 0.0020 0.0023 0.0024	0.0080 0.0058 0.0042 0.0039	0.0027 0.0016 0.0003 0.0001

Table 2 .

 2 : Average Bias and MSE Values of LSEs from Simulation of the PLD Distribution

	Parameter	Sample Size Bias( θ) Bias(ˆ ) Bias( ζ) MSE( θ) MSE(ˆ ) MSE( ζ)
	ϑ = 0.3642 = 2.3532 ζ = 1.2315	n = 15 n = 25 n = 50 n = 150	-0.2599 -0.3037 -0.3037 -0.2993	-0.3483 -0.1527 -0.1527 -0.0525	-0.1233 -0.1233 -0.1233 -0.0206	0.0676 0.0922 0.0922 0.0896	0.1213 0.0233 0.0233 0.0027	0.0152 0.0152 0.0152 0.0004
	ϑ = 5.8759 = 5.4314 ζ = 4.5472	n = 15 n = 25 n = 50 n = 150	-5.7381 -5.7627 -5.7738 -5.7657	-1.1245 -1.1072 -1.1013 -0.9983	-0.3368 -0.3363 -0.3363 -0.2261	32.9289 33.2108 33.3378 33.2433	1.2645 1.2261 1.2129 0.9967	0.1134 0.1131 0.1131 0.0511
	ϑ = 1.2536 = 0.4721 ζ = 1.1973	n = 15 n = 25 n = 50 n = 150	-1.2534 -1.2522 -1.1885 -1.224	-0.3868 -0.0672 0.4087 0.4085	-0.9971 -0.0890 -0.1158 -0.1316	1.5711 1.5682 1.4252 1.4984	0.1496 0.0045 0.1836 0.1832	0.9942 0.0079 0.0168 0.0181
	ϑ = 0.0542 = 0.0135 ζ = 0.0432	n = 15 n = 25 n = 50 n = 150	-0.0517 -0.0541 -0.0541 -0.0541	0.0786 0.0255 0.0210 0.0158	-0.0166 -0.0015 -0.0218 -0.0245	0.0026 0.0029 0.0029 0.0029	0.0213 0.0028 0.0023 0.0020	0.0014 0.0020 0.0016 0.0013

Table 3 .

 3 : Average Bias and MSE Values of WLSEs from Simulation of the PLD Distribution

	Parameter	Sample Size Bias( θ) Bias(ˆ ) Bias( ζ) MSE( θ) MSE(ˆ ) MSE( ζ)
	ϑ = 0.3642 = 2.3532 ζ = 1.2315	n = 15 n = 25 n = 50 n = 150	-0.3104 -0.3076 -0.3140 -0.3027	-0.1396 -0.0296 -0.0311 -0.0008	-0.1294 -0.1294 -0.1293 -0.0212	0.0963 0.0947 0.0986 0.0917	0.0195 0.0009 0.0009 0.0000	0.0167 0.0167 0.0167 0.0005
	ϑ = 5.8759 = 5.4314 ζ = 4.5472	n = 15 n = 25 n = 50 n = 150	-5.7403 -5.7528 -5.7544 -5.7478	-0.0774 -0.0602 -0.0792 -0.0661	-0.3370 -0.3369 -0.3369 -0.1261	32.9523 33.0951 33.1141 33.0376	0.0060 0.0034 0.0062 0.0043	0.1136 0.1135 0.1135 0.0159
	ϑ = 1.2536 = 0.4721 ζ = 1.1973	n = 15 n = 25 n = 50 n = 150	-1.2404 -1.2522 -1.1868 -1.2520	0.3802 -0.0671 0.3061 -0.2662	0.0028 -0.0890 -0.1087 -0.1951	1.5386 1.5682 1.4212 1.5677	0.1446 0.0045 0.1772 0.0714	0.0000 0.0079 0.0191 0.0380
	ϑ = 0.0542 = 0.0135 ζ = 0.0432	n = 15 n = 25 n = 50 n = 150	-0.0512 -0.0541 -0.0541 -0.0541	0.0510 0.0374 0.0174 0.0018	-0.0127 -0.0417 -0.0316 -0.0021	0.0026 0.0029 0.0029 0.0029	0.0097 0.0024 0.0004 0.0003	0.0012 0.0017 0.0019 0.0010

Table 4 .

 4 : Descriptive Statistics for Strength Measured in GPA Data

	Sample Size	Mean	Median Variance Skewness Kurtosis	M D μ	M D μ	Entropy
	63	3.0593	2.996	0.3855	0.6328	3.2863	0.5023 0.5023	4.1211

Table 5 .

 5 : Maximum Likelihood Estimates and Goodness of Fit Statistics for Strength Measured in GPA Data

	Distribution	Estimates			χ 2	p -value	K S	A *	W *
	Dagum(µ, σ, λ)	1.9907	7.20072	2.6203	0.6754	0.879	0.1011	0.1028	0.5378
	Cauchy(µ, σ)	2.9902	0.4032		3.1015	0.376	0.1236	0.1804	1.5100
	Normal(µ, σ)	3.0593	0.6159		1.1535	0.764	0.1046	0.0885	0.5985
	Gumbel(µ, σ)	3.3835	0.6993		7.6350	0.054	0.1376	0.2795	1.9607
	LD(ϑ, , ζ)	2.0640	32.6578	10.0233	0.2820	0.991	0.0948 0.08707 0.4423
	PLD(ϑ, , ζ)	1.5238	0.2525	151.0774 0.2583	0.992	0.0945	0.0822	0.4166

Table 8 .

 8 : Descriptive Statistics for Aarset Data

	Sample Size	Mean	Median Variance Skewness Kurtosis	M D μ	M D μ	Entropy
	50	43.866	46.5	1079.3	-0.0224	1.3776	30.0594 30.0594	3.1969

Appendix B. Information Matrix

The 3 × 3 total information matrix along with its elements are given by