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Abstract The use of Finite Element meshes in Digital Image Correlation (FE-

DIC) is now widespread in experimental mechanics. Up to now FE have been much

less used in Stereo-DIC. The first goal of this paper is to explain in details how to

use FE in Stereo-DIC using a formulation in the physical coordinate system. More

precisely, it is shown how to perform the calibration of possibly nonlinear models,

shape and displacement measurement based on a FE mesh. In addition it is shown

that with such a framework it is possible to regularise the measurement with a

FE model based on the same mesh. For instance, using this technique, it is shown

that it is possible to measure the rotation field of a bending plate in addition to

its displacement.
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1 Introduction

Digital Image Correlation (DIC ) and Digital Volume Correlation (DVC ) [6,11,

24] are now widely used in experimental mechanics. This family of methods aims

at measuring 2D or 3D displacement fields from digital planar or volume images,

respectively. In their initial version, the idea was to search for the best parameters

of a given transformation to register small independent subsets of pixels. In the

context of experimental mechanics, the use of Finite Elements in the context of

DIC/DVC (FE-DIC/DVC [23,2]) has been extensively developed during the last

decade. Among many advantages, to us, the main interest relies on the fact that it

provides a very simple bridge between experiments and simulations, which is very

convenient for validation [16], identification purposes [9,19,14] and for performing

mechanically regularised measurements.

Even in situations where 2D-DIC could be used, Stereo-DIC is preferred be-

cause of both accuracy and simplicity of the setup [5,25]. Classically, the idea of

Stereo-DIC is to use one stereoscopic image pair f1 and f2 in a reference config-

uration at t0 and a second one g1 and g2 at t0 + dt in a deformed configuration,

see Fig. 1.
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Fig. 1 Main steps of a 3D displacement field measurement of a surface with classical Stereo-
Digital Image Correlation. Pairings are in green and triangulations in blue

Classical Stereo-DIC procedure involves a chain of optimisation problems:
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Calibration: 1) find ex/in-trinsic parameters from a set of images of calibration grids

Shape Measurement: 2) find matching field d between reference images f1 and f2

3) triangulation: find X at t0 from x1 and x2 = x1 + d(x1)

Displacement Measurement: 4) find matching t between images f1 and g1

5) find matching t′ between images f1 and g2

6) triangulation: find X at t0 + dt from x′1 = x1 + t(x1) and x′2 = x1 + t′(x1)

Eventually, the 3D displacement is estimated by comparing measured shapes:

U = X′ −X. The drawback of this classical Stereo-DIC formulation is that the

displacement is not the unknown of a unique optimization problem as it is the

case with 2D-DIC and DVC. In this situation, the bridge between measurement

and simulation is less direct. In particular, applying a mechanical regularisation is

not possible in this framework.

In opposition to DIC and DVC, the literature on FE-Stereo-DIC (or FE-SDIC)

is much less prolific certainly because the extension is not straightforward. The

first attempt was proposed in [22] where a theoretical FE mesh was used to perform

the displacement measurement solution of a unique problem defined in the world

coordinate system. In this paper this formulation is not fully exploited since it

is not used for calibration and shape measurement. A very similar global stereo

formulation based on IsoGeometric Analysis (IGA) was proposed in [1,3]. It is

used not only for the displacement measurement, but also for calibration of a

linear camera model and shape measurement.

In this paper, we develop and detail a general framework covering all the as-

pects of FE-Stereo-DIC. It consists in a formulation in the physical coordinate

system which makes possible to calibrate a stereo rig (with possibly non-linear

camera models), to measure the actual shape of the specimen and to measure

the displacement field, using a FE interpolation. A technique is proposed to build

the minimal number of integration points in this context. In addition, it become

possible to add a regularisation based on a FE mechanical model. For instance,

the method is illustrated with a measurement of the kinematic fields of a bending
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plate; the kinematic fields meaning in this case not only displacements but also

rotations.

In Sect. 2 the three problems of calibration, shape measurement and displace-

ment measurement will be rewritten as three optimisation problems where the

unknowns are the intrinsic/extrinsic parameters, the shape and 3D displacement

respectively. Then, in Sect. 3, it will be shown that, with the proposed frame-

work, it is directly possible to add a constraint of regularity such as a mechanical

regularisation term. It will be also shown that the use of a plate model in the

regularisation, is likely to provide accurate rotation fields. Finally in Sect. 4, both

synthetic and real test case will be presented in order to illustrate the efficiency of

the method, the effects of the parameters and its robustness with respect to noise.

2 Rewriting Stereo-DIC problem in the world reference system with

Finite Elements

This section contains the three parts of the measurement of a 3D displacement

in the reference system RW described by the mesh. Indeed, with an FE mesh,

the theoretical shape does not necessarily correspond to the real one. Therefore, a

displacement measurement needs two preliminary steps (Fig. 2). Firstly, cameras

Fig. 2 Steps of the new Stereo-DIC formulation with a Finite-Element mesh (FE-SDIC):
(a) first guess of the theoretical CAD mesh plate (black) on the real (a priori unknown)
plate (green) before any calibration or shape measurement. (b) Calibration of the extrinsic
parameters by DIC (with fixed 3D points X). (c) Shape measurement (with fixed parameters
pc). (d) Temporal measure of the 3D displacement U (from the black position of the mesh to
the red one)

have to be located in the world reference system. This is called the extrinsic

parameters calibration but intrinsic parameters can also be optimised ac-
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cording to the used mesh Sect. 2.1. Then, the mesh shape has to be corrected: the

projection of each points of the mesh in both cameras (with their projectors Pc)

have to be stereo-matching (the corresponding gray-levels must be equals). This

step is the shape measurement Sect. 2.2. A very similar approach has already

been published in [1] for a CAD-based shape measurement with NURBS. Finally,

the 3D displacement between two deformation steps can be measured Sect. 2.3.

2.1 Extrinsic and Intrinsic parameters calibration

In this study, the method being based on a Gauss Newton algorithm, the cali-

bration has to be initialised with the Stereo Software Vic-3DTM. The calibration

consists in finding all parameters pc of each camera’s projector Pc :

– 6 extrinsic parameters in order to find the position of the camera’s reference

system in RW : 3 translations and 3 rotations.

– 4 linear intrinsic parameters in order to project a point from the camera

to its image : 2 focal lengths (fu, fv) and two centers of image (cu, cv) along

both horizontal u and vertical v directions.

– at least 2 non-linear intrinsic parameters : the first order of radial distor-

tion κ and the skew angle.

More details on the non-linear models of cameras can be found in [5,17]. In this

paper, the intrinsic parameters are initialised with Vic-3DTM. The first problem

consists in finding the extrinsic parameters in order to locate the 3D Finite Element

mesh (considered rigid) as close as possible of the real surface which is unknown.

In the following, pc denote the extrinsic parameters of the projector Pc associated

to the image fc (the intrinsic ones are fixed). For the sake of simplicity, we first

consider a standard stereo bench, i.e. c = {1; 2}. The parameters pc are assessed by

minimizing the following objective functional based on the gray-level conservation

assumption:
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p?1,p
?
2 = arg min

p1,p2

∫
Ω

[
f1 (P1(X,p1))− f2 (P2(X,p2))

]2
dX (1)

where X stands for a 3D point located on the visible surface Ω of the specimen.

As said previously, the quadrature is done in the 3D domain and an image is

not preferred over another (there is no concept of master-slave), each camera being

treated symmetrically. This non-linear problem is solved with a Newton algorithm.

At iteration k, parameters p = [p1,p2]T are searched in the form pk+1 = pk+δp.

After linearisation and differentiation, the problem reads:

Mk
ext δp = bkext

Mk
ext,ij =

∫
Ω

(
∂P1

∂pi
∇f1 −

∂P2

∂pi
∇f2

)(
∂P1

∂pj
∇f1 −

∂P2

∂pj
∇f2

)T
dX

bkext,i = -

∫
Ω

(
∂P1

∂pi
∇f1 −

∂P2

∂pi
∇f2

)(
f1
(
P1(X,pk1)

)
− f2

(
P2(X,pk2)

))
dX

where ∂Pc

∂pi
are the projectors Pc gradient with respect to the extrinsic parameters

(even with a non-linear model, an analytical expression is known). ∇fc is image fc

gradient at Pc(X,p
k
c ) which depends of pc. This means that the operator Mk

ext

has to be re-assembled at each iteration.

For a Gradient algorithm, the initial guess should be close to the solution. The

first guess can be obtained “by hand” by selecting some points in each image and

on the mesh (it would also be possible to detect at least three particular points

with a pattern recognition algorithm). Then, a small non-linear problem has to

be solved. This problem has the same expression than the bundle adjustment (2)

[28], but here, X, x1, x2 = x1 + d(x1) are fixed and only the extrinsic parameters

are searched for:

p?1,p
?
2 = arg min

p1,p2

‖P1(X,p1)− x1‖22 + ‖P2(X,p2)− x1 − d(x1)‖22 (2)

In order to illustrate these steps, on Fig. 2(a) can be seen the first guess of the

position of the mesh on the real surface. Fig. 2(b) is after the extrinsic calibration
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(eq. (1)). In these two steps, the mesh X is considered fixed in its reference system

and the goal is to position this system as close as possible to the unknown surface

by finding the rigid translations and rotations.

In paper [1], some intrinsic parameters of linear camera models are estimated

using the same framework (using the speckle pattern of the specimen only). But

the measurement of a least one distance is needed to get an absolute estimate of, for

instance, the focal length. Here, the model of camera is more complex (non-linear

with distortions) and the initial mesh is flat. Thus, intrinsic parameters cannot be

optimised at the same time than the extrinsic ones. The idea would be to release all

intrinsic parameters once the extrinsic are optimized. The functional is the same

(eq. (1)) but with pc containing only intrinsic parameters (cu, cv, fu, fv, κ, skew)

(the extrinsic ones are now fixed). It is possible to alternate these optimizations.

In practice, and in order to be more generic, we decided to calibrate the intrinsic

parameters using classic planar calibration targets. This step was done using Vic-

3DTM. It was verified that these parameters were very close to the local minimum

of the above graylevel based functional.

2.2 Shape measurement with an FE mesh

Once all cameras’ parameters pc are known (and optimised), the shape has to be

corrected. Measuring the shape means finding the position X verifying the gray-

level conservation. Here, the latter is verified between the reference images of each

camera. The same method as for the cameras’ parameter is used but the unknowns

are the 3D positions X:

X? = arg min
X

∫
Ω

[
f1 (P1(X,p1))− f2 (P2(X,p2))

]2
dX (3)

At iteration k, the estimation of the position is written Xk+1 = Xk + δX where

the displacement correction δX is searched in the finite element subspace with
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δX =
∑
iNi(X)qi:

Mk
shapeq = bkshape

Mk
shape,ij =

∫
Ω

NT
i (∇P1∇f1 −∇P2∇f2) (∇P1∇f1 −∇P2∇f2)T NjdX

bkshape,i = -

∫
Ω

NT
i (∇P1∇f1 −∇P2∇f2)

(
f1
(
P1(Xk,p1)

)
− f2

(
P2(Xk,p2)

))
dX

where ∇Pc are the projectors’ spatial gradient which have an analytical form. As

for the calibration, the operator Mk
shape has to be re-assemble at each iteration.

After convergence, an estimation of the real shape is obtained (see Fig. 2(c)).

Remarks:

– Since this is based on a Gauss Newton, this algorithm requires an initialisa-

tion step. Usually, a multigrid initialisation with a pixel aggregation (coarse

graining) is used [18]. But unlike what is usually done in 2D-DIC, where this

step is made with a coarse mesh, here the same mesh is used with a decreasing

Tikhonov regularisation in order to avoid 3D projection of fields from a mesh

to another.

– As said previously, Mk
shape has to be re-assemble at each iteration. This has a

significant cost because here, the reference images of all cameras are compared

by pairs. For n cameras, there are n(n−1)
2 couple of cameras. On the other

hand, in [4], a reference object f̂ with an intrinsic texture is created. Thus,

all images are compared to f̂ which is faster when using four or more cameras

because only n couples are considered.

Regularisation As always in DIC, this problem is ill-posed. With the classical

approach, there are two unknowns (the components of the left-right disparity field

d on the image) for only one scalar equation (gray-level conservation). Here, a 3D

field is searched for, which means that for the same number of equation, there

is one more unknown. Indeed, in the problem 3, the mesh can slide along the

surface of the object. There can be a global sliding (see Fig. 3(b)) which imply

that the dimension of the operator’s kernel is at least 3 (two sliding along two

surface directions and one rotation). But in the formulation, the problem is even
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harder because each node can moves relatively to another (see Fig. 3(c)) without

changing the value of the functional. Thus, a higher degree of regularisation has

to be added to the functional.

(a) (b) (c)

Fig. 3 Illustration of the ill-posed problem of shape measurement. (a) Theoretical position of
the mesh after calibration and shape measurement. (b) Global or (c) local sliding during the
shape measurement

For the local sliding, an isometric constraint can be imposed, like a Tikhonov

regularisation term:

δX? = arg min
δX

∫
Ω

[
f1(P1(X + δX,p1))− f2(P2(X + δX,p2))

]2
dX + λ ‖δX‖2K

where the norm ‖·‖K can be associated to a mechanical operator K (truss, stiffness

plate/shell or Laplace). One of the interest of using SDIC with NURBS [1], rely

on the fact that only a few control points are necessary to describe a surface which

indirectly regularise the problem. Indeed, the shape interpolation can be uncoupled

from the displacement interpolation which can be refined without modifying the

shape. In FE, this uncoupling is not possible and the same mesh is used for both

shape and displacement measurement. Thus, it must be regularised externally.

However, both NURBS and FE approaches are subject to global sliding. The

previous regularisation does not prevent that problem. These shifts are particularly

visible when iterating between the optimisation of the cameras’ parameters and

the shape measurement.

To avoid these shifts and restore the uniqueness of the problem, it has been

decided to seek the correction of the nodal displacement along the normal to the
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surface [13]. The problem has then only one dof per node. In practice, the surface

normal is estimated at each node (average of the neighbouring element normals)

in the initial shape of the mesh.

2.3 3D displacement measurement

Once the real shape (thus, the real mesh) is known, it is possible to measure the 3D

displacement U between two steps (t0 and t0 + dt). Unlike Classical Stereo-DIC,

the three optimisation problems are turned into on single problem where U is the

unique unknown. The main idea for this reformulation is to work only in the 3D

mesh, chosen to be the world reference system RW . All problems are written in

this 3D coordinate system and weak-form integrals of the gray-level conservation

are also in RW .

For each 3D point X, the projector Pc gives a point x in the image. Obviously,

it is also possible to have the projection of the displaced point X′ = X+U(X) (at

t0 + dt) in the deformed state images gc (see Fig. 4). The point X is projected on

the reference image fc and X′ is projected on the deformed state image gc. Their

gray level should be equals and this, for each camera c. Thus, the functional reads:

U? = arg min
U

∑
c

∫
Ω

[
fc (Pc(X,pc))− gc (Pc(X + U(X),pc))

]2
dX (4)

which is just the gray level conservation equation for each camera. This correspond

to the vertical pairing in Fig. 4. Each term of each camera being independent, it

is possible to consider more than two cameras [4]. Such a formulation in the world

reference system was first introduced in [22]. The benefit is to symmetrically use

each camera. At iteration k, a correction of the 3D displacement field is introduced

Uk+1 = U k +
∑
iNi(X)qi and the problem reads:

(∑
c

Mc,k
dic

)
︸ ︷︷ ︸

Mk
stereo

q =

(∑
c

bc,kdic

)
︸ ︷︷ ︸

bk
stereo
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Fig. 4 3D displacement measurement in Stereo-DIC with a finite element based method (FE-
SDIC)


Mc,k
dic,ij =

∫
Ω

NT
i (∇Pc∇fc) (∇Pc∇fc)T NjdX

bc,kdic,i =

∫
Ω

NT
i (∇Pc∇fc)

(
fc(Pc(X,pc))− gc(Pc(X + Uk,pc))

)
dX

Remarks:

– Both left and right hand side are sums of independent operator on each camera.

This implies that this problem can be parallelized like what is done in domain

decomposition method in 2D-DIC [15].

– Like shape measurement, this algorithm needs an initialisation step such as a

multigrid initialisation based on a pixel aggregation (coarse graining) and a

Tikhonov regularisation with a Laplacian operator.
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– The correlation operator Mk
stereo depends on the displacement (because of

the gradient of the projectors ∇Pc(X + Uk)) which means once again that it

should be re-assemble at each iteration. In practice, this is not done because the

multigrid initialisation is close to the actual displacement. Thus, no significant

difference between re-assembling or not was found (except that it is far more

time consuming).

To avoid a time drift of the pairing, it is also possible to introduce an additional

term which minimize the difference of gray level between the deformed state images

at t0 + dt taken in pairs (this corresponds to an horizontal pairing in Fig. 4):

U? = arg min
U

∑
c

∫
Ω

[
fc (Pc(X),pc)− gc (Pc(X + U(X),pc))

]2
dX

+
∑
c

∑
e<c

∫
Ω

[
gc (Pc(X + U(X),pc))− ge (Pe(X + U(X),pe))

]2
dX

(5)

the pairing at t0 is already verified with the calibration and the shape measure-

ment. Of course, with this last term, a non-negligible cost is added when more

than two cameras are used.

Quadrature. In all previous equations, quadrature is done in the 3D world refer-

ence system and not on the images as with classical DIC. A dedicated quadrature

method has to be set up. Contrarily to simulation where a Gauss method is effi-

cient, here, the integrand involves the grayscale gradient which has a very short

variation length. Thus a Riemann integral method was therefore chosen by splitting

homogeneously and homothetically each finite element. This choice was proven to

be more accurate [17]. In practice, a smaller number of points can be build with an

equivalent accuracy. It considers an inhomogeneous partition of quadrangles and

triangles, in the isoparametric coordinate system, build from homogeneous parti-

tion of the two smallest edges. On Fig. 5, we show that such a technique reduces

significantly the number of integration points. According to our tests, using this

method, their are rarely more than one integration point per pixel.
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Fig. 5 Example of a different quadrature rule in the isoparametric coordinate system in order
to find as few integration points as possible

Remark. In this article, this formulation in the 3D coordinate system is needed

in order to add a mechanical regularisation term to the Stereo-DIC measure. But

this is also interesting in 2D-DIC [17] for two reasons:

– The pixel based quadrature does not integrate accurately a constant function.

The area of an element is approximated by an integer number of pixels and

depends on the point of view of the camera. Even the shape of the elements are

not accurate because of the linear approximation of the element edges: with

distortions the projection of a segment is not necessarily linear. This has a

weak impact on the standard uncertainty of the measure but can improve the

systematic bias of an order of magnitude even with a linear simple model of

camera.

– A more complex model of camera with distortions can be used which dras-

tically decreases measurement uncertainties. This is usefull when identifying

parameters with a FEMU method based on displacement (FEMU-U). It is also
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an essential method for crack propagation based on Williams series if it is not

possible to use a telecentric lens.

3 Stereo-DIC and Plate Regularisation (R-FE-SDIC)

Once having the 3D displacement as the unique unknown, it is easier to add a

regularisation term. The idea is not only to make a measurement, but also to filter

the latter with a mechanical model. This is very important when trying to measure

accurate rotation fields.

Furthermore, for a plate or shell model, not only displacements but also ro-

tations at the mid-surface are considered (see Fig. 6). The 3D displacement U

measured with Stereo-DIC is the displacement of the observed surface which is

the top one. Here, we propose a method in order to measure directly the mid-

plane unknowns.

FE model: V and θ

observed surface

h

Fig. 6 Representation of a 3D plate or shell of a thickness h. The 3D displacement U measured
with an optical bench is on the observed surface whereas the plate or shell model considers
displacements V and rotations θ at the mid-surface

3.1 Plate kinematic Regularisation

With a plate theory (such as the Mindlin-Reissner theory of plates), a simple linear

projectorΠ can be used to determine the displacement of the upper skin depending

upon the displacements V and rotations θ of the mid-surface. By extension and for

a sake of simplicity, the vector of unknowns containing displacements and rotations
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of the mid-surface is denoted by V.

U = ΠV⇔


Ux

Uy

Uz

 = Π



Vx

Vy

Vz

θx

θy


Then the Stereo-DIC problem can be written:

V? = arg min
V

1− λm
αv

∑
c

∫
Ω

[
fc (Pc(X,pc))− gc (Pc(X +ΠV(X),pc))

]2
dX

+
λm
αm
‖KV‖22

(6)

where the unknown is not only the displacement of the upper skin U, but the

five degrees of freedom V of the mid-surface. αv and αm are coefficients for the

weighting of the terms of vision and stiffness. Thus, λm is a dimensionless coeffi-

cient for the mechanical regularisation term set between 0 and 1 (see Sect. 4.1.3).

Finally, K is a regularisation matrix. Indeed, by adding two unknowns per node,

a regularisation term is needed. But due to a formulation in the world reference

system, the physical displacement is the unknown of the problem. Thus, it is easy

to add a mechanical operator (such as KV = F for an elastic deformation) in

order to regularise the functional. But here, for our study, it is not possible to

have the external forces. Thus, the stiffness matrix K is replaced by K.

The latter regularisation matrix is defined by K = PkK with Pk a diagonal

matrix (7). The latter could be boolean, but in this study, Pk is used to weight

some dofs (eg to weigh the influence of rotations with respect to the membrane
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behaviour):



P ijk = 0 ∀j 6= i

P iik = 0 for all dofs on the non-free edges

P iik = 0 for the membrane dofs related to Vx and Vy

P iik = 1 for the dofs related to Vz

P iik =
1

h2
for the dofs related to θx and θy (h being the element size)

(7)

Thus, K is a matrix containing each dof except those supported by the nodes that

are concerned with Dirichlet boundary conditions [20].

At iteration k, the problem reads:

[
1− λm
αv

ΠTMk
stereo Π +

λm
αm

K
T

K

]
︸ ︷︷ ︸

MK

δq =
1− λm
αv

ΠTbkstereo −
λm
αm

K
T

K q0

Remark. Replacing K by K means no regularisation on the degrees of freedom

of the non-free edges. Thus the behaviour of the nodes of these edges is only towed

by the vision term. But in this study, a plate model is used, which means that the

unknowns are 3 displacements and 2 rotations at the mid-plate surface. There is an

additional difficulty because each dof on the non-free edges implies a singularity

in MK. On the one hand, if these dofs are not taken into account, the problem

cannot be solved. On the other hand, if they are removed from MK, it means that

the associated nodes are clamped. Thus, there is a difficulty that will be solved

in the next section 3.2, especially for the rotations. Indeed, the displacement dofs

can be considered in Mk
stereo but not the rotation dofs.

3.2 Mechanical and Tikhonov Regularisation

To overcome the absence of mechanical regularisation on the non-free edges (par-

ticularly for rotations of these nodes in question), it is possible to add a Tikhonov
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regularisation term (minimisation of a Laplacian term):

V? = arg min
V

1− λm − λt
αv

∑
c

∫
Ω

[
fc (Pc(X,pc))− gc (Pc(X +ΠV(X),pc))

]2
dX

+
λm
αm
‖KV‖22 +

λt
αt
‖∆V‖22

(8)

which gives:

[
1− λm − λt

αv
ΠTMk

stereo Π +
λm
αm

K
T

K +
λt
αt

TTT

]
δq

=
1− λm − λt

αv
ΠTbkstereo −

λm
αm

K
T

K q0 −
λt
αt

TTT q0

where T is the Tikhonov matrix corresponding to the Laplacian term, αt is a

weighting coefficient and λt is a second dimensionless coefficient for this regulari-

sation term set between 0 and 1 with respect to λm (see Sect. 4.1.3). Concretely,

each node excluded from K will be associated to a zero eigenvalue. Adding the

Laplacian term amounts to impose that those nodes adopt a similar behaviour

than their neighbour.

Remark. The normalisation coefficients αv and αm are computed with the

initial guess of the displacement U0. For αt, the goal is to have the smallest

Laplacian term, thus, it has been chosen to set it at 1. The coefficients are :
αv = U0T

Mk
stereoU

0

αm = U0T

K
T

KU0

αt = 1

4 Application

4.1 Synthetic test case

In order to quantify the measurement error with the described regularisation

method, the goal here is to create some synthetic images for a plate test case. A pair

of real images taken during a test is used (Fig. 8). The plate size is 26.5× 26.5 cm2.
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Both cameras being calibrated, the two projectors Pc are known. On the initial

plate, for each camera c, the 3D reference points of the plate Xr = (X,Y, 0)T

are also known. It therefore suffices to determine the deformed points (accord-

ing to a plate model) corresponding to each reference point to create a new

image. According to the small strain and small displacement assumption, each

point originally located at position Xr = (X,Y, 0)T will be deformed to the point

Xd = (X,Y, p(X,Y ))T with p a function giving the out-of-plane position of a

point according to a chosen plate model. Thus, for each integer coordinated x

(each pixel of the new image), two unknowns (X,Y ) are solution of a system of

two equations that can be solved by a Newton algorithm (Fig. 7(a)):

Pc((X,Y, p(X,Y ))T )− x = 0

Then, it is known that this deformed point was originally located at position

Xr = (X,Y, 0)T (Fig. 7(b)). It is then possible to create a synthetic deformed

image by interpolating the gray level of the reference image fc at the pixel x by

projecting the reference 3D point Pc(Xr) (Fig. 7(c)).

(a) (b) (c)

Fig. 7 Creation of a deformed synthetic image with a plate model p. (a) search for the
3D deformed point Xd according to a plate model p which correspond to the pixel x. (b)
projection of this deformed point to the initial shape in order to find the reference 3D point
Xr. (c) interpolation of the reference image in order to associate a gray level with the pixel x
of the created deformed image
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With this method, a pair of synthetic deformed image is created for a bending

plate study. It is then possible to compute the measurement error by comparing

the measure to the prescribed model p.

(a) (b)

Fig. 8 Real images of a plate in bending. Reference images of left (a) and right (b) camera
used to create synthetic deformed images with a plate model p. The plate size is 26.5×26.5 cm2

4.1.1 Mesh size influence

The idea here is to calculate the measurement error according to the mean size of

elements of an FE mesh. Both FE-SDIC and R-FE-SDIC (regularised, here with

a plate model) are used. Fig. 9 presents the standard deviation of the error with

both method when measuring the out-of-plane displacement Vz and the rotation

θy. For the latter, with an FE-SDIC method, only the 3D displacement of the

upper skin U is measured and the rotations are calculated using the derivative of

the out-of-plane displacement Uz = Vz.

It can be seen in Fig. 9(a) that when the mesh size decreases, the measurement

error also decreases due to the “FE error” until a mean element size of approx-

imately 10 mm. Then, because of a lack of pixels in the projected elements, the

error increases, which corresponds to the “DIC error”. In contrast, in blue, it can

be noted that thanks to the mechanical regularisation, the error does not increase.
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(a) (b)

Fig. 9 Standard deviation of the error when measuring the out-of-plane displacement Vz (a)
and the rotation θy (b) for different sizes of mesh. This is computed with both methods:
FE-SDIC (red) and R-FE-SDIC regularised measure with a plate model (blue)

Furthermore, in Fig. 9(b), it is shown that it is possible to directly measure the

rotations regardless the mean element size. Furthermore, as expected, the deriva-

tive of a measured field (in red) is necessarily more noisy than a measured one (in

blue).

4.1.2 Noise robustness

It is also possible to study the behaviour of measurement uncertainties when

adding different level of noise when creating the deformed synthetic images cf.

Fig. 10. For that, we added a zero-mean white Gaussian noise with a increas-

ing standard deviation ranging from 1 to 8 graylevels. Thanks to the mechanical

regularisation, the measurement is much more robust with noise.

Remarks:

– In this study, the image noise have been estimated to be less than 3 grey-levels

(Allied Vision Pike FireWire 5 Megapixels).

– No filtering algorithm has been used in this work. The only regularisation is

based on the use of a mechanical operator.



Finite Element Stereo Digital Image Correlation 21

(a) (b)

Fig. 10 Standard deviation of the error when measuring the out-of-plane displacement Vz (a)
and the rotation θy (b) as a function of the standard deviation of the noise. This is computed
with both methods: FE-SDIC (red) and R-FE-SDIC regularised measure with a plate model
(blue)

4.1.3 Regularisation coefficients

Obviously, the result from such a measurement depends on the used parameters

λm and λt. They are the cut-off wavelength of low-pass filters [10,8,21]. Usually,

this kind of parameters are set between 0 and 1 (eq. (9)). Thus, the three terms

of (8) are normalized with αv, αm and αt.



0 ≤ 1− λm − λt︸ ︷︷ ︸
λvision

≤ 1

0 ≤ λm ≤ 1

0 ≤ λt ≤ 1

(9)

Thus, different values of λm can be used in order to study the measurement

error. Without mechanical regularisation, a displacement can be observed but not

a rotation. Thus, the rotation measurement with a low value of λm corresponding

to a low mechanical regularisation should not be less accurate than with a greater

regularisation coefficient. But, as it can be seen in Figs. 11(a) and (c), it is hard to

find the optimal parameter, especially when looking to the rotation. The simplest

way to find it for such an approach, is to draw a L-curve [12,7] which represent
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both DIC and Mechanical residual. The optimal parameter will naturally be at

the corner of the L-curve cf. Fig. 11(e).

On the other hand, the parameter λt aims to take into account the degrees

of freedom with a Dirichlet condition. Thus, the only condition seems to have a

non-zero parameter: λt 6= 0. But it can be seen in Figs. 11(b), (d) and (f) that this

parameter does have an impact on the measurement. Indeed, the weight of this

coefficient has an influence on the boundary. And since boundary displacement

uncertainty has a tendency to spread in the mechanical regularised region, it has

an effect on the solution [8].

4.2 Real test case

The same measurement is now carried out with real deformed images. As ex-

pected, the measurement of the rotation by R-FE-SDIC (mechanically regularised

FE-Stereo-DIC with a plate theory) is more accurate than without mechanical

regularisation, because the latter is the numerical derivative of a measured field

cf. Fig. 12.

The main advantage of a Stereo method based on the world reference system

is that it is possible to use a real mesh. Indeed, in a classical FE-SDIC method,

the mesh has to be adapted to the measurement. Here, the goal is to adapt the

measurement in order to realize a real dialogue between experiment and simulation.

The mesh chosen for a simulation can also be used for a measurement. Thus, for

example, the mesh can be refined in the center for a potential default cf. Fig. 13.

In this figure, the shape measurement step is compared to the one computed by

Vic-3DTM. It can be seen that the point cloud resulting from Vic-3DTM is close

to the mesh except at the boundary where Vic-3DTM shape is not available.

With this kind of mesh, even the displacement field computed without regu-

larisation would not be correct because of the mesh refinement at the center cf.

Fig. 14.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Schemes for studying the influence of λm (left) and λt (right). Standard deviation of
the error when measuring the out-of-plane displacement Vz (a, b) and the rotation θy (c, d)
for different values of λm and λt. This is computed with R-FE-SDIC regularised measure with
a plate model (blue) and the value corresponding to the FE-SDIC method is plotted (red) for
a comparison. L-curve (e, f) of both parameter in order to minimise both DIC and Mechanical
residual
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
z 

(m
m

)

0-50-100-150 50 100 150

x (mm)

Displacement Vz

FE-SDIC
R-FE-SDIC

(a)

x10
-3

0

1

2

3

4

5

6

7

8

9

θy

0-50-100-150 50 100 150

x (mm)

Rotation θy

numerical derivative of FE-SDIC
direct R-FE-SDIC

(b)

Fig. 12 Comparison of the measurement of the displacement Vz (a) or the rotation θy (b)
with different approaches : FE-SDIC (red) or R-FE-SDIC (black)

Fig. 13 Shape of a large plate measured by SDIC during an actual experiment. A suitable mesh

is devised to perform a better resolved FE-SDIC measurement around a potential defect located

in the center of the plate. The FE-SDIC shape measurement (mesh) is compared to a classical

SDIC shape measurement (Vic-3DTM: point cloud)

(a) (b)

Fig. 14 Comparison of the out-of-plane displacement fields Vz measured by FE-SDIC without

regularisation (a), or with regularisation R-FE-SDIC (b)
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5 Conclusion

A full stereovision framework for measuring the 3D shape and displacements using

a Finite Element mesh was developed. The formulation incorporates a gray-level

based calibration step extended to non-linear camera models. It was shown that,

in opposition to stereovision using NURBS functions [1], the shape measurement

is very ill-posed and requires additional regularisation. We used for that a type

of isometric constraint. Thanks to this formulation in the world coordinate sys-

tem, the same FE mesh can be shared between both numerical simulation and

measurement. It is thus a good tool to perform quantitative comparisons between

non-planar experiments and corresponding simulations that are most often based

on Finite Elements [26,27]. In addition, a technique was proposed to build the

minimal number of integration points in such a context.

As an application, the method was used for the measurement of the displace-

ment and rotation fields of a plate in bending, using a mechanical regularisation

based on the elastic stiffness operator associated to the FE mesh. In addition,

stereo synthetic test cases are developed and analysed in order to exemplify the

efficiency of the proposed method.
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