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E-mail: stefano.spigler@lptms.u-psud.fr

Abstract. Disordered systems are characterized by the existence of many sample-

dependent local energy minima, that cause a step-wise response when the system

is perturbed. In this article we use an approach based on elementary probabilistic

methods to compute the complete probability distribution of the jumps (static

avalanches) in the response of mean-field systems described by replica symmetry

breaking; we find a precise condition for having a power-law behavior in the distribution

of avalanches caused by small perturbations, and we show that our predictions are in

remarkable agreement both with previous results and with what is found in simulations

of three dimensional systems of soft-spheres, either at jamming or at slightly higher

densities.
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1. Introduction

Disordered systems have complex rugged energy landscapes, with many sample-

dependent local minima that are deformed non-uniformly when the system is slightly

perturbed. Upon increasing an external perturbation, a step-wise and sample-dependent

response is usually observed [1, 2, 3, 4, 5, 6, 7, 8, 9], giving rise to jumps in several observ-

ables, called avalanches. An interesting feature is that the distribution of avalanches,

averaged over several samples, usually displays a power-law behavior. Interestingly, one

often finds the same power-law exponent using different perturbation protocols, e.g.

studying the response of the system under different dynamics [10, 11]; indeed, it has

been conjectured that in some disordered systems the various responses might lie in the

same universality class, regardless of the protocol [12]. When the protocol is such that

the perturbation and the relaxation happen on separate time scales (i.e. the relaxation

is much faster than the perturbation), the system always lies in its instantaneous ground

state and the avalanches are called static avalanches ; the numerical protocol that al-

ternates small perturbation steps and relaxation is usually referred to as the athermal

quasi-static protocol (AQS). In this article we propose a derivation of the probability

distribution of static avalanches for a disordered system that can be described by the

replica symmetry breaking (RSB) framework; an alternative derivation for the moments

of such a distribution in the Sherrington-Kirkpatrick spin glass model has been already

presented in [11]. Our approach is based on elementary probabilistic methods exploiting

the Derrida-Ruelle probability cascades that characterize the Gibbs states, and in the

case of the SK model it leads to the same results found in [11] via a differential equations

approach.

Our motivation to re-examine this problem in a general framework comes from the

physics of soft spheres, in particular the jamming transition [13, 14, 15, 16, 17], where

upon compression from a dilute phase, the system acquires mechanical stability. Soft

spheres interact via a harmonic potential when in contact, and do not interact when

far away. When such a system has a low packing fraction (ratio of the total volume of

spheres to the total volume) it behaves as a liquid: in particular, it does not provide any

elasto-plastic response to external forces and it has null shear-module. If the density is

increased (while trying to minimize the total energy of the system, i.e. trying to keep

the spheres apart), at some point the spheres will get in touch with each other: the

packing fraction at which the average number of contacts per particle is twice the space

dimension (the isostatic condition) is defined as the jamming point, and marks the onset

of rigidity, since the number of contacts is sufficient to attain marginal stability (this

is the Maxwell’s condition). If the density is further increased the average number of

contacts increases as well, with a square-root dependence near the jamming point, as

shown in Figure 1.

Soft sphere models have been recently analyzed and solved in the limit of infinite di-

mensions [18, 19, 20]. Remarkably, the solution, strongly based on RSB, manages to
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Figure 1. Average coordination number (number of contacts per particle) as a

function of the packing fraction, for one specific 3-dimensional sample of 1000 soft

spheres with harmonic repulsion.

predict properties of systems at jamming that are apparently super-universal and that

do not seem to depend appreciably on the space dimension. In particular, the long-range

contribution to the distribution of small contact forces between particles at jamming

follows a power-law with a roughly constant exponent θ for any dimension. Moreover,

recent results [21] point out that two different critical scaling solutions describe the

jamming point and the jammed phase (also called UNSAT phase, it is the phase found

upon further compressing the system above jamming; the name stands for “unsatisfied”

and comes from the language of constrained satisfaction problems). We are therefore

interested in the implications of this scenario for static avalanches induced by a shear-

strain applied to the system. In this work we argue that the exponent τ in the static

avalanche distribution at jamming is related to the small-force exponent θ via the rela-

tion τ = 3+θ
2+θ

. This is shown analytically in the infinite dimensional case, and numerical

simulations suggest that it is quite accurate in finite dimensions as well. We also com-

pare the statistics at jamming and in the UNSAT phase: due to the different scalings in

the infinite dimensional models, the avalanche exponents are different in the two cases,

and there is a good agreement between the finite and the infinite dimensional values,

thus showing the non-trivial presence of two different critical regimes in any dimension

(at least for dimensions larger than 3).

The rest of the paper is organized as follows: in the next section we present a short

review on the structure of the states in a RSB systems and how it can be represented

in terms of a stochastic process, known as Derrida-Ruelle cascade. In the section Ap-
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proach we show how to use the Derrida-Ruelle process to compute the distribution of

avalanches in these systems. In the section Asymptotic behavior we discuss the result

and the power-law distribution of small jumps, that in section Simulations of systems

of spheres will be compared with some numerical simulations for 3-dimensional systems

of soft spheres under shear. Then, in Consequences on the elastic moduli we discuss

the implications of the distribution of jumps that has been found at jamming on the

non-linear elastic moduli, comparing our results with [22]. In the Appendix we present

the detailed calculations.

2. Derrida-Ruelle cascades: a primer

In this section we describe briefly, and for the scope of this paper, the picture of the

ergodicity breaking that emerges in the solution of mean-field glassy models. In these

systems, at sufficiently small temperature, the Gibbs measure is split in ergodic compo-

nents (pure states) with nearly degenerate random free energies (i.e. with differences of

order 1). To describe the organization of the space of these states we introduce the no-

tion of overlap qαβ between two states α, β: this is a co-distance whose absolute value is

normalized between 1 and 0 (for identical and maximally different states, respectively).

Different definitions are used for different systems: for a spin glass with N spins (e.g.

the Sherrington-Kirkpatrick model) qαβ = 1
N

∑

i s
α
i s

β
i , where sαi is the i-th spin in the

state α; for N soft spheres, qαβ = 1
N

∑N
ij=1w(|xα

i − x
β
j |), where xα

i is the position of the

i-th particle in the state α and w(r) is a window function that vanishes when r is larger

than some threshold. The organization of the states is then ultrametric with respect to

the overlap, in the sense that they are in a one-to-one relationship with the leaves of a

rooted tree that is generated via a Derrida-Ruelle cascade [23, 24, 25, 26, 27, 28, 29, 30].

The energy of any state in a given sample is the sum of an extensive, self-averaging part

(that is the same for all the states) and a term that is of order O(N0). The Derrida-

Ruelle cascade is a stochastic branching process that describes the distribution of these

non-extensive free energies in the different states. It is usually described considering

first a tree of finite depth k, and then taking the suitable limit for k → ∞: the process

is fully characterized by k pairs of increasing parameters q1 < · · · < qk, x1 < · · · < xk

that can be thought of as a step-wise function x(q, T ) = xi in (qi, qi+1); the function

x(q, T ) is known as the Parisi function, and in the limit k → ∞ it becomes continuous.

For the systems that we are dealing with, the function x(q, T ) is known from previ-

ous works [18, 19, 20, 21], and is defined as the solution to a variational problem; for

small temperature T , βx(q, T ) ∼ y(q) + O(T ) where β is the inverse temperature and

y(q) is the zero-temperature limit of βx(q, T ), which will be needed later to study the

zero-temperature distribution of the states.

In order to describe the Derrida-Ruelle process, we start with an example of a k = 2
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Figure 2. A realization of the Derrida-Ruelle cascade for a k = 2 tree; a generic state

α is explicitly shown.

tree, as in Figure 2. Starting from a reference free energy F̄1, that depends on the

specific sample, we generate the first level of the tree via a Poisson point process: the

number of branches going from the root node to nodes with free energy in (F̄2, F̄2+dF̄2)

is a Poisson variable with average exp(βx1(F̄2 − F̄1))dF̄2; in this way we generate the

nodes {αi} with free-energies {F̄2,αi
}. Then, for each node αi we generate sub-branches

according to a new Poisson point process: the number of branches going from αi (with

free energy F̄2,αi
) to nodes with free energy in (F3, F3+dF3) is again a Poisson variable,

this time with expected value exp(βx2(F3 − F̄2,αi
))dF3. The set of nodes in the last

level corresponds to the states of the system, and the free-energies of the states are

precisely the values generated via this process. We can also associate each overlap qi to

the i-th level, as shown in the figure: then, the overlap between two states (i.e. leaves)

is simply the value qi at the level of the closest common ancestor node; for instance, for

the states α, β, γ in Figure 2, qαβ = qαγ = q1 and qβγ = q2, while the self-overlaps are all

identical to qαα = q3 (q3 ≡ qEA is known as the Edwards-Anderson order parameter in

spin glasses, and at zero temperature it becomes 1). The general process for a tree with

k levels is very similar; the process is iterated for all k levels: the number of branches

going from a node with free energy F̄i at the i-th level to nodes with free energy in

(F̄i+1, F̄i+1 + dF̄i+1) is a Poisson variable with average exp(βxi(F̄i+1 − F̄i)). In the end

the non-extensive part of the free-energies of the states {Fα} are generated as the leaves

of the tree.

In order to study athermal systems of soft spheres under shear-strain, we take the

following considerations into account: at zero temperature the free-energies of the states

Fα become energies Uα; the self-overlap qk+1 ≡ qEA becomes 1; the function βx(q) is

replaced by its zero-temperature limit, y(q); we need the distribution of stresses in

the states. For systems of soft spheres (but the same holds e.g. for the Sherrington-

Kirkpatrick model in a magnetic field), energies and stresses are uncorrelated [31], and

it can be shown [23] that the stresses of the states can be generated with the following
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...

k − 1

k

k + 1

Ūk−1, Σ̄k−1

Ūk, Σ̄k
yk−1

yk

Ugs,Σgs Uα,Σα

Figure 3. A portion of an ultrametric tree for a k-RSB system, the ground state and

a generic state α are explicitly shown.

diffusion process on the same ultrametric tree generated by the previous branching

process: starting from some reference stress Σ̄1 related to the sample, the stress Σ̄i of

each node i is Gaussian distributed with average Σ̄i−1 (its direct ancestor) and variance

proportional to qi − qi−1. Again, we continue the process until we reach the states,

located on the leaves of the tree. A portion of a ultrametric tree with k levels is shown

in Figure 3. In the end we want to take the continuous limit: without loss of generality

we can assume that qi = i∆q, such that in the limit k → ∞ we have ∆q → 0, k∆q → 1,

and yi → y(q).

3. Approach

Let us consider a system with a Hamiltonian H with O(N) degrees of freedom (e.g.

N particles); we apply a small perturbation δγ ≪ 1 that modifies the energy as

H′ = H− δγ√
N
Σ, where Σ is the suitable variable conjugated to the field. We will think

of δγ and Σ as the shear-strain and shear-stress for systems of spheres, even though the

results are general and apply also, for instance, to spin glasses perturbed by a magnetic

field. The scheme of our approach is as follows: first, we need the distribution of energies

{Ui} and stresses {Σi} in the states {αi}, that are the local minima of H; then, since

we are interested in the static avalanches, we need the distribution of the energy Uβ and

stress Σβ of the new ground state, that is the state β that minimizes the total energy

Uβ − δγ√
N
Σβ among all the states, for a given strain δγ (notice that we will be dealing

with the non-extensive part of the free energy only — i.e. the one distributed according

to the Derrida-Ruelle cascade, — since the extensive term is the same for each state and

needs not be taken into account). Finally we will study the distribution of the difference

Eβ − Egs (Egs being the energy of the unperturbed ground state) to check whether it

displays a power-law behavior for small jumps at a fixed strain. The distribution of this

state β can be written as a marginal distribution of the joint probability of the states

(we are integrating out all the other states, with the constraint that they must have an
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energy higher than the new ground state β):

Pmin[Uβ ,Σβ, β|δγ] =

=

∫

[

∏

α6=β

dUαdΣα θ(Uα − δγ√
N
Σα − Uβ +

δγ√
N
Σβ)

]

Pstates[{Uα,Σα}]. (1)

The detailed derivation is in the Appendix. We are interested in the distribution of the

difference between the total energy of the unperturbed ground state and that of the new

ground state at external field δγ, that is Eβ − Egs = Uβ − δγ√
N
Σβ − Ugs. On the other

hand, in the calculations it is clear that the relevant variable, whose distribution can be

computed easily, is ∆E ≡ Uβ − Ugs − δγ√
N
[Σβ − Σgs] = Eβ − Egs +

δγ√
N
Σgs; this is not

a great issue because we are interested in the small δγ regime, and Σgs is also a small

quantity. In the full-RSB limit (k → ∞) the result is

P[∆E|δγ] = δ(∆E)R(0, δγ)− θ(−∆E)
dR(∆E, δγ)

d∆E
, (2)

R(∆E, δγ) = exp

{

− |δγ|
∫

dq y′(q)
√

1− q · ρ
[

∆E + δγ2Y (q)√
1− q |δγ|

]}

, (3)

where ρ(x) ≡ e−
x2

4√
π

+ x
2
erfc

(

−x
2

)

‡ and Y (q) ≡
∫ 1

q
dq′ y(q′). Keep in mind that by

definition ∆E ≤ 0, since the new ground state has to be lower than the unperturbed

one; notice also the manifest invariance under δγ → −δγ, that arises naturally from the

computations and suggests the presence of a cusp for δγ = 0. In principle, for different

kinds of perturbations this symmetry might not hold.

4. Asymptotic behavior

The increasing function y(q) is related to the distribution of overlaps between states. In

some cases, a large concentration of states close to the ground state causes the function

y′(q) to diverge near q = 1, as y′(q) ∼ (1− q)−µ−1: for instance, systems of soft spheres

display a divergence with exponent µJ ≈ 1
1.41

(in literature it is called also 1
κ
) at jam-

ming, and µUNSAT = 1
2
in the UNSAT phase, and the Sherrington-Kirkpatrick model also

has an exponent µSK =
1
2
. The accumulation of neighboring states has consequences on

the distribution of avalanches, since one can imagine that the system will jump easily

even with small perturbations: indeed, we are going to show that the probability dis-

tribution develops a power-law behavior for sufficiently small jumps and fields, with an

exponent that is directly linked to the exponent µ.

‡ erfc(x) = 2√
π

∫∞

x
e−t2dt



Mean-field avalanches in jammed spheres 8

In order to study the asymptotic behavior, let us introduce the function C(∆E, δγ) ≡
− logR(∆E, δγ), where R is the same function as in Equation (2). The probability

density of jumps is P[∆E|δγ] = R(∆E, δγ) ∂∆EC(∆E, δγ); for |∆E| ≪ |δγ| ≪ 1, we

have

∂∆EC(∆E, δγ) =
1

2

∫ 1

0

dq y′(q) erfc

[

−∆E + δγ2Y (q)

2
√
1− q |δγ|

]

∼

∼ 1

2

∣

∣

∣

∣

∆E

δγ

∣

∣

∣

∣

−2µ ∫ ∞

|∆E
δγ |2

du uµ−1erfc

(√
u

2

)

∼
∣

∣

∣

∣

∆E

δγ

∣

∣

∣

∣

−2µ

. (4)

Integrating and exponentiating we find also the behavior of R(∆E, δγ), and, in the end,

the asymptotic behavior of P[∆E, δγ]:

P[∆E|δγ] ∼











exp

{

−const× |δγ|
∣

∣

∣

∆E
δγ

∣

∣

∣

−2µ+1
}

∣

∣

∣

∆E
δγ

∣

∣

∣

−2µ

, for µ > 1
2
,

∣

∣

∣

∆E
δγ

∣

∣

∣

−1+const×|δγ|
, for µ = 1

2
.

(5)

Notice how, for µ > 1
2
, P[∆E|δγ] is a power law if

∣

∣

∣
δγ1+ 1

2µ−1

∣

∣

∣
≪ |∆E| ≪ |δγ| ≪ 1;

therefore, the avalanche exponent is found to be τ ≡ 2µ. For µ = 1
2
(and small field

δγ) there is a small correction to the exponent, of order |δγ|. In Figure 4 are shown

the plots of the probability distribution related to two different functions y(q), for some

small values of the field. We can compare our result with [11]: in that article the authors

find, via a differential equation approach based on replica symmetry breaking, that the

density of static avalanches in stress (they actually use the language of magnetic systems

and call it magnetization) per unit δγ is given by

P[∆Σ] = θ(∆Σ)∆Σ

∫ 1

0

dq y′(q)
e−

∆Σ2

4π(1−q)

4π(1− q)
. (6)

If y(q) diverges, then the integral is dominated by q ≈ 1 and the probability displays a

power-law behavior for small jumps, with an exponent τ = 2µ like for the jumps in the

total energy. In our framework we can recover the same result starting from Equation

(28) in the appendix (or, conceptually, Equation (1)); this equation, valid for a finite

k-RSB, defines the probability distribution P[∆U,∆Σ, q|δγ], where ∆U,∆Σ are the

differences in energy and stress between the unperturbed and perturbed ground states,

and q is their mutual overlap. If we keep only the first order in the Taylor expansion

for small fields δγ > 0, then integrate out the energy jump ∆U and the overlap q, and

divide by the field strength δγ, we find the density of stress jumps per unit strain, a

result identical to Equation (6). Analogously, integrating out ∆U and ∆Σ and dividing

by δγ we can find the density P[q] of jumps at a given overlap q:

P[q] =

√

1− q

π
y′(q) ∼ (1− q)−µ− 1

2 . (7)

In the case of the Sherrington-Kirkpatrick model studied in [11] we find the same result

presented in the article, namely that P[q] ∼ 1
1−q

. For completeness, with the same
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approach (expanding for small δγ, integrating out ∆Σ and q, and dividing by δγ), we

find the density of jumps in internal energy per unit field,

P[∆U ] ∼ 1

δγ

(

∆U

δγ

)−2µ

. (8)

where the fact that δγ did not disappear is because the energy jumps are of order δγ.

(a)

10+0

10+4

10+8

10−11 10−8 10−5 10−2

|∆E|

P
ro

ba
bi

lit
y

(b)

10+0

10+4

10+8

10−13 10−9 10−5 10−1

|∆E|

P
ro

ba
bi

lit
y

Figure 4. a. On the left, the plot of the distribution for a tentative function y(q)

that diverges with an exponent µ = µJ ≈ 1
1.41

, for several values of the perturbing

field: notice the development of the power-law region as the field is lowered. b. On

the right, the plot for a function y(q) that diverges with µ = µSK = µUNSAT = 1
2
, for

several perturbations; here, the exponent of the power law displays minor corrections

for larger field.

It is interesting to discuss what happens when the perturbing field δγ scales as N−α

for some exponent α ≥ 0. If α = 0 (i.e. δγ√
N

∼ N− 1
2 ) then R(0, δγ) = 0, where R

is the function in Equation (3); since R(0, δγ) is the probability of not jumping when

a shear strain δγ is applied, this scaling implies that, in the thermodynamic limit,

the system jumps with any perturbation, however small it might be. Moreover, the

power-law behavior in the distribution of the jumps ∆E is suppressed beyond the re-

gion |δγ|1+ 1
2µ−1 ≪ |∆E| ≪ |δγ|, and the typical jump is of order |∆E| ∼ N0 (remember

that this is the sub-leading, non-extensive part of the free-energy, and that the extensive

term is the same for all the states).

There is, possibly, another interesting regime, that is the one that leads to a finite

probability of not jumping when a small shear strain is applied, even when N → ∞.

The zero-temperature maximum overlap between two states — the Edwards-Anderson

order parameter qEA, — is 1 in the thermodynamic limit, and it might, in principle,

scale as 1 − N−β . In this case, all the diverging integrals in dq have a cut-off; scaling

δγ as N−α with α = 1
2
β(2µ− 1) leads to a finite probability for the system not to jump

when sheared, but now the typical jump is smaller and scales as |∆E| ∼ N−β(2µ−1).
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5. Simulations of systems of spheres

We would like now to compare the prediction of replica theory with numerical

simulations in three dimensions. As stated in the introduction, at zero temperature

one finds different critical scalings at jamming (packing fraction φ ≡ φJ) and in the

UNSAT regime φ > φJ . As described in [20] the jamming solution is characterized by a

singular yJ(q) ∼ (1− q)−µJ for q → 1. The exponent µJ is related to the “pseudo-gap”

exponent θ in the distribution of small contact forces at jamming, P (F ) ∼ F θ, according

to

µJ =
3 + θ

2(2 + θ)
, (9)

where the numerical value predicted for θ is θ ≈ 0.42311. Accordingly, denoting τJ the

value of the avalanche exponent τ at jamming, we have τJ = 3+θ
2+θ

≈ 1.41269. On the

other hand a different solution has been found in the UNSAT phase above jamming [21]

which predicts y(q) ∼ (1− q)−1/2 for q → 1 and correspondingly denoting τUNSAT the

avalanche exponent in this region, we have τUNSAT = 1. Notice that this same scaling is

observed in the Sherrington-Kirkpatrick spin glass model (µSK =
1
2
).

We then study the distribution of avalanches in numerical simulations of systems of

3-dimensional soft spheres under shear strain. We consider the standard mono disperse

harmonic soft sphere model with a potential between spheres at distance r

V (r) =
(

1− r

2R

)2

θ
(

1− r

2R

)

(10)

where R is the radius of the particles and θ(x) is the step function. We first prepare

the system generating amorphous energy minima at packing fractions φ ≥ φJ , and

then we study the effect of an applied shear according to the athermal quasi-static

protocol, letting the system relax after every perturbation via a dissipative molecular

dynamics [32]. The jammed systems are prepared using compression/decompression

cycles that end when the average number of contacts per particle reaches the desired

isostatic value (twice the dimension), and lead to a jamming packing fraction φJ ≈ 0.64;

UNSAT samples are prepared directly at some target packing fraction φ > φJ . The shear-

strain is achieved using the Lees-Edwards boundary conditions [33]; these boundary

conditions shift each periodic unit by an amount that is proportional to its vertical

position with respect to the central unit. In principle our theoretical work computes

the statistics of the jump starting from the ground state, induced by a small external

field δγ; in practice we increase the strain by small steps δγ up to a small maximum

accumulated strain γmax = 0.01, and the energy is minimized between every step, while

recording all the observables and computing the jumps between to subsequent steps.

This is justified by the assumption of stationarity in the linear stress-strain regime: for

this reason the value of γmax is kept small in order not to perturb too much the system.

We detect the avalanches in the systems by measuring the energy as a function of strain

as in Figure 5. We measure the avalanche distribution at various values of the packing
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Figure 5. Energy and stress as a function of the accumulated shear strain for a system

of N = 4000 particles at jamming (φ ≈ 0.64). Every step is made with δγ = 10−5. We

are interested in the distribution of jumps Emin(γ + δγ)−Emin(γ), Emin(γ) being the

instantaneous ground state when subject to a perturbation γ.

fraction, at jamming and in the UNSAT region (φ = 0.64, 0.75, 0.8, 0.9) and for different

values of the system size (N = 500, 1000, 2000, 4000 particles), in three dimensions. We

generate several hundreds of configurations (about 300 at jamming and 1000 at higher

packing fractions) for each value of N and φ; then, every sample is sheared for 1000

steps with strain increment δγ = 10−5 and we record the amplitude of the energy jumps

E(γ+δγ)−E(γ)−δγΣ(γ) (≈ E(γ+δγ)−E(γ) since both δγ and Σ(γ) are very small in

the regime that we are simulating). In Figure 6 we present the histogram of the energy

jumps in a log-log plot, showing that a power law regime exists both at jamming and

in the jammed configurations. It is manifest that the exponent in the jammed phase is

smaller than the one at jamming, and it is independent of the value of φ. The deviation

from the theoretical behavior presented in Figure 4 has several origins: first of all, the

theoretical curves are strictly valid for infinite dimensional systems, and even though we

can argue that some properties do not vary with the dimension, there are features that

surely do; then, the scale of the shear-strain axis depends on a constant factor in the

variance of the shear-stress in the states; furthermore, there is a Gaussian error in the

computation of the ground states due to the minimization algorithm, that ends when

some precision criteria are met: this error is apparent only at small scales, that can

be seen in the low-strain part of the histogram at jamming. Among these sources of

errors, only the first one (the fact that we are comparing finite and infinite dimensions)

might have an effect on the exponent, but surprisingly it does not — at least not by

much. The quality of our data does not allow a proper determination of the avalanche
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Figure 6. Histograms for the avalanche distribution in systems of several sizes, with

δγ = 10−5 (shifted in order to be compared with the predicted power-law). Histograms

of the avalanches for systems in the UNSAT phase, at prepared at packing fractions (a)

φ = 0.75 (the fitted exponent is τ0.75,fit ≈ 1.11 ± 0.029) and (b) φ = 0.80 (the fitted

exponent is τ0.80,fit ≈ 1.12 ± 0.028). (c) Jammed system at φ ≈ 0.64 (the fitted

exponent is τJ,fit ≈ 1.52 ± 0.075). (d) Comparison of all the data. The predicted

power laws with τJ ≈ 2
1.41

≈ 1.42 and τUNSAT = 1 are also shown in.

exponent, however in both cases the data are compatible with the theoretical values; we

have presented our numerical fits in the caption of Figure 6. While this was expected

at jamming it is a surprising result in the jammed phase in finite dimensions. More

accurate simulations in different dimensions should be performed to validate this result.

6. Consequences on the elastic moduli

Systems compressed at or above jamming attain some mechanical stability due to the

contacts between particles (e.g. Figure 1). A question that arises naturally is whether

the elastic response of such systems shares common properties with that of ordered

solids. Crystals, for instance, when sheared, display at first an elastic (linear) response

in the shear stress, that at a certain point (the yielding point [34]) saturates; this hap-

pens because for large shear strains the system fails and displays a plastic, irreversible

response. Interestingly, disordered systems, on average, behave in a very similar manner:

as one can see from Figure 7, the average stress is a linear function of the shear-strain

for small perturbations (for this system of soft spheres, γ . 0.02), but it becomes a

constant for larger values.
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Avalanche dynamics provides the description of the response of the system at the mi-

croscopic level, and in our picture its statistics is a consequence of the glassy criticality

associated with the divergence of the Parisi function y(q) near q = 1. It has been recently

pointed out in [22] that at the transition between stable and marginally stable glasses

(namely the Gardner transition [35]) the elastic response exhibit a singular behavior.

-0.05
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 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

(
)

( ), with  =1e-4
N=256, sample
N=256

Figure 7. Average stress-strain curve for a system of 256 soft spheres (average

over 200 samples); the shaded area shows the associated sample-to-sample variance.

Superimposed is also shown the stress-strain curve of typical sample.

In this section we would like to discuss the relation between the macroscopic elastic

response and the distribution of avalanches, and show that singular responses naturally

emerge in zero-temperature glassy phases and at the jamming point. Let’s say that

a given sample, when sheared, produces a stress curve Σ(γ); for small γ (that is, in

the elastic, linear regime) the distribution of Σ(γ) (relative to the initial value of the

stress) is given by the distribution P[Σ(γ)] ≡ P[Σ|γ] of stress jumps that we have found.

Ideally, one would like to expand Σ(γ) in powers of γ, in such a way to define higher

(non-linear) elastic moduli, and then compute their first moments. We can define similar

quantities by considering the moments of the finite differences of this curve, and then

taking the suitable limit:

〈

µk
m|γ

〉

≡ lim
δγ→0

δγ−km

〈[

m
∑

n=0

(

m

n

)

(−1)(m−n)Σ(γ + nδγ)

]k〉

. (11)
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For example, the first and second moments of the first (shear) modulus are

〈µ1|γ〉 ≡ lim
δγ→0

δγ−1 〈Σ(γ + δγ)− Σ(γ)〉 = ∂γ 〈Σ|γ〉 , (12)

〈

µ2
1|γ

〉

≡ lim
δγ→0

δγ−2
〈

[Σ(γ + δγ)− Σ(γ)]2
〉

. (13)

Of course for k = 1 we recover 〈µm|γ〉 = ∂m
γ 〈Σ(γ)〉, that in the linear regime is always

finite. In order to compute 〈µ2
1|γ〉, we have to make an assumption of stationarity ; what

we will assume is that the distribution of ∆Σ ≡ Σ(γ + δγ) − Σ(γ) does not depend

on γ (this assumption seems reasonable in the elastic regime, when γ ≪ 1). Therefore

〈µ2
1|γ〉 = lim δγ−2 〈∆Σ2|δγ〉 = ∞, since we can show that 〈∆Σ2|δγ〉 ∼ δγ — for example

starting from Equation (28), — either at jamming or in the UNSAT phase.

Figure 8. Behavior of the first two moments of the shear modulus µ1 as a function

of δγ. (a) and (c) show the average shear modulus (at jamming and at φ = 0.75,

respectively), that is finite in the δγ → 0 limit. (b) and (d) show the sample-to-

sample variance of the shear modulus (again at jamming and at φ = 0.75); both

diverge in the δγ → 0 limit as δγ−1, as predicted. Log scale on the δγ axis in both

figures; log scale on the vertical axis only in the pictures to the right.

Our numerical simulations confirm this result: in Figure 8 are shown 〈µ1|γ〉 and 〈µ2
1|γ〉

before taking the limit δγ → 0 in Equation (12): the two quantities are computed with

a finite δγ, in order to extrapolate the proper limit; 〈µ2
1|γ〉 ∼ δγ−1 in both phases, as

predicted. In [22] the authors have found that systems at the Gardner transition have
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a shear-modulus with finite variance (〈µ2
1|γ〉 < ∞), but the variance of all the higher

moduli diverge. In this work we have shown that also beyond the Gardner transition

(namely, at jamming or in the UNSAT phase) the elastic response breaks down; even

more drastically, in these phases the variance of the shear modulus is divergent, too.

7. Summary and conclusions

In this paper we reexamined the problem of avalanches in mean-field glassy systems

with particular attention to marginal glassy phases (the UNSAT phase) and jamming

points. We focus on static avalanches, namely the difference of the energy or some other

observable between the perturbed and unperturbed ground states. Power-law avalanche

distributions are associated with the proliferation of low-energy relative minima close

to the ground state. In the case of elastic spheres, we find different universality classes

for the zero-temperature marginal glass and the jamming point, where the response to

sufficiently small shear strains is described by non-trivial distributions with different

power-law behaviors.

These results are compared with the response of quasi-static avalanches in three-

dimensional soft spheres, that we studied numerically. Despite obvious differences be-

tween the dynamical protocol and the static calculation, our numerical simulations (a)

confirm that the avalanche exponents are different at jamming and in the denser phase,

and (b) the values of the exponents are close to the mean-field ones. At jamming this

suggests that the super-universality of the force and gap exponents, i.e. their indepen-

dence on the spatial dimension and preparation protocol, extends to the dynamical

avalanche exponents. More surprising is the coincidence of the exponents in the glassy

phase where renormalization could be expected even at zero temperature. In order to

clarify this point more precise measures of the exponent τ and a study as a function of

the space dimension are needed. Finally we have related the avalanche distribution to

the distribution of non-linear elastic moduli, showing that a singular behavior is present

in marginal zero-temperature glasses and that, since higher moments are divergent, the

typical response of the system is not the average one.

Our next projects will follow mainly two directions: firstly, we want to run improved

simulations, aimed to a finer characterization of the avalanches in finite dimensional

systems. Secondly, in this article the maximum shear-strain was kept small in order to

remain in the linear regime, but there is also much interest on the stationary elasto-

plastic regime that follows the yielding transition; we plan to study the distribution of

avalanches in this setting, in order to be able to compare our results with all the works

that have been published in the field, for example [36, 37, 38, 39, 40, 41, 42, 43, 44].
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Appendix: calculations

· · ·

{Uα}

k − 1
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Ūk−1, Σ̄k−1
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Figure 9. Left. A portion of an ultrametric tree for a k-RSB system. The dashed

boxes enclose the qk−1- and qk-clusters, (k− 1) and (k) are their minima, respectively,

and (gs)=(k + 1) is the ground state. Right. The tree after the integration of the

states that are not minima of any cluster, leaving only the relevant branches (thick

ones in Figure 3 left); this tree can be thought of as the factor graph of the joint

probability of the minima in each cluster P [Ugs,Σgs;Uk,Σk;Uk−1,Σk−1; . . . |δγ].

In this section we show how the results were found analytically, via an approach based

entirely on elementary probabilistic methods. Every state α of the system has intrinsic

stress Σ̃α and energy U0+Uα, where U0 in an extensive term that is identical for all the

states in the sample and Uα is a term of order O(1); since we are interested in finding

the state that minimizes the total energy, from now on we will ignore the extensive term

U0. Anticipating that the distribution of the stresses Σ̃α is expected to be Gaussian in

the states, with a variance proportional to the number of particles N , we introduce a

set of rescaled stresses Σα ≡ Σ̃αN
− 1

2 in order to work with O(1) quantities. Since in

the following calculations Σ̃α will always appear multiplied by δγ√
N
, we can get rid of

the N terms by considering the total energy of a state as Uα − δγ√
N
Σ̃α ≡ Uα − δγΣα.

We assume that the energies {Uα} and the stresses {Σα} of a system are distributed

according to some probability distribution, Pstates[{Uα,Σα}]; then we want to recover

the marginal distribution of the state that minimizes Uβ − δγΣβ among all states at a

given perturbation δγ, namely
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Pmin[Uβ ,Σβ, β|δγ] =

=

∫

[

∏

α6=β

dUαdΣα θ(Uα − δγΣα > Uβ − δγΣβ)

]

Pstates[{Uα,Σα}]. (14)

For the sake of clarity, in this section we use the notation θ(A > B) ≡ θ(A − B) and

θ(A < B) ≡ θ(B −A), θ(·) being the step function.

The distribution Pstates is related to the replica symmetry breaking (RSB) solution; we

will be dealing with solutions that are continuously broken (what is called full-RSB),

but they can be approximated as a proper limit of a finite RSB solution with e.g. k

steps. In the previous sections we have described its statistical structure, that de-

pends only on the function that we called y(q) (related to the distribution of overlaps

between pairs of states): given a reference node with energy Ū1, and for all energy in-

tervals (Ū2, Ū2 + dŪ2), one adds a branch Ū1 → Ū2 with probability ey(q1)·(Ū2−Ū1)dŪ2;

in the same way one adds all the branches up to the k + 1-st level, according to

P[branch Ūi → (Ūi+1, Ūi+1 + dŪi+1)] = ey(qi)·(Ūi+1−Ūi)dŪi+1. Note that there is an infi-

nite number of branches at any step; the values appearing inside the function y(q) are a

discretization of the interval [0, 1], {qi}ki=1 (with qk+1 = 1). This process defines a tree,

an example of which is shown in Figure 9 left. The (non-extensive part of the) energy

of the states are the values Ū at the level k + 1: we call them {Uα}, without a bar in

order to distinguish them from the intermediate nodes that are used only to define the

distribution.

The stresses in the states of a system of spheres are generated via a diffusion pro-

cess on this same tree — this holds for other systems too, e.g. for the magnetiza-

tions in the Sherrington-Kirkpatrick model. In other words, starting from a refer-

ence stress Σ̄1 at the root of the tree, the stress of a node Σ̄i+1 is distributed as

P[Σ̄i+1|Σ̄i] = (4π(qi+1 − qi))
− 1

2 e
− (Σ̄i+1−Σ̄i)

2

4(qi+1−qi) , Σ̄i being the stress of the ancestor node

in the tree. As before, the process is stopped at the k-th level, when states are reached.

At this point, in order to perform the calculation (14) we use the fact that the states

are arranged with this ultrametric structure. It is useful to introduce a partition of the

states as follows: we call qi-cluster the set of all states with overlap qi with the ground

state; the clusters are all disjoint and conditionally independent, and they include all

the states (in particular the qk+1-cluster contains the ground state only since it is the

only state with overlap qk+1 ≡ 1 with itself). A key-point in our calculation consists

in noticing the recurrent structure of the tree, namely that if qj < qi, the qj-cluster is

larger, in the sense that the common ancestors of all its states is further back along the

tree, and this in some way it contains more branching levels; in particular, the qi-cluster
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is a collections of smaller clusters that are statistically equivalent to the qi+1-cluster.

Note that at this point the overlaps qi are both a measure along the depth of the tree

and along its breadth: both concepts are related to the dimension of the qi-clusters.

Keeping in mind the structure of the states presented in Figure 3 left, the first step

in the computation of (14) is writing the probability distribution of the total energy

minimum in each cluster. It is possible to compute this function via a recurrent pro-

cedure, from smaller to larger clusters. The ground state, being the only state in its

qk+1-cluster, is the minimum in the qk+1-cluster. Then we compute probability that

there is a state in the qk-cluster with energy Uk, and that it has stress Σk; this, condi-

tionally on the ancestor node having some energy Ūk and stress Σ̄k, is just the product

of the Poisson and Gaussian variables:

pk(Uk,Σk|Ūk, Σ̄k)dUkdΣk ≡
e
yk(Uk−Ūk)−

(Σk−Σ̄k)2

2(qk−qk−1)

√

2π(qk − qk−1)
dUkdΣk. (15)

The probability that this is the ground state of the qk-cluster (that is, there are no

states in the same cluster with smaller total energy) is the probability that there is no

other state with total energy less than Uk − δγΣk. Since all the nodes are conditionally

independent (conditional on the ancestor nodes),

µk(Uk,Σk|Ūk, Σ̄k)dUkdΣk ≡ (16)

≡ pk(Uk,Σk|Ūk, Σ̄k)dUkdΣk ·
∏

−∞≤U,Σ≤∞
U−δγΣ<Uk−δγΣk

[

1− pk(U,Σ|Ūk, Σ̄k)dUdΣ
]

= (17)

= pk(Uk,Σk|Ūk, Σ̄k)dUkdΣk · exp

[

− ck
yk

eyk(Uk−Ūk−δγ(Σk−Σ̄k))
]

, (18)

where ck is a constant that can be computed and does not depend on the energies and

stresses. It is possible to define analogous functions µi(Ui,Σi|Ūi, Σ̄i) for all the clusters,

and compute them using the self-similarity of the tree: a qi-cluster is the disjoint union

of smaller clusters, whose statistics is the same as the (smaller) qi+1-cluster. Let’s call

µi+1(Ui+1,Σi+1|Ūi+1, Σ̄i+1) the probability density of the qi+1-cluster’s ground state. In

order to compute µi(Ui,Σi|Ūi, Σ̄i), we first count the probability density νi(Ui,Σi|Ūi, Σ̄i)

of the ground states (Ui,Σi) in the smaller subclusters:

νi(Ui,Σi|Ūi, Σ̄i)dUidΣi ≡ dUidΣi×

×
∫

µi+1(Ui,Σi|Ūi+1, Σ̄i+1)pi+1(Ūi+1, Σ̄i+1|Ūi, Σ̄i)dŪi+1dΣ̄i+1, (19)
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where pi is the probability density of branches (product of the Poisson and Gaussian

distributions):

pi(Ūi, Σ̄i|Ūi−1, Σ̄i−1)dŪidΣ̄i ≡
e
yi(Ūi−Ūi−1)−

(Σ̄i−Σ̄i−1)
2

2(qi−qi−1)

√

2π(qi − qi−1)
dŪidΣ̄i. (20)

Once νi is computed it is possible to calculate µi, again with the formula

µi(Ui,Σi|Ūi, Σ̄i)dUidΣi ≡ (21)

≡ νi(Ui,Σi|Ūi, Σ̄i)dUidΣi ·
∏

−∞≤U,Σ≤∞
U−δγΣ<Ui−δγΣi

[

1− νi(U,Σ|Ūi, Σ̄i)dUdΣ
]

. (22)

The results for νi(Ui,Σi|Ūi, Σ̄i), µi(Ui,Σi|Ūi, Σ̄i) are:

νi(Ui,Σi|Ūi, Σ̄i) = di
exp

[

yi(Ui − Ūi)− (Σi−Σ̄i)
2

2(qi−qi−1)
+ δγfi(Σi − Σ̄i)

]

√

2π(qk − qi−1)
, (23)

µi(Ui,Σi|Ūi, Σ̄i) = νi(Ui,Σi|Ūi, Σ̄i) exp

[

− ci
yi
eyi(Ui−Ūi−δγ(Σi−Σ̄i))

]

, (24)

where ci, di are constants that do not depend on energies and stresses, and fi =
∑k

j=i yj

k+1−i
− yi. Notice that all these functions depend only on Ui − Ūi, Σi − Σ̄i.

We now compute the joint probability density of all clusters’ minima (after subtracting

the energies and stresses of the unperturbed ground state):

P[∆Uk+1,∆Σk+1; ∆Uk,∆Σk; . . . ; ∆U1,∆Σ1|δγ] ≡

≡
∫

[

k
∏

i=1

dŪidΣ̄i

]

pk(Ugs +∆Uk+1,Σgs +∆Σk+1|Ūk, Σ̄k)

[

k−1
∏

i=1

pi(Ūi+1, Σ̄i+1|Ūi, Σ̄i)

]

×

× δ(∆Uk+1)δ(∆Σk+1)

[

k
∏

i=1

µi(Ugs +∆Ui,Σgs +∆Σi|Ūi, Σ̄i)

]

. (25)

The variables Uk+1, Σk+1 (forced to be 0 by the delta functions) have been introduced

to take into account the level crossing with the unperturbed ground state — we are

going to constraint the new ground state to be smaller than the unperturbed one. After

some manipulations and change of variables, we are able to cast this probability as
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P[∆Uk+1,∆Σk+1; ∆Uk,∆Σk; . . . ; ∆U1,∆Σ1|δγ] = δ(∆Uk+1)δ(∆Σk+1)×

×
k
∏

i=1

∆yi e
−∆yi ∆Ui

∫

dkxK(x)
k
∏

i=1

e−
(xi−∆Σi+δγzi)

2

2∆q(k+1−i)

√

2π∆q(k + 1− i)
, (26)

where we have chosen qi − qi−1 ≡ ∆q for every i, without loss of generality; ∆yi ≡
yi − yi−1 → y′(qi) dq (y0 ≡ 0); 1 − qi ≡ ∆q(k + 1 − i); here x = (x1, . . . , xk) and

K(x) = (2π∆q)−
k
2 e−

x2k
2∆q

∏k−1
j=1 e

− (xj+1−xj)
2

2∆q is a Gaussian kernel. The constant zi is

Yi + (1 − qi)y
′(qi)∆q, with Yi = ∆q

∑k
j=i yj → Y (qi) =

∫ 1

qi
dq y(q) in the k → ∞

limit. Notice also that the dependence on the energies and on the stresses is completely

decoupled.

Performing k Hubbard-Stratonovich transformations, it is possible to compute the Gaus-

sian integrals explicitly:

P[∆Uk+1,∆Σk+1; ∆Uk,∆Σk; . . . ; ∆U1,∆Σ1|δγ] =

= δ(∆Uk+1)δ(∆Σk+1)

[

k
∏

i=1

∆yi e
−∆yi ∆Ui

]

×

×
∫

[

k
∏

i=1

dui

2π
e−

1
2
(1−qi)u

2
i−iui(∆Σi−δγzi)

]

∫

dkxK(x)

k
∏

i=1

eiuixi =

= δ(∆Uk+1)δ(∆Σk+1)

[

k
∏

i=1

∆yi e
−∆yi ∆Ui

][

k
∏

i=1

∫

dui

2π
e−2· 1

2
(1−qi)u

2
i−iui(∆Σi−δγzi)

]

=

= δ(∆Uk+1)δ(∆Σk+1)
k
∏

i=1

∆yi e
−∆yi ∆Ui

e
− (∆Σi−δγzi)

2

4(1−qi)

√

4π(1− qi)
. (27)

From Equation (27) we can extract the probability distribution P[∆Uj ,∆Σj , j|δγ] that
the new ground state lies in the qj-cluster and that it has energy Ugs +∆Uj and stress

Σgs +∆Σj :
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P[∆Uj ,∆Σj , j|δγ] =
∫

[

k+1
∏

i=1, i 6=j

d∆Uid∆Σi θ(∆Ui − δγ∆Σi > ∆Uj − δγ∆Σj)

]

×

×P[∆Uk+1,∆Σk+1; ∆Uk,∆Σk; . . . ; ∆U1,∆Σ1|δγ] =

= δ(k + 1− j)δ(∆Uj)δ(∆Σj)
k
∏

i=1

χi(0) + θ̂(k + 1− j)θ(∆Uj − δγ∆Σj < 0)×

× ∆yj
√

4π(1− qj)
e
−∆yj ∆Uj−

(∆Σj−δγzj )
2

4(1−qj )

k
∏

i=1, i 6=j

χi(∆Uj − δγ∆Σj), (28)

where θ̂(k + 1− j) ≡ 1 if j = 1, . . . , k and 0 otherwise, and

χi(S, δγ) = H

(

|δγ|
√

1− qi∆yi +
|δγ| Yi + S/ |δγ|√

1− qi

)

+

+H

(

|δγ|
√

1− qi∆yi −
|δγ| Yi + S/ |δγ|√

1− qi

)

exp
{

−∆yi
(

δγ2 Yi + S
)}

(29)

with H(x) ≡ 1
2
erfc

(

x
2

)

= 1√
π

∫∞
x/2

e−t2dt. It is now possible to compute the probability

distribution for the total energy jumps, by integrating over all the variables with the

constraint ∆E = ∆Uj − δγ∆Σj :

P[∆E|δγ] =
∑

j

∫ ∞

0

d∆U

∫ ∞

−∞
d∆Σδ (∆E −∆U + δγ∆Σ)P[∆U,∆Σ, j|δγ] =

= δ(∆E)R(0, δγ)− θ(−∆E)
∂R(∆E, δγ)

∂∆E
, (30)

where R(∆E, δγ) ≡
∏

i χi(∆E, δγ). Taking the limits k → ∞, ∆q → 0, k∆q → 1 and

setting δγ = δγ
√
N we find in the end Equation (2).
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