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Abstract
Semidefinite programming (SDP) is widely used in

optimization problems with many applications, how-
ever, certain SDP instances are ill-posed and need
more precision than the standard double-precision
available. Moreover, these problems are large-scale
and could benefit from parallelization on specialized
architectures such as GPUs. In this article, we im-
plement and evaluate the performance of a floating-
point expansion-based arithmetic library (newFPLib)
in the context of such numerically highly accurate
SDP solvers. We plugged-in the newFPLib with the
state-of-the-art SDPA solver for both CPU and GPU-
tuned implementations. We compare and contrast both
the numerical accuracy and performance of SDPA-
GMP, -QD and -DD, which employ other multiple-
precision arithmetic libraries against SDPA-newFPLib.
We show that our newFPLib is a very good trade-off
for accuracy and speed when solving ill-conditioned
SDP problems.

Index Terms
floating-point arithmetic, multiple precision library,

ill-posed semidefinite programming, GPGPU comput-
ing, error-free transform, floating-point expansions

1. Introduction
Nowadays most floating-point (FP) computations

use single-precision (binary32) or double-precision
(binary64) arithmetic. Arithmetic operations on these
two formats are very efficiently implemented in cur-
rently available processors, either CPUs or GPUs, and
are compliant with the IEEE 754-2008 standard for
FP arithmetic [1]. Among other requirements, this
standard defines five rounding modes (round down-
wards, upwards, towards zero, to the nearest “ties to
even”, and to the nearest “ties to away”). An arithmetic
operation should return the result as if computed with

infinite precision and then the rounding function is
applied. Such an operation is said to be correctly
rounded. The IEEE 754-2008 standard enforces the
correct rounding of all basic arithmetic operations (ad-
dition, multiplication, division and square root). This
improves the portability and reliability of numerical
software.

While these two precision formats are ubiquitous
in most software and applications, they are sometimes
not sufficient. This happens for instance in some re-
cently studied optimization problems, which come to
solving in a very accurate way, numerically sensitive
(and sometimes large-scale) semidefinite optimization
problems (SDP). Examples include problems from
experimental mathematics, like the high-accuracy com-
putation of kissing numbers, i.e. the maximal number
of non-overlapping unit spheres that simultaneously
can touch a central unit sphere [2]; bounds from binary
codes; control theory and structural design optimiza-
tion (e.g., the wing of Airbus A380) [3]; quantum
information and physics [4].

This resulted in a recent increased interest in pro-
viding both higher-precision (also called multiple pre-
cision) and high-performance SDP libraries. To accom-
plish this, multiple challenges occur. Firstly, one has to
establish the core mathematical algorithm for numer-
ically solving (say, in ”real numbers”) the SDP prob-
lem: most nowadays solvers employ primal-dual path-
following interior-point method (PDIPM) [5]. This
algorithm is considered in literature as theoretically
mature, is widely accepted and implemented in most
state-of-the-art SDP solvers like SDPA [6], CSDP [7],
SeDuMi [8], SDPT3 [9]. This algorithm is recalled in
Section 2 and we considered the SDPA implementation
in this work, without any important modification.

Secondly, the underlying multiple-precision arith-
metic operations have to be treated. Several multi-
ple precision arithmetic libraries like GMP and QD
were already ported inside SDPA [10]. The resulted
implementations are more accurate, yet much more
computationally expensive [10]. These libraries and



implementations with SDPA are described in Section 3.
Finally, since most problems are large-scale, paral-
lelization is also very important. We treat the case of
highly parallel architectures of GPUs, for which most
multiple precision libraries are not suitable.

The first contribution of this work is to propose
the use of our multiple precision library (newFPLib)
with SDPA, which results in a better performance vs.
accuracy trade-off. Our underlying algorithms based on
floating-point expansions are described in Section 4.
The second contribution is a multiple precision GPU
compatible general matrix multiplication routine that
can be used in SDPA. This routine runs at up to
83% of the theoretical GPU peak-performance and
allows for an average speedup of one order of mag-
nitude for SDP instances run in multiple precision
with SDPA-newFPLib and GPU support compared to
SDPA-newFPLib on CPU only. Implementation details
are provided in Section 5. Benchmarks were performed
on well-known ill-conditioned examples from [11]
and [3]. The results are discussed in Section 6.

2. Semidefinite programming formulation
Semidefinite programing (SDP) is a convex opti-

mization problem, which can be seen as a natural
generalization of linear programming to the cone of
symmetric matrices with non-negative eigenvalues, i.e.
positive semidefinite matrices. While linear program-
ming optimizes a linear functional subject to linear in-
equality constraints, SDP optimizes a linear functional
subject to linear matrix inequalities (LMIs). Many
optimization problems in automatic control or signal
processing can be formulated using LMIs. Denote
by Rn×n the space of size n × n real matrices, by
Sn ⊂ Rn×n the subspace of real symmetric matrices,
equipped with the inner product 〈A,B〉Sn = tr(ATB),
where tr(A) denotes the trace of the matrix A. Also,
denote by A < O the fact that A is positive semidef-
inite (and respectively A � O for positive definite).
A typical SDP program is expressed in its primal-dual
form as follows:

(P)

p∗ = sup
X∈Sn

〈C,X〉Sn

s.t. 〈Ai, X〉Sn = bi, i = 1, . . . ,m,

X < O,

(D)

d∗ = inf
y∈Rm

bT y

s.t. Y :=

m∑
i=1

yiAi − C < O,

where C,Ai ∈ Sn×n, i = 1, . . .m and b ∈ Rm are
given.

It is however difficult in general to obtain an
accurate optimum for a SDP problem. On the one
hand, strong duality does not always hold, unlike for
linear programs: weak duality is always satisfied, i.e.
p∗ ≤ d∗, but sometimes, p∗ is strictly less than d∗.
Simpler instances are those where strong duality holds
and this happens when the feasible set contains a
positive definite matrix [12, Thm. 1.3]. In practice, the
method of choice for SDP solving is based on interior-
point algorithm. This relies on the existence of interior
feasible solutions for problems (P) and (D). In such
cases, these two problems are simultaneously solved in
polynomial time in the size of parameters of the input
problem using the well-established primal-dual path-
following interior-point method (PDIPM) [5]. This
method relies on the fact that when an interior feasible
solution exits, one has the necessary and sufficient
condition for X∗, Y ∗ and y∗ to be an optimal solution:

X∗Y ∗ = 0, X∗ � O, Y ∗ � O, (1)

Y ∗ =

m∑
i=1

y∗iAi − C, (2)

〈Ai, X〉Sn = bi, i = 1, . . . ,m, (3)

The complementary slackness condition (1) is re-
placed by a perturbed one: XµYµ = µI . It is
known that this perturbed system has a unique so-
lution and that the central path, that is the set C =
{(Xµ, Yµ, yµ) : µ > 0} forms a smooth curve
converging to (X∗, Y ∗, y∗) as µ → 0. So, the main
idea is to numerically trace the central path C. This
algorithm, implemented among others by SDPA [6],
[10] and its multiple precision versions (SDPA-GMP,
SDPA-DD, SDPA-QD) is sketched in Algorithm 1
(adapted from [10]). Step 1 describes the procedure
for computing the search direction based on Mehrotra
type predictor-corrector [6]. The stopping criteria (Step
4) depends on several quantities: primal and dual
feasibility error are defined as the maximum absolute
error appearing in (3) and (2), respectively. The duality
gap depends on the absolute or relative difference be-
tween the objectives of (P) and (D). Numerical results
involving these parameters are given in Section 6.

However, problems which do not have an interior
feasible point induce numerical instability and may
result in inaccurate calculations or non-convergences.
Recently, SPECTRA package [13] proposes to solve
such problems with exact rational arithmetic, but the
instances treated are small and this package does not
aim to be a concurrent of general numerical solvers.

On the other hand, even for problems which have
interior feasible solutions, numerical inaccuracies may



Algorithm 1 PDIPM Algorithm, adapted from SDPA
implementation [10].

Step 0: Choose an initial point X0 � O, y0 and Y 0 � O.
Set h = 0 and choose the parameter γ ∈ (0, 1).

Step 1: Compute a search direction:
Evaluate the Shur Complement Matrix B ∈ Sn
by the formula Bij = 〈(Y h)−1AiXh, Aj〉.
Solve the linear equation Bdy = r. Using the
solution dy, compute dX , dY and obtain the
search direction (dy, dX, dY ).

Step 2: Compute max step length α to keep the pos-
itive semidefiniteness: α = max {α ∈ [0, 1] :
Y h + αdY � O,Xh + αdX � O

}
.

Step 3: Update the current point: (yh+1, Xh+1, Y h+1) =
(yh, Xh, Y h) + γα(dy, dX, dY ).

Step 4: If (yh+1, Xh+1, Y h+1) satisfies the stopping cri-
teria, output it as a solution. Otherwise, set h =
h+ 1 and return to Step 1.

appear when solving with finite precision due to large
condition numbers (higher than 1016, for example)
which appear when solving linear equations. This hap-
pens, as explained in [10], when approaching optimal
solutions: suppose there exist X∗ � O, Y ∗ � O
and y∗ which satisfy all the constraints in (P) and
(D); or better said, when µ → 0 on the central
path. Then, X∗Y ∗ = 0. From this it follows that
rank(X∗) + rank(Y ∗) ≤ n, which implies that these
matrices are usually singular in practice.

In this second case, having an efficient underlying
multiple-precision arithmetic is crucial to detect (at
least numerically) whether the convergence issue came
simply from numerical errors due to lack of precision.

3. Multiple precision arithmetic libraries

Most SDP solvers are based on single or double
floating-point arithmetic, which is very efficient as it
is implemented in hardware. An increase in precision,
for example to quad-precision (binary128) or more,
comes with a significant performance drawback since
this is currently done by software emulation. Arbitrary
precision, i.e., the user’s ability to choose the precision
for each calculation, is now available in most computer
algebra systems such as Maple. SPECTRA [13] is
implemented with Maple’s rational arithmetic. SDPA
extended precision versions are implemented using
either GMP [14] or QD [15] libraries. GMP offers arbi-
trary precision by representing floating-point numbers
in a so-called multiple-digit format. This is sufficiently
general for being able to manipulate numbers with tens

of thousands –or even more– bits, but it is a quite
heavy alternative for precisions of few hundreds bits.
QD choses to better optimize precisions of 2 or 4
doubles using a different multiple-component format.
It is known that most operations implemented in this
library do not come with proven error bounds and
correct or directed rounding is not supported. It is
thus usually impossible to assess the final accuracy
of these operations. However, the performance results
of QD are very good on tested problems (e.g. on SDP
instances [6]). Moreover, only QD is ported on parallel
GPU architectures, since floating-point algorithms in
the multiple-digit format are very complex, and they
employ non-trivial memory management. QD code
with SDPA shows in practice that it is possible to
compute very accurate values even when rounding
occurs at the intermediate operation’s level.

We generalized or modified this kind of algorithms
in order to prove their correctness and keep good
performances.
4. Our floating-point expansions based
arithmetic library

For extending the precision, we represent numbers
as unevaluated sums of floating-point numbers. When
the sum consists of two terms, one has a double-
double (DD) number, triple-double (TD) for three
terms, quad-double for four, and floating-point expan-
sion when made up with an arbitrary number of terms.
Arithmetic operations with such numbers are based
on so-called error-free transforms algorithms, which
allow for computing the exact result of a FP addition
or multiplication by computing also the rounding error.
For example, the sum of two FP numbers can be
represented exactly (in the sense of dyadic numbers)
as a FP number which is the correct rounding of
the sum, plus a second FP number corresponding to
the rounding error. Under certain assumptions, this
decomposition can be efficiently computed by a simple
sequence of standard precision FP operations. This is
the key feature of this representation: only very opti-
mized hardware operations with standard FP numbers
are employed.

Algorithms 2 and 3 are state-of-the-art for error-free
transform of the sum and respectively the product of
two FP numbers.Algorithm 2 2Sum(a, b)

s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)
return s, t



Algorithm 3 2ProdFMA(a, b)

π ← RN(ab)
e← RN(ab− π)
return π, e

Assuming that a and b are two FP numbers and that
the rounding function, denoted RN, is round-to-nearest
“ties to even”, Knuth’s 2Sum algorithm [16] computes
the decomposition of a+ b using only 6 FP operations
(see Algorithm 2). When the operands are ordered,
Dekker’s Fast2Sum algorithm [17] is used, which takes
only 3 FP operations. Similarly, if a fused multiply-
add 1 (FMA) operator is available, 2ProdFMA [16]
returns π, the correct rounded product, and e, the
rounding error (namely ab−π), in 2 FP operations (see
Algorithm 3). When chaining together such error-free
transforms (resulting in the so called distillation algo-
rithms [18]) one can design efficient basic operations
with FP expansions. Such algorithms were recently
improved and proved to be correct in [19].

Based on these, our newFPLib is a multiple-
precision arithmetic library which targets both CPU ap-
plications and applications deployed on NVIDIA GPU
platforms (compute capability 2.0 or greater). Both a
CPU version (in C++ language) and a GPU version
(written in CUDA C programming language [20])
are freely available. This library supports both the
binary64 and the binary32 formats as basic bricks for
the multiple component representation. This allows for
extended precisions on the order of a few hundreds
of bits, with constraints given by the exponent range
of the underlying FP format used: the maximum ex-
pansion size is 39 for double-precision, and 12 for
single-precision. Currently, all basic multiple-precision
arithmetic operations (+,−, ∗, /,√) are supported. In
the design phase we chose to make the implementation
very flexible: the precision (FP expansion size) is given
as a template parameter and we provide overloaded
operators.

Another flexibility is on the trade-off between
proven output accuracy in worst case versus highly
efficient average case. This results in levels of algo-
rithms (two different classes): (i) “certified” algorithms
with rigorously proven error bounds and correctness
proofs; (ii) “quick-and-dirty” algorithms which are
very fast, but do not consider accuracy issues for corner
cases (i.e. cancellation prone computations). The later
one also comes with a code generation module, that
allows for the user to code generate the algorithms
function of the needed expansion size. This module

1. FMA operator evaluates an expression of the form xy+ t with
only one final rounding.

provides increased performance by custom unrolling
some complex loops (which are usually not optimized
by GCC or NVCC compilers).

For double-double, the algorithms initially proposed
in QD library, were recently rediscussed, improved and
proved in [21]. For example, addition of two DD num-
bers takes 20 FP operations and multiplication 9, when
an FMA is available (see Algorithms 6 and 11 in [21]).
For higher precisions, we use a generalization of these
algorithms from [19], with the technicality that the
renormalization of FP expansions is composed of the
first two levels of chained 2Sum of Algorithm 6 in [19].
Their generality comes with a higher operation count.
The number of FP operations for addition and multi-
plication of two operands represented on n-double, for
a result on n-double is given in Table 1. For addition,
Algorithm 4 [19], is on the order of 3n2 + 10n − 4
double FP additions, while multiplication, Algorithm
5 [19], takes 2n3+2n2+6n−4 double FP operations.

n Addition Multiplication
2D 20 9
3D 53 86
4D 84 180
5D 121 326
6D 164 536
8D 268 1196

Table 1: Number of operations for addition and multiplication
(FMA compatible) with n-doubles formats.

5. Implementation details of SDPA-
newFPLib

The SDPA-newFPLib package is built from the
SDPA-QD/DD package, where QD/DD library is re-
placed with newFPLib at the compilation step of
SDPA. This can be done efficiently since both SDPA
and newFPLib are written in C/C++. Starting with
version 6.0, SDPA incorporated LAPACK [22] for
dense matrix computations, but also exploits sparsity of
data matrices and solves large scale SDPs [23]. More
recently, MPACK [24] was developed and integrated
with SDPA. This is a multiple precision linear algebra
package which is based on BLAS and LAPACK [22].
For this package, the major change is, as in our case,
the underlying arithmetic format, such that users can
easily switch from a double precision BLAS/LAPACK
code to a multiple precision one, in order to obtain
better accuracy. MPACK supports various multiple
precision arithmetic libraries like GMP, MPFR, and
QD. We integrated newFPLib with MPACK.

Moreover, MPACK also provided a GPU tuned im-
plementation in double-double of the Rgemm routine:



this is the multiple precision Real version of Dgemm,
the general double matrix multiplication [25]. This
routine is central for other linear algebra operations
such as solving linear equations, singular value de-
composition or eigenvalue problems. For this, MPACK
authors re-implemented parts of DD library for CUDA-
compliant code. In our implementation, we used in-
stead our GPU version of newFPLib.

This routine’s implementation is reported in [25]
with best practical performance and was intensively
tuned for GPU-based parallelism: classical blocking
algorithm is employed, and for each element of a
block a thread is created; a specific number of threads
is allocated per block also. For example, for the
NVIDIA(R) Tesla(TM) C2050 GPU, best performance
of 16.4GFlops (Giga FP operations per second) is
obtained in [25] for A×B, the product of two matrices
A and B with block size of: 16×16 for A and 16×64
for B; 256 threads are allocated per block. Shared
memory is used for each block. Also, reading is done
from texture memory.

In our implementation, we use a similar algorithm,
except that reading is done from global memory
instead of texture memory, since a texture memory
element (texel) size is limited to int4 i.e., 128 bits
and our implementation is generic for n-double. Ma-
trix block sizes and thread block sizes are similar,
since our bench GPU is similar. Specifically, our
GPU NVIDIA(R) Tesla(TM) C2075 is part of the
same Fermi architecture, with 448 cores, 1.15 GHz,
32KB of register, 64KB shared memory/L1 cache set
by default to 48KB for shared memory and 16KB
for L1 cache. The difference is that our GPU has
6GB of global memory, compared to 3GB of C2050.
However, this has little importance for the perfor-
mance results on kernel execution once the global
memory has been loaded. With our newFPLib in
double-double, the peak kernel performance obtained
is 14.8GFlops as shown in Figure 1. The theoret-
ical peak performance can be obtained as follows:
first, consider that in Rgemm operations consist of
mainly multiply-add type, so the theoretical peak
for multiply-add is of 1.15[GHz]×14[SM]×32[CUDA
cores]×(2[Flop]/2[cycle]) = 515[Gflops]. Now, since
addition and multiplication in our newFPLib take (20+
9) Flops for double-double, one obtains theoretically:
515.2/29 = 17.8[GFlops]. For double-double, our im-
plementation is slower by ∼ 10% than the implemen-
tation in [25]. This can be explain by the generality of
our code. Although we tested our implementation also
using texture memory, we observed no speedup. On
the other hand, in our case, higher precision RGEMM
is straightforward. Performance results for n-double

RGEMM are shown in Figure 2: one observes that
the increase in number of additions and multiplications
reported in Table 1 fits the decrease of performance
when precision is increased.
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Figure 1: Performance of RGEMM with newFPLib
vs [25] in double-double on GPU. Maximum perfor-
mance was 14.8GFlops for newFPLib and 16.4GFlops
for [25].
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Figure 2: Performance of RGEMM with newFPLib
for n-double on GPU. Maximum performance was
1.6GFlops for TD, 976MFlops for QD, 660MFlops for
5D, 453MFlops for 6D, 200MFlops for 8D.

Note that cuBLAS, the NVIDIA GPU linear algebra
package does not support precisions higher than double
and it is not open source, so we consider it difficult
to extend it in the context of multiple precision linear
algebra for GPUs. For Fermi architecture GPUs like
C2050 or C2075, the peak performance of DGEMM
is reported in [26] to be 302GFlops with cuBlas and
362GFlops with further optimizations which is 58%
and 70% of the theoretical peak performance, so the
RGEMM implementation we have is quite efficient
with: 83% of theoretical peak performance for DD,
respectively 43% for TD, 50% for 4D, 57% for 5D,
61% for 6D, 57% for 8D.



Problem SDPA-DD SDPA-QD SDPA-newFPLib
(DD) (TD) (QD)

gpp124-1 optimal: −7.3430762652465377
relative gap 7.72e− 04 6.75e− 13 7.72e− 04 8.33e− 12 5.42e− 18
p.feas.error 5.42e− 20 4.37e− 45 5.42e− 20 1.57e− 30 1.14e− 41
d.feas.error 4.40e− 14 1.54e− 30 3.99e− 14 2.58e− 16 3.43e− 22

iteration 24 40 24 38 49
time (s) 3.27 66.37 2.63 35.56 83.92

gpp250-1 optimal: −1.5444916882934067e+ 01
relative gap 5.29e− 04 4.32e− 13 5.19e− 04 1.03e− 12 1.89e− 17
p.feas.error 3.89e− 20 2.27e− 45 1.35e− 20 1.38e− 30 5.73e− 42
d.feas.error 9.78e− 14 1.97e− 30 1.12e− 13 3.04e− 17 3.25e− 22

iteration 25 41 25 44 52
time (s) 26.68 538.39 21.57 321.35 698.34

gpp500-1 optimal: −2.5320543879075787e+ 01
relative gap 1.008e− 03 4.72e− 13 3.72e− 04 8.89e− 12 9.30e− 18
p.feas.error 1.01e− 20 1.92e− 45 2.71e− 20 8.81e− 31 1.43e− 42
d.feas.error 5.29e− 14 2.95e− 30 3.51e− 13 1.49e− 16 5.13e− 22

iteration 25 42 26 41 51
time (s) 207.63 4340.95 172.95 2396.43 5369.79
qap10 optimal: −1.0926074684462389e+ 03

relative gap 3.84e− 05 3.18e− 14 6.94e− 05 1.08e− 09 7.22e− 14
p.feas.error 2.54e− 21 7.32e− 47 6.56e− 21 6.62e− 35 2.18e− 47
d.feas.error 4.91e− 14 8.78e− 30 1.83e− 13 2.98e− 21 3.45e− 29

iteration 20 36 20 27 35
time (s) 27.75 647.96 21.01 262.03 629.81
hinf3 optimal: 5.6940778009669388e+ 01

relative gap 1.35e− 08 7.93e− 3 3.25e− 05 3.98e− 26 1.98e− 31
p.feas.error 2.75e− 24 1.18e− 54 1.69e− 21 3.32e− 39 3.18e− 55
d.feas.error 3.82e− 14 6.82e− 35 3.41e− 13 2.83e− 29 4.08e− 42

iteration 30 90 24 48 48
time (s) 0.00 0.18 0.00 0.05 0.09

Table 2: The optimal value, relative gaps, primal/dual feasible errors, iterations and time for solving some problems from
SDPLIB by SDPA-QD, -DD, -newFPLib.

6. Numerical results
In order to asses the performance of SDPA-

newFPLib solver we look at the results obtained for
some standard SDP problems both on CPU and GPU.
In particular, on GPU we use the Rgemm routine, with
our newFPLib implementation explained above.

All CPU tests were performed on an Intel(R)
Xeon(R) CPU E3-1270 v3 @ 3.50GHz processor, with
Haswell micro-architecture which supports hardware
implemented FMA instructions. For the GPU tests, we
used a NVIDIA(R) Tesla(TM) C2075 processor board.

Table 2 shows the results and performance obtained
for five well-known problems from the SDPLIB pack-
age [11]. We compare the QD library implementation,
both double- and quad-double precisions, with the
double-, triple-, and quad-double offered by newFPLib,
on CPU. One can observe that our double-double im-
plementation outperforms the one of QD’s by far, while
our quad-double precision performs the same. The
triple-double proves that it can be a good alternative
for problems for which double-double does not suffice,
but for which quad-double is too expensive.

While QD library offers only two extended preci-
sions, GMP offers arbitrary precision. In newFPLib

we have several extended formats of n-double, this is
why we chose to show the comparison between these
two in a different table, Table 3. For this we treated
three problems from the SDPLIB with corresponding
precisions of 106, 159, 212, 265, 318 and 424 bits. It is
easily seen that for small precisions, up to quad-double,
our library performs much better or the same on
CPU. Performance decreases gradually on CPU when
precision increases due to the overhead caused by error
propagation and handling inside the FP expansions.
However, since newFPLib is generic and ported on
GPU, this decrease in performance can be overcome
when launching SDPA-newFPLib with GPU support
on heavier instances as seen in Table 3. In Figure 3
we show the speedup obtain for newFPLib with GPU
support, when varying precision, for several problems
from the SDPLIB.

For testing the accuracy of our library, we consid-
ered several examples from Sotirov’s collection [3],
which are badly conditioned numerically, and cannot
be tackled with double precision only. The first one
comes from a classical problem in coding theory:
finding the largest set of binary words with n letters,
such that the Hamming distance between two words



is at least some given value d. This is reformulated as
a maximum stable set problem, which is solved with
SDP, according to the seminal work of Schrijver [27],
followed by Laurent [28].

Problem SDPA-newFPLib SDPA-GMP
CPU GPU CPU

gpp124-1 optimal: −7.3430762652465377
precision DD DD 2 ∗ 53 bits
iteration 24 24 38
time (s) 2.63 1.19 56.31
precision TD TD 3 ∗ 53 bits
iteration 38 39 48
time (s) 35.56 15.1 78.30
precision QD QD 4 ∗ 53 bits
iteration 49 57 59
time (s) 83.92 27.9 103.32
precision 5 D 5 D 5 ∗ 53 bits
iteration 62 62 77
time (s) 178.23 46.5 149.76
precision 6 D 6 D 6 ∗ 53 bits
iteration 77 77 77
time (s) 330.08 101 149.76
precision 8 D 8 D 8 ∗ 53 bits
iteration 77 77 77
time (s) 666.60 217 186.32

gpp250-1 optimal: −1.5444916882934067e+ 01
precision DD DD 2 ∗ 53 bits
iteration 25 25 39
time (s) 21.57 7.65 455.36
precision TD TD 3 ∗ 53 bits
iteration 44 39 46
time (s) 321.35 50.6 591.12
precision QD QD 4 ∗ 53 bits
iteration 52 52 64
time (s) 698.34 100.3 880.90
precision 5 D 5 D 5 ∗ 53 bits
iteration 62 62 73
time (s) 1404.48 180.4 1117.60
precision 6 D 6 D 6 ∗ 53 bits
iteration 73 73 73
time (s) 2465.30 350.6 1116.72
precision 8 D 8 D 8 ∗ 53 bits
iteration 73 73 73
time (s) 4987.770 1047.7 1392.71

hinf3 optimal: 5.6940778009669388e+ 01
precision DD DD 2 ∗ 53 bits
iteration 24 24 39
time (s) 0.00 0.51 0.06
precision TD TD 3 ∗ 53 bits
iteration 48 48 47
time (s) 0.05 0.82 0.07
precision QD QD 4 ∗ 53 bits
iteration 48 48 47
time (s) 0.09 2.01 0.08
precision 5 D 5 D 5 ∗ 53 bits
iteration 48 48 47
time (s) 0.16 3.52 0.09
precision 6 D 6 D 6 ∗ 53 bits
iteration 48 48 47
time (s) 0.25 5.13 0.09
precision 8 D 8 D 8 ∗ 53 bits
iteration 48 48 47
time (s) 0.53 0.10

Table 3: The optimal value, iterations and time for solving
some problems from SDPLIB by SDPA-GMP, -newFPLib

In Table 4 we show the performance obtained on the
CPU for the Schrijver and Laurent instances from [3].
The comparison is done between SDPA-DD, SDPA-
GMP (run with 106 bits of precision) and SDPA-
newFPLib-DD. The results obtained were very close
and performance-wise our library performs better.
Some instances do not converge when DD precision
is used. We also include the results obtained with the
SDPA-newFPLib with triple-double (TD) precision,
which has a better performance comparing to SDPA-
GMP with 106 bits of precision.
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Figure 3: Speedup of SDPA-newFPLib for n-double
with GPU vs CPU. Maximum speedup was 16.2.

7. Conclusion and future works

We implemented and evaluated the performance of
a floating-point expansions-based arithmetic library
(newFPLib) in the context of highly accurate com-
putations needed by SDP solvers for ill-conditioned
and performance demanding problems. The underly-
ing arithmetic operations of state-of-the-art multiple-
precision solver SDPA were replaced with our algo-
rithms. This was possible since both SDPA and newF-
PLib are written in open-source and freely available
C/C++. We compare and contrast both the numerical
accuracy and performance of SDPA-GMP, -QD and -
DD, which employ other multiple-precision arithmetic
libraries, against SDPA-newFPLib. We consider both
CPU and GPU implementations. We show that our
newFPLib is a very good trade-off for accuracy and
speed when solving ill-conditioned SDP problems.

One current limitation is that compared to the
tuned GPU implementation of double-double RGEMM
of [25], our implementation is 10% slower. However,
the improvement is that our RGEMM is generic for
n-double precision. This allows us to solve very ill-
conditioned problems with SDPA and GPU support



Problem SDPA-DD SDPA-newFPLib-DD SDPA-newFPLib-TD SDPA-GMP
Laurent A(19,6) optimal: −2.4414745686616550e− 03

iteration 92 94 71 73
time (s) 4.3 3.1 18.65 29.16

Laurent A(26,10) optimal: −1.3215201241629400e− 05
iteration 80 80 123 125
time (s) 12.8 8.68 109.54 173.42

Laurent A(28,8) optimal: −1.1977477306795422e− 04
iteration 93 100 76 113
time (s) 47.8 36.85 219.46 541.19

Laurent A(48,15) optimal: −2.229e− 09
iteration 134 134 165 145
time (s) 2204.61 1569.48 14691.92 21695.08

Laurent A(50,15) optimal: −1.9712e− 09
iteration 142 142 191 154
time (s) 3463.2 2421.86 25773.96 35173.79

Laurent A(50,23) optimal: −2.5985e− 13
iteration 124 124 155 140
time (s) 342.73 221.32 2333.74 3426.17

Schriver A(19,6) optimal: −1.2790362700180910e+ 03
iteration 40 40 66 95
time (s) 1.59 1.14 14.65 32.21

Schriver A(26,10) optimal: −8.8585714285713880e+ 02
iteration 54 54 127 108
time (s) 7.75 5.2 100.73 134.48

Schriver A(28,8) optimal: −3.2150795825792913e+ 04
iteration 45 45 69 97
time (s) 21.05 15.06 182.25 422.78

Schriver A(37,15) optimal: −1.40069999999999886e+ 03
iteration 58 58 132 116
time (s) 54.86 36.35 683.07 988.21

Schriver A(40,15)* optimal: −1.9e+ 04
iteration 23 23 23 23
time (s) 53.99 35.99 285.3 471.870

Schriver A(48,15)* optimal: −2.56e+ 06
iteration 27 27 27 27
time (s) 432.13 307.88 2260.24 3862.29

Schriver A(50,15)** optimal: −7.6e+ 06
iteration 29 29 29 29
time (s) 694.07 471.57 3695.95 677.830

Schriver A(50,23)** optimal: −5.2e+ 03
iteration 29 29 29 29
time (s) 76.55 47.84 413.31 6370.97

Table 4: The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD, -newFPLib-
DD, -newFPLib-TD, and -GMP-DD. ∗ problems that converge only when using quad-double precision. ∗∗ problems that do not
converge. The digits written with blue were obtained only when triple-double precision was employed.

in a more efficient way: before, these problems could
be tackled only with high precision GMP support on
CPU only. Our new results show an order of magnitude
(' 10 times) average speedup when newFPLib is used
with GPU support. As future work, this should allow
us to solve more complicated and large scale very ill-
conditioned SDP problems appearing in experimental
mathematics, like for instance, the ”kissing numbers”
problem [2].
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