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ABSTRACT

In high-grade gliomas, the tumor boundaries and the degree

of infiltration are difficult to define due to their heterogeneous

composition and diffuse growth pattern. Magnetic Resonance

Spectroscopic Imaging (MRSI) is a non-invasive technique

able to provide information on brain tumor biology not avail-

able from conventional anatomical imaging. In this paper

we propose a blind source separation (BSS) algorithm for

brain tissue classification and visualization of tumor spread

using MRSI data. The proposed algorithm imposes relaxed

non-negativity in the direct domain along with spatial-spectral

regularizations in a transformed domain. The optimization

problem is efficiently solved in a two-step approach using

the concept of proximity operators. Vertex component anal-

ysis (VCA) is proposed to estimate the number of sources.

Comparisons with state-of-the-art BSS algorithms on in-vivo

MRSI data show the efficiency of the proposed algorithm.

The presented method provides patterns that can easily be re-

lated to a specific tissue (normal, tumor, necrosis, hypoxia,

edema or infiltration). Unlike other BSS methods dedicated

to MRSI data, it can handle spectra with negative peaks and

results are not sensitive to the initialization strategy. In addi-

tion, it is robust against noisy or bad-quality spectra.

Index Terms— blind source separation (BSS), tissue pat-

terns, MRSI

1. INTRODUCTION

Conventional magnetic resonance imaging (MRI) is widely

used for the diagnosis and follow-up of brain tumors due to its

ability to provide detailed information about brain structures.

Nevertheless, MRI does not always have sufficient specificity

to identify different pathological areas in heterogeneous brain

tumors. For instance, tumor infiltration into the normal tissue

cannot always be differentiated from edema on T2-weighted

or fluid-attenuated inversion recovery (FLAIR) images. MR

spectroscopic imaging (MRSI) helps to overcome this limita-

tion as it is able to characterize biochemical changes in brain

tissues before they become visible in conventional MRI [1].

Supervised methods relying on known spectral models have

been widely used to discriminate between tissue types. How-

ever, the outcome of these methods strongly depends on the

prior knowledge considered and on the algorithm used [2].

In addition, supervised pattern recognition methods require

a large number of expert-labeled spectra which are not al-

ways available. Blind source separation (BSS) techniques

appear as an interesting alternative for the analysis of MRSI

data as they allow to estimate the sources and their abun-

dances without (or with very little) prior knowledge. Differ-

ent BSS methods have been proposed in the context of neuro-

oncology to distinguish normal from abnormal spectra. Most

of these methods are variants of the well-known non-negative

matrix factorization (NMF) algorithm [3]. Sajda et al. [4] pro-

posed a constrained non-negative matrix factorization method

to extract physically meaningful tissue patterns from long-

echo time (TE) MRSI data. Ortega-Martorel et al. [5] used

convex NMF for brain tumor delineation on pre-clinical data.

Li et al. [6] introduced a hierarchical NMF method able to

identify normal, tumor and necrosis tissues in glioblastoma

(GBM) patients. All these methods are heavily dependent on

the initialization values and/or require the sources to be non-

negative. The use of non-negative sources can be a clear lim-

itation for the analysis of MRSI data given that MR spectra

can take negative values (such as the inverted lactate peak for

long-TE data.)

Recently, BSS methods exploiting not only the spectral but

also the spatial context of the signals have been proposed [7].

These algorithms incorporate spatial priors based on smooth

spatial variations or on the sparsity of the abundance matrix.

In this paper we describe a method which jointly incorporates

prior knowledge about the spatial and spectral dimensions of

MRSI data. The originality of this method lies in the combi-

nation of spectral and spatial priors in a transformed domain

into a spectral unmixing procedure, as well as the control of

the non-negativity constraint for the sources. It aims at in-

creasing the signal-to-noise ratio (SNR) of the data and to

favor solutions with few irregularities in the spatial and the

spectral dimensions. The proposed method is able to extract

more than two physically meaningful tissue patterns and it is

not restricted to non-negative sources. In addition, the results

do not depend on the initialization strategy since this algo-



rithm relies on the optimization of convex functions. Further-

more, it is robust to noise and to the presence of low quality

spectra.

2. BLIND SOURCE SEPARATION METHOD

BSS methods assume that the measurements (spectra) can be

expressed as linear mixtures of sources plus some noise. This

can be expressed in matrix form as follows:

Y = SA+N (1)

where Y is the data matrix in which each column is a mea-
surement (spectrum), S is the unknown source matrix in

which each column is a source, A is the unknown mixing

matrix which defines the contribution (abundance) of each

source in each spatial position (voxel) and N is the unknown

noise matrix accounting for instrumental noise and/or model

imperfections.

BSS methods aim at estimating both A and S from the mea-

sured data Y . Under the assumption of independent and

identically distributed (i.i.d.) Gaussian noise, the maximum-

likelihood estimator is defined by the standard problem:

argmin
S,A

1

2
‖Y − SA‖22 (2)

The problem (2) is ill-posed in the sense that it has an infinite
number of solutions and that there is no analytical method

to identify them. In order to find an optimal solution of (2)

it is standard to constrain A and/or S to privilege solutions

with desired properties. These constraints can be seen as prior

information injected in the resolution of (2). The following

sections describe the priors used in this paper.

2.1. Spectral prior

In many applications, sources are considered sparse as for the

case for MRSI spectra. In the wide sense, a sparse signal is

a signal that can be expressed with only a few large non-zero

coefficients, or can be well approximated in such a way. The

sparsity of the sources can be enforced by constraining their

ℓ1 norm as follows:

argmin
S,A

1

2
‖Y − SA‖22 + α1‖S‖1 (3)

where α1 ∈ R+ controls the trade-off between data fidelity

and prior information. In order to better model this kind of

signals, one can express them in a different domain where the

sparsity is more noticeable. In this paper, we exploit the fact

that the sources are sparse in the wavelet domain leading to

the following problem:

argmin
S,A

1

2
‖Y − SA‖22 + α1‖TS‖1 (4)

where T is a dyadic 1D orthonormal wavelet decomposition
operator.

2.2. Spatial prior

Recently, it has been proposed to exploit not only the spec-

tral, but also the spatial context of the signals by incorporat-

ing spatial priors. Previous approaches favor smooth spatial

variations or spatially structured sparsity by imposing appro-

priate constraints on the mixing-matrix A [7]. We propose in

this paper a novel spatial prior which, together with the spec-

tral term, increases the signal-to-noise ratio (SNR) of the data

and exploits the neighbouring information along the spatial

dimension for a given MRSI voxel. The proposed criterion to

be minimized can be written as follows:

argmin
S,A

1

2
‖Y − SA‖22 + α1‖TS‖1 + α2

M∑

m=1

‖F (SA)m‖1

(5)

where α2 ∈ R+ is the regularization parameter of the spatial
prior information, m = 1, ...,M is the spectral frequency,

(SA)m is the 2D image which results from reshaping the mth

column of SA and F is a dyadic 2D orthonormal wavelet

decomposition operator.

2.3. Non-negativity constraints

The entries of both the abundances A and the sources S are

often assumed to be non-negative. This is always true for A

since the mixture coefficients are function of the relative con-

centrations of the observed physical entities, which are neces-

sarily non-negative. However the non-negativity assumption

does not always hold for MRSI spectra that may include neg-

ative peaks (as it is the case of the inverted lactate peak for

long-TE MRSI data). BSS methods based on NMF are lim-

ited to use absolute or truncated spectra (negative values set

to zero). In order to avoid this limitation, we propose to re-

lax the non-negativity constraint for the matrix of extracted

sources as follows:

argmin
S,A

1

2
‖Y − SA‖22 + α1‖TS‖1 + α2

M∑

m=1

‖F (SA)m‖1

+ i+(A) + α3i
+(S) (6)

where i+ is the indicator function on [0,∞) and α3 ∈ [0, 1]
allows the relaxation of the non-negativity constraint of the

sources.

2.4. Optimization procedure

The minimization of the objective function (6) can be car-

ried out solving alternately the convex subproblems with

respect to A and S. However the objective functions of

both sub-problems are not differentiable, which prevents the

use of standard gradient-based algorithms for minimization.

We therefore propose to perform the minimization by us-

ing the concept of proximity operators [8] which was found

to be fruitful in a number of recent works in convex opti-

mization [9]. We propose to solve the marginal problem in

S by using the Generalized Forward-Backward (GFB) al-

gorithm [10]. The minimization with respect to A can be



solved using the simultaneous direction method of multipli-

ers (SDMM) described in [11]. The alternating updates are

then repeated for a number of iterations (Algorithm 1).

Algorithm 1 BSS Algorithm

Set N,T, F, α1, α2, α3

Set NbSources = V CA(Y )
Set Ak = abs(randn(NbSources,NbSpectra))
for iter = 1 to N do

Set piA = pinv(Ak)
Set Sk = Y ∗ piA

Calculate Sk = GFB(Y ,Ak,Sk, T, α1, α3)
Calculate Ak = SDMM(Y ,Ak,Sk, F, α2)

end for

return S = Sk

Normalize columns of Ak .

return A = Ak

3. RESULTS

We have tested the proposed method on in-vivo MRSI data

from 10 patients with newly diagnosed GBM included in a

prospective clinical trial. We show the results for three repre-

sentative cases: identification of intratumoral necrotic areas,

discrimination of necrosis and hypoxia and detection of tu-

mor infiltration. Data were acquired with a Siemens Avanto

1.5 T using a 3D CSI sequence with water suppression, echo

time (TE) of 135 ms, repetition time (TR) of 1500 ms, 512

data points and 4 averages. We have used Vertex Compo-

nent Analysis (VCA) [12] to estimate the number of sources.

Highly correlated sources (Pearson’s correlation coefficient

(ρ) higher than 0.8) were automatically discarded. A was

initialized as the absolute value of an i.i.d. Gaussian random

matrix. The values of the spatial and the spectral regulariza-

tion parameters of the objective function (6) were estimated

by cross validation and set to α1 = 0.05 and α2 = 0.1. The

wavelets used in these experiments were Daubechies (db2).

Fig. 1 shows a comparison of the proposed method (SSR)

with two other state-of-the-art BSS methods, HALS [13] and

sparse NMF (SNMF) [7]. Both algorithms have been run us-

ing the default parameters. In order to show the improve-

ment due to the incorporation of the spatial term, the results

obtained when only the sparsity of the sources is considered

(α1 = 0.05 and α2 = 0 in (6)) are also displayed and referred

to as SSR-Spectro. While HALS and SNMF are able to ex-

tract only two physically meaningful sources, SSR is able to

detect three sources (normal (j), tumor (k) and necrosis (l) in

Fig. 1) that are in agreement with the companion MRI im-

age. Note that the abundance maps correspond to the voxels

within the volume of interest (VOI), i.e., the inner 10 × 10
grid inside the white rectangle. Among the compared meth-

ods, SSR is the only one capable of identifying the necrosis

area even when only the spectral prior is considered (SSR-

Spectro). However, by adding the spatial term, the identifi-

cation of the tumor and necrosis regions is clearly improved

and the sources are less correlated (mean ρ is 0.65 for SSR

and 0.74 for SSR-Spectro) and therefore more easily inter-

pretable than the sources obtained with SSR-Spectro. For this

comparison we have used magnitude spectra since HALS and

SNMF (NMF-based methods) are restricted to non-negative

sources. This can be a clear limitation because different tissue

patterns may present similar magnitude spectra. For example,

the presence of lactate (marker of hypoxia) and lipids (indi-

cating the presence of necrosis) are of high diagnostic value

because these metabolites are not detectable in healthy brain

tissue. However, in (long-TE) MRSI spectra the inverted peak

of lactate occupies the same resonant frequency as lipid, and

both metabolites are difficult to differentiate when using mag-

nitude spectra. Fig. 2 shows the results provided by the pro-

posed method using the real part of the spectra for an MRSI

dataset presenting hypoxic and necrotic tumor regions. The

predominant pattern (g) corresponds to spectra with normal

levels of choline (Cho), creatine (Cr) and N-acetyl-aspartate

(NAA) and presence of lactate (Lac) throughout the FLAIR-

enhanced area (c). SSR is able to differentiate two different

tumor patterns, the necrotic core (h) (high Cho, low NAA and

presence of lipids) and a hypoxic area (i) (high Cho, low NAA

and presence of Lac). In addition, the proposed method is ro-

bust against the presence of bad quality spectra, which are

grouped in a separated pattern. This is the case of the fourth

source (j) that represents spectra where the NAA signal is

obscured due to a severe lipid contamination. Fig. 3 shows

that the proposed method is also able to differentiate between

tumor infiltration and edema in peri-enhancing oedematous-

appearing areas. Discriminating between these two cases is

not always possible from FLAIR (or T2-weighted) images.

Edema (g) does not modify metabolic ratios (j) whereas tu-

mor infiltration (f) shows a pattern with increased Cho and

decreased NAA (i). The pattern of edema (j) shows reduced

metabolite peaks possibly due to the the presence of intersti-

tial water that decreases the signal of the metabolites [14].

The presence of Lac and decreased NAA are also in accor-

dance with cerebral peritumoral edema [15]. The map of tu-

mor infiltration (f) is in accordance with the later relapse of

the patient (d).

Fig. 1: Left: Maps showing the spatial distribution of the different tissue patterns

(sources). Middle: sources related to normal tissue (a, d, g, j), tumor (b, e, h, k) and

necrosis (c, f, i, l). Right: T1-weighted after gadolinium injection (top), voxels within

the volume of interest (bottom).



Fig. 2: T1-weighted after gadolinium injection (left) and voxels within the volume of

interest (right) (a); FLAIR (left) and voxels within the volume of interest (right) (b);

Maps showing the spatial distribution of normal tissue (c), necrosis (d), hypoxia (e) and

lipid contamination (f); Sources related to normal tissue (g), necrosis (h), hypoxia (i)

and lipid contamination (j).

Fig. 3: T1-weighted after gadolinium injection and FLAIR images before treatment

(a) and (b); corresponding voxels within the volume of interest (c); T1-weighted after

gadolinium injection at relapse (d); Maps showing the spatial distribution of normal

tissue (e), tumor infiltration (f) and edema (g); Sources related to normal tissue (h),

tumor infiltration (i) and edema (j).

4. CONCLUSION

We presented a new blind source separation method which

combines spatial and spectral regularizations in the wavelet

domain. The method exploits magnetic resonance spectro-

scopic imaging data properties such as the sparsity of the

spectra in the wavelet domain and the spatial regularity be-

tween neighbouring voxels. Experiments on in-vivo data

show that the proposed method is able to extract more than

two physically meaningful tissue patterns easily interpretable.

The abundance maps show spatially coherent and well de-

fined areas, in agreement with expert assesment conducted

on companion anatomical MRI images. Unlike previous ex-

isting methods, the proposed strategy can deal with negative

sources and is not sensitive to initialization. In addition it is

robust against noise and the presence of low quality spectra.

Future work includes a consistency analysis of the proposed

method for a larger group of patients.
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