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ABSTRACT

In complex environments, the presence or absence of multipath

signals not only depends on the relative motion between the GNSS

receiver and navigation satellites, but also on the environment where

the receiver is located. Thus it is difficult to use a specific propaga-

tion model to accurately capture the dynamics of multipath signal

parameters when the GNSS receiver is moving in urban canyons or

other severe obstructions. This paper introduces a statistical model

for the line-of-sight and multipath signals received by a GNSS re-

ceiver. A multi-correlator based GNSS receiver is also exploited

with the advantage to fully characterizing the impact of multipath

signals on the correlation function by providing samples of the

whole correlation function. Finally, a maximum likelihood-based

unscented Kalman filter is investigated to estimate the line-of-sight

and multipath signal parameters. Numerical simulations clearly

validate the effectiveness of the proposed approach.

Index Terms— Global navigation satellite systems, multipath

mitigation, multi-correlator, maximum likelihood principle, un-

scented Kalman filter.

1. INTRODUCTION

With the new application requirements for global navigation satel-

lite systems (GNSS) in complex environments, such as in urban

canyons, one of the largest challenges is to address the impact of

multipath (MP) interferences on positioning errors. MP interfer-

ences are mainly due to the fact that a signal transmitted by a naviga-

tion satellite is very likely to be reflected or diffracted and can follow

different paths before arriving at the GNSS receiver [1]. When the

relative time delay of an MP is short, the correlator outputs in the

receiver are distorted as the line-of-sight (LOS) signal entering the

receiver is affected by MP signals. This results in tracking errors

which introduce biases in pseudo-range, carrier phase and Doppler

frequency measurements and severely impair the positioning solu-

tion based on GNSS [2]. Thus mitigating MP interferences inside

the GNSS receiver is a critical issue to obtain accurate positioning in

a complex environment.

MP mitigation techniques inside the GNSS receiver are often

based on statistical estimation methods trying to estimate the param-

eters of the LOS and MP signals. Several estimation methods pro-

posed in recent years are based on the maximum likelihood princi-

ple [3–5], such as the vision correlator (VC) [6] and the fast iterative

maximum likelihood algorithm (FIMLA) [7]. However, the maxi-

mum likelihood-based approaches assume that the signal parameters

are not time varying and do not exploit any dynamic information for

the signal parameters. On the contrary, some alternative approaches

exploit time propagation models associated with the unknown pa-

rameters of LOS and MP signals. The objective is then to estimate

recursively the posterior probability density function of the unknown

parameters associated with the LOS and MP signals. Considering

that the GNSS measurements are related to the unknown parameters

by highly nonlinear equations, the use of particle filters (PF) has been

addressed in the literature [8–10]. Although many approaches have

been suggested to improve the efficiency of these filters [11–15], a

high computation still limits the real-time application of PF-based

MP mitigation approaches. In addition, the presence or absence of

MP signals not only depends on the relative position of the receiver

and GNSS satellites, but also on the environment where the receiver

is located. Thus it is difficult to use a specific propagation model for

the MP signal parameters when the receiver is moving. This paper

introduces a statistical model for the LOS and MP signals and inves-

tigates a maximum likelihood-based unscented Kalman filter (UKF)

for estimating the parameters of this model.

The paper is organized as follows: the mathematical models for

the LOS and MP signal parameters in a multi-correlator based re-

ceiver are presented in Section 2. Section 3 studies the proposed

maximum likelihood-based UKF for MP mitigation in a GNSS re-

ceiver. The performance of the resulting algorithm is evaluated in

Section 4. Conclusions are finally reported in Section 5.

2. SIGNAL MODEL

2.1. Measurement model for a multi-correlator based receiver

In a pilot channel, the received complex baseband signal associated

with GNSS satellites affected by M MP signals, sampled at time

instants nTs where n = 1, . . . , can be written as follows [2]

r(nTs) =
M
∑

m=0

amc(nTs − τm) exp (jϕm) + e(nTs) (1)

with
dϕm

dt
= 2πfd

m

where m = 0, . . . ,M and M is the number of non-light-of-sight

(NLOS) signals. Here the subscript m = 0 denotes the LOS sig-

nal, am is the signal amplitude associated with the mth NLOS sig-

nal, c(t) is the pseudo-random noise (PRN) code associated with

the given GNSS signal, τm, ϕm and fd
m are the code delay, carrier

phase and Doppler frequency associated with the mth NLOS signal

and e(nTs) is a zero mean additive Gaussian white noise.



In order to fully characterize the impact of MP interferences

on the correlation function, a multi-correlator based receiver [16],

which allows a complete sampling of the whole useful part of the

correlation function, is considered in this work. The architecture

of such a receiver is illustrated in Fig. 1. First, the received signal

associated with the given satellite is decomposed into its in-phase

(I) and quadrature (Q) components after being multiplied by the in-

phase and quadrature local generated carriers. Then each component

is correlated with 2J + 1 replicas of the PRN code for obtaining a

multi-correlator structure. Thus the jth in-phase output at time k,

denoted as Ij,k resulting from an integration over an interval Ta, can

be defined as

Ij,k =

M
∑

m=0

am,kR (∆τ̃m,k + θj) sinc
(

π∆f̃d
m,kTa

)

cos(∆ϕ̃m,k) + nIj ,k

(2)

where Ta = NsTs and Ns is the number of GNSS signal samples

in an integration interval Ta, sinc (·) is the cardinal sine function,

θj = j∆θ is the jth correlator delay expressed in chips where

∆θ = θj+1 − θj > 0 (j = −J, . . . , 0, . . . , J) is a correlation

spacing between adjacent correlators, R(·) is the auto-correlation

function of the PRN code, ∆τ̃m,k, ∆ϕ̃m,k and ∆f̃d
m,k denote differ-

ences between the code delay, carrier phase and Doppler frequency

for the mth signal path (τm,k, ϕm,k, f
d
m,k) and those of local gener-

ated replicas (τ̃k, ϕ̃k, f̃
d
k ), nIj ,k is a zero mean Gaussian white noise

associated with the jth in-phase correlation function samples. Note

that the jth quadrature integration outputs can be obtained similarly

by changing Ij,k to Qj,k, cos(·) to sin(·) and nIj ,k by nQj ,k in (2).

Accordingly, the measurement equation at time k can be defined as

zk = h(xk) + nk (3)

with

zk = (I−J,k, . . . , IJ,k, Q−J,k, . . . , QJ,k)
T

xk = (x0,k, . . . ,xM,k)
T

nk =
(

nI
−J ,k, . . . , nIJ ,k, nQ

−J ,k, . . . , nQJ ,k

)T

where k = 1, . . . ,K denotes the kth time instant of the cor-

relator integration output, h(·) is a non-linear function resulting

from (2), x0,k =
(

a0,k, τ0,k, ϕ0,k, f
d
0,k, ξ

d
0,k

)T
and xm,k =

(

am,k, τm,k, ϕm,k, f
d
m,k

)T
(m = 1, . . . ,M ) are the LOS and

MP signal parameter vectors, respectively. Here ξd0,k denotes a drift

associated with the carrier Doppler frequency fd
0,k . Note that the

noise terms nIj ,k and nQj ,k for j = −J, . . . , J of the in-phase

and quadrature phase components are correlated with a covariance

matrix denoted as

Rk = σ2

(

RI 0

0 RQ

)

(4)

where the matrices RI and RQ depend on the correlation spacing

∆θ [17] and σ2 = N0/2Ta is the noise variance depending on the

signal power spectral density N0 and on the integration time Ta.

2.2. Propagation model for LOS signal parameters

When the GNSS signal has been locked inside the receiver, a

discrete-time state model, which describes the time propagation

of the LOS parameter vector x0,k at time k, can be formulated as

x0,k = Fk|k−1x0,k−1 + Γk−1ωk−1 (5)

Fig. 1: GNSS baseband signal processing channel with a multi-

correlator [11].

where ωk−1 = (ωa,k−1, ωτ,k−1, ωϕ,k−1, ωf,k−1, ωξ,k−1)
T

and

where the definitions of the matrices Fk|k−1 and Γk−1 can be found

in [18].

2.3. Likelihood model for MP signal parameters

As mentioned above, it is difficult to use a specific propagation

model for the MP signal parameters when the receiver is moving in

complex environments. However, a likelihood function for the mea-

surements provided by the bank of correlators can be defined to con-

struct an estimator of the unknown MP signal parameters. According

to (3), a function of the MP parameter vectors (x1,k, . . . ,xM,k) and

the correlation function samples at time k can be written as

zk = h0 (x0,k) + h1 (x1,k, . . .xM,k) + nk. (6)

Thus the likelihood function of the MP signal parameters de-

fined from the correlation function samples can be defined as

p (z′k|x1,k, . . . ,xM,k) where z′k = zk − h0 (x0,k). Note that

the LOS parameter vector x0,k is first assumed to be known (the

unknown case will be discussed in the next section).

3. THE MAXIMUM LIKELIHOOD-BASED UKF FOR MP

MITIGATION

3.1. Problem formulation

In the presence of MP interferences, the MP mitigation problem can

be formulated as how to accurately estimate the LOS signal param-

eters when the correlation function in the receiver is distorted by

the MP signals. According to section 2.1, the received signal pa-

rameter vector xk can be partitioned into a LOS parameter vector

x0,k and MP parameter vectors (x1,k, . . . ,xM,k). We assume that

the parameter vectors of the LOS and MP signals are pairwise in-

dependent. Using Bayes theorem, the posterior probability density

function (pdf) of the parameter vector xk is defined as

p (xk|z1:k) = p (x0,k, . . . ,xM,k|z1:k)

∝ p (zk|x0,k, . . . ,xM,k,z1:k−1) p (x0,k, . . . ,xM,k|z1:k−1)

= p (zk|x0,k, . . . ,xM,k,z1:k−1) p (x0,k|z1:k−1)

p (x1,k, . . . ,xM,k|z1:k−1) .

(7)

According to section 2.3, the pdf p (x1,k, . . . ,xM,k|z1:k−1) associ-

ated with the MP parameter vectors is assumed to be constant (unin-



formative prior). As a consequence, (7) can be rewritten as

p (xk|z1:k) ∝ p (zk|x0,k, . . . ,xM,k, z1:k−1) p (x0,k|z1:k−1) .
(8)

Thus the estimation of the received signal parameter vector xk from

(8) is not straightforward. As an alternative, this work introduces a

method for computing the Bayesian estimators of the signal param-

eter vector xk, as explained below.

Step 1. Posterior pdf of xk for a given LOS parameter vector

Assume that the LOS parameter vector x0,k is known at time k. The

following results can be obtained

p (xk|z1:k) = p (x0,k,x1,k, . . . ,xM,k|z1:k)

∝ p (x1,k, . . . ,xM,k|x0,k,z1:k)
(9)

where p (x1,k, . . . ,xM,k|x0,k,z1:k) is the posterior pdf of the MP

parameter vectors (x1,k, . . . ,xM,k), under the assumption of a

known LOS parameter vector. Since the prior pdf associated with

the MP parameter vectors is assumed to be constant, the posterior

pdf of (x1,k, . . . ,xM,k) is defined as

p (x1,k, . . . ,xM,k|x0,k,z1:k) ∝ p (z1:k|x0,k,x1,k, . . . ,xM,k)
(10)

where p (z1:k|x0,k,x1,k, . . . ,xM,k) is the likelihood function of

the measurements z1:k at time k. Thus the estimation of xk from

the measurements z1:k for a given LOS parameter vector can be con-

verted into a maximum likelihood estimator (MLE).

Step 2. Posterior pdf of xk for given MP parameter vectors

Assume now that the MP parameter vectors (x1,k, . . . ,xM,k) are

known at time k. The following results can be obtained

p (xk|z1:k) = p (x0,k,x1,k, . . . ,xM,k|z1:k)

∝ p (x0,k|x1,k, . . . ,xM,k,z1:k)
(11)

where p (x0,k|x1,k, . . . ,xM,k,z1:k) is the posterior pdf of the LOS

parameter vector x0,k, under the assumption of known MP parame-

ter vectors.

The proposed method for estimating xk consists of sequentially

implementing Step 1 and 2 for k = 1, . . . ,K, as detailed in the next

sections.

3.2. Step 1: MP Parameter Estimation Based on the MLE

An estimator of the MP parameter vectors can be obtained by maxi-
mizing the likelihood function defined in (10) with respect to the MP
parameter vectors (x1,k, . . . ,xM,k). However, it requires the value
of the LOS parameter vector x0,k which is not straightforward to ob-
tain at time k. Assuming that the posterior pdf p (x0,k−1|z1:k−1) at
time k−1 is available, the conditional pdf of the LOS parameter vec-
tor x0,k, conditionally upon the k−1 first measurements z1:k−1, can
be obtained by using the time propagation model of the LOS signal

parameters as presented in (5), i.e., x0,k ∼ N
(

x̂0,k|k−1, Pk|k−1

)

whereN
(

x̂0,k|k−1,Pk|k−1

)

denotes the Gaussian distribution with

mean vector x̂0,k|k−1 and covariance matrix Pk|k−1 [19]. More
precisely, according to the principle of the unscented transforma-
tion (UT), we generate a set of sigma-points that are deterministi-
cally calculated using the mean and covariance matrix of the ran-
dom vector of interest [20]. In this work, we propose to generate

a set of sigma points {χi,0}
2L
i=0 according to the conditional pdf

p (x0,k|z1:k−1) at time k, i.e.,

χi,0 = x̂0,k|k−1, i = 0

χi,0 = x̂0,k|k−1 +
(√

(L+ λ)Pk|k−1

)

i
, i = 1, . . . , L

χi,0 = x̂0,k|k−1 −

(√

(L+ λ)Pk|k−1

)

i
, i = L+ 1, . . . , 2L

(12)

where L is the dimension of the state vector x̂0,k|k−1 and λ is a

scaling parameter. The definitions of the weights ws
i and wc

i asso-

ciated with the sigma point χi,0 and its covariance matrix can be

found in [21]. The vector x0,k in Step 1 can be approximated by us-

ing the sigma points of the LOS parameter vector associated with the

conditional pdf p (x0,k|z1:k−1) at time k, i.e., x0,k ≈ χi,0 where

i = 0, . . . , 2L. As a consequence, the likelihood functions of the

MP parameter vectors for the ith sigma point χi,0 at time k can be

written as

p
(

ẑ
′
i,k|x1,k, . . . ,xM,k

)

= N (h1(x1,k, . . .xM,k),Rk) (13)

with

ẑ
′
i,k = zk − h0 (χi,0)

and i = 0, . . . , 2L. Thus the estimation of the MP parameter vectors

associated with the ith sigma point χi,0 can be obtained by maximiz-

ing the likelihood function in (13). This maximization is not straight-

forward since all terms in h1(·) are related to the unknown MP sig-

nal parameters. Thus we propose an interval grid search based on

the maximum likelihood principle to perform the estimation of MP

parameters [5, 17]. Finally, the estimator of the mth MP parameter

vector can be expressed as follows

x̂m,k =
2L
∑

i=0

ws
i x̂

i
m,k (14)

where m = 1, . . . ,M , x̂i
m,k is the maximum likelihood estimator

of the mth MP parameter vector associated with the ith sigma point.

3.3. Step 2: LOS Parameter Estimation Based on the UKF

According to (11), the posterior pdf of the LOS parameter vector

x0,k can be obtained as a function of the MP parameter vectors.

Considering that the MLE of the MP parameter vectors at time k,

denoted as (x̂1,k, . . . , x̂M,k), have been obtained in (14), the vec-

tors (x1,k, . . . ,xM,k) required in Step 2 can be approximated by

these estimators. The measurement equations (3) being highly non-

linear, we consider a UKF based on a UT technique that provides an

efficient and low-cost estimator for highly non-linear equations.

The generated sigma points χi,0 in (12) are transformed to ob-

tain the ith predicted measurement when the MLE of the MP param-

eter vectors (x̂1,k, . . . , x̂M,k) is given [21]

ẑi,k|k−1 = h(χi,0, x̂1,k, . . . , x̂M,k) (15)

where i = 0, . . . , 2L. Accordingly, the mean and covariance of the
predicted measurement ẑk|k−1 can be obtained as

ẑk|k−1 =

2L
∑

i=0

ws
i ẑi,k|k−1 (16)

P ẑẑ

k|k−1 =
2L
∑

i=0

wc
i

(

ẑi,k|k−1 − ẑk|k−1

) (

ẑi,k|k−1 − ẑk|k−1

)T
+Rk.

(17)

The cross covariance matrix between the predicted LOS parameter

vector x̂0,k|k−1 and the predicted measurement ẑk|k−1 is

P
x̂0ẑ

k|k−1 =
2L
∑

i=0

wc
i

(

χ0,i − x̂0,k|k−1

) (

ẑi,k|k−1 − ẑk|k−1

)T
.

(18)

The conventional Kalman filter gain is calculated as follows

Kk = P
x̂0ẑ

k|k−1

(

P
ẑẑ

k|k−1

)−1

. (19)



As a consequence, the maximum a posteriori estimator of the LOS

parameter vector and its covariance matrix are defined as

x̂0,k|k = x̂0,k|k−1 +Kk

(

zk − ẑk|k−1

)

(20)

Pk|k = Pk|k−1 −KkP
ẑẑ

k|k−1K
T
k . (21)

4. SIMULATION RESULTS

In order to validate the proposed MP mitigation approach, we have

first simulated a GPS L1 C/A signal assuming a scenario composed

of a LOS signal and one reflected MP signal, i.e., M = 1. This

assumption is realistic in many practical scenarios due to the fact

that two reflected signals very close in time can be considered as only

one perturbation [22]. The GPS L1 C/A signal is based on a pseudo

random sequence that is used to spread the data signal around the

carrier frequency fca = 1575.42 MHz. The PRN code rate is fco =
1/Tco = 1.023 MHz and the length of the PRN code is N = 1023,

resulting in a code period of 1 ms. In the following simulation, the

carrier-to-noise density ratio of the LOS signal is 42 dB-Hz and a

power signal-to-multipath ratio of 6 dB is considered. The sampling

frequency of the baseband signal entering the digital receiver is set

to fs = 10.23 MHz, providing 10230 data samples during the code

period. The noises associated with the amplitude, code delay, and

carrier phase of the LOS signal have variances ωa = 0.00001, ωτ =
0.1 and ωϕ = 0.1, respectively. The run time for all simulations is

2 s and the filter rate is equal to the correlator integration time, i.e.,

Ta = 20 ms. Two scenarios has been generated according to the

GNSS signal model (1) as follows

• Scenario 1 Only a LOS signal is processed inside the receiver,

i.e., M = 0.

• Scenario 2 An MP signal appears during the simulation time in-

terval (0.8s, 1.6s). The MP relative code delay with respect to the

LOS signal is set to a random value uniformly distributed over

the interval (0, 0.2), i.e., (τ1 − τ0) ∼ U (0, 0.2). Moreover, the

LOS and MP signals are in-phase, i.e., ϕ1 = ϕ0 and their carrier

Doppler frequencies are equal, i.e., fd
1 = fd

0 .
This section compares the performance of the proposed approach for
the estimation of the LOS parameters (denoted as ML-based UKF)
with that obtained using the standard UKF. Note that Nm = 50
Monte Carlo simulations have been run for any scenario. The root
mean square error (RMSE) of the estimates is defined as

RMSE =

√

√

√

√

1

Nm

Nm
∑

i=1

(

x̂
(i)
0,k − x0,k

)2
(22)

where x̂
(i)
0,k is the ith estimate.

Fig. 2 shows the RMSEs of the estimated code delay, carrier

phase and Doppler frequency of the LOS signal with the different

approaches for Scenario 1. Since there is not MP, the RMSEs of

the two approaches are very similar. Thus the proposed ML-based

UKF is able to effectively track the LOS signal parameters and pro-

vides the same performance as a standard UKF in the absence of MP

interferences.

In Scenario 2, MP interferences appear or disappear randomly

and the MP code delay changes quickly with time. This situation

often happens when the receiver is located in severe obstruction en-

vironments. Since the carrier phases and Doppler frequencies of the

LOS and MP signals are equal in this scenario, the estimations of the

carrier phase and Doppler frequency of the LOS signal are not im-

pacted by the MP interference (for both approaches). However, since

the correlation function that is sampled at the multi-correlator out-

puts is distorted in the presence of the MP signal, the estimation of

0 0.5 1 1.5 2
0

1

2

3

Simulation time (s)

C
ar

ri
er

 p
h
as

e 
(d

eg
)

 

 
ML-based UKF

Standard UKF

(a) RMSE of carrier phase

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Simulation time (s)

D
o
p
p
le

r 
fr

eq
u
en

cy
 (

H
z)

 

 
ML-based UKF

Standard UKF

(b) RMSE of Doppler frequency

0 0.5 1 1.5 2
0

10

20

30

Simulation time (s)

C
o
d
e 

d
el

ay
 (

m
)

 

 
ML-based UKF

Standard UKF

(c) RMSE of code delay

Fig. 2: RMSEs of LOS parameter estimators in Scenario 1.
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Fig. 3: RMSE of LOS signal code delay in Scenario 2.

the LOS signal code delay obtained with the standard UKF degraded

in this scenario. Fig. 3 shows that the RMSE of the estimated LOS

code delay using the standard UKF filter fluctuates strongly since

the MP relative code delay takes a random value in this scenario. On

the contrary, since the impact of the MP interference on the corre-

lation function has been mitigated by the MLE (which estimates the

MP signal parameters), the proposed ML-based UKF improves the

accuracy of the code delay estimator. Our results prove that the pro-

posed approach is more robust than the standard UKF due to the fact

that it corrects the presence of abrupt changes corrupting the LOS

signal acquired by the receiver in the presence of MP interferences.

5. CONCLUSIONS

This paper studied a maximum likelihood-based UKF to estimate the

LOS signal parameters in the presence of MP interferences. An MLE

was implemented to estimate the MP signal parameters by using the

sigma points of the LOS signal parameters, and a UKF method was

developed to estimate the LOS signal parameters from estimators of

the MP signal parameters. A simulation study was conducted in or-

der to compare the performance of the proposed approach with the

standard UKF. In the absence of MP interferences, the performance

of the proposed approach is equivalent to that of the standard UKF.

On the contrary, in the presence of MP interferences, the estima-

tion accuracy for the LOS signal parameters, especially for the code

delay, can be improved by the proposed approach. Future work in-

cludes the consideration of optimization algorithms for determining

the code delays of MP signals, reducing the approximation error re-

sulting from the proposed interval grid search method.
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