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come     Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography

Quantum optics is a branch of quantum mechanics which studies physical systems at the atomic and subatomic scales. Unlike classical mechanics, the result of a physical measurement is generally random. Quantum mechanics does not predict a deterministic course of events, but rather the probabilities of various alternative possible events. It provides predictions on the outcome measures, therefore exploring measurements involves non-trivial statistical methods and inference on the result of a measurement should be done on identically prepared quantum systems. In this paper, we study a severely ill-posed inverse problem that has arised in quantum optics. Let (Z 1 , Φ 1 ), . . . , (Z n , Φ n ) be n pairs of independent identically distributed random variables with values in R × [0, π] satisfying Z := X + 2γ ξ , where X l admits density p(x, φ) w.r.t. the Lebesgue measure on R × [0, π], ξ l is a standard normal variable independent of X l and γ ∈ (0, 1) is a known scalar. Due to the particular structure of this quantum optics problem, the density p(x, φ) satisfies

p(x, φ) = 1 π R[W ](x, φ)1I [0,π] (φ),
where W : R 2 → R is the unknown function to be estimated based on indirect observations (Z 1 , Φ 1 ), . . . , (Z n , Φ n ) and R[W ] is the Radon transform of W . The Radon transform will be properly defined in Section 1 below. The target W is called the Wigner function and is used to describe the quantum state of a physical system of interest.

For the interested reader, we provide in Section 1 a short introduction to the needed quantum notions. This section may be skipped at first reading. Section 2 introduces the statistical model by making the link with quantum theory. The interested reader can get further acquaintance with quantum concepts through the textbooks or the review articles of [START_REF] Helstrom | Quantum Detection and Estimation Theory[END_REF]; [START_REF] Holevo | Probabilistic and Statistical Aspects of Quantum Theory[END_REF]; [START_REF] Barndorff-Nielsen | On quantum statistical inference (with discussion)[END_REF] and [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF].

Physical background

In quantum mechanics, the measurable properties (ex: spin, energy, position, ...) of a quantum system are called "observables". The probability of obtaining each of the possible outcomes when measuring an observable is encoded in the quantum state of the considered physical system.

Quantum state and observable

The mathematical description of the quantum state of a system is given in the form of a density operator ρ on a complex Hilbert space H (called the space of states) satisfying the three following conditions:

1. Self adjoint: ρ = ρ * , where ρ * is the adjoint of ρ.

2. Positive: ρ ≥ 0, or equivalently ψ, ρψ ≥ 0 for all ψ ∈ H.

3. Trace one: Tr(ρ) = 1.

Notice that D(H), the set of density operators ρ on H, is a convex set. The extreme points of the convex set D(H) are called pure states and all other states are called mixed states.

In this paper, the quantum system we are interested in is a monochromatic light in a cavity. In this setting of quantum optics, the space of states H we are dealing with is the space of square integrable complex valued functions on the real line. A particular orthonormal basis for this Hilbert space is the Fock basis {ψ j } j∈N :

ψ j (x) := 1 √ π2 j j! H j (x)e -x 2 /2 , (1) 
where H j (x) := (-1) j e x 2 d j dx j e -x 2 denote the j-th Hermite polynomial. In this basis, a quantum state is described by an infinite density matrix ρ = [ρ j,k ] j,k∈N whose entries are equal to ρ j,k = ψ j , ρψ k , where •, • is the inner product. The quantum states which can be created currently in laboratory are matrices whose entries are decreasing exponentially to 0, i.e., these matrices belong to the natural class R(C, B, r) defined below, with r = 2. Let us define for C ≥ 1, B > 0 and 0 < r ≤ 2, the class R(C, B, r) is as follows R(C, B, r) := {ρ quantum state : |ρ m,n | ≤ C exp(-B(m + n) r/2 )}.

(2)

In order to describe mathematically a measurement performed on an observable of a quantum system prepared in state ρ, we give the mathematical description of an observable. An observable X is a self adjoint operator on the same space of states H and

X = dimH a x a P a ,
where the eigenvalues {x a } a of the observable X are real and P a is the projection onto the one dimensional space generated by the eigenvector of X corresponding to the eigenvalue x a . As a quantum state ρ encompasses all the probabilities of the observables of the considered quantum system, when performing a measurement of the observable X of a quantum state ρ, the result is a random variable X with values in the set of the eigenvalues of the observable X. For a quantum system prepared in state ρ, X has the following probability distribution and expectation function P ρ (X = x a ) = Tr(P a ρ) and E ρ (X) = Tr(Xρ).

Note that the conditions defining the density matrix ρ insure that P ρ is a probability distribution.

In particular, the characteristic function is given by E ρ (e itX ) = Tr(ρe itX ).

Quantum homodyne tomography and Wigner function

In quantum optics, a monochromatic light in a cavity is described by a quantum harmonic oscillator. In this setting, the observables of interest are usually Q and P (resp. the electric and magnetic fields). But according to Heisenberg's uncertainty principle, Q and P are non-commuting observables, they may not be simultaneously measurable. Therefore, by performing measurements on (Q, P), we cannot get a probability density of the result (Q, P ). However, for all phase φ ∈ [0, π] we can measure the quadrature observables

X φ := Q cos φ + P sin φ.
Each of these quadratures could be measured on a laser beam by a technique developed by Smithey and called Quantum Homodyne Tomography (QHT). The theoretical foundation of quantum homodyne tomography was outlined by [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF].

When performing a QHT measurement of the observable X φ of the quantum state ρ, the result is a random variable X φ whose density conditionally to Φ = φ is denoted by p ρ (•|φ). Its characteristic function is given by

E ρ (e itX φ ) = Tr(ρe itX φ ) = Tr(ρe it(Q cos φ+P sin φ) ) = F 1 [p ρ (•|φ)](t),
where F 1 [p ρ (•|φ)](t) = e itx p ρ (x|φ)dx denotes the Fourier transform with respect to the first variable. Moreover if Φ is chosen uniformly on [0, π], the joint density probability of (X φ , Φ) with respect to the Lebesgue measure on R × [0, π] is

p ρ (x, φ) = 1 π p ρ (x|φ)1I [0,π] (φ).
An equivalent representation for a quantum state ρ is the function W ρ : R 2 → R called the Wigner function, introduced for the first time by [START_REF] Wigner | On the quantum correction for thermodynamic equations[END_REF]. The Wigner function may be obtained from the momentum representation

W ρ (u, v) := F 2 [W ρ ](u, v) = Tr ρe i(uQ+vP) , (3) 
where F 2 is the Fourier transform with respect to both variables. By the change of variables (u, v) to polar coordinates (t cos φ, t sin φ), we get

W ρ (t cos φ, t sin φ) = F 1 [p ρ (•|φ)](t) = Tr(ρe itX φ ). (4) 
The origin of the appellation quantum homodyne tomography comes from the fact that the procedure described above is similar to positron emission tomography (PET), where the density of the observations is the Radon transform of the underlying distribution

p ρ (x|φ) = R[W ρ ](x, φ) = W ρ (x cos φ + t sin φ, x sin φ -t cos φ)dt, (5) 
where R[W ρ ] denotes the Radon transform of W ρ . The main difference with PET is that the role of the unknown distribution is played by the Wigner function which can be negative.

The physicists consider the Wigner function as a quasi-probability density of (Q, P ) if one can measure simultaneously (Q, P). Indeed, the Wigner function satisfies

W ρ : R 2 → R, W ρ (q, p)dqdp = 1, (6) 
and other boundedness properties unavailable for classical densities. However, the Wigner function can and normally does take negative values for states which are not associated to any classical model. This property of the Wigner function is used by Physicists as a criterion to discriminate nonclassical states of the field.

In the Fock basis, we can write W ρ in terms of the density matrix [ρ jk ] as follows (see [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF] for the details).

W ρ (q, p) = j,k ρ jk W j,k (q, p)
where for j ≥ k,

W j,k (q, p) = (-1) j π k! j! 1 2 √ 2(ip -q) j-k e -(q 2 +p 2 ) L j-k k 2q 2 + 2p 2 . ( 7 
)
and L α k (x) the generalized Laguerre polynomial of degree k and order α.

Pattern functions

The ideal result of the QHT measurement provides (X φ , Φ) of joint probability density with respect to the Lebesgue measure on R × [0, π] equal to

p ρ (x, φ) = 1 π p ρ (x|φ)1I [0,π] (φ) = 1 π R[W ρ ].(x, φ)1I [0,π] (φ) (8) 
The density p ρ (•, •) can be written in terms of the entries of the density matrix ρ (see [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF])

p ρ (x, φ) = ∞ j,k=0 ρ j,k ψ j (x)ψ k (x)e -(j-k)φ , (9) 
where {ψ j } j∈N is the Fock basis defined in (1). Conversely (see D 'Ariano, Macchiavello and Paris (1994); [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF] for details), we can write

ρ j,k = π 0 p ρ (x, φ)f j,k (x)e -(j-k)φ dxdφ, (10) 
where the functions f j,k : R → R introduced by [START_REF] Leonhardt | Tomographic reconstruction of the density matrix via pattern functions[END_REF] are called the "pattern functions". An explicit form of the Fourier transform of f j,k (•) is given by [START_REF] Richter | Realistic pattern functions for optical homodyne tomography and determination of specific expectation values[END_REF]: for all j ≥ k

f j,k (t) = f k,j (t) = π(-i) j-k 2 k-j k! j! |t|t j-k e -t 2 4 L j-k k ( t 2 2 ), (11) 
Note that by writing t = ||w|| = ||(q, p)|| = q 2 + p 2 in the equation ( 7), we can define for all

j ≥ k l j,k (t) := |W j,k (q, p)| = 2 j-k 2 π k! j! 1 2 t j-k e -t 2 L j-k k (2t 2 ) . (12) 
Therefore, there exists a useful relation, for all j ≥ k

f j,k (t) = π 2 |t|l j,k (t/2). ( 13 
)
Moreover [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF] have given the following Lemma which will be useful to prove our main results.

Lemma 1 [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF]). For all j, k ∈ N and J := j + k + 1, for all t ≥ 0,

l j,k (t) ≤ 1 π 1 if 0 ≤ t ≤ √ J, e -(t- √ J) 2 if t ≥ √ J. ( 14 
)

Statistical model

In practice, when one performs a QHT measurement, a number of photons fails to be detected. These losses may be quantified by one single coefficient η ∈ [0, 1], such that η = 0 when there is no detection and η = 1 corresponds to the ideal case (no loss). The quantity (1 -η) represents the proportion of photons which are not detected due to various losses in the measurement process.

The parameter η is supposed to be known, as physicists argue that their machines actually have high detection efficiency, i.e. η ≈ 0.9. In this paper we consider the regime where more photons are detected than lost, that is η ∈ (1/2, 1]. Moreover, as the detection process is inefficient, an independent Gaussian noise interferes additively with the ideal data X φ . Note that the Gaussian nature of the noise is imposed by the Gaussian nature of the vacuum state which interferes additively.

To sum up, for Φ = φ, the effective result of the QHT measurement is for a known efficiency

η ∈ (1/2, 1], Y = √ η X φ + (1 -η)/2 ξ ( 15 
)
where ξ is a standard Gaussian random variable, independent of the random variable X φ having density, with respect to the Lebesgue measure on R×[0, π], equal to p ρ (•, •) defined in equation ( 8).

For the sake of simplicity, we re-parametrize (15) as follows

Z := Y / √ η = X φ + (1 -η)/(2η) ξ := X φ + 2γ ξ, (16) 
where γ = (1 -η)/(4η) is known and γ ∈ [0, 1/4) as η ∈ (1/2, 1]. Note that γ = 0 corresponds to the ideal case.

Let us denote by p γ ρ (•, •) the density of (Z, Φ) which is the convolution of the density of X φ with N γ (•) the density of a centered Gaussian distribution having variance 2γ, that is

p γ ρ (z, φ) = 1 π R[W ρ ](•, φ)1I [0,π] (φ) * N γ (z) = p ρ (•, φ) * N γ (z) (17) = p ρ (z -x, φ) N γ (x)dx.
For Φ = φ, a useful equation in the Fourier domain, deduced by the previous relation ( 17) and equation ( 4) is

F 1 [p γ ρ (•, φ)](t) = F 1 [p ρ (•, φ)](t) N γ (t) = W ρ (t cos(φ), t sin(φ)) N γ (t), (18) 
where F 1 denotes the Fourier transform with respect to the first variable and the Fourier transform

of N γ (•) is N γ (t) = e -γt 2 .
This paper aims at reconstructing the Wigner function W ρ of a monochromatic light in a cavity prepared in state ρ from n observations. As we cannot measure precisely the quantum state in a single experiment, we perform measurements on n independent identically prepared quantum systems. The measurement carried out on each of the n systems in state ρ is done by QHT as described in Section 1. In practice, the results of such experiments would be n independent identically distributed random variables (Z 1 , Φ 1 ), . . . , (Z n , Φ n ) such that

Z := X + 2γ ξ . ( 19 
)
with values in R × [0, π] and distribution P γ ρ admitting density p γ ρ (•, •) defined in (17) with respect to the Lebesgue measure on R × [0, π]. For all = 1, . . . , n, the ξ 's are independent standard Gaussian random variables, independent of all (X , Φ ).

In order to study the theoretical performance of our different procedures, we use the fact that the unknown Wigner function belongs to the class of very smooth functions A(β, r, L) (similar to those of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF]; [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF]) described via its Fourier transform:

A(β, r, L) := f : R 2 → R, | f (u, v)| 2 e 2β (u,v) r dudv (2π) 2 L , (20) 
where f (•, •) denotes the Fourier transform of f with respect to both variables and (u, v) = √ u 2 + v 2 denote the usual Euclidean norm. Note that this class is reasonable from a physical point of view. Indeed, it follows from Propositions 1 and 2 in Aubry, [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF] that any Wigner functio whose density matrix belongs to the realistic class R(C, B, r) lies in a class A(β , r, L ) where β > 0 and L > 0 depend only on B, C, r. To the best of our knowledge, there exists no converse result proving that the density matrix of any Wigner function in the class A(β , r, L ) belongs to R(C, B, r).

Previous works and outline of the results

The problem of reconstructing the quantum state of a light beam has been extensively studied in physics literature and in quantum statistics. We only mention papers with a theoretical analysis of the performance of their estimation procedure. Additional references to physics papers can be found therein. Methods for reconstructing a quantum state are based on the estimation of either the density matrix ρ or the Wigner function W ρ . In order to assess the performance of a procedure, a realistic class of quantum states R(C, B, r) has been defined in many papers such as in (2) where the elements of the density matrix decrease rapidly. From the physics point of view, all the states which have been produced in the laboratory up to now belong to such a class with r = 2, and a more detailed argument can be found in the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF].

The estimation of the density matrix from averages of data has been considered in the framework of ideal detection (η = 1 i.e. γ = 0) by [START_REF] Artiles | An invitation to quantum tomography[END_REF] while the noisy setting has been investigated by [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF] for the Frobenius norm risk. More recently in the noisy setting, an adaptive estimation procedure over the classes of quantum states R(C, B, r), i.e. without assuming the knowledge of the regularity parameters, has been proposed by [START_REF] Alquier | Adaptive Estimation of the Density Matrix in Quantum Homodyne Tomography with Noisy Data[END_REF] and an upper bound for Frobenius risk has been given. The problem of goodness-of-fit testing in quantum statistics has been considered in [START_REF] Meziani | Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data[END_REF]. In this noisy setting, the latter paper derived a testing procedure from a projection-type estimator where the projection is done in L 2 distance on some suitably chosen pattern functions.

The Wigner function is an appealing tool to Physicists to determine particular features of the quantum state of a system. Therefore, this work is of practical interest. For instance, non classical quantum state correspond to negative parts of the Wigner function. This paper deals with the problem of reconstruction of the Wigner function W ρ in the context of QHT when taking into account the detection losses occurring in the measurement, leading to an additional Gaussian noise in the measurement data (η ∈ (1/2, 1]). In the absence of noise (γ = 0), [START_REF] Guţă | Minimax estimation of the Wigner in quantum homodyne tomography with ideal detectors[END_REF] obtained the sharp minimax rate of pointwise estimation over the class of Wigner functions A(β, 1, L) for a kernel based procedure. The same problem in the noisy setting was treated by [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF], they obtain minimax rates for the pointwise risk over the class A(β, r, L) for the procedure defined in (21). Moreover, a truncated version of their estimator is proposed by [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF] where an upper bound is computed for the L 2 -norm risk over the class A(β, r, L). The estimation of a quadratic functional of the Wigner function, as an estimator of the purity, was explored in [START_REF] Meziani | Nonparametric Estimation of the Purity of a Quantum State in Quantum Homodyne Tomography with Noisy Data[END_REF].

The reconstruction problem considered in this paper belongs to the class of linear inverse problems. It requires to solve simultaneously a tomography problem and a density deconvolution problem. We refer to [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF] for a survey of the literature on general inverse problems in statistics.

Tomography problems, such as noisy integral equation of the form y = R[f ](x, φ) + ξ where (x, φ) ∈ R × [0, π], ξ is some random noise and f is the unknown function to be recovered, have been investigated in Korostelëv andTsybakov (1991, 1993); [START_REF] Klemelä | Empirical risk minimization in inverse problems[END_REF] and the references cited therein. For density type tomography problems closer to our setting, [START_REF] Johnstone | Speed of estimation in positron emission tomography and related inverse problems[END_REF] considered uncorrupted observations, corresponding to γ = 0 in (19), and established the minimax rate of the inverse Radon transform over Sobolev classes of density functions for the quadratic risk. Under a similar framework, [START_REF] Donoho | Renormalization exponents and optimal pointwise rates of convergence[END_REF] obtained the pointwise minimax rate of reconstruction. The deconvolution problem has been studied extensively in the literature. We refer to [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF]; [START_REF] Bissantz | Statistical inference for inverse problems[END_REF]; Butucea and Tsybakov (2008a,b); [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF]; [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF]; [START_REF] Diggle | A Fourier approach to nonparametric deconvolution of a density estimate[END_REF]; [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF][START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF]; [START_REF] Goldenshluger | On pointwise adaptive nonparametric deconvolution[END_REF]; [START_REF] Hesse | Optimal iterative density deconvolution[END_REF]; Johnstone, Kerkyacharian, Picard and Raimondo ( 2004); Johnstone and Raimondo (2004); [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF]; [START_REF] Pensky | Functional deconvolution in a periodic setting: Uniform case[END_REF]; [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]; [START_REF] Stefanski | Rates of convergence of some estimators in a class of deconvolution problems[END_REF]; [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF]. Most of these papers concern the quadratic risk or the pointwise risk. [START_REF] Lounici | Global uniform risk bounds for wavelet deconvolution estimators[END_REF] established the first minimax uniform risk estimation result for a wavelet deconvolution density estimator over Besov classes of density functions.

The remainder of the article is organized as follows. In Section 3, we establish in Theorem 1 the first L ∞ -norm risk upper bound for the estimation procedure (21) of the Wigner function while in Theorem 2 we establish the first minimax lower bounds for the estimation of the Wigner function for the L 2 -norm and the L ∞ -norm risks. As a consequence of our results, we determined the minimax L ∞ -norm and L 2 -norm rates of estimation for this noisy QHT problem up to a logarithmic factor in the sample size. We propose in Section 4 a Lepski-type procedure that adapts to the unknown smoothness parameters β > 0 and r ∈ (0, 2] of the Wigner function of interest. The only previous result on adaptation is due to [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] but concerns the simplest case r ∈ (0, 1) where the estimation procedure (21) with a proper choice of the parameter h independent of β, r is naturally minimax adaptive up to a logarithmic factor in the sample size n. Theoretical investigations are complemented by numerical experiments reported in Section 5. The proofs of the main results are deferred to the Appendix.

Wigner function estimation and minimax risk

From now on, we work in the practical framework and we assume that n independent identically distributed random pairs (Z i , Φ i ) i=1,...,n are observed, where Φ i is uniformly distributed in [0, π] and the joint density of 17)). As [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF], we use the modified usual tomography kernel in order to take into account the additive noise on the observations and construct a kernel K γ h which performs both deconvolution and inverse Radon transform on our data, asymptotically such that our estimation procedure is

(Z i , Φ i ) is p γ ρ (•, •) (see (
W γ h (q, p) = 1 2πn n =1 K γ h ([z, Φ ] -Z ) , (21) 
where 0 ≤ γ < 1/4 is a fixed parameter and h > 0 tends to 0 when n → ∞ in a proper way to be chosen later. The kernel is defined by

K γ h (t) = |t|e γt 2 1I |t|≤1/h , (22) 
where z = (q, p) and [z, φ] = q cos φ + p sin φ.

From now on, • ∞ and • 2 and • 1 will denote respectively the L ∞ -norm, the L 2 -norm and the L 1 -norm. As the L ∞ -norm risk can be trivially bounded as follows

W γ h -W ρ ∞ ≤ W γ h -E[ W γ h ] ∞ + E W γ h -W ρ ∞ , (23) 
and in order to study the L ∞ -norm risk of our procedure W γ h , we study in Propositions 1 and 2, respectively the bias term and the stochastic term.

Proposition 1. Let W γ h be the estimator of W ρ defined in ( 21) and h > 0 tends to 0 when n → ∞ . Then,

E W γ h -W ρ ∞ ≤ L (2π) 2 βr h (r-2)/2 e -βh -r (1 + o(1)),
where W ρ ∈ A(β, r, L) defined in (20) and r ∈ (0, 2].

The proof is deferred to Appendix A.1.

Proposition 2. Let W γ h be the estimator of W ρ defined in (21) and 0 < h < 1. Then, there exists a constant C 1 , depending only on γ such that

E W γ h -E[ W γ h ] ∞ ≤ C 1 e γh -2 log n n + log n n . ( 24 
)
Moreover, for any x > 0, we have with probability at least 1 -e -x that

W γ h -E[ W γ h ] ∞ ≤ C 2 e γh -2 max log(n) + x n , log(n) + x n , ( 25 
)
where C 2 > 0 depends only on γ.

The proof is deferred to Appendix A.2. The following theorem establishes the upper bound of the L ∞ -norm risk.

Theorem 1. Assume that W ρ belongs to the class A(β, r, L) defined in (20) for some r ∈]0, 2] and β, L > 0. Consider the estimator (21) with h * = h * (r) such that

   γ (h * ) 2 + β (h * ) r = 1 2 log(n/ log n) if 0 < r < 2, h * = 2(β+γ) log(n/ log n) 1/2 if r = 2. ( 26 
)
Then we have

E W γ h * -W ρ ∞ ≤ Cv n (r)
, where C > 0 can depend only on γ, β, r, L and the rate of convergence v n is such that

v n (r) =    (h * ) (r-2)/2 e -β(h * ) -r if 0 < r < 2, log n n β 2(β+γ) if r = 2. ( 27 
)
Note that for r ∈ (0, 2) the rate of convergence v n is faster than any logarithmic rate in the sample size but slower than any polynomial rate. For r = 2, the rate of convergence is polynomial in the sample size.

Proof of Theorem 1: Taking the expectation in (23) and using Propositions 1 and 2, we get for all 0 < h < 1

E [ W γ h -W ρ ∞ ≤ E W γ h -E[ W γ h ] ∞ + E W γ h -W ρ ∞ ≤ Ce γh -2 1 n (1 + o(1)) + C B h (r-2)/2 e -βh -r (1 + o(1))
where

C B = L (2π) 2 βr , h → 0 as n → ∞ and W ρ ∈ A(β, r, L). The optimal bandwidth parameter h * (r) := h * is such that h * = arg inf h>0 C B h (r-2)/2 e -βh -r + C 1 e γh -2 log n n . ( 28 
)
Therefore, by taking derivative, we get

γ (h) 2 + β (h) r = 1 2 log(n/ log n) + C 1 (1 + o(1)).
For 0 < r < 2, (26) provides an accurate approximation of the optimum h * when the number of observations n is large. By plugging the result into (28), we get

(h * ) (r-2)/2 e -β(h * ) -r = (h * ) (r-2)/2 log n n e γ(h * ) -2 .
It follows that the bias term is much larger than the stochastic term for 0 < r < 2. It is easy to see that for r = 2, we have

h * = 2(β+γ) log(n/ log n) 1/2
and that the bias term and the stochastic term are of the same order.

We derive now a minimax lower bound. We consider specifically the case r = 2 since it is relevant with quantum physic applications. The only known lower bound result for the estimation of a Wigner function is due to [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] and concerns the pointwise risk. In Theorem 2 below, we obtain the first minimax lower bounds for the estimation of a Wigner function W ρ ∈ A(β, 2, L) with the L 2 -norm and L ∞ -norm risks.

Theorem 2. Assume that (Z 1 , Φ 1 ), • • • , (Z n , Φ n ) coming from the model (16) with γ ∈ [0, 1/4).
Then, for any β, L > 0 and p ∈ {2, ∞}, there exists a constant c := c(β, L, γ) > 0 such that for n large enough

inf Wn sup Wρ∈A(β,2,L) E W n -W ρ p ≥ cn -β 2(β+γ) ,
where the infimum is taken over all possible estimators W n based on the i.i.d. sample {(Z i , Φ i )} n i=1 . We believe similar arguments can be applied to the case 0 < r < 2 up to several technical modifications. This is left for future work. The proof is deferred to Appendix B. This theorem guarantees that the L ∞ -norm upper bound derived in Theorem 1 and also that the L 2 -norm risk upper bound of [START_REF] Aubry | State estimation in quantum homodyne tomography with noisy data[END_REF] are minimax optimal up to a logarithmic factor in the sample size n.

Adaptation to the smoothness

As we see in (28), the optimal choice of the bandwidth h * depends on unknown smoothness parameters β and r ∈ (0, 2]. We propose here to implement a Lepskii type procedure to select an adaptive bandwidth h. The Lepski method was introduced in [START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF][START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation[END_REF] and has become since then a popular method to solve various adaptation problems. We will show that the estimator obtained with this bandwidth achieves the optimal minimax rate for the L ∞ -norm risk. Our adaptive procedure is implemented in Section 5. . We denote by L κ (•), the Lepski functional such that

Let M ≥ 2, and 0 < h M < • • • < h 1 < 1 a grid of ]0, 1[, we build estimators W γ hm as- sociated to bandwidth h m for any 1 ≤ m ≤ M . For any fixed x > 0, let us define r n (x) = max log(n)+x n , log(n)+x
L κ (m) = max j>m W γ hm -W γ hj ∞ -2κe γh -2 j r n (x + log M ) +2κe γh -2 m r n (x + log M ), (29) 
where κ > 0 is a fixed constant. Therefore, our final adaptive estimator denoted by W γ h m will be the estimator defined in (21) for the bandwidth h m . The bandwidth h m is such that m = argmin 1≤m≤M L κ (m).

(30)

Note that the following result is valid for any β > 0 and r ∈ (0, 2].

Theorem 3. Assume that W ρ ∈ A(β, r, L). Take κ > 0 sufficiently large and

M ≥ 2. Choose 0 < h M < • • • < h 1 < 1.
Then, for the bandwidth h m with m defined in (30) and for any x > 0, we have with probability at least

1 -e -x W γ h m -W ρ ∞ ≤ C min 1≤m≤M h r/2-1 m e -β h r m + e γh -2 m r n (x + log M ) , (31) 
where C > 0 is a constant depending only on γ, β, r, L.

In addition, we have in expectation

E W γ h m -W ρ ∞ ≤ C min 1≤m≤M h r/2-1 m e -β h r m + e γh -2 m r n (log M ) , (32) 
where C > 0 is a constant depending only on γ, r, β, L.

The proof is deferred to the Appendix C.

The idea is now to build a sufficiently fine grid 0 < h M < • • • < h 1 < 1 to achieve the optimal rate of convergence over the range β > 0. Take M = log n/(2γ) . We consider the following grid for the bandwitdh parameter h:

h 1 = 1/2, h m = 1 2 1 -(m -1) 2γ log n , 1 ≤ m ≤ M. (33) 
We build the corresponding estimators W γ hm and we apply the Lepski procedure ( 29)-( 30) to obtain the estimator W γ h m . The next result guarantees that this estimator is minimax adaptive over the class Ω := {(β, r, L), β > 0, 0 < r ≤ 2, L > 0} .

Corollary 1. Let the conditions of Theorem 3 be satisfied. Then the estimator W γ h m for the bandwidth h m with m defined in (30) and for any (β, r, L) ∈ Ω satisfies

limsup n→∞ sup Wρ∈A(β,r,L) E W γ h m -W ρ ∞ ≤ Cv n (r),
where v n (r) is the rate defined in ( 27) and C is a positive constant depending only on r, L, β and γ.

Proof of Corollary 1 : First note that for all m = 1, • • • , M and as

h m ∈ ((γ/(2 log n)) 1/2 , 1/2],
the bias term h

r/2-1 m e -β h r m is larger than the stochastic term e γh -2 m r n (log M ) up to a numerical constant. Let define m := argmax 1≤m≤M {|h m -h * | : h m ≤ h * },
where m is well defined. Indeed, we have

h M h * = (1/2) 1 -M (2γ/ log n) 1/2 + (2γ/ log n) 1/2 (log n/(2γ) -(β/γ)(h * ) -r ) -1/2 = 1 2 1 -M + ((log n)/(2γ)) 1/2 1 -(2β/(log(n))(h * ) -r 1/2 . Moreover, as 0 ≤ ((log n)/(2γ)) 1/2 -M ≤ 1, we get h M h * ≤ 1 -(2β/(log(n))(h * ) -r 1/2 ≤ 1.
Therefore, from (32),

E W γ h m -W ρ ∞ ≤ Ch r/2-1 m e -β h r m ≤ Ch r/2-1 m e -β h r m v n (r)v n (r) -1 = C h m h * r/2-1 e -β(h -r m -(h * ) -r ) v n (r).
By the definition of m, it follows that h -r m ≥ (h * ) -r , then

E W γ h m -W ρ ∞ ≤ C h m h * r/2-1 v n (r) = C h m -h * h * + 1 r/2-1 v n (r)
.

By construction |h m -h * | ≤ (γ/(2 log n)) 1/2 , then we have E W γ h m -W ρ ∞ ≤ C 1 - (γ/(2 log n)) 1/2 h * r/2-1 v n (r).
As

(h * ) -1 ≤ (log n/(2γ)) 1/2 , it holds that 1 -(γ/(2 log n)) 1/2 h * ≥ 1/2. Therefore, there exists a numerical constant C > 0 such that, for any 0 < r ≤ 2, we have E W γ h m -W ρ ∞ ≤ C v n (r).

Experimental evaluation

We test our method on two examples of Wigner functions, corresponding to the single-photon and the Schrödinger's cat states, and that are respectively defined as

W ρ (q, p) = -(1 -2(q 2 + p 2 ))e -q 2 -p 2 , W ρ (q, p) = 1 2 e -(q-q0) 2 -p 2 + 1 2 e -(q+q0) 2 -p 2 + cos(2q 0 p)e -q 2 -p 2 .
We used q 0 = 3 in our numerical tests. The toolbox to reproduce the numerical results of this article is available online1 . Following the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] and in order to obtain a fast numerical procedure, we implemented the estimator W γ h defined in (21) on a regular grid. More precisely, 2-D functions such as W ρ are discretized on a fine 2-D grid of 256 × 256 points. We use the Fast Slant Stack Radon transform of [START_REF] Averbuch | A framework for discrete integral transformations: II. The 2D discrete Radon transform[END_REF], which is both fast and faithful to the continuous Radon transform R. It also implements a fast pseudo-inverse which accounts for the filtered back projection formula (21). The filtering against the 1-D kernel ( 22) is computed along the radial rays in the Radon domain using Fast Fourier transforms. We computed the Lepski functional (29) using the values x = log(M ) and κ = 1. Figures 1 and 2 reports the numerical results of our method on both test cases. The left part compares the error W γ h -W ρ ∞ (displayed as a function of h) to the parameters h m selected by the Lepski procedure (30) . The error W γ h -W ρ ∞ (its empirical mean and its standard deviation) is computed in an "oracle" manner (since for these examples, the Wigner function to estimate W ρ is known) using 20 realizations of the sampling for each tested value (h i ) M i=1 . The histogram of values h m is computed by solving (29) for 20 realizations of the sampling. This comparison shows, on both test cases, that the method is able to select a parameter value h m which lies around the optimal parameter value (as indicated by the minimum of the L ∞ -norm risk). The central and right parts show graphical displays of W γ h m , where m is selected using the Lepski procedure (30), for a given sampling realization.

Appendix A: Proof of Propositions

A.1. Proof of Proposition 1

First remark that by the Fourier transform formula for w = (q, p) ∈ R 2 and x = (x 1 , x 2 )

W ρ (w) = 1 (2π) 2 W ρ (x)e -i(qx1+px2) dx. ( 34 
)
Let W γ h be the estimator of W ρ defined in (21), then

E W γ h (w) = 1 2π E [K γ h ([w, Φ 1 ] -Z 1 )] = 1 2π π 0 K γ h ([w, φ] -z)p γ ρ (z, φ)dzdφ = 1 2π π 0 K γ h * p γ ρ (•, φ)([w, φ])dφ.
In the Fourier domain, the convolution becomes a product, combining with (18), we obtain w,φ] dtdφ.

E W γ h (w) = π 0 1 (2π) 2 K γ h (t)F 1 [p γ ρ (•, φ)](t)e -it[
As N γ (t) = e -γt 2 , definition (22) of the kernel combined with ( 18) gives [w,φ] dtdφ.

E W γ h (w) = π 0 1 (2π) 2 K γ h (t) W ρ (t cos(φ), t sin(φ)) N γ (t)e -it[w,φ] dtdφ = π 0 1 (2π) 2 |t|≤1/h |t| W ρ (t cos(φ), t sin(φ))e -it
Therefore, by the change of variable x = (t cos(φ), t sin(φ)), it follows

E W γ h (w) = 1 (2π) 2 ||x||≤1/h W ρ (x)e -i(qx1+px2) dx. ( 35 
)
From equations ( 34) and ( 35), we have

E W γ h (w) -W ρ (w) ≤ 1 (2π) 2 ||x||>1/h W ρ (x) dx ≤ 1 (2π) 2 W ρ (x) 2 e 2β||x|| r dx 1/2 ||x||>1/h e -2β||x|| r dx 1/2 ≤ L (2π) 2 βr h (r-2)/2 e -βh -r (1 + o(1)), h → 0,
by applying Lemma 7 (see Section D.5 below) and as W ρ ∈ A(β, r, L) the class defined in (20).

A.2. Proof of Proposition 2

We recall first the notion of covering numbers for a functional class. For any probability distribution Q, we denote by L 2 (Q) the set of real-valued functions on R embedded with the

L 2 (Q)-norm • L 2 (Q) = R | • | 2 dQ 1/2 . For any functional class H in L 2 (Q), the covering number N ( , H, L 2 (Q))
denotes the minimal number of L 2 (Q)-balls of radius less than or equal to , that cover H.

The following lemma is needed to prove the Proposition 2.

Lemma 2. Let δ h := h -1 e γ h 2 > 0 for any 0 < h ≤ 1, then the class

H h = {δ -1 h K γ h (• -t), t ∈ R}, h > 0 ( 36 
)
is uniformly bounded by U := h 2γπ . Moreover, for every 0 < < A and for finite positive constants A, v depending only on γ,

sup Q N ( , H h , L 2 (Q)) ≤ (A/ ) v , ( 37 
)
where the supremum extends over all probability measures Q on R.

The proof of this Lemma can be found in D.1. To prove (24), we have to bound the following quantity :

E[|K γ h ([z, Φ ] -Z )| 2 ] ≤ K γ h 2 ∞ ≤ K γ h 2 1 = |t|≤h -1 |t|e γt 2 dt 2 = 2 h -1 0 te γt 2 dt 2 = γ -1 e γh -2 - 1 γ 2 ≤ 1 γ 2 e 2γh -2 . ( 38 
)
Moreover for δ h = h -1 e γh -2 , we have

δ -2 h E[|K γ h ([z, Φ ] -Z )| 2 ] ≤ h 2 γ 2 . ( 39 
)
By Lemma 2, it follows that the class H h is VC. Next, we note that the supremum over R is the same as a countable supremum since K γ h is continuous. Hence, we can apply (85) to get

E W γ h -E[ W γ h ] ∞ = E sup z∈R 2 1 2πn n l=1 K γ h ([z, Φ ] -Z ) -E [K γ h ([z, Φ ] -Z )] = δ h 2πn E sup z∈R 2 n l=1 δ -1 h K γ h ([z, Φ ] -Z ) -E[δ -1 h K γ h ([z, Φ ] -Z )] ≤ C(γ)δ h 2πn σ n log AU σ + U log AU σ , (40) 
where U = h 2γπ is the envelope of the class H h defined in Lemma 2. By choosing

σ 2 := h 2 γ 2 ≥ sup z∈R 2 E δ -1 h K η h ([z, Φ ] -Z ) 2
in (40) we get the result in expectation (24). Now, prove the result in probability (25).

In view of the previous display (38), we have

Var γ(hδ h ) -1 |K γ h ([•, Φ 1 ] -Z 1 ) -E [K γ h ([•, Φ 1 ] -Z 1 )]| ≤ γ 2 (hδ h ) -2 E |K γ h ([•, Φ 1 ] -Z 1 )| 2 ≤ γ 2 (hδ h ) -2 1 γ 2 e 2γh -2 = 1.
As U = 1 2γπ and by ( 72), it follows

γ(hδ h ) -1 K γ h ([•, Φ 1 ] -Z 1 ) -E[K γ h ([•, Φ 1 ] -Z 1 )] ∞ ≤ γ(hδ h ) -1 K γ h ∞ ≤ γh -1 U ≤ 1.
We use Talagrand's inequality as in Theorem 2.3 of [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]. Let us define

Z := nγ hδ h W γ h -E[ W γ h ] ∞ .
Then, for any x > 0 and with probability at least 1 -e -x , we obtain

Z ≤ E [Z] + 2xn + 4xE[Z] + x 3 ≤ E [Z] + √ 2xn + 2 xE[Z] + x 3 ≤ 2E [Z] + √ 2xn + 4x 3 ,
where we have used the decoupling inequality 2ab ≤ a 2 + b 2 with a = √ x and b = E[Z]. Thus, with probability at least 1 -e -x , we get

W γ h -E[ W γ h ] ∞ = hδ h nγ Z ≤ 2E W γ h -E[ W γ h ] ∞ + e γh -2 γ 2 x n + 4x 3n .
Plugging our control (24

) on E[ W γ h -E[ W γ h ] ∞ ],
the result in probability follows. The proof for the minimax lower bounds follows a standard scheme for deconvolution problem as in the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF]; [START_REF] Lounici | Global uniform risk bounds for wavelet deconvolution estimators[END_REF]. However, additional technicalities arise to build a proper set of Wigner functions and then to derive a lower bound. From now on, for the sake of brevity, we will denote A(β, 2, L) by A(β, L) as we consider only the practical case r = 2. Let W 0 ∈ A(β, L) be a Wigner function. Its associated density function will be denoted by

p 0 (x, φ) = 1 π R[W 0 ](x, φ)1I [0,π] (φ).
We suggest the construction of a family of two Wigner functions W 0 and W 1 such that for all w ∈ R 2 :

W 1 (w) = W 0 (w) + V h (w),
where the construction of W 0 and V h are given in Appendices B.1.1 and B.1.2 and the parameter h = h(n) → 0 as n → ∞. We denote by

p m (x, φ) = 1 π R[W m ](x, φ)1I [0,π] (φ), m = 0, 1
the density function associated to the Wigner functions W 0 and W 1 . As we consider the noisy framework ( 16) and in view of ( 17), we set for m = 0, 1

p γ m (z, φ) = [p m (•, φ) * N γ ] (z)
If the following conditions (C1) to (C3) are satisfied, then Theorem 2.6 in the book of [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF] gives the lower bound.

(C1) W 0 , W 1 ∈ A(β, L). (C2) We have ||W 1 -W 0 || 2 2 ≥ 4ϕ 2 n , with ϕ 2 n = O n -β β+γ . (C3) We have nX 2 (p γ 1 , p γ 0 ) := n π 0 (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 p γ 0 (z, φ) dzdφ ≤ 1 4 .
Proofs of these three conditions are provided in Appendices B.1.3 to B.1.5.

B.1.1. Construction of W 0

The Wigner function W 0 is the same as in the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF]. For the sake of completeness, we recall its construction here. The probability density function associated to any density matrix ρ in the ideal noiseless setting is given by equation ( 9). In particular, for diagonal density matrix ρ, the associated probability density function is

p ρ (x, φ) = ∞ k=0 ρ kk ψ 2 k (x).
For all 0 < α, λ < 1, we introduce a family of diagonal density matrices ρ α,λ such that for all

k ∈ N ρ α,λ kk = 1 0 z k α (1 -z) α (1 -λ) α 1I λ≤z≤1 dz. (41) 
Therefore the probability density associated to this diagonal density matrix ρ α,λ can be written as follows

p α,λ (x, φ) = ∞ k=0 ρ α,λ kk ψ 2 k (x) = ∞ k=0 ψ 2 k (x) 1 0 z k α (1 -z) α (1 -λ) α 1I λ≤z≤1 dz. ( 42 
)
Moreover by the well known Mehler formula (see [START_REF] Erdélyi | Higher transcendental functions[END_REF]), we have

∞ k=0 z k ψ 2 k (x) = 1 π(1 -z 2 ) exp -x 2 1 -z 1 + z .
Then, it follows

p α,λ (x, φ) = α (1 -λ) α 1 0 (1 -z) α π(1 -z 2 ) exp -x 2 1 -z 1 + z 1I λ≤z≤1 dz.
The following Lemma, proved in the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF], gives a control on the tails of the associated density p α,λ (x, φ) = p α,λ (x) as it does not depend on φ.

Lemma 3 (Butucea, Guta and Artiles (2007)). For all φ ∈ [0, 1] and all 0 < α, λ < 1 and |x| > 1 there exist constants c, C depending on α and λ such that 1+2α) .

c|x| -(1+2α) ≤ p α,λ (x) ≤ C|x| -(
In view of Lemma 3 of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF], the Wigner function W 0 will be chosen in the set

W α,λ = W α,λ = W ρ α,λ : Wigner function associated to ρ α,λ : 0 < α, λ < 1 ,
where λ is such that W 0 is a Wigner function belonging to A(β, L) (see Section 6.1 in [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] or the proof of Theorem 2 in Guţă and Artiles ( 2007)).

B.1.2. Construction of

V h for the L 2 -norm Let δ := log -1 (n). (43) 
We define two infinitely differentiable function g and g 1 such that:

• g 1 : R → [0, 1].
• The support of g 1 is Supp(g 1 ) = (δ, 2δ) .

• And ∀t ∈ δ 3 , 2δ 3 , g 1 (t) = 1. • g : R → [-1, 1] is on odd function, such that for some fixed > 0, g(x) = 1 for any x ≥ .

Define also the following parameters:

a 1 := (h -2 + δ) 1/2 , b 1 := (h -2 + 2δ) 1/2 . ( 44 
)
a 1 := (h -2 + (4/3)δ) 1/2 , b 1 := (h -2 + (5/3)δ) 1/2 . ( 45 
)
C 0 := πL(β + γ). (46) 
We also introduce an infinitely differentiable function V h such that:

• V h : R 2 → R is an odd real-valued function.

• Set t = w 2 1 + w 2 2 , then the function V h admits the following Fourier transform with respect to both variables

V h (w) := F 2 [V h ](w) := iaC 0 h -1 e βh -2 e -2β|t| 2 g 1 (|t| 2 -h -2 )g(w 2 ), (47) 
where a > 0 is a numerical constant chosen sufficiently small. The bandwidth is such that

h = log n 2(β + γ) -1/2 . ( 48 
)
Note that V h (w) is infinitely differentiable and compactly supported, thus it belongs to the Schwartz class S(R 2 ) of fast decreasing functions on R 2 . The Fourier transform being a continuous mapping of the Schwartz class onto itself, this implies that V h is also in the Schwartz class S(R 2 ). Moreover, V h (w) is an odd function with purely imaginary values. Consequently, V h is an odd real-valued function. Thus, we get

V h (p, q)dpdq = R[V h ](x, φ)dx = 0, (49) 
for all φ ∈ [0, π] and R[V h ] the Radon transform of V h . Now, we can define the function W 1 as follows:

W 1 (z) = W 0 (z) + V h (z), ( 50 
)
where W 0 is the Wigner function associated to the density p 0 defined in (41).

As in (8), we also define

p 1 (x, φ) = 1 π R[W 1 ](x, φ)1I (0,π (φ),
and ρ

(1)

j,k = π 0 p m (x, φ)f j,k (x)e (j-k)φ dxdφ. ( 51 
)
By Lemma 6 in Appendix D.4, the matrix ρ (1) is proved to be a density matrix. Therefore, in view of ( 9) and ( 49), the function W 1 is indeed a Wigner function.

B.1.3. Condition (C1)

By the triangle inequality, we have

W 1 e β • 2 2 ≤ W 0 e β • 2 2 + V h e β • 2 2 .
The first term in the above sum has be bounded in Lemma 3 of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] as follows

W 0 e β • 2 2 2 ≤ π 2 L. ( 52 
)
To study the second term in the sum above, we consider the change of variables w = (t cos φ, t sin φ) and as g is bounded by 1, we get, using ( 43), ( 44) and ( 46) that

V h e β • 2 2 2 ≤ aC 0 h -1 e βh -2 2 e -2β w 2 g 2 1 ( w 2 -h -2 )dw ≤ a 2 C 2 0 h -2 e 2βh -2 π 0 b1 a1 |t|e -2β|t| 2 dt ≤ πa 2 C 2 0 h -2 e 2βh -2 e -2βa 2 1 b1 a1 tdt ≤ π 2 a 2 C 2 0 h -2 e -2βδ b 2 1 -a 2 1 ≤ π 3 a 2 C 2 0 h -2 δe -2βδ ≤ π 2 L, (53) 
for a small enough. It follows from ( 52) and ( 53) that W 1 ∈ A(β, L).

B.1.4. Condition (C2)

By applying Plancherel Theorem and the change of variables w = (t cos φ, t sin φ), we have that

W 1 -W 0 2 2 = V h 2 2 = V h 2 2 = 1 4π 2 π 0 |t| V h (t, φ) 2 dtdφ = a 2 C 2 0 4π 2 h -2 e 2βh -2 π 0 |t|e -4βt 2 g 2 (t sin φ)g 2 1 (t 2 -h -2 )dtdφ. ( 54 
)
Note that for a fixed µ ∈ (0, π/4), there exists a numerical constant c > 0 such that sin(φ) > c on (µ, π -µ). From now on, we denote by A 1 the set

A 1 := w ∈ R 2 : a 1 ≤ w 2 ≤ b 1 , (55) 
where a 1 and b 1 are defined in (45). By definition of g and for a large enough n, we have for any 54) can be lower bounded as follows

(t, φ) ∈ A 1 × (µ, π -µ) that g 2 (t sin(φ)) = 1 with t 2 = w 2 . Therefore, (
W 1 -W 0 2 2 ≥ a 2 C 2 0 4π 2 h -2 e 2βh -2 π-µ µ A1 |t|e -4βt 2 g 2 1 (t 2 -h -2 )dtdφ = π -2µ 4π 2 a 2 C 2 0 h -2 e 2βh -2 A1 |t|e -4βt 2 g 2 1 (t 2 -h -2 )dt. ( 56 
)
On A 1 and by construction of the function g 1 , we have g 2 1 (t 2 -h -2 ) = 1. Hence, it results

I := A1 |t|e -4βt 2 g 2 1 (t 2 -h -2 )dt ≥ e -4β b 2 1 A1 |t|g 2 1 (t 2 -h -2 )dt ≥ e -4β b 2 1 b1 a1 tdt ≥ 1 2 e -4β b 2 1 ( b 2 1 -a 2 1 ) ≥ 1 6 δe -4β b 2 1 . ( 57 
)
Combining ( 56) and ( 57), we get, since

C 2 0 h -2 δ = πL/2 that W 1 -W 0 2 2 ≥ π -2µ 24π 2 a 2 C 2 0 h -2 e 2βh -2 δe -4β b 2 1 = π -2µ 48π a 2 Le 2βh -2 e -4β b 2 1 = π -2µ 48π a 2 Le -2βh -2 e -20 3 βδ .
It follows from ( 48) that

W 1 -W 0 2 2 ≥ π -2µ 48π a 2 Ln -β β+γ e -40 3 β ≥ 4cn -β β+γ =: 4ϕ 2 n ,
where c > 0 is a numerical constant possibly depending only on β.

B.1.5. Condition (C3)

Denote by C > 0 a constant whose value may change from line to line and recall that N γ is the density of the Gaussian distribution with zero mean and variance 2γ. Note that p 0 and N γ do not depend on φ. Consequently, in the framework of noisy data defined in ( 16), p γ 0 (z, φ) = p γ 0 (z) 1 π 1I (0,π) (φ). Lemma 4. There exists numerical constants c > 0 and c > 0 such that

p γ 0 (z) ≥ c z -2 , ∀|z| ≥ 1 + 2γ, (58) 
and

p γ 0 (z) ≥ c , ∀|z| ≤ 1 + 2γ. ( 59 
)
The proof of this Lemma is done in Appendix D.3. Using Lemma 4, the χ 2 -divergence can be upper bounded as follows

nX 2 (p γ 1 , p γ 0 ) = n π 0 (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 p γ 0 (z, φ) dzdφ ≤ n c π 0 1+ √ 2γ -(1+ √ 2γ) (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 dzdφ + n c π 0 R\(1+ √ 2γ,1+ √ 2γ) z 2 (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 dzdφ =: n c I 1 + n c I 2 . ( 60 
)
Note that, as in ( 18) the Fourier transforms of p γ 1 and p γ 0 with respect to the first variable are respectively equal to

F 1 [p γ 1 (•, φ)](t) = W 1 (t cos φ, t sin φ) N γ (t) = V h (t cos φ, t sin φ) + W 0 (t cos φ, t sin φ) e -γt 2 , ( 61 
) F 1 [p γ 0 (•, φ)](t) = W 0 (t cos φ, t sin φ)e -γt 2 , ( 62 
)
since N γ (t) = e -γt 2 . Using Plancherel Theorem, equations ( 47), ( 61) and ( 62), the first integral I 1 in the sum ( 60) is bounded by

I 1 ≤ π 0 (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 dzdφ = 1 4π 2 π 0 |F 1 [p γ 1 (•, φ)](t) -F 1 [p γ 0 (•, φ)](t)| 2 dtdφ = 1 4π 2 π 0 V h (t cos φ, t sin φ) 2 e -2γt 2 dtdφ = a 2 C 2 0 4π 2 h -2 e 2βh 2 π 0 e -4βt 2 -2γt 2 g 2 1 t 2 -h -2 g 2 (t sin φ)dtdφ.
By construction, the function g is bounded by 1 and the function g 1 admits as support Supp(g 1 ) = (δ, 2δ). Thus,

I 1 ≤ a 2 C 2 0 4π e 2βh 2 e -4βt 2 -2γt 2 g 2 1 t 2 -h -2 dt ≤ a 2 C 2 0 4π h -2 e 2βh -2 b1 a1 e -4βt 2 -2γt 2 dt ≤ a 2 C 2 0 4π (b 1 -a 1 )h -2 e 2βh -2 e -4βa 2 1 -2γa 2 1 ≤ a 2 C 2 0 4π b 2 1 -a 2 1 2a 1 h -2 e 2βh -2 -4βa 2 1 -2γa 2 1 .
Some basic algebra, ( 43), ( 44), ( 46) and ( 48) yield

n c I 1 ≤ a 2 C √ log n , ( 63 
)
for some constant C > 0 which may depend on β, γ, L and c . For the second term I 2 in the sum (60), with the same tools we obtain using in addition the spectral representation of the differential operator, that

I 2 ≤ π 0 z 2 (p γ 1 (z, φ) -p γ 0 (z, φ)) 2 dzdφ = π 0 ∂ ∂t (F 1 [p γ 1 (•, φ)] -F 1 [p γ 0 (•, φ)]) (t) 2 dtdφ = π 0 ∂ ∂t V h (t cos φ, t sin φ)e -γt 2 2 dtdφ = π 0 e -γt 2 ∂ ∂t ( V h )(t cos φ, t sin φ) -2γte -γt 2 V h (t cos φ, t sin φ) 2 dtdφ ≤ 2 π 0 e -2γt 2 |I 2,1 | 2 dtdφ + 16γ 2 π 0 t 2 e -2γt 2 |I 2,2 | 2 dtdφ, (64) 
where I 2,2 = V h (t cos φ, t sin φ) and I 2,1 , the partial derivative ∂ ∂t ( V h )(t cos φ, t sin φ), is equal to

iaC 0 h -1 e βh -2 -2βt 2 g 1 (t 2 -h -2 ) (-4βtg(t sin φ) + g (t sin φ) sin φ ) + 2tg 1 (t 2 -h -2 )g(t sin φ) .
Since g 1 and g belong to the Schwartz class, there exists a numerical constant c S > 0 such that

max{ g 1 ∞ , g 1 ∞ , g ∞ , g ∞ } ≤ c S . Furthermore, the support of the function g 1 is Supp(g 1 ) = (δ, 2δ), then |I 2,1 | 2 ≤ a 2 c 4 S C 2 0 h -2 e 2βh -2 -4βt 2 ((4β + 2)|t| + 1) 2 1I (a1,b1) (t), (65) 
with a 1 and b 1 defined in (44). Proceeding similarly, we have

|I 2,2 | 2 = aC 0 h -1 e βh -2 e -2βt 2 g 1 (t 2 -h -2 )g(t sin φ) 2 ≤ a 2 c 4 S C 2 0 h -2 e 2βh -2 -4βt 2 1I (a1,b1) (t). (66) 
Combining ( 65) and ( 66) with (64), as 0 ≤ δ ≤ 1

I 2 ≤ 2a 2 c 4 S C 2 0 h -2 e 2βh -2 π 0 b1 a1 e -2γt 2 e -4βt 2 ((4β + 2)|t| + 1) 2 + 8γ 2 t 2 dtdφ ≤ 2πa 2 c 4 S C 2 0 h -2 e 2βh -2 b1 a1 e -2(γ+2β)t 2 (1 + 4(2β + 1)t + (2 + 4β + 8γ 2 )t 2 dt.
An integration by part gives

I 2 ≤ 2πa 2 c 4 S C 2 0 h -2 e 2βh -2 e -(4β+2γ)a 2 1 ((4β + 2)b 1 + 1) 2 + 8γ 2 b 2 1 b1 a1 dt ≤ 2πa 2 c 4 S C 2 0 ch -2 δe -2(β+γ)h -2 e -2(2β+γ)δ ,
where c > 0 depends only on γ, β. Some basic algebra, ( 43), ( 44), ( 46) and ( 48) yield

n c I 2 ≤ a 2 C, (67) 
for some constant C > 0 possibly depending on β, γ, L, c S and c . Combining ( 67) and ( 63) with (60), we get for n large enough

nX 2 (p γ k,h , p γ 0 ) := n π 0 R (p γ k,h (z, φ) -p γ 0 (z, φ)) 2 p γ 0 (z, φ) dzdφ ≤ a 2 C,
where C > 0 is a constant which may depend on β, γ, L c S , c and c . Taking the numerical constant a > 0 small enough, we deduce from the previous display that

nX 2 (p γ k,h , p γ 0 ) ≤ 1 4 .

B.2. Proof of Theorem 2 -Lower bounds for the sup-norm

To prove the lower bound for the sup-norm, we need to slightly modify the construction of the Wigner function W 1 defined in (50). In our new construction, the Wigner function W 0 , associated to the density p 0 defined in (41), stays unchanged as compared to the L 2 case. However, the function V h given in ( 47) is modified as follows. We replaced the functions g 1 and g respectively into g 1, and g for some 0 < < 1.

We introduce an infinitely differentiable function g 1, such that:

• g 1, : R → [0, 1]. • The support of g 1, is Supp(g 1, ) = (δ, 2δ) .
• Using a similar construction as for function g 1 , we can also assume that

g 1, (t) = 1, ∀t ∈ A 1, := [(1 + )δ, ( 2 
-)δ] , (68) 
and

g 1, ∞ ≤ c δ , (69) 
for some numerical constant c > 0. • An odd function g : R → [-1, 1] satisfies the same conditions as g above but we assume in addition that

g ∞ ≤ c , (70) 
for some numerical constant c > 0.

The condition (70) will be needed to check Condition (C3). Such a function can be easily constructed. Consider for instance a function g such that its derivative satisfies

g (t) = ψ * 1 1I (0, ) (t),
for any t ∈ (0, ) where ψ is a mollifier. Integrate this function and renormalize it properly so that g (t) = 1 for any t ≥ . Complete the function by symmetry to obtain an odd function defined on the whole real line. Such a construction satisfies condition (70).

It is easy to see that Condition (C1) is always satisfied by the new test functions W 0, and W 1, . We now check Condition (C2). Set C h = iaC 0 h -1 e βh -2 . Then, we have

W 1, (z) -W 0, (z) = 1 4π 2 e -i z,w W 1, (w) -W 0, (w) dw = 1 4π 2 π 0 e -it[z,φ] |t|C h e -2βt 2 g 1, t 2 -h -2 g (t)dtdφ.
Note that A 1 = lim →0 A 1, where A 1 is defined in (68). For all z ∈ R 2 , we define the following quantity

I(z) := π 0 e -it[z,φ] |t|C h e -2βt 2 1I A1 t 2 -h -2 1I (0,∞) (t) -1I (-∞,0) (t) dtdφ.
Lebesgue dominated convergence Theorem guarantees that

lim →0 π 0 e -it[z,φ] |t|C h e -2βt 2 g 1, t 2 -h -2 g (t)dtdφ = I(z).
Therefore, there exists an > 0 (possibly depending on n, z) such that

|W 1, (z) -W 0, (z)| ≥ 1 8π 2 |I(z)| .
Taking z = (0, 2h), Fubini's Theorem gives

I(z) = 1 4π 2 π 0 e -it2h sin φ |t|C h e -2βt 2 1I A1 t 2 -h -2 1I (0,∞) (t) -1I (-∞,0) (t) dtdφ = 1 4π 2 π 0 e -it2h sin φ dφ |t|C h e -2βt 2 1I A1 t 2 -h -2 1I (0,∞) (t) -1I (-∞,0) (t) dt. Note that π 0 e -it2h sin φ dφ = π(iH 0 (2ht) + J 0 (2ht)),
where H 0 and J 0 denote respectively the Struve and Bessel functions of order 0. By definition, H 0 is an odd function while J 0 and t → |t|C h e -2βt 2 1I A1 t 2 -h -2 are even functions. Consequently, we get

I(z) = 1 4π iC h |t|H 0 (2ht)e -2βt 2 1I A1 t 2 -h -2 1I (0,∞) (2ht) -1I (-∞,0) (t) dt = 1 2π iC h ∞ 0 tH 0 (2ht)e -2βt 2 1I A1 t 2 -h -2 dt = iC h 2π b1 a1 tH 0 (2ht)e -2βt 2 dt,
with a 1 and b 1 defined in (44). Note that ∀t ∈ [a 1 , b 1 ] and for a large enough n, it follows that 2ht ∈ [2, 3]. Therefore, on [a 1 , b 1 ], the function t → H 0 (2ht) is decreasing. In addition, (see [START_REF] Erdélyi | Higher transcendental functions[END_REF]), we have

min t∈[a1,b1] {H 0 (2ht)} > 1/2.
We easily deduce from the previous observations that

|I(z)| ≥ |C h | 4π b1 a1 te -2βt 2 dt ≥ |C h | 16πβ e -2βa 2 1 -e -2βb 2 1 .
Therefore, some simple algebra gives, for n large enough. that

|I(z)| ≥ c2βa 1 δ(1 -βa 1 δ)δ|C h |n -β β+γ ≥ ac n -β 2(β+γ) ,
for some numerical constants c, c > 0 depending only β. Taking the numerical constant a > 0 small enough independently of n, β, γ, we get that Condition (C2) is satisfied with ϕ n = cn -β 2(β+γ) . Concerning Condition (C3), we proceed similarly as above for the L 2 -norm risk. The only modification appears in ( 65)-( 66) where we now use ( 68)-( 69) combined with the fact that |Supp(g )| ≤ 2 and |Supp(g 1, )| ≤ 2δ , by construction of these functions. Therefore, the details will be omitted here.

Appendix C: Proof of Theorem 3 -Adaptation

The following Lemma is needed to prove Theorem 3.

Lemma 5. For κ > 0, a constant, let E κ be the event defined such that

E κ = M m=1 W γ hm -E[ W γ hm ] ∞ ≤ κe γh -2 m r n (x + log M ) . (71) 
Therefore, on the event

E κ W γ h m -W ρ ∞ ≤ C min 1≤m≤M h r/2-1 m e -βh -r m + e γh -2 m r n (x + log M ) ,
where C > 0 is a constant depending only on γ, β, L, r, κ and W γ h m is the adaptive estimator with the bandwidth h m defined in (30).

The proof of the previous Lemma is done in D.2. For any fixed m ∈ {1, • • • , M }, we have in view of Proposition 2 that

P W γ hm -E[ W γ hm ] ∞ ≤ Ce γh -2 m r n (x) ≥ 1 -e -x ,
where

r n (x) = max 1+x n , 1+x n 
. By a simple union bound, we get

P   1≤m≤M W γ hm -E[ W γ hm ] ∞ ≤ C 2 e γhm -2 r n (x)   ≥ 1 -M e -x .
Replacing x by (x + log M ), implies

P   1≤m≤M W γ hm -E[ W γ hm ] ∞ ≤ C 2 e γhm -2 r n (x + log M )   ≥ 1 -e -x .
For κ > C 2 , we immediately get that P(E κ ) ≥ 1 -e -x and the result in probability (31) follows by Lemma 5. To prove the result in expectation (32), we use the property E[Z] = ∞ 0 P(Z ≥ t)dt, where Z is any positive random variable. We have indeed for any 1 ≤ m ≤ M that

P W γ h l -W ρ ∞ ≥ C h r/2-1 m e -β h r m + e γh -2 m r n (x + log M ) ≤ e -x , ∀x > 0.
Note that

r n (x + log M ) = max x + log(eM ) n , x + log(eM ) n ≤ max log eM n , log eM n + max x n ∨ x n ≤ r n (log M ) + r n (x -1).
Combining the two previous displays, we get ∀x > 0

P W γ h l -W ρ ∞ ≥ C h r/2-1 m e -β h r m + e γh -2 m [r n (log M ) + r n (x -1)] ≤ e -x . Set Y = W γ h l -W ρ ∞ /C, a = h r/2-1 m e -β h r
m + e γh -2 m r n (log M ) and b = e γh -2 m . We have

E[Y ] = a + E[Y -a] = a + ∞ 0 P (Y -a ≥ u) du = a + b ∞ 0 P (Y -a ≥ bt) dt.
Set now t = r n (x -1). If 0 < t < 1, then we have t = x n . If t ≥ 1 then we have t = x n . Thus we get by the change of variable t = x n that

1 0 P (Y -a ≥ bt) dt = n 0 P Y -a ≥ b x n 1 2 √ xn dx ≤ 1 2 √ n n 0 e -x √ x dx ≤ c √ n ,
where c > 0 is a numerical constant. Similarly, we get by change of variable t =

x n ∞ 1 P (Y -a ≥ bt) dt = ∞ n P Y -a ≥ b
x n

1 n dx ≤ 1 n ∞ n e -x dx ≤ c n ,
where c > 0 is a numerical constant. Combining the last three displays, we obtain the result in expectation.

Appendix D: Proof of Auxiliary Lemmas

D.1. Proof of Lemma 2

To prove the uniform bound of (36), we define

δ h = max |t|≤h -1 |t|e γt 2 .
Then, by definition of K η h and using the inverse Fourier transform formula, we have

δ -1 h K γ h ∞ = 1 2π δ -1 h sup x∈R e -itx K γ h (t)dt ≤ 1 2π δ -1 h h -1 h -1 |t|e γt 2 dt ≤ 1 π δ -1 h h -1 0 te γt 2 dt ≤ 1 2γπ δ -1 h h -1 0 2γte γt 2 dt ≤ 1 2γπ δ -1 h (e γh -2 -1) ≤ 1 2γπ δ -1 h (e γh -2 -1) ≤ h 2γπ := U. ( 72 
)
For the entropy bound (37), we need to prove that K γ h ∈ V 2 (R), where V 2 (R) is the set of functions with finite quadratic variation (see Theorem 5 of Bourdaud, Lanza de Cristoforis and Sickel ( 2006)). To do this, it is enough to verify that

K γ h ∈ B 1/2 2,1 (R) and the result is a consequence of the embedding B 1/2 2,1 (R) ⊂ V 2 (R).
Let us define the Littlewood-Paley characterization of the seminorm

• • 1/2,2,1 as follows g • 1/2,2,1 := ∈Z 2 /2 F -1 1 [α F 1 [g]] 2 ,
where α (•) is a dyadic partition of unity with α symmetric w.r.t to 0, supported in

[-2 +1 , -2 -1 ] ∪ [2 -1 , 2 +1 ]
and 0 ≤ α ≤ 1 (see e.g. Theorem 6.3.1 and Lemma 6.1.7 in the paper of [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]). Then,

K γ h ∈ B 1/2 2,1 (R), if and only if K γ h • 1/2,2
,1 is bounded by a fixed constant. By isometry of the Fourier transform combined with definition of α and K γ h , we get that

F -1 1 [α F 1 [K γ h ]] 2 = α F 1 [K γ h ] 2 = α K γ h 2 = [0,h -1 ]∩[2 -1 ,2 +1 ] α (t) 2 2|t| 2 e 2γt 2 dt ≤ [0,h -1 ]∩[2 -1 ,2 +1 ]
2t 2 e 2γt 2 dt.

A primitive of t → 2t 2 e 2γt 2 is 1 2γ te 2γt 2 -1 2γ t 0 e 2γu 2 du. Thus, we get that

F -1 1 [α F 1 [K γ h ]] 2 ≤ 1 γ h -1/2 e γh -2 , ∀ ∈ Z, and 
K γ h • 1/2,2,1 ≤ 1 γ h -1/2 e γh -2 L h =-∞ 2 /2 ,
where L h = log 2 (h -1 ) + 1 . A simple computation gives that

L h =-∞ 2 /2 ≤ √ 2 √ 2 -1 + 2 (L h +1)/2 -1 √ 2 -1 ≤ √ 2 √ 2 -1 + 2 √ 2 -1 h -1/2 .
Combining the last two displays and since h -1 ≥ 1, we get

K γ h • 1/2,2,1 ≤ c 1 γ h -1 e γh -2 ,
where c > 0 is a numerical constant. This shows that δ -1

h K γ h • 1/2,2
,1 is bounded by a fixed constant depending only on γ. Therefore K γ h ∈ V 2 (R) and the entropy bound (37) is obtained by applying Lemma 1 of [START_REF] Giné | Uniform limit Theorems for wavelet density estimators[END_REF].

D.2. Proof of Lemma 5

We recall that the bandwidth h m with m is defined in (30). Let r n (x) = max log(n)+x n

, log(n)+x n and define

m * := argmin 1≤m≤M h r/2-1 m e -β h r m + e γh -2 m r n (x + log M ) , (73) 
and

B(m) = max j:j>m W γ hm -W γ hj ∞ -2κe γh -2 j r n (x + log M ) .
In one hand, we have

W γ h m -W γ h m * ∞ 1I m>m * = W γ h m -W γ h m * ∞ -2κe γh -2 m r n (x + log M ) 1I m>m * +2κe γh -2 m r n (x + log M )1I m>m * ≤ B(m * ) + 2κe γh -2 m r n (x + log M ) 1I m>m * .
In the other hand, similarly, we have

W γ h m -W γ h m * ∞ 1I m≤m * ≤ B( m) + 2κe γh -2 m * r n (x + log M ) 1I m≤m * .
Combining the last two displays, and by definition of L κ (•) in ( 29), we get

W γ h m -W γ h m * ∞ ≤ B(m * ) + 2κe γh -2 m r n (x + log M ) 1I m>m * + B( m) + 2κe γh -2 m * r n (x + log M ) 1I m≤m * ≤ B(m * ) + B( m) + 2κr n (x + log M )(e γh -2 m + e γh -2 m ) = L(m * ) + L( m) ≤ 2L(m * ), (74) 
where the last inequality follows from the definition of m in (30). By the definition of B(•), it follows

L(m * ) = B(m * ) + 2κe γh -2 m * r n (x + log M ) = max j:j>m * W γ h m * -W γ hj ∞ -2κe γh -2 j r n (x + log M ) ≤ max j:j>m * W γ h m * -E[ W γ h m * ] ∞ + E[ W γ h m * ] -W ρ ∞ + W ρ -E[ W γ hj ] ∞ + E[ W γ hj ] -W γ hj ∞ ] -2κe γh -2 j r n (x + log M ) + 2κe γh -2 m * r n (x + log M ).
On the event E κ , it follows that

L(m * ) ≤ max j:j>m * W γ h m * -E[ W γ h m * ] ∞ + E[ W γ h m * ] -W ρ ∞ + W ρ -E[ W γ hj ] ∞ -κe γh -2 j r n (x + log M ) + 2κe γh -2 m * r n (x + log M ).
As h m * > h j for all j > m * , we have -e γh -2 j < -e γh -2 m * . Therefore, on the event E κ , we get

L(m * ) ≤ E[ W γ h m * ] -W ρ ∞ + max j:j>m * E[ W γ hj ] -W ρ ∞ + 2κe γh -2 m * r n (x + log M ). (75) 
From ( 74) and on the event E κ , we have

W γ h m -W ρ ∞ ≤ W γ h m -W γ h m * ∞ + W γ h m * -W ρ ∞ ≤ | W γ h m * -W ρ ∞ + 2L(m * ) ≤ W γ h m * -E[ W γ h m * ] ∞ + E[ W γ h m * ] -W ρ ∞ + 2L(m * ) ≤ κe γh -2 m r n (x + log M ) + E[ W γ h m * ] -W ρ ∞ + 2L(m * ).
Combining the last inequality with (75)

W γ h m -W ρ ∞ ≤ 5κe γh -2 m r n (x + log M ) + 3|E[ W γ h m * ] -W ρ ∞ + 2 max j:j>m * E[ W γ hj ] -W ρ ∞ .
From Proposition 1, the bias is bounded by t → t r/2-1 e -βt -r an increasing function for sufficiently small t > 0, and as s h m * > h j for all j > m * , we can write

W γ h m -W ρ ∞ ≤ C κe γh -2 m r n (x + log M ) + h r/2-1 m * e -βh -r m *
.

The result follows from ( 73), the definition of m * .

D.3. Proof of Lemma 4

In view of Fatou's Lemma, we have

liminf |z|→∞ z 2 p γ 0 (z) ≥ liminf |z|→∞ z 2 p 0 (z -x)N γ (x)dx ≥ √ 2γ - √ 2γ liminf |z|→∞ z 2 p 0 (z -x)N γ (x)dx. Recall that γ = 1-η 4η ≤ 1/4, then for |z| ≥ √ 2γ + 1 and any x ∈ (- √ 2γ, √ 2γ), it follows by Lemma 3 that p 0 (z -x) ≥ c(z -x) -2 . Thus, liminf |z|→∞ z 2 p γ 0 (z) ≥ c √ 2γ - √ 2γ N γ (x)dx = c 1 -1 1 √ 2π e -x 2 2 dx ≥ c > 0,
where c > 0 is a numerical constant . Choose now a numerical constant c ≥ 0 such that c -c p 0 (x)dx ≥ 1/2, therefore, for any |z| ≤ 1 + √ 2γ and some numerical constant c > 0 we get

p γ 0 (z) ≥ c -c p 0 (x)N γ (z -x)dx ≥ min |y|≤M +1+ √ 2γ {N γ (y)} c -c p 0 (x)dx ≥ 1 2 min |y|≤M +1+ √ 2γ
{N γ (y)} ≥ c > 0.

D.4. Lemma 6

Lemma 6. The density matrix ρ (1) defined in (51) satisfies the following conditions :

(i) Self adjoint: ρ (1) = (ρ (1) ) * .

(ii) Positive semi-definite: ρ (1) ≥ 0.

(iii) Trace one: Tr(ρ (1) ) = 1.

Proof:

• Note first that V h is not a Wigner function, however it belongs to the linear span of Wigner functions. Consequently, it admits the following representation

1 π R[V h ](x, φ)1I (0,π (φ) = ∞ j,k=0 τ (h) j,k ψ j (x)ψ k (x)e -i(j-k)φ , where τ (1) j,k = π 0 1 π R[V h ](x, φ)f j,k (x)e -i(j-k)φ dxdφ. (76) 
For the sake of brevity, we set from now on ρ = ρ (1) and τ = τ (1) . Note that the matrix ρ satisfies ρ j,k = ρ (0) j,k + τ j,k . Exploiting the above representation of τ , it is easy to see that τ j,k = τ k,j for any j, k ≥ 0. On the other hand, ρ (0) is a diagonal matrix with real-valued entries. This gives (i) immediately.

• We consider now (iii). First, note that R[V h ](•, φ) is an odd function for any fixed φ. Indeed, its Fourier transform with respect to the first variable

F 1 [R[V h ](•, φ)] (t) = V h (t cos φ, t sin φ),
is an odd function of t for any fixed φ. Thus, it is easy to see that τ j,j = 0, for any j ≥ 0. Since ρ (0) is already known to be a density matrix, this implies that Tr(ρ (1) ) = Tr(ρ (0) ) + Tr(τ ) = 1.

• Let now prove (ii). Define r k := ∞ j=1 : j =k |τ j,k |, ∀k ≥ 1. We will prove that ρ k,k ≥ 2r k for all k ≥ 1 and combine this fact with Gershgorin's disk theorem to get the result.

We omit the numerical constants in our analysis since we are only interested in bounding the coefficients τ j,k . More specifically, we will prove there exists a numerical constant c > 0 such that we have for any k ≥ 2 that

|τ k,1 | ≤ c a √ k! , (77) 
and also for any k ≥ 2 and l ≥ 1,

τ k+2l,k = 0, |τ k+2l+1,k | ≤ c a k l+ 1 2 , |τ k+1,k | ≤ c a k 5 4 . (78) 
We combine now the previous display with Gershgorin's disk theorem to get the result. More precisely, since ρ is a Hermitian matrix (iii ), it admits real eigenvalues. For any eigenvalue µ of ρ, in view of Theorem 5 in Appendix D.5, there exists an integer k ≥ 1 such that

µ -ρ (0) kk ≤ ∞ j=1 : j =k |τ j,k | =: r k . ( 79 
) If k = 1, we get r 1 ≤ ca ∞ j=2 1 √ j! ≤ c a for some numerical constant c > 0. If k ≥ 2, we get in view of (11) that r k = k-1 j=1 |τ j,k | + ∞ j=k+1 |τ j,k | ≤ ca 1 √ k! + k-2 l=2 1 (k -l) l+1/2 + (k -1) -5/4 + k -5/4 + ∞ l=2 1 k l+ 1 2 ≤ c a 1 k 5/4 ,
for some numerical constant c > 0.

Recall that ρ (0) = ρ α,λ for some 0 < α, λ < 1 where ρ α,λ is defined in (41). Lemma 2 in the paper of [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] guarantees that

ρ α,λ kk = α (1 -λ) α Γ(α + 1)k -(1+α) (1 + o(1)),
as n → ∞. We note that ρ (0) kk > 0 decreases polynomially at the rate k -(1+α) as k → ∞ whereas r k decreases polynomially at the rate k -5 4 . Fix the numerical constant α ∈ (0, 1/4). Then, taking the numerical constant a > 0 small enough in (47) independently of k, we get ρ kk ≥ 2r k for any k ≥ 1. Thus, any eigenvalue µ of ρ is non-negative. Consequently, ρ is positive semi-definite.

We now prove (77)-(78). In (80), we fix the variable φ and we apply Plancherel's theorem to the integral w.r.t. the variable t to get that

τ j,k = π 0 1 π V h (t cos φ, t sin φ) f j,k (t)e -i(j-k)φ dtdφ. (80) 
Plugging the definition of the pattern functions ( 11) and ( 47) into the previous display, we get for any j > k that

τ j,k = (-i) j-k 2 k-j k! j! π 0 V h (t cos φ, t sin φ)|t|t j-k e -t 2 4 L j-k k ( t 2 
2 )e -i(j-k)φ dtdφ.

(81)

Set C a,h = aC 0 h -1 e βh -2 . Plugging now (47) into the previous display, we get for any j > k that τ j,k = C a,h (-1) j-k i j-k+1 2 k-j k! j! π 0 e -2βt 2 g 1 (t 2 -h -2 )g(t sin φ)|t|t j-k e -t 2 4 L j-k k

( t 2 
2 )e -i(j-k)φ dtdφ.

By construction, for any fixed φ ∈ (0, π), we note that t → e -2βt 2 g 1 (t 2 -h -2 )g(t sin φ)|t|e -t 2 4 L j-k k ( t 2 2 ) is an odd function. Hence, if j -k is even, then we have τ j,k = 0.

Set α = j -k. We will study separately the four different settings: x α+1 e -x (L α k (x)) 2 ≤ 6k 1/6 √ k + α + 1.

Plugging the above display into the definition of τ j,k , we obtain that

|τ j,k | ≤ √ 6C a,h b1 a1 e -βt 2 dt 2 k-j k! j! k 1 12 (j + 1) 1/4 √ 2 j-k+1 ≤ √ 12C a,h b1 a1 e -βt 2 dt k! j! k 1 12 (j + 1) 1/4 ≤ C a j 3/2 ,
where C > 0 is an absolute constant. Case (c). Assume that k ≥ 35 and α = j -k ≥ 24. Theorem 2 in [START_REF] Krasikov | Inequalities for orthonormal Laguerre polynomials[END_REF] guarantees the existence of a numerical constant C > 0 such that:

sup x>0 x α+1 e -x (L α k (x)) 2 ≤ Ck -1/6 √ k + α + 1.
Similarly as in the previous case, we obtain |τ j,k | ≤ CC a,h b1 a1 e -βt 2 dt k! j! k -1 12 (j + 1) 1/4 ≤ C a j 3/2 , for some numerical constant C > 0.

Case (d). Assume that k ≥ 35 and α = j -k ≤ 24. In view of Theorem 1 in [START_REF] Krasikov | Inequalities for orthonormal Laguerre polynomials[END_REF], we have

M α k (x) := [L α k (x)
] 2 e -x x α+1 ≤ x(s 2 -q 2 ) r(x) , ∀x ∈ (q 2 , s 2 ),

where s = √ k + α + 1 + √ k, q = √ k + α + 1 -√ k and r(x) = (x -q 2 )(s 2 -x). Note that s → ∞ as k → ∞ whereas q ≤ √ α + 1. Thus, for any n large enough such that a 2 1 /2 ≥ α + 1, there exists k 0 large enough such that for any k ≥ k 0 , we have ⊂ (q 2 , s 2 ). Thus, the above display gives

M α k t 2 2 ≤ t 2 2 s 2 -q 2 (t 2 /2 -q 2 )(s 2 -t 2 /2) ≤ C
for some absolute constant C > 0.

Combining the above display with (81), we get that

|τ j,k | ≤ CC a,h b1 a1 e -2βt 2 dt 2 k! j! ≤ C a k! j! ,
for some numerical constant C > 0.

We consider now the case 3 ≤ α ≤ 24 (we recall that τ k+2,k = 0). We have in view of the previous display that

|τ j,k | = |τ k+α,k | ≤ C a 1 (k + 1) • • • (k + α) ≤ C a k α/2 , ∀k ≥ 1.
for some numerical constant C > 0.

Note that the previous bound is also valid for α = 1 but it is not sufficient for our needs. The case α = 1 is actually the most difficult as the previous bounds on the Laguerre polynomials are not sufficient to yield the desired control. In that case, we should rather exploit the oscillatory properties of the Laguerre polynomials. For large k, the Laguerre polynomial function L 1 k behaves essentially like a trigonometric function on any fixed compact interval. Combining this fact with the stationary phase principle, we can obtain a small enough bound.

In view of (1.1) in [START_REF] Muckenhoupt | Asymptotic forms for Laguerre polynomials[END_REF], we have, as k → ∞, for any x ∈ (a 2 1 /2, b 2 1 /2) that

L 1 k (x) = √ 2(k + 1) e x/2 ν 1/4 k √ x ψ x ν k J 1 ( √ ν k x + (x, ν k )) + O x 1/4 ν 7/4 k , where ν k = 4k + 6, (x, ν k ) = O ν -1/2 k x 3 2
, ψ(t) = g(t) g (t)

1/2 with g(t) = arcsin(t) and J 1 is the Bessel function of order 1.

Note that ψ(t) = √ t(1 + o(1)) as t → 0. The Bessel function J 1 admits the following asymptotic expansion as t → ∞: 

J 1 (t
We present some well-known results about the theory of empirical processes that are used in our proof. We refer the interested reader to [START_REF] Giné | Uniform limit Theorems for wavelet density estimators[END_REF] for more details about this theory.

Let Z 1 , ..., Z n be i.i.d. with law P on R, and let F be a P -centered (i.e., P f = f dP = 0 for all f ∈ F) countable class of real-valued functions on R, uniformly bounded by the constant U , called the envelope of the class. We say that F is a VC-type class for the envelope U and with VC-characteristics A, v if its L 2 (Q) covering numbers satisfy that, for all probability measures Q and ε > 0, N (F, L 2 (Q), ε) ≤ (AU/ε) v . For such classes, assuming P f = 0 for f ∈ F, there exists a universal constant L such that

E := E sup f ∈F n i=1 f (Z i ) ≤ L √ v √ nσ 2 log AU σ + vU log AU σ , ( 85 
)
where σ is any positive number such that

σ 2 ≥ sup f ∈F E(f 2 (Z)).
See, e.g., Giné and Guillou (2001).

Talagrand's inequality bounds the deviation of the suprema of empirical processes. The following result is a version of this inequality is due to [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF].

Theorem 6. Assume that Z i are identically distributed according to P . Let F be a countable class set of functions from a set X to R and assume that all functions f in F are P-measurable, square-integrables and satisfy E[f (Z 1 )] = 0 with envelope equal to 1. Let σ 2 ≥ sup f ∈F Var(f (X 1 )) almost surely, then for all x ≥ 0, we have

P sup f ∈F n i=1 f (Z i ) ≥ E sup f ∈F n i=1 f (Z i ) + √ 2xnv + x 3 ≤ e -x ,
with v = nσ 2 + 2E sup f ∈F | n i=1 f (Z i )| .

  n

Figure 1 :Figure 2 :

 12 Figure 1: Single photon cat state estimation, with η = 0.9, n = 100 × 10 3 . Left, top: display of W γ h -Wρ ∞/ Wρ ∞ as a function of 1/h. The central curve is the mean of this quantity, while the shaded area displays the ±2× standard deviation of this quantity. Left, right: histogram of the empirical repartition of m computed by the Lepski procedure (30). Center: display as a 2-D image using level sets of Wρ (top) and W γ h m (bottom). Right: same, but displayed as an elevation surface.

  Appendix B: Proof of Theorem 2 -Lower bounds B.1. Proof of Theorem 2 -Lower bounds for the L 2 -norm

  (a) k and α are bounded; (b) k is bounded and α is large; (c) k is large and α is also large; (d) k is large and α is bounded. Case (a). For any pair (j, k) such that k ≤ 34 and α = j -k ≤ 23. In view of Theorem 1 in Krasikov (2007), we get that |τ jprovided n is taken large enough. Case (b). Assume that k ≤ 34 and α = j -k ≥ 24. Again, in view of Theorem 1 in Krasikov (2007), we have sup x>0

π 0 C

 0 k (t, φ)dtdφ = I 1 + I 2 + I 3 ,
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where

and

for some numerical constant c > 0.

For the last integral in (82), a quick inspection gives

for some numerical constant c > 0.

Combining the last two displays with (82) gives the desired bound.

D.5. Auxiliary results

For the sake of completeness, we collect here a few results used in our proofs.

The following lemma, due to Butucea and Tsybakov (2008a), describes the asymptotic behaviour of integrals of exponentially decreasing functions.

Lemma 7. For any positive α, β, r, s and for any A ∈ R and B ∈ R, we have

The following classical result describes the asymptotic behaviour of integrals with non-stationary phase functions. See for instance page 631 in [START_REF] Zorich | Mathematical analysis[END_REF].

Theorem 4 (Localisation principle). Fix a compact domain Ω ⊂ R and let f ∈ C ∞ c (Ω). Let S ∈ C ∞ (Ω) be a function such that S (x) = 0 for any x ∈ support(f ). Then, as ν → ∞, we have

The same conclusion holds valid for the cosine function replaced by the sine function.

The following theorem provides a localization bound on the eigenvalues of square matrices. See for instance [START_REF] Feingold | Block Diagonally Dominant Matrices and Generalizations of the Gerschgorin Circle Theorem[END_REF].

Theorem 5 (Gershgorin Disk Theorem). Let A be an infinite square matrix and let µ be any eigenvalue of A. Then, for some j ≥ 1, we have |µ -A j,j | ≤ r j (A), where r j (A) = k≥1:k =j |A j,k |.