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Abstract: In quantum optics, the quantum state of a light beam is represented through the
Wigner function, a density on R2 which may take negative values but must respect intrinsic
positivity constraints imposed by quantum physics. In the framework of noisy quantum
homodyne tomography with efficiency parameter 1/2 < η ≤ 1, we study the theoretical
performance of a kernel estimator of the Wigner function. We prove that it is minimax
efficient, up to a logarithmic factor in the sample size, for the L∞-risk over a class of infinitely
differentiable functions. We also compute the lower bound for the L2-risk. We construct an
adaptive estimator, i.e. which does not depend on the smoothness parameters, and prove that
it attains the minimax rates for the corresponding smoothness of the class of functions up to
a logarithmic factor in the sample size. Finite sample behaviour of our adaptive procedure
is explored through numerical experiments.

Keywords and phrases: Non-parametric minimax estimation, Adaptive estimation, In-
verse problem, L2 and L∞ Risks, Quantum homodyne tomography, Wigner function, Radon
transform, Quantum state.

Quantum optics is a branch of quantum mechanics which studies physical systems at the atomic
and subatomic scales. Unlike classical mechanics, the result of a physical measurement is generally
random. Quantum mechanics does not predict a deterministic course of events, but rather the
probabilities of various alternative possible events. It provides predictions on the outcome mea-
sures, therefore exploring measurements involves non-trivial statistical methods and inference on
the result of a measurement should be done on identically prepared quantum systems.
In this paper, we study a severely ill-posed inverse problem that has arised in quantum optics.
Let (Z1,Φ1), . . . , (Zn,Φn) be n pairs of independent identically distributed random variables with
values in R× [0, π] satisfying

Z` := X` +
√

2γ ξ`,

where Xl admits density p(x, φ) w.r.t. the Lebesgue measure on R× [0, π], ξl is a standard normal
variable independent of Xl and γ ∈ (0, 1) is a known scalar. Due to the particular structure of this
quantum optics problem, the density p(x, φ) satisfies

p(x, φ) =
1

π
R[W ](x, φ)1I[0,π](φ),

where W : R2 → R is the unknown function to be estimated based on indirect observations
(Z1,Φ1), . . . , (Zn,Φn) and R[W ] is the Radon transform of W . The Radon transform will be
properly defined in Section 1 below. The target W is called the Wigner function and is used to
describe the quantum state of a physical system of interest.
For the interested reader, we provide in Section 1 a short introduction to the needed quantum
notions. This section may be skipped at first reading. Section 2 introduces the statistical model
by making the link with quantum theory. The interested reader can get further acquaintance with
quantum concepts through the textbooks or the review articles of Helstrom (1976); Holevo (1982);
Barndorff-Nielsen, Gill and Jupp (2003) and Leonhardt (1997).
∗Supported in part by Simons Collaboration Grant 315477 and NSF CAREER Grant DMS-1454515.
†Supported in part by "Calibration" ANR-2011-BS01-010-01.
‡Supported by the European Research Council (ERC project SIGMA-Vision).
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1. Physical background

In quantum mechanics, the measurable properties (ex: spin, energy, position, ...) of a quantum
system are called "observables". The probability of obtaining each of the possible outcomes when
measuring an observable is encoded in the quantum state of the considered physical system.

1.1. Quantum state and observable

The mathematical description of the quantum state of a system is given in the form of a density
operator ρ on a complex Hilbert space H (called the space of states) satisfying the three following
conditions:

1. Self adjoint: ρ = ρ∗, where ρ∗ is the adjoint of ρ.
2. Positive: ρ ≥ 0, or equivalently 〈ψ, ρψ〉 ≥ 0 for all ψ ∈ H.
3. Trace one: Tr(ρ) = 1.

Notice that D(H), the set of density operators ρ on H, is a convex set. The extreme points of the
convex set D(H) are called pure states and all other states are called mixed states.

In this paper, the quantum system we are interested in is a monochromatic light in a cavity. In
this setting of quantum optics, the space of states H we are dealing with is the space of square
integrable complex valued functions on the real line. A particular orthonormal basis for this Hilbert
space is the Fock basis {ψj}j∈N:

ψj(x) :=
1√√
π2jj!

Hj(x)e−x
2/2, (1)

where Hj(x) := (−1)jex
2 dj

dxj e
−x2

denote the j-th Hermite polynomial. In this basis, a quantum
state is described by an infinite density matrix ρ = [ρj,k]j,k∈N whose entries are equal to

ρj,k = 〈ψj , ρψk〉,

where 〈·, ·〉 is the inner product. The quantum states which can be created currently in laboratory
are matrices whose entries are decreasing exponentially to 0, i.e., these matrices belong to the
natural class R(C,B, r) defined below, with r = 2. Let us define for C ≥ 1, B > 0 and 0 < r ≤ 2,
the class R(C,B, r) is as follows

R(C,B, r) := {ρ quantum state : |ρm,n| ≤ C exp(−B(m+ n)r/2)}. (2)

In order to describe mathematically a measurement performed on an observable of a quantum
system prepared in state ρ, we give the mathematical description of an observable. An observable
X is a self adjoint operator on the same space of states H and

X =

dimH∑
a

xaPa,

where the eigenvalues {xa}a of the observable X are real and Pa is the projection onto the one
dimensional space generated by the eigenvector of X corresponding to the eigenvalue xa.
As a quantum state ρ encompasses all the probabilities of the observables of the considered quan-
tum system, when performing a measurement of the observable X of a quantum state ρ, the result
is a random variable X with values in the set of the eigenvalues of the observable X. For a quantum
system prepared in state ρ, X has the following probability distribution and expectation function

Pρ(X = xa) = Tr(Paρ) and Eρ(X) = Tr(Xρ).

Note that the conditions defining the density matrix ρ insure that Pρ is a probability distribution.
In particular, the characteristic function is given by

Eρ(eitX) = Tr(ρeitX).
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1.2. Quantum homodyne tomography and Wigner function

In quantum optics, a monochromatic light in a cavity is described by a quantum harmonic oscilla-
tor. In this setting, the observables of interest are usually Q and P (resp. the electric and magnetic
fields). But according to Heisenberg’s uncertainty principle, Q and P are non-commuting observ-
ables, they may not be simultaneously measurable. Therefore, by performing measurements on
(Q,P), we cannot get a probability density of the result (Q,P ). However, for all phase φ ∈ [0, π]
we can measure the quadrature observables

Xφ := Q cosφ+ P sinφ.

Each of these quadratures could be measured on a laser beam by a technique developed by Smithey
and called Quantum Homodyne Tomography (QHT). The theoretical foundation of quantum
homodyne tomography was outlined by Vogel and Risken (1989).
When performing a QHT measurement of the observable Xφ of the quantum state ρ, the result is a
random variable Xφ whose density conditionally to Φ = φ is denoted by pρ(·|φ). Its characteristic
function is given by

Eρ(eitXφ) = Tr(ρeitXφ) = Tr(ρeit(Q cosφ+P sinφ)) = F1[pρ(·|φ)](t),

where F1[pρ(·|φ)](t) =
∫
eitxpρ(x|φ)dx denotes the Fourier transform with respect to the first

variable. Moreover if Φ is chosen uniformly on [0, π], the joint density probability of (Xφ,Φ) with
respect to the Lebesgue measure on R× [0, π] is

pρ(x, φ) =
1

π
pρ(x|φ)1I[0,π](φ).

An equivalent representation for a quantum state ρ is the functionWρ : R2 → R called the Wigner
function, introduced for the first time by Wigner (1932). The Wigner function may be obtained
from the momentum representation

W̃ρ(u, v) := F2[Wρ](u, v) = Tr
(
ρei(uQ+vP)

)
, (3)

where F2 is the Fourier transform with respect to both variables. By the change of variables (u, v)
to polar coordinates (t cosφ, t sinφ), we get

W̃ρ(t cosφ, t sinφ) = F1[pρ(·|φ)](t) = Tr(ρeitXφ). (4)

The origin of the appellation quantum homodyne tomography comes from the fact that the pro-
cedure described above is similar to positron emission tomography (PET), where the density of
the observations is the Radon transform of the underlying distribution

pρ(x|φ) = R[Wρ](x, φ) =

∫
Wρ(x cosφ+ t sinφ, x sinφ− t cosφ)dt, (5)

where R[Wρ] denotes the Radon transform of Wρ. The main difference with PET is that the role
of the unknown distribution is played by the Wigner function which can be negative.
The physicists consider the Wigner function as a quasi-probability density of (Q,P ) if one can
measure simultaneously (Q,P). Indeed, the Wigner function satisfies

Wρ : R2 → R,
∫∫

Wρ(q, p)dqdp = 1, (6)

and other boundedness properties unavailable for classical densities. However, the Wigner function
can and normally does take negative values for states which are not associated to any classical
model. This property of the Wigner function is used by Physicists as a criterion to discriminate
nonclassical states of the field.
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In the Fock basis, we can write Wρ in terms of the density matrix [ρjk] as follows (see Leonhardt
(1997) for the details).

Wρ(q, p) =
∑
j,k

ρjkWj,k(q, p)

where for j ≥ k,

Wj,k(q, p) =
(−1)j

π

(
k!

j!

) 1
2 (√

2(ip− q)
)j−k

e−(q2+p2)Lj−kk

(
2q2 + 2p2

)
. (7)

and Lαk (x) the generalized Laguerre polynomial of degree k and order α.

1.3. Pattern functions

The ideal result of the QHT measurement provides (Xφ,Φ) of joint probability density with respect
to the Lebesgue measure on R× [0, π] equal to

pρ(x, φ) =
1

π
pρ(x|φ)1I[0,π](φ) =

1

π
R[Wρ].(x, φ)1I[0,π](φ) (8)

The density pρ(·, ·) can be written in terms of the entries of the density matrix ρ (see Leonhardt
(1997))

pρ(x, φ) =

∞∑
j,k=0

ρj,kψj(x)ψk(x)e−(j−k)φ, (9)

where {ψj}j∈N is the Fock basis defined in (1). Conversely (see D’Ariano, Macchiavello and Paris
(1994); Leonhardt (1997) for details), we can write

ρj,k =

∫ π

0

∫
pρ(x, φ)fj,k(x)e−(j−k)φdxdφ, (10)

where the functions fj,k : R → R introduced by Leonhardt, Paul and D’Ariano (1995) are called
the "pattern functions". An explicit form of the Fourier transform of fj,k(·) is given by Richter
(2000): for all j ≥ k

f̃j,k(t) = f̃k,j(t) = π(−i)j−k
√

2k−jk!
j! |t|t

j−ke−
t2

4 Lj−kk ( t
2

2 ), (11)

Note that by writing t = ||w|| = ||(q, p)|| =
√
q2 + p2 in the equation (7), we can define for all

j ≥ k

lj,k(t) := |Wj,k(q, p)| = 2
j−k
2

π

(
k!

j!

) 1
2

tj−ke−t
2
∣∣∣Lj−kk (2t2)

∣∣∣ . (12)

Therefore, there exists a useful relation, for all j ≥ k∣∣∣f̃j,k(t)
∣∣∣ = π2|t|lj,k(t/2). (13)

Moreover Aubry, Butucea and Meziani (2009) have given the following Lemma which will be useful
to prove our main results.

Lemma 1 (Aubry, Butucea and Meziani (2009)).
For all j, k ∈ N and J := j + k + 1, for all t ≥ 0,

lj,k(t) ≤ 1

π

{
1 if 0 ≤ t ≤

√
J,

e−(t−
√
J)2 if t ≥

√
J.

(14)
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2. Statistical model

In practice, when one performs a QHT measurement, a number of photons fails to be detected.
These losses may be quantified by one single coefficient η ∈ [0, 1], such that η = 0 when there is
no detection and η = 1 corresponds to the ideal case (no loss). The quantity (1−η) represents the
proportion of photons which are not detected due to various losses in the measurement process.
The parameter η is supposed to be known, as physicists argue that their machines actually have
high detection efficiency, i.e. η ≈ 0.9. In this paper we consider the regime where more photons
are detected than lost, that is η ∈ (1/2, 1]. Moreover, as the detection process is inefficient, an
independent Gaussian noise interferes additively with the ideal data Xφ. Note that the Gaus-
sian nature of the noise is imposed by the Gaussian nature of the vacuum state which interferes
additively.
To sum up, for Φ = φ, the effective result of the QHT measurement is for a known efficiency
η ∈ (1/2, 1],

Y =
√
η Xφ +

√
(1− η)/2 ξ (15)

where ξ is a standard Gaussian random variable, independent of the random variable Xφ having
density, with respect to the Lebesgue measure on R× [0, π], equal to pρ(·, ·) defined in equation (8).
For the sake of simplicity, we re-parametrize (15) as follows

Z := Y/
√
η = Xφ +

√
(1− η)/(2η) ξ := Xφ +

√
2γ ξ, (16)

where γ = (1− η)/(4η) is known and γ ∈ [0, 1/4) as η ∈ (1/2, 1]. Note that γ = 0 corresponds to
the ideal case.
Let us denote by pγρ(·, ·) the density of (Z,Φ) which is the convolution of the density of Xφ with
Nγ(·) the density of a centered Gaussian distribution having variance 2γ, that is

pγρ(z, φ) =

[
1

π
R[Wρ](·, φ)1I[0,π](φ)

]
∗Nγ(z) = pρ (·, φ) ∗Nγ(z) (17)

=

∫
pρ (z − x, φ)Nγ(x)dx.

For Φ = φ, a useful equation in the Fourier domain, deduced by the previous relation (17) and
equation (4) is

F1[pγρ(·, φ)](t) = F1[pρ(·, φ)](t)Ñγ(t) = W̃ρ(t cos(φ), t sin(φ))Ñγ(t), (18)

where F1 denotes the Fourier transform with respect to the first variable and the Fourier transform
of Nγ(·) is Ñγ(t) = e−γt

2

.

This paper aims at reconstructing the Wigner function Wρ of a monochromatic light in a cavity
prepared in state ρ from n observations. As we cannot measure precisely the quantum state in
a single experiment, we perform measurements on n independent identically prepared quantum
systems. The measurement carried out on each of the n systems in state ρ is done by QHT
as described in Section 1. In practice, the results of such experiments would be n independent
identically distributed random variables (Z1,Φ1), . . . , (Zn,Φn) such that

Z` := X` +
√

2γ ξ`. (19)

with values in R× [0, π] and distribution Pγρ admitting density pγρ(·, ·) defined in (17) with respect
to the Lebesgue measure on R × [0, π]. For all ` = 1, . . . , n, the ξ`’s are independent standard
Gaussian random variables, independent of all (X`,Φ`).

In order to study the theoretical performance of our different procedures, we use the fact that
the unknown Wigner function belongs to the class of very smooth functions A(β, r, L) (similar to
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those of Butucea, Guţă and Artiles (2007); Aubry, Butucea and Meziani (2009)) described via its
Fourier transform:

A(β, r, L) :=

{
f : R2 → R,

∫∫
|f̃(u, v)|2e2β‖(u,v)‖rdudv 6 (2π)2L

}
, (20)

where f̃(·, ·) denotes the Fourier transform of f with respect to both variables and ‖(u, v)‖ =√
u2 + v2 denote the usual Euclidean norm. Note that this class is reasonable from a physical

point of view. Indeed, it follows from Propositions 1 and 2 in Aubry, Butucea and Meziani (2009)
that any Wigner functio whose density matrix belongs to the realistic class R(C,B, r) lies in a
class A(β′, r, L′) where β′ > 0 and L′ > 0 depend only on B,C, r. To the best of our knowledge,
there exists no converse result proving that the density matrix of any Wigner function in the class
A(β′, r, L′) belongs to R(C,B, r).

Previous works and outline of the results

The problem of reconstructing the quantum state of a light beam has been extensively studied in
physics literature and in quantum statistics. We only mention papers with a theoretical analysis
of the performance of their estimation procedure. Additional references to physics papers can be
found therein. Methods for reconstructing a quantum state are based on the estimation of either
the density matrix ρ or the Wigner functionWρ. In order to assess the performance of a procedure,
a realistic class of quantum states R(C,B, r) has been defined in many papers such as in (2) where
the elements of the density matrix decrease rapidly. From the physics point of view, all the states
which have been produced in the laboratory up to now belong to such a class with r = 2, and a
more detailed argument can be found in the paper of Butucea, Guţă and Artiles (2007).

The estimation of the density matrix from averages of data has been considered in the framework
of ideal detection (η = 1 i.e. γ = 0) by Artiles, Gill and Guţă (2005) while the noisy setting
has been investigated by Aubry, Butucea and Meziani (2009) for the Frobenius norm risk. More
recently in the noisy setting, an adaptive estimation procedure over the classes of quantum states
R(C,B, r), i.e. without assuming the knowledge of the regularity parameters, has been proposed
by Alquier, Meziani and Peyré (2013) and an upper bound for Frobenius risk has been given. The
problem of goodness-of-fit testing in quantum statistics has been considered in Meziani (2008). In
this noisy setting, the latter paper derived a testing procedure from a projection-type estimator
where the projection is done in L2 distance on some suitably chosen pattern functions.

The Wigner function is an appealing tool to Physicists to determine particular features of the
quantum state of a system. Therefore, this work is of practical interest. For instance, non clas-
sical quantum state correspond to negative parts of the Wigner function. This paper deals with
the problem of reconstruction of the Wigner function Wρ in the context of QHT when taking
into account the detection losses occurring in the measurement, leading to an additional Gaussian
noise in the measurement data (η ∈ (1/2, 1]). In the absence of noise (γ = 0), Guţă and Artiles
(2007) obtained the sharp minimax rate of pointwise estimation over the class of Wigner func-
tions A(β, 1, L) for a kernel based procedure. The same problem in the noisy setting was treated
by Butucea, Guţă and Artiles (2007), they obtain minimax rates for the pointwise risk over the
class A(β, r, L) for the procedure defined in (21). Moreover, a truncated version of their estimator
is proposed by Aubry, Butucea and Meziani (2009) where an upper bound is computed for the
L2-norm risk over the class A(β, r, L). The estimation of a quadratic functional of the Wigner
function, as an estimator of the purity, was explored in Meziani (2007).

The reconstruction problem considered in this paper belongs to the class of linear inverse problems.
It requires to solve simultaneously a tomography problem and a density deconvolution problem.
We refer to Cavalier (2008) for a survey of the literature on general inverse problems in statistics.
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Tomography problems, such as noisy integral equation of the form y = R[f ](x, φ) + ξ where
(x, φ) ∈ R × [0, π], ξ is some random noise and f is the unknown function to be recovered,
have been investigated in Korostelëv and Tsybakov (1991, 1993); Klemelä and Mammen (2010)
and the references cited therein. For density type tomography problems closer to our setting,
Johnstone and Silverman (1990) considered uncorrupted observations, corresponding to γ = 0
in (19), and established the minimax rate of the inverse Radon transform over Sobolev classes
of density functions for the quadratic risk. Under a similar framework, Donoho and Low (1992)
obtained the pointwise minimax rate of reconstruction.
The deconvolution problem has been studied extensively in the literature. We refer to Bissantz,
Dümbgen, Holzmann and Munk (2007); Bissantz and Holzmann (2008); Butucea and Tsybakov
(2008a,b); Carroll and Hall (1988); Delaigle and Gijbels (2004); Diggle and Hall (1993); Fan (1991,
1993); Goldenshluger (1999); Hesse and Meister (2004); Johnstone, Kerkyacharian, Picard and
Raimondo (2004); Johnstone and Raimondo (2004); Meister (2008); Pensky and Sapatinas (2009);
Pensky and Vidakovic (1999); Stefanski (1990); Stefanski and Carroll (1990). Most of these papers
concern the quadratic risk or the pointwise risk. Lounici, K. and Nickl (2011) established the first
minimax uniform risk estimation result for a wavelet deconvolution density estimator over Besov
classes of density functions.

The remainder of the article is organized as follows. In Section 3, we establish in Theorem 1
the first L∞-norm risk upper bound for the estimation procedure (21) of the Wigner function
while in Theorem 2 we establish the first minimax lower bounds for the estimation of the Wigner
function for the L2-norm and the L∞-norm risks. As a consequence of our results, we determined
the minimax L∞-norm and L2-norm rates of estimation for this noisy QHT problem up to a
logarithmic factor in the sample size. We propose in Section 4 a Lepski-type procedure that
adapts to the unknown smoothness parameters β > 0 and r ∈ (0, 2] of the Wigner function of
interest. The only previous result on adaptation is due to Butucea, Guţă and Artiles (2007) but
concerns the simplest case r ∈ (0, 1) where the estimation procedure (21) with a proper choice of
the parameter h independent of β, r is naturally minimax adaptive up to a logarithmic factor in
the sample size n. Theoretical investigations are complemented by numerical experiments reported
in Section 5. The proofs of the main results are deferred to the Appendix.

3. Wigner function estimation and minimax risk

From now on, we work in the practical framework and we assume that n independent identically
distributed random pairs (Zi,Φi)i=1,...,n are observed, where Φi is uniformly distributed in [0, π]
and the joint density of (Zi,Φi) is pγρ(·, ·) (see (17)). As Butucea, Guţă and Artiles (2007), we
use the modified usual tomography kernel in order to take into account the additive noise on the
observations and construct a kernel Kγ

h which performs both deconvolution and inverse Radon
transform on our data, asymptotically such that our estimation procedure is

Ŵ γ
h (q, p) =

1

2πn

n∑
`=1

Kγ
h ([z,Φ`]− Z`) , (21)

where 0 ≤ γ < 1/4 is a fixed parameter and h > 0 tends to 0 when n→∞ in a proper way to be
chosen later. The kernel is defined by

K̃γ
h (t) = |t|eγt

2

1I|t|≤1/h, (22)

where z = (q, p) and [z, φ] = q cosφ+ p sinφ.
From now on, ‖ · ‖∞ and ‖ · ‖2 and ‖ · ‖1 will denote respectively the L∞-norm, the L2-norm and
the L1-norm. As the L∞-norm risk can be trivially bounded as follows

‖Ŵ γ
h −Wρ‖∞ ≤ ‖Ŵ γ

h − E[Ŵ γ
h ]‖∞ +

∥∥∥E [Ŵ γ
h

]
−Wρ

∥∥∥
∞
, (23)
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and in order to study the L∞-norm risk of our procedure Ŵ γ
h , we study in Propositions 1 and 2,

respectively the bias term and the stochastic term.

Proposition 1. Let Ŵ γ
h be the estimator of Wρ defined in (21) and h > 0 tends to 0 when n→∞

. Then, ∥∥∥E [Ŵ γ
h

]
−Wρ

∥∥∥
∞
≤

√
L

(2π)2βr
h(r−2)/2e−βh

−r
(1 + o(1)),

where Wρ ∈ A(β, r, L) defined in (20) and r ∈ (0, 2].

The proof is deferred to Appendix A.1.

Proposition 2. Let Ŵ γ
h be the estimator of Wρ defined in (21) and 0 < h < 1. Then, there exists

a constant C1, depending only on γ such that

E
[
‖Ŵ γ

h − E[Ŵ γ
h ]‖∞

]
≤ C1e

γh−2

(√
log n

n
+

log n

n

)
. (24)

Moreover, for any x > 0, we have with probability at least 1− e−x that

‖Ŵ γ
h − E[Ŵ γ

h ]‖∞ ≤ C2e
γh−2

max

{√
log(n) + x

n
,

log(n) + x

n

}
, (25)

where C2 > 0 depends only on γ.

The proof is deferred to Appendix A.2. The following theorem establishes the upper bound of the
L∞-norm risk.

Theorem 1. Assume that Wρ belongs to the class A(β, r, L) defined in (20) for some r ∈]0, 2]
and β, L > 0. Consider the estimator (21) with h∗ = h∗(r) such that

γ
(h∗)2 + β

(h∗)r = 1
2 log(n/ log n) if 0 < r < 2,

h∗ =
(

2(β+γ)
log(n/ logn)

)1/2

if r = 2.
(26)

Then we have
E
[
‖Ŵ γ

h∗ −Wρ‖∞
]
≤ Cvn(r),

where C > 0 can depend only on γ, β, r, L and the rate of convergence vn is such that

vn(r) =

 (h∗)(r−2)/2e−β(h∗)−r if 0 < r < 2,(
logn
n

) β
2(β+γ)

if r = 2.
(27)

Note that for r ∈ (0, 2) the rate of convergence vn is faster than any logarithmic rate in the sample
size but slower than any polynomial rate. For r = 2, the rate of convergence is polynomial in the
sample size.
Proof of Theorem 1: Taking the expectation in (23) and using Propositions 1 and 2, we get for
all 0 < h < 1

E
[
‖[Ŵ γ

h −Wρ‖∞
]
≤ E

[
‖Ŵ γ

h − E[Ŵ γ
h ]‖∞

]
+ ‖E

[
Ŵ γ
h

]
−Wρ‖∞

≤ Ceγh
−2

√
1

n
(1 + o(1)) + CBh

(r−2)/2e−βh
−r

(1 + o(1))

where CB =
√

L
(2π)2βr , h→ 0 as n→∞ and Wρ ∈ A(β, r, L). The optimal bandwidth parameter

h∗(r) := h∗ is such that

h∗ = arg inf
h>0

{
CBh

(r−2)/2e−βh
−r

+ C1e
γh−2

√
log n

n

}
. (28)
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Therefore, by taking derivative, we get

γ

(h)2
+

β

(h)r
=

1

2
log(n/ log n) + C1(1 + o(1)).

For 0 < r < 2, (26) provides an accurate approximation of the optimum h∗ when the number of
observations n is large. By plugging the result into (28), we get

(h∗)(r−2)/2e−β(h∗)−r = (h∗)(r−2)/2

√
log n

n
eγ(h∗)−2

.

It follows that the bias term is much larger than the stochastic term for 0 < r < 2. It is easy to

see that for r = 2, we have h∗ =
(

2(β+γ)
log(n/ logn)

)1/2

and that the bias term and the stochastic term
are of the same order. �

We derive now a minimax lower bound. We consider specifically the case r = 2 since it is relevant
with quantum physic applications. The only known lower bound result for the estimation of a
Wigner function is due to Butucea, Guţă and Artiles (2007) and concerns the pointwise risk.
In Theorem 2 below, we obtain the first minimax lower bounds for the estimation of a Wigner
function Wρ ∈ A(β, 2, L) with the L2-norm and L∞-norm risks.

Theorem 2. Assume that (Z1,Φ1), · · · , (Zn,Φn) coming from the model (16) with γ ∈ [0, 1/4).
Then, for any β, L > 0 and p ∈ {2,∞}, there exists a constant c := c(β, L, γ) > 0 such that for n
large enough

inf
Ŵn

sup
Wρ∈A(β,2,L)

E‖Ŵn −Wρ‖p ≥ cn−
β

2(β+γ) ,

where the infimum is taken over all possible estimators Ŵn based on the i.i.d. sample {(Zi,Φi)}ni=1.

We believe similar arguments can be applied to the case 0 < r < 2 up to several technical
modifications. This is left for future work. The proof is deferred to Appendix B. This theorem
guarantees that the L∞-norm upper bound derived in Theorem 1 and also that the L2-norm risk
upper bound of Aubry, Butucea and Meziani (2009) are minimax optimal up to a logarithmic
factor in the sample size n.

4. Adaptation to the smoothness

As we see in (28), the optimal choice of the bandwidth h∗ depends on unknown smoothness pa-
rameters β and r ∈ (0, 2]. We propose here to implement a Lepskii type procedure to select an
adaptive bandwidth h. The Lepski method was introduced in Lepskĭı (1991, 1992) and has be-
come since then a popular method to solve various adaptation problems. We will show that the
estimator obtained with this bandwidth achieves the optimal minimax rate for the L∞-norm risk.
Our adaptive procedure is implemented in Section 5.

Let M ≥ 2, and 0 < hM < · · · < h1 < 1 a grid of ]0, 1[, we build estimators Ŵ γ
hm

as-
sociated to bandwidth hm for any 1 ≤ m ≤ M . For any fixed x > 0, let us define rn(x) =

max

(√
log(n)+x

n , log(n)+x
n

)
. We denote by Lκ(·), the Lepski functional such that

Lκ(m) = max
j>m

{
‖Ŵ γ

hm
− Ŵ γ

hj
‖∞ − 2κeγh

−2
j rn(x+ logM)

}
+2κeγh

−2
m rn(x+ logM), (29)

where κ > 0 is a fixed constant. Therefore, our final adaptive estimator denoted by Ŵ γ
hm̂

will be
the estimator defined in (21) for the bandwidth hm̂. The bandwidth hm̂ is such that

m̂ = argmin1≤m≤MLκ(m). (30)
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Note that the following result is valid for any β > 0 and r ∈ (0, 2].

Theorem 3. Assume that Wρ ∈ A(β, r, L). Take κ > 0 sufficiently large and M ≥ 2. Choose
0 < hM < · · · < h1 < 1. Then, for the bandwidth hm̂ with m̂ defined in (30) and for any x > 0,
we have with probability at least 1− e−x

‖Ŵ γ
hm̂
−Wρ‖∞ ≤ C min

1≤m≤M

{
hr/2−1
m e

− β
hrm + eγh

−2
m rn(x+ logM)

}
, (31)

where C > 0 is a constant depending only on γ, β, r, L.
In addition, we have in expectation

E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ C ′ min

1≤m≤M

{
hr/2−1
m e

− β
hrm + eγh

−2
m rn(logM)

}
, (32)

where C ′ > 0 is a constant depending only on γ, r, β, L.

The proof is deferred to the Appendix C.

The idea is now to build a sufficiently fine grid 0 < hM < · · · < h1 < 1 to achieve the optimal rate
of convergence over the range β > 0. Take M = b

√
log n/(2γ)c. We consider the following grid for

the bandwitdh parameter h:

h1 = 1/2, hm =
1

2

(
1− (m− 1)

√
2γ

log n

)
, 1 ≤ m ≤M. (33)

We build the corresponding estimators Ŵ γ
hm

and we apply the Lepski procedure (29)-(30) to obtain
the estimator Ŵ γ

hm̂
. The next result guarantees that this estimator is minimax adaptive over the

class
Ω := {(β, r, L), β > 0, 0 < r ≤ 2, L > 0} .

Corollary 1. Let the conditions of Theorem 3 be satisfied. Then the estimator Ŵ γ
hm̂

for the
bandwidth hm̂ with m̂ defined in (30) and for any (β, r, L) ∈ Ω satisfies

limsupn→∞ sup
Wρ∈A(β,r,L)

E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ Cvn(r),

where vn(r) is the rate defined in (27) and C is a positive constant depending only on r, L, β and
γ.

Proof of Corollary 1 : First note that for all m = 1, · · · ,M and as

hm ∈ ((γ/(2 log n))1/2, 1/2],

the bias term h
r/2−1
m e

− β
hrm is larger than the stochastic term eγh

−2
m rn(logM) up to a numerical

constant. Let define
m̃ := argmax1≤m≤M{|hm − h∗| : hm ≤ h∗},

where m̃ is well defined. Indeed, we have

hM
h∗

=
(1/2)

(
1−M(2γ/ log n)1/2 + (2γ/ log n)1/2

)
(log n/(2γ)− (β/γ)(h∗)−r)

−1/2

=
1

2

(
1−M + ((log n)/(2γ))

1/2
) (

1− (2β/(log(n))(h∗)−r
)1/2

.

Moreover, as 0 ≤ ((log n)/(2γ))
1/2 −M ≤ 1, we get

hM
h∗
≤
(
1− (2β/(log(n))(h∗)−r

)1/2 ≤ 1.



/Optimal estimation of the Wigner function in noisy QHT 11

Therefore, from (32),

E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ Ch

r/2−1
m̃ e

− β
hr
m̃ ≤ Chr/2−1

m̃ e
− β
hr
m̃ vn(r)vn(r)−1

= C

(
hm̃
h∗

)r/2−1

e−β(h−r
m̃
−(h∗)−r)vn(r).

By the definition of m̃, it follows that h−rm̃ ≥ (h∗)−r, then

E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ C

(
hm̃
h∗

)r/2−1

vn(r) = C

(
hm̃ − h∗

h∗
+ 1

)r/2−1

vn(r).

By construction |hm̃ − h∗| ≤ (γ/(2 log n))1/2, then we have

E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ C

(
1− (γ/(2 log n))1/2

h∗

)r/2−1

vn(r).

As (h∗)−1 ≤ (log n/(2γ))
1/2, it holds that 1 − (γ/(2 logn))1/2

h∗ ≥ 1/2. Therefore, there exists a

numerical constant C ′ > 0 such that, for any 0 < r ≤ 2, we have E
[
‖Ŵ γ

hm̂
−Wρ‖∞

]
≤ C ′vn(r).

�

5. Experimental evaluation

We test our method on two examples of Wigner functions, corresponding to the single-photon and
the Schrödinger’s cat states, and that are respectively defined as

Wρ(q, p) = −(1− 2(q2 + p2))e−q
2−p2 ,

Wρ(q, p) =
1

2
e−(q−q0)2−p2 +

1

2
e−(q+q0)2−p2 + cos(2q0p)e

−q2−p2 .

We used q0 = 3 in our numerical tests. The toolbox to reproduce the numerical results of this
article is available online1. Following the paper of Butucea, Guţă and Artiles (2007) and in order to
obtain a fast numerical procedure, we implemented the estimator Ŵ γ

h defined in (21) on a regular
grid. More precisely, 2-D functions such as Wρ are discretized on a fine 2-D grid of 256 × 256
points. We use the Fast Slant Stack Radon transform of Averbuch et al. (2008), which is both fast
and faithful to the continuous Radon transform R. It also implements a fast pseudo-inverse which
accounts for the filtered back projection formula (21). The filtering against the 1-D kernel (22) is
computed along the radial rays in the Radon domain using Fast Fourier transforms. We computed
the Lepski functional (29) using the values x = log(M) and κ = 1.

1https://github.com/gpeyre/2015-AOS-AdaptiveWigner
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Figure 1: Single photon cat state estimation, with η = 0.9, n = 100 × 103. Left, top: display of ‖Ŵ γ
h −

Wρ‖∞/‖Wρ‖∞ as a function of 1/h. The central curve is the mean of this quantity, while the shaded area
displays the ±2× standard deviation of this quantity. Left, right: histogram of the empirical repartition
of m̂ computed by the Lepski procedure (30). Center: display as a 2-D image using level sets of Wρ (top)
and Ŵ γ

hm̂
(bottom). Right: same, but displayed as an elevation surface.
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Figure 2: Schrödinger’s cat state estimation, with η = 0.9, n = 500 × 103. We refer to Figure 1 for the
description of the plots.
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Figures 1 and 2 reports the numerical results of our method on both test cases. The left part
compares the error ‖Ŵ γ

h −Wρ‖∞ (displayed as a function of h) to the parameters hm̂ selected by
the Lepski procedure (30) . The error ‖Ŵ γ

h −Wρ‖∞ (its empirical mean and its standard deviation)
is computed in an “oracle” manner (since for these examples, the Wigner function to estimate Wρ

is known) using 20 realizations of the sampling for each tested value (hi)
M
i=1. The histogram of

values hm̂ is computed by solving (29) for 20 realizations of the sampling. This comparison shows,
on both test cases, that the method is able to select a parameter value hm̂ which lies around the
optimal parameter value (as indicated by the minimum of the L∞-norm risk). The central and
right parts show graphical displays of Ŵ γ

hm̂
, where m̂ is selected using the Lepski procedure (30),

for a given sampling realization.
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Appendix A: Proof of Propositions

A.1. Proof of Proposition 1

First remark that by the Fourier transform formula for w = (q, p) ∈ R2 and x = (x1, x2)

Wρ(w) =
1

(2π)2

∫∫
W̃ρ(x)e−i(qx1+px2)dx. (34)

Let Ŵ γ
h be the estimator of Wρ defined in (21), then

E
[
Ŵ γ
h (w)

]
=

1

2π
E [Kγ

h([w,Φ1]− Z1)] =
1

2π

∫ π

0

∫
Kγ
h([w, φ]− z)pγρ(z, φ)dzdφ

=
1

2π

∫ π

0

Kγ
h ∗ p

γ
ρ(·, φ)([w, φ])dφ.

In the Fourier domain, the convolution becomes a product, combining with (18), we obtain

E
[
Ŵ γ
h (w)

]
=

∫ π

0

1

(2π)2

∫
K̃γ
h(t)F1[pγρ(·, φ)](t)e−it[w,φ]dtdφ.

As Ñγ(t) = e−γt
2

, definition (22) of the kernel combined with (18) gives

E
[
Ŵ γ
h (w)

]
=

∫ π

0

1

(2π)2

∫
K̃γ
h(t)W̃ρ(t cos(φ), t sin(φ))Ñγ(t)e−it[w,φ]dtdφ

=

∫ π

0

1

(2π)2

∫
|t|≤1/h

|t|W̃ρ(t cos(φ), t sin(φ))e−it[w,φ]dtdφ.

Therefore, by the change of variable x = (t cos(φ), t sin(φ)), it follows

E
[
Ŵ γ
h (w)

]
=

1

(2π)2

∫
||x||≤1/h

W̃ρ(x)e−i(qx1+px2)dx. (35)

From equations (34) and (35), we have∣∣∣E [Ŵ γ
h (w)

]
−Wρ(w)

∣∣∣ ≤ 1

(2π)2

∫
||x||>1/h

∣∣∣W̃ρ(x)
∣∣∣ dx

≤ 1

(2π)2

[∫∫ ∣∣∣W̃ρ(x)
∣∣∣2 e2β||x||rdx

]1/2
[∫
||x||>1/h

e−2β||x||rdx

]1/2

≤

√
L

(2π)2βr
h(r−2)/2e−βh

−r
(1 + o(1)), h→ 0,

by applying Lemma 7 (see Section D.5 below) and as Wρ ∈ A(β, r, L) the class defined in (20).
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A.2. Proof of Proposition 2

We recall first the notion of covering numbers for a functional class. For any probability distribution
Q, we denote by L2(Q) the set of real-valued functions on R embedded with the L2(Q)-norm ‖ ·
‖L2(Q) =

(∫
R | · |

2dQ
)1/2. For any functional class H in L2(Q), the covering number N(ε,H, L2(Q))

denotes the minimal number of L2(Q)-balls of radius less than or equal to ε, that cover H.
The following lemma is needed to prove the Proposition 2.

Lemma 2. Let δh := h−1e
γ

h2 > 0 for any 0 < h ≤ 1, then the class

Hh = {δ−1
h Kγ

h(· − t), t ∈ R}, h > 0 (36)

is uniformly bounded by U := h
2γπ . Moreover, for every 0 < ε < A and for finite positive constants

A, v depending only on γ,

sup
Q
N(ε,Hh, L2(Q)) ≤ (A/ε)v, (37)

where the supremum extends over all probability measures Q on R.

The proof of this Lemma can be found in D.1. To prove (24), we have to bound the following
quantity :

E[|Kγ
h([z,Φ`]− Z`)|2] ≤ ‖Kγ

h‖
2
∞ ≤ ‖K̃

γ
h‖

2
1 =

[∫
|t|≤h−1

|t|eγt
2

dt

]2

=

[
2

∫ h−1

0

teγt
2

dt

]2

=

(
γ−1eγh

−2

− 1

γ

)2

≤ 1

γ2
e2γh−2

. (38)

Moreover for δh = h−1eγh
−2

, we have

δ−2
h E[|Kγ

h([z,Φ`]− Z`)|2] ≤ h2

γ2
. (39)

By Lemma 2, it follows that the class Hh is VC. Next, we note that the supremum over R is the
same as a countable supremum since Kγ

h is continuous. Hence, we can apply (85) to get

E
[
‖Ŵ γ

h − E[Ŵ γ
h ]‖∞

]
= E sup

z∈R2

∣∣∣∣∣ 1

2πn

n∑
l=1

(
K
γ

h ([z,Φ`]− Z`)− E [Kγ
h([z,Φ`]− Z`)]

)∣∣∣∣∣
=

δh
2πn

E sup
z∈R2

∣∣∣∣∣
n∑
l=1

(
δ−1
h K

γ

h([z,Φ`]− Z`)− E[δ−1
h K

γ

h([z,Φ`]− Z`)]
)∣∣∣∣∣

≤ C(γ)δh
2πn

(
σ

√
n log

AU

σ
+ U log

AU

σ

)
, (40)

where U = h
2γπ is the envelope of the class Hh defined in Lemma 2. By choosing

σ2 :=
h2

γ2
≥ sup
z∈R2

E
[(
δ−1
h Kη

h([z,Φ`]− Z`)
)2]

in (40) we get the result in expectation (24).

Now, prove the result in probability (25).
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In view of the previous display (38), we have

Var
(
γ(hδh)−1 |Kγ

h([·,Φ1]− Z1)− E [Kγ
h([·,Φ1]− Z1)]|

)
≤ γ2(hδh)−2E

[
|Kγ

h([·,Φ1]− Z1)|2
]

≤ γ2(hδh)−2 1

γ2
e2γh−2

= 1.

As U = 1
2γπ and by (72), it follows

γ(hδh)−1 ‖Kγ
h([·,Φ1]− Z1)− E[Kγ

h([·,Φ1]− Z1)]‖∞ ≤ γ(hδh)−1‖Kγ
h‖∞ ≤ γh

−1U ≤ 1.

We use Talagrand’s inequality as in Theorem 2.3 of Bousquet (2002). Let us define

Z :=
nγ

hδh
‖Ŵ γ

h − E[Ŵ γ
h ]‖∞.

Then, for any x > 0 and with probability at least 1− e−x, we obtain

Z ≤ E [Z] +
√

2xn+ 4xE[Z] +
x

3
≤ E [Z] +

√
2xn+ 2

√
xE[Z] +

x

3

≤ 2E [Z] +
√

2xn+
4x

3
,

where we have used the decoupling inequality 2ab ≤ a2 + b2 with a =
√
x and b =

√
E[Z]. Thus,

with probability at least 1− e−x, we get

‖Ŵ γ
h − E[Ŵ γ

h ]‖∞ =
hδh
nγ

Z ≤ 2E
[
‖Ŵ γ

h − E[Ŵ γ
h ]‖∞

]
+ eγh

−2

γ

(√
2 xn + 4x

3n

)
.

Plugging our control (24) on E[‖Ŵ γ
h − E[Ŵ γ

h ]‖∞], the result in probability follows.

Appendix B: Proof of Theorem 2 - Lower bounds

B.1. Proof of Theorem 2 - Lower bounds for the L2-norm

The proof for the minimax lower bounds follows a standard scheme for deconvolution problem as in
the paper of Butucea, Guţă and Artiles (2007); Lounici, K. and Nickl (2011). However, additional
technicalities arise to build a proper set of Wigner functions and then to derive a lower bound.
From now on, for the sake of brevity, we will denote A(β, 2, L) by A(β, L) as we consider only the
practical case r = 2. Let W0 ∈ A(β, L) be a Wigner function. Its associated density function will
be denoted by p0(x, φ) = 1

πR[W0](x, φ)1I[0,π](φ).

We suggest the construction of a family of two Wigner functions W0 and W1 such that for all
w ∈ R2:

W1(w) = W0(w) + Vh(w),

where the construction of W0 and Vh are given in Appendices B.1.1 and B.1.2 and the parameter
h = h(n)→ 0 as n→∞. We denote by

pm(x, φ) =
1

π
R[Wm](x, φ)1I[0,π](φ), m = 0, 1

the density function associated to the Wigner functions W0 and W1. As we consider the noisy
framework (16) and in view of (17), we set for m = 0, 1

pγm(z, φ) = [pm(·, φ) ∗Nγ ] (z)

If the following conditions (C1) to (C3) are satisfied, then Theorem 2.6 in the book of Tsybakov
(2009) gives the lower bound.
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(C1) W0,W1 ∈ A(β, L).

(C2) We have ||W1 −W0||22 ≥ 4ϕ2
n, with ϕ2

n = O
(
n−

β
β+γ

)
.

(C3) We have

nX 2(pγ1 , p
γ
0) := n

∫ π

0

∫
(pγ1(z, φ)− pγ0(z, φ))2

pγ0(z, φ)
dzdφ ≤ 1

4
.

Proofs of these three conditions are provided in Appendices B.1.3 to B.1.5.

B.1.1. Construction of W0

The Wigner function W0 is the same as in the paper of Butucea, Guţă and Artiles (2007). For the
sake of completeness, we recall its construction here. The probability density function associated
to any density matrix ρ in the ideal noiseless setting is given by equation (9). In particular, for
diagonal density matrix ρ, the associated probability density function is

pρ(x, φ) =

∞∑
k=0

ρkkψ
2
k(x).

For all 0 < α, λ < 1, we introduce a family of diagonal density matrices ρα,λ such that for all
k ∈ N

ρα,λkk =

∫ 1

0

zkα
(1− z)α

(1− λ)α
1Iλ≤z≤1dz. (41)

Therefore the probability density associated to this diagonal density matrix ρα,λ can be written
as follows

pα,λ(x, φ) =

∞∑
k=0

ρα,λkk ψ
2
k(x) =

∞∑
k=0

ψ2
k(x)

∫ 1

0

zkα
(1− z)α

(1− λ)α
1Iλ≤z≤1dz. (42)

Moreover by the well known Mehler formula (see Erdélyi , Magnus, Oberhettinger and Tricomi
(1953)), we have

∞∑
k=0

zkψ2
k(x) =

1√
π(1− z2)

exp

(
−x2 1− z

1 + z

)
.

Then, it follows

pα,λ(x, φ) =
α

(1− λ)α

∫ 1

0

(1− z)α√
π(1− z2)

exp

(
−x2 1− z

1 + z

)
1Iλ≤z≤1dz.

The following Lemma, proved in the paper of Butucea, Guţă and Artiles (2007), gives a control
on the tails of the associated density pα,λ(x, φ) = pα,λ(x) as it does not depend on φ.

Lemma 3 (Butucea, Guta and Artiles (2007)). For all φ ∈ [0, 1] and all 0 < α, λ < 1 and |x| > 1
there exist constants c, C depending on α and λ such that

c|x|−(1+2α) ≤ pα,λ(x) ≤ C|x|−(1+2α).

In view of Lemma 3 of Butucea, Guţă and Artiles (2007), the Wigner function W0 will be chosen
in the set

Wα,λ =
{
Wα,λ = Wρα,λ : Wigner function associated to ρα,λ : 0 < α, λ < 1

}
,

where λ is such that W0 is a Wigner function belonging to A(β, L) (see Section 6.1 in Butucea,
Guţă and Artiles (2007) or the proof of Theorem 2 in Guţă and Artiles (2007)).
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B.1.2. Construction of Vh for the L2-norm

Let

δ := log−1(n). (43)

We define two infinitely differentiable function g and g1 such that:

• g1 : R→ [0, 1].
• The support of g1 is Supp(g1) = (δ, 2δ) .
• And ∀t ∈

[
δ
3 ,

2δ
3

]
, g1(t) = 1.

• g : R→ [−1, 1] is on odd function, such that for some fixed ε > 0, g(x) = 1 for any x ≥ ε.

Define also the following parameters:

a1 := (h−2 + δ)1/2, b1 := (h−2 + 2δ)1/2. (44)

ã1 := (h−2 + (4/3)δ)1/2, b̃1 := (h−2 + (5/3)δ)1/2. (45)

C0 :=
√
πL(β + γ). (46)

We also introduce an infinitely differentiable function Vh such that:

• Vh : R2 → R is an odd real-valued function.
• Set t =

√
w2

1 + w2
2, then the function Vh admits the following Fourier transform with respect

to both variables

Ṽh(w) := F2[Vh](w) := iaC0h
−1eβh

−2

e−2β|t|2g1(|t|2 − h−2)g(w2), (47)

where a > 0 is a numerical constant chosen sufficiently small. The bandwidth is such that

h =

(
log n

2(β + γ)

)−1/2

. (48)

Note that Ṽh(w) is infinitely differentiable and compactly supported, thus it belongs to the
Schwartz class S(R2) of fast decreasing functions on R2. The Fourier transform being a con-
tinuous mapping of the Schwartz class onto itself, this implies that Vh is also in the Schwartz class
S(R2). Moreover, Ṽh(w) is an odd function with purely imaginary values. Consequently, Vh is an
odd real-valued function. Thus, we get∫∫

Vh(p, q)dpdq =

∫
R[Vh](x, φ)dx = 0, (49)

for all φ ∈ [0, π] and R[Vh] the Radon transform of Vh.
Now, we can define the function W1 as follows:

W1(z) = W0(z) + Vh(z), (50)

where W0 is the Wigner function associated to the density p0 defined in (41).
As in (8), we also define

p1(x, φ) =
1

π
R[W1](x, φ)1I(0,π(φ),

and ρ
(1)
j,k =

∫ π

0

∫
pm(x, φ)fj,k(x)e(j−k)φdxdφ. (51)

By Lemma 6 in Appendix D.4, the matrix ρ(1) is proved to be a density matrix. Therefore, in view
of (9) and (49), the function W1 is indeed a Wigner function.
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B.1.3. Condition (C1)

By the triangle inequality, we have

‖W̃1e
β‖·‖2‖2 ≤ ‖W̃0e

β‖·‖2‖2 + ‖Ṽheβ‖·‖
2

‖2.

The first term in the above sum has be bounded in Lemma 3 of Butucea, Guţă and Artiles (2007)
as follows

‖W̃0e
β‖·‖2‖22 ≤ π2L. (52)

To study the second term in the sum above, we consider the change of variables w = (t cosφ, t sinφ)
and as g is bounded by 1, we get, using (43), (44) and (46) that

‖Ṽheβ‖·‖
2

‖22 ≤
∫∫ [

aC0h
−1eβh

−2
]2
e−2β‖w‖2g2

1(‖w‖2 − h−2)dw

≤ a2C2
0h
−2e2βh−2

∫ π

0

∫ b1

a1

|t|e−2β|t|2dt

≤ πa2C2
0h
−2e2βh−2

e−2βa21

∫ b1

a1

tdt ≤ π

2
a2C2

0h
−2e−2βδ

[
b21 − a2

1

]
≤ π

3
a2C2

0h
−2δe−2βδ ≤ π2L, (53)

for a small enough. It follows from (52) and (53) that W1 ∈ A(β, L).

B.1.4. Condition (C2)

By applying Plancherel Theorem and the change of variables w = (t cosφ, t sinφ), we have that

‖W1 −W0‖22 = ‖Vh‖22 = ‖Vh‖22 =
1

4π2

∫ π

0

∫
|t|
∣∣∣Ṽh(t, φ)

∣∣∣2 dtdφ
=

a2C2
0

4π2
h−2e2βh−2

∫ π

0

∫
|t|e−4βt2g2(t sinφ)g2

1(t2 − h−2)dtdφ. (54)

Note that for a fixed µ ∈ (0, π/4), there exists a numerical constant c > 0 such that sin(φ) > c on
(µ, π − µ). From now on, we denote by Ã1 the set

Ã1 :=
{
w ∈ R2 : ã1 ≤ ‖w‖2 ≤ b̃1

}
, (55)

where ã1 and b̃1 are defined in (45). By definition of g and for a large enough n, we have for any
(t, φ) ∈ Ã1× (µ, π−µ) that g2(t sin(φ)) = 1 with t2 = ‖w‖2. Therefore, (54) can be lower bounded
as follows

‖W1 −W0‖22 ≥
a2C2

0

4π2
h−2e2βh−2

∫ π−µ

µ

∫
Ã1

|t|e−4βt2g2
1(t2 − h−2)dtdφ

=
π − 2µ

4π2
a2C2

0h
−2e2βh−2

∫
Ã1

|t|e−4βt2g2
1(t2 − h−2)dt. (56)

On Ã1 and by construction of the function g1, we have g2
1(t2 − h−2) = 1. Hence, it results

I :=

∫
Ã1

|t|e−4βt2g2
1(t2 − h−2)dt

≥ e−4βb̃21

∫
Ã1

|t|g2
1(t2 − h−2)dt

≥ e−4βb̃21

∫ b̃1

ã1

tdt ≥ 1

2
e−4βb̃21 (̃b21 − ã2

1) ≥ 1

6
δe−4βb̃21 . (57)
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Combining (56) and (57), we get, since C2
0h
−2δ = πL/2 that

‖W1 −W0‖22 ≥
π − 2µ

24π2
a2C2

0h
−2e2βh−2

δe−4βb̃21 =
π − 2µ

48π
a2Le2βh−2

e−4βb̃21

=
π − 2µ

48π
a2Le−2βh−2

e−
20
3 βδ.

It follows from (48) that

‖W1 −W0‖22 ≥
π − 2µ

48π
a2Ln−

β
β+γ e−

40
3 β ≥ 4cn−

β
β+γ =: 4ϕ2

n,

where c > 0 is a numerical constant possibly depending only on β.

B.1.5. Condition (C3)

Denote by C̃ > 0 a constant whose value may change from line to line and recall that Nγ is
the density of the Gaussian distribution with zero mean and variance 2γ. Note that p0 and Nγ

do not depend on φ. Consequently, in the framework of noisy data defined in (16), pγ0(z, φ) =
pγ0(z) 1

π1I(0,π)(φ).

Lemma 4. There exists numerical constants c′ > 0 and c′′ > 0 such that

pγ0(z) ≥ c′z−2, ∀|z| ≥ 1 +
√

2γ, (58)

and

pγ0(z) ≥ c′′, ∀|z| ≤ 1 +
√

2γ. (59)

The proof of this Lemma is done in Appendix D.3. Using Lemma 4, the χ2-divergence can be
upper bounded as follows

nX 2(pγ1 , p
γ
0) = n

∫ π

0

∫
(pγ1(z, φ)− pγ0(z, φ))

2

pγ0(z, φ)
dzdφ

≤ n

c′′

∫ π

0

∫ 1+
√

2γ

−(1+
√

2γ)

(pγ1(z, φ)− pγ0(z, φ))
2
dzdφ

+
n

c′

∫ π

0

∫
R\(1+

√
2γ,1+

√
2γ)

z2 (pγ1(z, φ)− pγ0(z, φ))
2
dzdφ

=:
n

c′′
I1 +

n

c′
I2. (60)

Note that, as in (18) the Fourier transforms of pγ1 and pγ0 with respect to the first variable are
respectively equal to

F1[pγ1(·, φ)](t) = W̃1(t cosφ, t sinφ)Ñγ(t)

=
(
Ṽh(t cosφ, t sinφ) + W̃0(t cosφ, t sinφ)

)
e−γt

2

, (61)

F1[pγ0(·, φ)](t) = W̃0(t cosφ, t sinφ)e−γt
2

, (62)

since Ñγ(t) = e−γt
2

. Using Plancherel Theorem, equations (47), (61) and (62), the first integral
I1 in the sum (60) is bounded by

I1 ≤
∫ π

0

∫
(pγ1(z, φ)− pγ0(z, φ))

2
dzdφ =

1

4π2

∫ π

0

∫
|F1[pγ1(·, φ)](t)−F1[pγ0(·, φ)](t)|2 dtdφ

=
1

4π2

∫ π

0

∫ ∣∣∣Ṽh(t cosφ, t sinφ)
∣∣∣2 e−2γt2dtdφ

=
a2C2

0

4π2
h−2e2βh2

∫ π

0

∫
e−4βt2−2γt2g2

1

(
t2 − h−2

)
g2(t sinφ)dtdφ.
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By construction, the function g is bounded by 1 and the function g1 admits as support Supp(g1) =
(δ, 2δ). Thus,

I1 ≤
a2C2

0

4π
e2βh2

∫
e−4βt2−2γt2g2

1

(
t2 − h−2

)
dt ≤ a2C2

0

4π
h−2e2βh−2

∫ b1

a1

e−4βt2−2γt2dt

≤ a2C2
0

4π
(b1 − a1)h−2e2βh−2

e−4βa21−2γa21 ≤ a2C2
0

4π

b21 − a2
1

2a1
h−2e2βh−2−4βa21−2γa21 .

Some basic algebra, (43), (44), (46) and (48) yield

n

c′′
I1 ≤

a2C̃√
log n

, (63)

for some constant C̃ > 0 which may depend on β, γ, L and c′′. For the second term I2 in the sum
(60), with the same tools we obtain using in addition the spectral representation of the differential
operator, that

I2 ≤
∫ π

0

∫
z2 (pγ1(z, φ)− pγ0(z, φ))

2
dzdφ

=

∫ π

0

∫ ∣∣∣∣ ∂∂t (F1[pγ1(·, φ)]−F1[pγ0(·, φ)]) (t)

∣∣∣∣2 dtdφ
=

∫ π

0

∫ ∣∣∣∣ ∂∂t (Ṽh(t cosφ, t sinφ)e−γt
2
)∣∣∣∣2 dtdφ

=

∫ π

0

∫ ∣∣∣∣e−γt2 ∂∂t (Ṽh)(t cosφ, t sinφ)− 2γte−γt
2

Ṽh(t cosφ, t sinφ)

∣∣∣∣2 dtdφ
≤ 2

∫ π

0

∫
e−2γt2 |I2,1 |2 dtdφ+ 16γ2

∫ π

0

∫
t2e−2γt2 |I2,2|2 dtdφ, (64)

where I2,2 = Ṽh(t cosφ, t sinφ) and I2,1, the partial derivative ∂
∂t (Ṽh)(t cosφ, t sinφ), is equal to

iaC0h
−1eβh

−2−2βt2
[
g1(t2 − h−2) (−4βtg(t sinφ) + g′(t sinφ) sinφ ) + 2tg′1(t2 − h−2)g(t sinφ)

]
.

Since g1 and g belong to the Schwartz class, there exists a numerical constant cS > 0 such that
max{‖g1‖∞, ‖g′1‖∞, ‖g‖∞, ‖g′‖∞} ≤ cS . Furthermore, the support of the function g1 is Supp(g1) =
(δ, 2δ), then

|I2,1|2 ≤ a2c4SC
2
0h
−2e2βh−2−4βt2 ((4β + 2)|t|+ 1)

2
1I(a1,b1)(t), (65)

with a1 and b1 defined in (44). Proceeding similarly, we have

|I2,2|2 =
∣∣∣aC0h

−1eβh
−2

e−2βt2g1(t2 − h−2)g(t sinφ)
∣∣∣2

≤ a2c4SC
2
0h
−2e2βh−2−4βt21I(a1,b1)(t).

(66)

Combining (65) and (66) with (64), as 0 ≤ δ ≤ 1

I2 ≤ 2a2c4SC
2
0h
−2e2βh−2

∫ π

0

∫ b1

a1

e−2γt2e−4βt2
[
((4β + 2)|t|+ 1)

2
+ 8γ2t2

]
dtdφ

≤ 2πa2c4SC
2
0h
−2e2βh−2

∫ b1

a1

e−2(γ+2β)t2
[
(1 + 4(2β + 1)t+ (2 + 4β + 8γ2)t2

]
dt.
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An integration by part gives

I2 ≤ 2πa2c4SC
2
0h
−2e2βh−2

e−(4β+2γ)a21

[
((4β + 2)b1 + 1)

2
+ 8γ2b21

] ∫ b1

a1

dt

≤ 2πa2c4SC
2
0 c̃h
−2δe−2(β+γ)h−2

e−2(2β+γ)δ,

where c̃ > 0 depends only on γ, β.
Some basic algebra, (43), (44), (46) and (48) yield

n

c′
I2 ≤ a2C̃, (67)

for some constant C̃ > 0 possibly depending on β, γ, L, cS and c′. Combining (67) and (63) with
(60), we get for n large enough

nX 2(pγk,h, p
γ
0) := n

∫ π

0

∫
R

(pγk,h(z, φ)− pγ0(z, φ))2

pγ0(z, φ)
dzdφ ≤ a2C̃,

where C̃ > 0 is a constant which may depend on β, γ, L cS , c′ and c′′. Taking the numerical
constant a > 0 small enough, we deduce from the previous display that

nX 2(pγk,h, p
γ
0) ≤ 1

4
.

B.2. Proof of Theorem 2 - Lower bounds for the sup-norm

To prove the lower bound for the sup-norm, we need to slightly modify the construction of the
Wigner function W1 defined in (50). In our new construction, the Wigner function W0, associated
to the density p0 defined in (41), stays unchanged as compared to the L2 case. However, the
function Vh given in (47) is modified as follows. We replaced the functions g1 and g respectively
into g1,ε and gε for some 0 < ε < 1.

We introduce an infinitely differentiable function g1,ε such that:

• g1,ε : R→ [0, 1].
• The support of g1,ε is Supp(g1,ε) = (δ, 2δ) .
• Using a similar construction as for function g1, we can also assume that

g1,ε(t) = 1, ∀t ∈ A1,ε := [(1 + ε)δ, (2− ε)δ] , (68)

and

‖g′1,ε‖∞ ≤
c

εδ
, (69)

for some numerical constant c > 0.
• An odd function gε : R→ [−1, 1] satisfies the same conditions as g above but we assume in

addition that

‖g′ε‖∞ ≤
c

ε
, (70)

for some numerical constant c > 0.

The condition (70) will be needed to check Condition (C3). Such a function can be easily con-
structed. Consider for instance a function gε such that its derivative satisfies

g′ε(t) =

[
ψ ∗ 1

ε
1I(0,ε)

]
(t),
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for any t ∈ (0, ε) where ψ is a mollifier. Integrate this function and renormalize it properly so that
gε(t) = 1 for any t ≥ ε. Complete the function by symmetry to obtain an odd function defined on
the whole real line. Such a construction satisfies condition (70).

It is easy to see that Condition (C1) is always satisfied by the new test functions W0,ε and W1,ε.
We now check Condition (C2). Set Ch = iaC0h

−1eβh
−2

. Then, we have

W1,ε(z)−W0,ε(z) =
1

4π2

∫∫
e−i〈z,w〉

(
W̃1,ε(w)− W̃0,ε(w)

)
dw

=
1

4π2

∫ π

0

∫
e−it[z,φ]|t|Che−2βt2g1,ε

(
t2 − h−2

)
gε(t)dtdφ.

Note that A1 = limε→0A1,ε where A1 is defined in (68). For all z ∈ R2, we define the following
quantity

I(z) :=

∫ π

0

∫
e−it[z,φ]|t|Che−2βt21IA1

(
t2 − h−2

) [
1I(0,∞)(t)− 1I(−∞,0)(t)

]
dtdφ.

Lebesgue dominated convergence Theorem guarantees that

lim
ε→0

(∫ π

0

∫
e−it[z,φ]|t|Che−2βt2g1,ε

(
t2 − h−2

)
gε(t)dtdφ

)
= I(z).

Therefore, there exists an ε > 0 (possibly depending on n, z) such that

|W1,ε(z)−W0,ε(z)| ≥
1

8π2
|I(z)| .

Taking z = (0, 2h), Fubini’s Theorem gives

I(z) =
1

4π2

∫ π

0

∫
e−it2h sinφ|t|Che−2βt21IA1

(
t2 − h−2

) [
1I(0,∞)(t)− 1I(−∞,0)(t)

]
dtdφ

=
1

4π2

∫(∫ π

0

e−it2h sinφdφ

)
|t|Che−2βt21IA1

(
t2 − h−2

) [
1I(0,∞)(t)− 1I(−∞,0)(t)

]
dt.

Note that ∫ π

0

e−it2h sinφdφ = π(iH0(2ht) + J0(2ht)),

where H0 and J0 denote respectively the Struve and Bessel functions of order 0. By definition, H0

is an odd function while J0 and t→ |t|Che−2βt21IA1

(
t2 − h−2

)
are even functions. Consequently,

we get

I(z) =
1

4π
iCh

∫
|t|H0(2ht)e−2βt21IA1

(
t2 − h−2

) [
1I(0,∞)(2ht)− 1I(−∞,0)(t)

]
dt

=
1

2π
iCh

∫ ∞
0

tH0(2ht)e−2βt21IA1

(
t2 − h−2

)
dt

=
iCh
2π

∫ b1

a1

tH0(2ht)e−2βt2dt,

with a1 and b1 defined in (44). Note that ∀t ∈ [a1, b1] and for a large enough n, it follows that
2ht ∈ [2, 3]. Therefore, on [a1, b1], the function t→ H0(2ht) is decreasing. In addition, (see Erdélyi
, Magnus, Oberhettinger and Tricomi (1953)), we have

min
t∈[a1,b1]

{H0(2ht)} > 1/2.
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We easily deduce from the previous observations that

|I(z)| ≥ |Ch|
4π

∫ b1

a1

te−2βt2dt ≥ |Ch|
16πβ

(
e−2βa21 − e−2βb21

)
.

Therefore, some simple algebra gives, for n large enough. that

|I(z)| ≥ c2βa1δ(1− βa1δ)δ|Ch|n−
β
β+γ ≥ ac′n−

β
2(β+γ) ,

for some numerical constants c, c′ > 0 depending only β. Taking the numerical constant a > 0 small
enough independently of n, β, γ, we get that Condition (C2) is satisfied with ϕn = cn−

β
2(β+γ) .

Concerning Condition (C3), we proceed similarly as above for the L2-norm risk. The only modi-
fication appears in (65)-(66) where we now use (68)-(69) combined with the fact that

|Supp(g′ε)| ≤ 2ε and |Supp(g′1,ε)| ≤ 2δε,

by construction of these functions. Therefore, the details will be omitted here.

Appendix C: Proof of Theorem 3 - Adaptation

The following Lemma is needed to prove Theorem 3.

Lemma 5. For κ > 0, a constant, let Eκ be the event defined such that

Eκ =

M⋂
m=1

{
‖Ŵ γ

hm
− E[Ŵ γ

hm
]‖∞ ≤ κeγh

−2
m rn(x+ logM)

}
. (71)

Therefore, on the event Eκ

‖Ŵ γ
hm̂
−Wρ‖∞ ≤ C min

1≤m≤M

{
hr/2−1
m e−βh

−r
m + eγh

−2
m rn(x+ logM)

}
,

where C > 0 is a constant depending only on γ, β, L, r, κ and Ŵ γ
hm̂

is the adaptive estimator with
the bandwidth hm̂ defined in (30).

The proof of the previous Lemma is done in D.2. For any fixed m ∈ {1, · · · ,M}, we have in view
of Proposition 2 that

P
(
‖Ŵ γ

hm
− E[Ŵ γ

hm
]‖∞ ≤ Ceγh

−2
m rn(x)

)
≥ 1− e−x,

where rn(x) = max
(√

1+x
n , 1+x

n

)
. By a simple union bound, we get

P

 ⋂
1≤m≤M

{
‖Ŵ γ

hm
− E[Ŵ γ

hm
]‖∞ ≤ C2e

γhm
−2

rn(x)
} ≥ 1−Me−x.

Replacing x by (x+ logM), implies

P

 ⋂
1≤m≤M

{
‖Ŵ γ

hm
− E[Ŵ γ

hm
]‖∞ ≤ C2e

γhm
−2

rn(x+ logM)
} ≥ 1− e−x.

For κ > C2, we immediately get that P(Eκ) ≥ 1 − e−x and the result in probability (31) follows
by Lemma 5. To prove the result in expectation (32), we use the property E[Z] =

∫∞
0

P(Z ≥ t)dt,
where Z is any positive random variable. We have indeed for any 1 ≤ m ≤M that

P
(
‖Ŵ γ

h
l̂
−Wρ‖∞ ≥ C

(
hr/2−1
m e

− β
hrm + eγh

−2
m rn(x+ logM)

))
≤ e−x, ∀x > 0.
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Note that

rn(x+ logM) = max

{√
x+ log(eM)

n
,
x+ log(eM)

n

}

≤ max

{√
log eM

n
,

log eM

n

}
+ max

{√
x

n
∨ x
n

}
≤ rn(logM) + rn(x− 1).

Combining the two previous displays, we get ∀x > 0

P
(
‖Ŵ γ

h
l̂
−Wρ‖∞ ≥ C

(
hr/2−1
m e

− β
hrm + eγh

−2
m [rn(logM) + rn(x− 1)]

))
≤ e−x.

Set Y = ‖Ŵ γ
h
l̂
−Wρ‖∞/C, a = h

r/2−1
m e

− β
hrm + eγh

−2
m rn(logM) and b = eγh

−2
m . We have

E[Y ] = a+ E[Y − a] = a+

∫ ∞
0

P (Y − a ≥ u) du = a+ b

∫ ∞
0

P (Y − a ≥ bt) dt.

Set now t = rn(x− 1). If 0 < t < 1, then we have t =
√

x
n . If t ≥ 1 then we have t = x

n . Thus we
get by the change of variable t =

√
x
n that∫ 1

0

P (Y − a ≥ bt) dt =

∫ n

0

P
(
Y − a ≥ b

√
x

n

)
1

2
√
xn
dx ≤ 1

2
√
n

∫ n

0

e−x√
x
dx ≤ c√

n
,

where c > 0 is a numerical constant. Similarly, we get by change of variable t = x
n∫ ∞

1

P (Y − a ≥ bt) dt =

∫ ∞
n

P
(
Y − a ≥ bx

n

) 1

n
dx ≤ 1

n

∫ ∞
n

e−xdx ≤ c′

n
,

where c′ > 0 is a numerical constant. Combining the last three displays, we obtain the result in
expectation.

Appendix D: Proof of Auxiliary Lemmas

D.1. Proof of Lemma 2

To prove the uniform bound of (36), we define

δh = max
|t|≤h−1

{
|t|eγt

2
}
.

Then, by definition of Kη
h and using the inverse Fourier transform formula, we have

δ−1
h ‖K

γ
h‖∞ =

1

2π
δ−1
h sup

x∈R

∣∣∣∣∫ e−itxK̃γ
h(t)dt

∣∣∣∣ ≤ 1

2π
δ−1
h

∫ h−1

h−1

|t|eγt
2

dt

≤ 1

π
δ−1
h

∫ h−1

0

teγt
2

dt ≤ 1

2γπ
δ−1
h

∫ h−1

0

2γteγt
2

dt

≤ 1

2γπ
δ−1
h (eγh

−2

− 1) ≤ 1

2γπ
δ−1
h (eγh

−2

− 1) ≤ h

2γπ
:= U. (72)

For the entropy bound (37), we need to prove that Kγ
h ∈ V2(R), where V2(R) is the set of func-

tions with finite quadratic variation (see Theorem 5 of Bourdaud, Lanza de Cristoforis and Sickel
(2006)). To do this, it is enough to verify that Kγ

h ∈ B
1/2
2,1 (R) and the result is a consequence of
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the embedding B1/2
2,1 (R) ⊂ V2(R).

Let us define the Littlewood-Paley characterization of the seminorm ‖ ·
•
‖1/2,2,1 as follows

‖g
•
‖1/2,2,1 :=

∑
`∈Z

2`/2‖F−1
1 [α`F1[g]]‖2,

where α`(·) is a dyadic partition of unity with α` symmetric w.r.t to 0, supported in

[−2`+1,−2`−1] ∪ [2`−1, 2`+1]

and 0 ≤ α` ≤ 1 (see e.g. Theorem 6.3.1 and Lemma 6.1.7 in the paper of Bergh and Löfström

(1976)). Then, Kγ
h ∈ B

1/2
2,1 (R), if and only if ‖Kγ

h

•
‖1/2,2,1 is bounded by a fixed constant. By

isometry of the Fourier transform combined with definition of α` and K
γ
h , we get that

‖F−1
1 [α`F1[Kγ

h ]]‖2 = ‖α`F1[Kγ
h ]‖2 = ‖α`K̃γ

h‖2

=

√∫
[0,h−1]∩[2`−1,2`+1]

α`(t)22|t|2e2γt2dt

≤
√∫

[0,h−1]∩[2`−1,2`+1]

2t2e2γt2dt.

A primitive of t→ 2t2e2γt2 is 1
2γ te

2γt2 − 1
2γ

∫ t
0
e2γu2

du. Thus, we get that

‖F−1
1 [α`F1[Kγ

h ]]‖2 ≤
√

1
γh
−1/2eγh

−2

, ∀` ∈ Z,

and ‖Kγ
h

•
‖1/2,2,1 ≤

√
1

γ
h−1/2eγh

−2
Lh∑

`=−∞

2`/2,

where Lh = blog2(h−1) + 1c. A simple computation gives that

Lh∑
`=−∞

2`/2 ≤
√

2√
2− 1

+
2(Lh+1)/2 − 1√

2− 1
≤

√
2√

2− 1
+

2√
2− 1

h−1/2.

Combining the last two displays and since h−1 ≥ 1, we get

‖Kγ
h

•
‖1/2,2,1 ≤ c

√
1

γ
h−1eγh

−2

,

where c > 0 is a numerical constant. This shows that δ−1
h ‖K

γ
h

•
‖1/2,2,1 is bounded by a fixed constant

depending only on γ. Therefore Kγ
h ∈ V2(R) and the entropy bound (37) is obtained by applying

Lemma 1 of Giné and Nickl (2009).

D.2. Proof of Lemma 5

We recall that the bandwidth hm̂ with m̂ is defined in (30). Let rn(x) = max

(√
log(n)+x

n , log(n)+x
n

)
and define

m∗ := argmin1≤m≤M

{
hr/2−1
m e

− β
hrm + eγh

−2
m rn(x+ logM)

}
, (73)
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and

B(m) = max
j:j>m

{
‖Ŵ γ

hm
− Ŵ γ

hj
‖∞ − 2κeγh

−2
j rn(x+ logM)

}
.

In one hand, we have

‖Ŵ γ
hm̂
− Ŵ γ

hm∗
‖∞1Im̂>m∗ =

(
‖Ŵ γ

hm̂
− Ŵ γ

hm∗
‖∞ − 2κeγh

−2
m̂ rn(x+ logM)

)
1Im̂>m∗

+2κeγh
−2
m̂ rn(x+ logM)1Im̂>m∗

≤
(
B(m∗) + 2κeγh

−2
m̂ rn(x+ logM)

)
1Im̂>m∗ .

In the other hand, similarly, we have

‖Ŵ γ
hm̂
− Ŵ γ

hm∗
‖∞1Im̂≤m∗ ≤

(
B(m̂) + 2κeγh

−2
m∗ rn(x+ logM)

)
1Im̂≤m∗ .

Combining the last two displays, and by definition of Lκ(·) in (29), we get

‖Ŵ γ
hm̂
− Ŵ γ

hm∗
‖∞ ≤

(
B(m∗) + 2κeγh

−2
m̂ rn(x+ logM)

)
1Im̂>m∗

+
(
B(m̂) + 2κeγh

−2
m∗ rn(x+ logM)

)
1Im̂≤m∗

≤ B(m∗) +B(m̂) + 2κrn(x+ logM)(eγh
−2
m̂ + eγh

−2
m )

= L(m∗) + L(m̂) ≤ 2L(m∗), (74)

where the last inequality follows from the definition of m̂ in (30). By the definition of B(·), it
follows

L(m∗) = B(m∗) + 2κeγh
−2
m∗ rn(x+ logM)

= max
j:j>m∗

{
‖Ŵ γ

hm∗
− Ŵ γ

hj
‖∞ − 2κeγh

−2
j rn(x+ logM)

}
≤ max

j:j>m∗

{
‖Ŵ γ

hm∗
− E[Ŵ γ

hm∗
]‖∞ + ‖E[Ŵ γ

hm∗
]−Wρ‖∞ + ‖Wρ − E[Ŵ γ

hj
]‖∞

+‖E[Ŵ γ
hj

]− Ŵ γ
hj
‖∞]− 2κeγh

−2
j rn(x+ logM)

}
+ 2κeγh

−2
m∗ rn(x+ logM).

On the event Eκ, it follows that

L(m∗) ≤ max
j:j>m∗

{
‖Ŵ γ

hm∗
− E[Ŵ γ

hm∗
]‖∞ + ‖E[Ŵ γ

hm∗
]−Wρ‖∞ + ‖Wρ − E[Ŵ γ

hj
]‖∞

−κeγh
−2
j rn(x+ logM)

}
+ 2κeγh

−2
m∗ rn(x+ logM).

As hm∗ > hj for all j > m∗, we have −eγh
−2
j < −eγh

−2
m∗ . Therefore, on the event Eκ, we get

L(m∗) ≤ ‖E[Ŵ γ
hm∗

]−Wρ‖∞ + max
j:j>m∗

{
‖E[Ŵ γ

hj
]−Wρ‖∞

}
+ 2κeγh

−2
m∗ rn(x+ logM).(75)

From (74) and on the event Eκ, we have

‖Ŵ γ
hm̂
−Wρ‖∞ ≤ ‖Ŵ γ

hm̂
− Ŵ γ

hm∗
‖∞ + ‖Ŵ γ

hm∗
−Wρ‖∞ ≤ |Ŵ γ

hm∗
−Wρ‖∞ + 2L(m∗)

≤ ‖Ŵ γ
hm∗
− E[Ŵ γ

hm∗
]‖∞ + ‖E[Ŵ γ

hm∗
]−Wρ‖∞ + 2L(m∗)

≤ κeγh
−2
m rn(x+ logM) + ‖E[Ŵ γ

hm∗
]−Wρ‖∞ + 2L(m∗).

Combining the last inequality with (75)

‖Ŵ γ
hm̂
−Wρ‖∞ ≤ 5κeγh

−2
m rn(x+ logM) + 3|E[Ŵ γ

hm∗
]−Wρ‖∞ + 2 max

j:j>m∗

{
‖E[Ŵ γ

hj
]−Wρ‖∞

}
.
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From Proposition 1, the bias is bounded by t→ tr/2−1e−βt
−r

an increasing function for sufficiently
small t > 0, and as s hm∗ > hj for all j > m∗, we can write

‖Ŵ γ
hm̂
−Wρ‖∞ ≤ C

(
κeγh

−2
m rn(x+ logM) + h

r/2−1
m∗ e−βh

−r
m∗
)
.

The result follows from (73), the definition of m∗.

D.3. Proof of Lemma 4

In view of Fatou’s Lemma, we have

liminf |z|→∞z
2pγ0(z) ≥

∫
liminf |z|→∞z

2p0(z − x)Nγ(x)dx

≥
∫ √2γ

−
√

2γ

liminf |z|→∞z
2p0(z − x)Nγ(x)dx.

Recall that γ = 1−η
4η ≤ 1/4, then for |z| ≥

√
2γ+1 and any x ∈ (−

√
2γ,
√

2γ), it follows by Lemma
3 that p0(z − x) ≥ c(z − x)−2. Thus,

liminf |z|→∞z
2pγ0(z) ≥ c

∫ √2γ

−
√

2γ

Nγ(x)dx = c

∫ 1

−1

1√
2π
e−

x2

2 dx ≥ c′ > 0,

where c′ > 0 is a numerical constant . Choose now a numerical constant c̃ ≥ 0 such that∫ c̃
−c̃ p0(x)dx ≥ 1/2, therefore, for any |z| ≤ 1 +

√
2γ and some numerical constant c′′ > 0 we

get

pγ0(z) ≥
∫ c̃

−c̃
p0(x)Nγ(z − x)dx ≥ min

|y|≤M+1+
√

2γ
{Nγ(y)}

∫ c̃

−c̃
p0(x)dx

≥ 1

2
min

|y|≤M+1+
√

2γ
{Nγ(y)} ≥ c′′ > 0.

D.4. Lemma 6

Lemma 6. The density matrix ρ(1) defined in (51) satisfies the following conditions :

(i) Self adjoint: ρ(1) = (ρ(1))∗.
(ii) Positive semi-definite: ρ(1) ≥ 0.
(iii) Trace one: Tr(ρ(1)) = 1.

Proof:
• Note first that Vh is not a Wigner function, however it belongs to the linear span of Wigner
functions. Consequently, it admits the following representation

1

π
R[Vh](x, φ)1I(0,π(φ) =

∞∑
j,k=0

τ
(h)
j,k ψj(x)ψk(x)e−i(j−k)φ,

where
τ

(1)
j,k =

∫ π

0

∫
1

π
R[Vh](x, φ)fj,k(x)e−i(j−k)φdxdφ. (76)

For the sake of brevity, we set from now on ρ = ρ(1) and τ = τ (1). Note that the matrix ρ satisfies
ρj,k = ρ

(0)
j,k + τj,k. Exploiting the above representation of τ , it is easy to see that τj,k = τk,j for
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any j, k ≥ 0. On the other hand, ρ(0) is a diagonal matrix with real-valued entries. This gives (i)
immediately.

• We consider now (iii). First, note that R[Vh](·, φ) is an odd function for any fixed φ. Indeed, its
Fourier transform with respect to the first variable

F1 [R[Vh](·, φ)] (t) = Ṽh(t cosφ, t sinφ),

is an odd function of t for any fixed φ. Thus, it is easy to see that τj,j = 0, for any j ≥ 0. Since
ρ(0) is already known to be a density matrix, this implies that

Tr(ρ(1)) = Tr(ρ(0)) + Tr(τ) = 1.

• Let now prove (ii). Define rk :=
∑∞
j=1 : j 6=k |τj,k|, ∀k ≥ 1. We will prove that ρk,k ≥ 2rk for all

k ≥ 1 and combine this fact with Gershgorin’s disk theorem to get the result.
We omit the numerical constants in our analysis since we are only interested in bounding the

coefficients τj,k. More specifically, we will prove there exists a numerical constant c > 0 such that
we have for any k ≥ 2 that

|τk,1| ≤ c
a√
k!
, (77)

and also for any k ≥ 2 and l ≥ 1,

τk+2l,k = 0, |τk+2l+1,k| ≤ c
a

kl+
1
2

, |τk+1,k| ≤ c
a

k
5
4

. (78)

We combine now the previous display with Gershgorin’s disk theorem to get the result. More
precisely, since ρ is a Hermitian matrix (iii), it admits real eigenvalues. For any eigenvalue µ of ρ,
in view of Theorem 5 in Appendix D.5, there exists an integer k ≥ 1 such that∣∣∣µ− ρ(0)

kk

∣∣∣ ≤ ∞∑
j=1 : j 6=k

|τj,k| =: rk. (79)

If k = 1, we get r1 ≤ ca
∑∞
j=2

1√
j!
≤ c′a for some numerical constant c′ > 0. If k ≥ 2, we get in

view of (11) that

rk =

k−1∑
j=1

|τj,k|+
∞∑

j=k+1

|τj,k|

≤ ca

(
1√
k!

+

k−2∑
l=2

1

(k − l)l+1/2
+ (k − 1)−5/4 + k−5/4 +

∞∑
l=2

1

kl+
1
2

)

≤ c′a 1

k5/4
,

for some numerical constant c′ > 0.
Recall that ρ(0) = ρα,λ for some 0 < α, λ < 1 where ρα,λ is defined in (41). Lemma 2 in the

paper of Butucea, Guţă and Artiles (2007) guarantees that

ρα,λkk =
α

(1− λ)α
Γ(α+ 1)k−(1+α)(1 + o(1)),

as n → ∞. We note that ρ(0)
kk > 0 decreases polynomially at the rate k−(1+α) as k → ∞ whereas

rk decreases polynomially at the rate k−
5
4 . Fix the numerical constant α ∈ (0, 1/4). Then, taking

the numerical constant a > 0 small enough in (47) independently of k, we get ρkk ≥ 2rk for any
k ≥ 1. Thus, any eigenvalue µ of ρ is non-negative. Consequently, ρ is positive semi-definite.
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We now prove (77)-(78). In (80), we fix the variable φ and we apply Plancherel’s theorem to
the integral w.r.t. the variable t to get that

τj,k =

∫ π

0

∫
1

π
Ṽh(t cosφ, t sinφ)f̃j,k(t)e−i(j−k)φdtdφ. (80)

Plugging the definition of the pattern functions (11) and (47) into the previous display, we get for
any j > k that

τj,k = (−i)j−k
√

2k−jk!

j!

∫ π

0

∫
Ṽh(t cosφ, t sinφ)|t|tj−ke− t

2

4 Lj−kk (
t2

2
)e−i(j−k)φdtdφ. (81)

Set Ca,h = aC0h
−1eβh

−2

. Plugging now (47) into the previous display, we get for any j > k that

τj,k = Ca,h(−1)j−kij−k+1

√
2k−jk!

j!

∫ π

0

∫
e−2βt2g1(t2 − h−2)g(t sinφ)|t|tj−ke− t

2

4 Lj−kk (
t2

2
)e−i(j−k)φdtdφ.

By construction, for any fixed φ ∈ (0, π), we note that t→ e−2βt2g1(t2−h−2)g(t sinφ)|t|e− t
2

4 Lj−kk ( t
2

2 )
is an odd function. Hence, if j − k is even, then we have τj,k = 0.

Set α = j − k. We will study separately the four different settings: (a) k and α are bounded;
(b) k is bounded and α is large; (c) k is large and α is also large; (d) k is large and α is bounded.
Case (a). For any pair (j, k) such that k ≤ 34 and α = j − k ≤ 23. In view of Theorem 1 in
Krasikov (2007), we get that

|τj,k| ≤
√

12Ca,h

(∫ b1

a1

e−βt
2

dt

)√
k!

j!
k

1
12 (j + 1)1/4 ≤ C a

j3/2
,

provided n is taken large enough.
Case (b). Assume that k ≤ 34 and α = j − k ≥ 24. Again, in view of Theorem 1 in Krasikov
(2007), we have

sup
x>0

{
xα+1e−x (Lαk (x))

2
}
≤ 6k1/6

√
k + α+ 1.

Plugging the above display into the definition of τj,k, we obtain that

|τj,k| ≤
√

6Ca,h

(∫ b1

a1

e−βt
2

dt

)√
2k−jk!

j!
k

1
12 (j + 1)1/4

√
2j−k+1

≤
√

12Ca,h

(∫ b1

a1

e−βt
2

dt

)√
k!

j!
k

1
12 (j + 1)1/4 ≤ C a

j3/2
,

where C > 0 is an absolute constant.
Case (c). Assume that k ≥ 35 and α = j− k ≥ 24. Theorem 2 in Krasikov (2007) guarantees the
existence of a numerical constant C > 0 such that:

sup
x>0

{
xα+1e−x (Lαk (x))

2
}
≤ Ck−1/6

√
k + α+ 1.

Similarly as in the previous case, we obtain

|τj,k| ≤ CCa,h

(∫ b1

a1

e−βt
2

dt

)√
k!

j!
k−

1
12 (j + 1)1/4 ≤ C ′ a

j3/2
,

for some numerical constant C ′ > 0.
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Case (d). Assume that k ≥ 35 and α = j − k ≤ 24. In view of Theorem 1 in Krasikov (2007), we
have

Mα
k (x) := [Lαk (x)]

2
e−xxα+1 ≤ x(s2 − q2)

r(x)
, ∀x ∈ (q2, s2),

where s =
√
k + α+ 1 +

√
k, q =

√
k + α+ 1−

√
k and r(x) = (x− q2)(s2 − x).

Note that s → ∞ as k → ∞ whereas q ≤
√
α+ 1. Thus, for any n large enough such that

a2
1/2 ≥ α+ 1, there exists k0 large enough such that for any k ≥ k0, we have

(
a21
2 ,

b21
2

)
⊂ (q2, s2).

Thus, the above display gives

Mα
k

(
t2

2

)
≤ t2

2

s2 − q2

(t2/2− q2)(s2 − t2/2)
≤ C

for some absolute constant C > 0.
Combining the above display with (81), we get that

|τj,k| ≤ CCa,h

(∫ b1

a1

e−2βt2dt

)√
2
k!

j!
≤ C ′a

√
k!

j!
,

for some numerical constant C ′ > 0.
We consider now the case 3 ≤ α ≤ 24 (we recall that τk+2,k = 0). We have in view of the

previous display that

|τj,k| = |τk+α,k| ≤ C ′a

√
1

(k + 1) · · · (k + α)
≤ C a

kα/2
, ∀k ≥ 1.

for some numerical constant C > 0.
Note that the previous bound is also valid for α = 1 but it is not sufficient for our needs. The

case α = 1 is actually the most difficult as the previous bounds on the Laguerre polynomials are
not sufficient to yield the desired control. In that case, we should rather exploit the oscillatory
properties of the Laguerre polynomials. For large k, the Laguerre polynomial function L1

k behaves
essentially like a trigonometric function on any fixed compact interval. Combining this fact with
the stationary phase principle, we can obtain a small enough bound.

In view of (1.1) in Muckenhoupt (1970), we have, as k →∞, for any x ∈ (a2
1/2, b

2
1/2) that

L1
k(x) =

√
2(k + 1)

ex/2

ν
1/4
k

√
x
ψ

(
x

νk

)[
J1 (
√
νkx+ ε(x, νk)) +O

(
x1/4

ν
7/4
k

)]
,

where νk = 4k + 6, ε(x, νk) = O
(
ν
−1/2
k x

3
2

)
, ψ(t) =

(
g̃(t)
g̃′(t)

)1/2

with g̃(t) = arcsin(t) and J1 is the
Bessel function of order 1.

Note that ψ(t) =
√
t(1+o(1)) as t→ 0. The Bessel function J1 admits the following asymptotic

expansion as t→∞:

J1(t) =

√
2

πt

[
cos

(
t− 3π

4

)
+

3

8t
sin

(
t− 3π

4

)
+O

(
1

t2

)]
.

See for instance Watson (1995) Section 7.1 page 195.
Combining the last two displays with (80), we get

τk+1,k =

∫ π

0

∫
Ak(t, φ) cos

(√
νk
2
t− ε(t2/2, νk)− 3π

4

)
dtdφ

+

∫ π

0

∫
Bk(t, φ) sin

(√
νk
2
t− ε(t2/2, νk)− 3π

4

)
dtdφ+O

(∫ π

0

∫
Ck(t, φ)dtdφ

)
= I1 + I2 + I3, (82)
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where

Ak(t, φ) = −i
√
k + 1

π

1

νk
Ṽh(t cosφ, t sinφ)

√
|t|t(1 + o(1)),

and
Bk(t, φ) =

3

8t
Ak(t, φ), Ck(t, φ) =

1

t2
|Ak(t, φ)|.

Applying Theorem 4 with m = 1 gives

|I1| ≤ c
a

k3/2
, and |I2| ≤ c

a

k3/2
, ∀k ≥ 1,

for some numerical constant c > 0.
For the last integral in (82), a quick inspection gives

|I3| ≤ c
a

k5/4
, ∀k ≥ 1,

for some numerical constant c > 0.
Combining the last two displays with (82) gives the desired bound.

D.5. Auxiliary results

For the sake of completeness, we collect here a few results used in our proofs.

The following lemma, due to Butucea and Tsybakov (2008a), describes the asymptotic behaviour
of integrals of exponentially decreasing functions.

Lemma 7. For any positive α, β, r, s and for any A ∈ R and B ∈ R, we have∫ ∞
v

uA exp (−αur) du =
1

αr
vA+1−r exp(−αvr)(1 + o(1)), v →∞, (83)

and ∫ v

0

uB exp (βus) du =
1

βs
vB+1−s exp(βvs)(1 + o(1)), v →∞. (84)

The following classical result describes the asymptotic behaviour of integrals with non-stationary
phase functions. See for instance page 631 in Zorich (2016).

Theorem 4 (Localisation principle). Fix a compact domain Ω ⊂ R and let f ∈ C∞c (Ω). Let
S ∈ C∞(Ω) be a function such that S′(x) 6= 0 for any x ∈ support(f). Then, as ν →∞, we have

F (ν) =

∫
Ω

f(x) cos(νS(x))dx = O

(
1

νm

)
, ∀m ≥ 1.

The same conclusion holds valid for the cosine function replaced by the sine function.

The following theorem provides a localization bound on the eigenvalues of square matrices. See
for instance Feingold and Varga (1962).

Theorem 5 (Gershgorin Disk Theorem). Let A be an infinite square matrix and let µ be any
eigenvalue of A. Then, for some j ≥ 1, we have

|µ−Aj,j | ≤ rj(A),

where rj(A) =
∑
k≥1:k 6=j |Aj,k|.
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We present some well-known results about the theory of empirical processes that are used in our
proof. We refer the interested reader to Giné and Nickl (2009) for more details about this theory.

Let Z1, ..., Zn be i.i.d. with law P on R, and let F be a P -centered (i.e., Pf =
∫
fdP = 0 for

all f ∈ F) countable class of real-valued functions on R, uniformly bounded by the constant U ,
called the envelope of the class. We say that F is a VC-type class for the envelope U and with
VC-characteristics A, v if its L2(Q) covering numbers satisfy that, for all probability measures Q
and ε > 0, N(F ,L2(Q), ε) ≤ (AU/ε)

v.
For such classes, assuming Pf = 0 for f ∈ F , there exists a universal constant L such that

E := E sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Zi)

∣∣∣∣∣ ≤ L
(
√
v
√
nσ2

√
log

AU

σ
+ vU log

AU

σ

)
, (85)

where σ is any positive number such that

σ2 ≥ sup
f∈F

E(f2(Z)).

See, e.g., Giné and Guillou (2001).

Talagrand’s inequality bounds the deviation of the suprema of empirical processes. The following
result is a version of this inequality is due to Bousquet (2002).

Theorem 6. Assume that Zi are identically distributed according to P . Let F be a countable
class set of functions from a set X to R and assume that all functions f in F are P-measurable,
square-integrables and satisfy E[f(Z1)] = 0 with envelope equal to 1. Let σ2 ≥ supf∈F Var(f(X1))
almost surely, then for all x ≥ 0, we have

P

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Zi)

∣∣∣∣∣ ≥ E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Zi)

∣∣∣∣∣
]

+
√

2xnv +
x

3

)
≤ e−x,

with v = nσ2 + 2E
[
supf∈F |

∑n
i=1 f(Zi)|

]
.


