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CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR

WEIGHTED SUMS OF BERNOULLI RANDOM FIELDS

DAVIDE GIRAUDO

Abstract. We prove moment inequalities for a class of functionals of i.i.d. random fields.

We then derive rates in the central limit theorem for weighted sums of such randoms fields

via an approximation by m-dependent random fields.

1. Introduction and main results

1.1. Rosenthal’s inequality. By Theorem 3 in [Ros70], we know that for any p > 2, there

exists a constant C depending only on p such that for any finite sequence (Yi)
n
i=1 of independent

centered random variables with a finite moment of order p, then

∥

∥

∥

∥

∥

n
∑

i=1

Yi

∥

∥

∥

∥

∥

p

6 C





(

n
∑

i=1

‖Yi‖2
2

)1/2

+

(

n
∑

i=1

‖Yi‖p
p

)1/p


 , (1.1.1)

where ‖Y ‖q := (E [|Y |q])
1/q

for q > 1.

In order to give explicit constants, we will use the following version of Rosenthal’s inequality

due to Johnson, Schechtman and Zinn [JSZ85]: if (Yi)
n
i=1 are independent centered random

variables with a finite moment of order p > 2, then

∥

∥

∥

∥

∥

n
∑

i=1

Yi

∥

∥

∥

∥

∥

p

6
14.5p

log p





(

n
∑

i=1

‖Yi‖2
2

)1/2

+

(

n
∑

i=1

‖Yi‖p
p

)1/p


 . (1.1.2)

Various extension of Rosenthal-type inequalities have been obtained under mixing conditions

[Sha95,Rio00] or projective conditions [PUW07,Rio09,MP13]. We are interested by extensions

of (1.1.2) to the setting of dependent random fields.

One of the main application of such an inequality is the estimate of the convergence rates in

the central limit theorem for random fields which can be expressed as a functional of an i.i.d.

one. The method consists in approximating the considered random field by an m-dependent

one, and in controlling the approximation with the help of the established moment inequality.

1.2. Notations and conventions. In all the paper, we shall use the following notations.

(N.1) For a positive integer d, the set {1, . . . , d} is denoted by [d].

(N.2) The coordinatewise order is denoted by 4, that is, for i = (iq)
d
q=1 ∈ Z

d and j =

(jq)
d
q=1 ∈ Z

d, i 4 j means that ik 6 jk for any k ∈ [d].
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(N.3) For k ∈ [d], ek denotes the element of Zd whose qth coordinate is 1 and all the others

are zero. Moreover, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

(N.4) For n = (nk)
d
k=1 ∈ N

d, we write the product
∏d

k=1 nq as |n|.
(N.5) The cardinality of a set I is denoted by |I|.
(N.6) For a real number x, we denote by [x] the unique integer such that [x] 6 x < [x] + 1.

(N.7) We write Φ for the cumulative distribution function of a standard normal law.

(N.8) If Λ is a subset of Zd and k ∈ Z
d, then Λ − k is defined as {l − k, l ∈ Λ}.

(N.9) For q > 1, we denote by ℓq
(

Z
d
)

the space of sequences a := (ai)i∈Zd such that ‖a‖ℓq :=
(
∑

i∈Zd |ai|q
)1/q

< +∞.

(N.10) For i = (iq)
d
q=1, the quantity ‖i‖∞ is defined as max16q6d |iq|.

Let (Yi)i∈Zd be a random field. The sum
∑

i∈Zd Yi is understood as the L
p limit of the sequence

(Sk)k>1 where Sk =
∑

i∈Zd,‖i‖
∞

6k Yi.

1.3. Physical dependence measure. In the sequel, we will be interested in the so-called

Bernoulli random fields.

Definition 1.1. Let d > 1 be an integer. The random field (Xn)n∈Zd is said to be Bernoulli

if there exists an i.i.d. random field (εi)i∈Zd and a measurable function f : RZ
d → R such that

Xn = f
(

(εn−i)i∈Zd

)

for each n ∈ Z
d.

Following [Wu05] we define the physical dependence measure.

Definition 1.2. Let (Xi)i∈Zd := (f (εi−j))j∈Zd be a Bernoulli random field, p > 1 and (ε′
u)u∈Zd

be an i.i.d. random field which is independent of the i.i.d. random field (εu)u∈Zd and has the

same distribution as (εu)u∈Zd . For i ∈ Z
d, we introduce the physical dependence measure

δi,p := ‖Xi −X∗
i ‖p (1.3.1)

where X∗
i = f

(

ε∗
i−j

)

and ε∗
u = εu if u 6= 0, ε∗

0 = ε′
0.

In [EVW13, BD14], various examples of Bernoulli random fields are given, for which the

physical dependence measure is either computed or estimated. Proposition 1 of [EVW13] also

gives the following moment inequality: if Γ is a finite subset of Zd, (ai)i∈Γ is a family of real

numbers and p > 2, then for any Bernoulli random field (Xn)n∈Zd ,

∥

∥

∥

∥

∥

∑

i∈Γ

aiXi

∥

∥

∥

∥

∥

p

6

(

2p
∑

i∈Γ

a2
i

)1/2

·
∑

j∈Zd

δj,p. (1.3.2)

This was used in [EVW13,BD14] in order to establish functional central limit theorems. Tru-

quet [Tru10] also obtained an inequality in this spirit. However, we cannot recover Rosenthal’s

inequality (1.1.1) from (1.3.2). If (Xi)i∈Zd is i.i.d. and centered, (1.1.1) would give

∥

∥

∥

∥

∥

∑

i∈Γ

aiXi

∥

∥

∥

∥

∥

p

6 C

(

∑

i∈Γ

a2
i

)1/2
∑

j∈Zd

δj,2 + C

(

∑

i∈Γ

|ai|p
)1/p

∑

j∈Zd

δj,p. (1.3.3)

In the case of linear processes, equality δj,p 6 Kδj,2 holds for a constant K which does not

depend on j. However, there are processes for which such an inequality does not hold.
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Example 1.3. Let (εi)i∈Zd be an i.i.d. random field and for each k ∈ Z
d, let fk : R → R be a

function such that the random variable Zk := fk (ε0) is centered and has a finite moment of

order p, and
∑

k∈Zd ‖Zk‖2
2 < +∞. Define Xn := limN→+∞

∑

−N14j4N1 fk (εn−k), where the

limit is taken in L
2. Then Xi − X∗

i = fi (ε0) − fi (ε′
0) hence δi,2 is of order ‖Zi‖2 while δi,p is

of order ‖Zi‖p.

Consequently, having the ℓp-norm instead of the ℓ2-norm of the (ai)i∈Γ is more suitable. The

goal of this paper is to get Rosenthal-like inequalities for weighted sums of Bernoulli random

fields. In the one dimensional case, probability and moment inequalities have been established

in [LXW13] for maxima of partial sums of Bernoulli sequences. The techniques used therein

permit to derive results for weighted sums of such sequences.

1.4. Moment inequality. We now give a Rosenthal-like inequality for weighted sums of

Bernoulli random fields in terms of the physical dependence measure.

Theorem 1.4. Let
{

εi, i ∈ Z
d
}

be an i.i.d. set of random variables. Then for any measurable

function f : RZ
d → R such that Xj := f ((Xj−i))i∈Zd has a finite moment of order p > 2 and

is centered, and any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

,

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
14.5p

log p





∑

i∈Zd

a2
i





1/2
+∞
∑

j=0

(4j + 4)d/2 ‖X0,j‖2

+
14.5p

log p





∑

i∈Zd

|ai|p




1/p
+∞
∑

j=0

(4j + 4)
d(1−1/p) ‖X0,j‖p , (1.4.1)

where for j > 1,

X0,j = E [X0 | σ {εu, ‖u‖∞ 6 j}] − E [X0 | σ {εu, ‖u‖∞ 6 j − 1}] (1.4.2)

and X0,0 = E [X0 | σ {ε0}].

Corollary 1.5. Let
{

εi, i ∈ Z
d
}

be an i.i.d. set of random variables. Then for any measurable

function f : RZ
d → R such that Xj := f ((Xj−i))i∈Zd has a finite moment of order p > 2 and

is centered, and any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

,

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
√

2
14.5p

log p





∑

i∈Zd

a2
i





1/2
+∞
∑

j=0

(4j + 4)
d/2





∑

‖i‖
∞

=j

δ2
i,2





1/2

+
√

2
14.5p

log p

√

p− 1





∑

i∈Zd

|ai|p




1/p
+∞
∑

j=0

(4j + 4)d(1−1/p)





∑

‖i‖
∞

=j

δ2
i,p





1/2

. (1.4.3)

Remark 1.6. Like in [EM02], the fact that the constants are explicit allows to derive Kahane-

Khintchine inequalities, that is, inequalities on the Orlicz norm associated to the Young func-

tion

ψβ : x 7→ exp
(

(x+ hβ)
β
)

− exp (hβ) , (1.4.4)

where β > 0 and hβ = ((1 − β) /β)
1/β

if 0 < β < 1 and 0 otherwise.
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Remark 1.7. Using Remark 7 in [JS88] and Rosenthal’s inequality in weak L
p-spaces, it is

possible to obtain a version of Theorem 1.4 where the L
p norm is replaced by ‖X‖p,∞ :=

supA∈F P(A)1/p−1
E [|X | 1A].

Remark 1.8. We can bound the L
q-norm of X0,j by

∑

i∈Zd:‖i‖
∞

=j ‖‖ and formulate a version of

inequality (1.4.1) where the right hand side is expressed in terms of the coefficients of physical

dependence measure. The obtained result is not directly comparable to (1.3.2) because of the

presence of the ℓp-norm of the coefficients.

1.5. Convergence rates in the central limit theorem for weighted sums. Let (Xj)j∈Zd =

f
(

(εj−i)i∈Zd

)

be a centered square integrable Bernoulli random field and for any positive in-

teger n, let bn := (bn,i)i∈Zd be an element of ℓ2
(

Z
d
)

. We are interested in the asymptotic

behavior of the sequence (Sn)n>1 defined by

Sn :=
∑

i∈Zd

bn,iXi. (1.5.1)

Let us denote for k ∈ Z
d the map τk : ℓ2

(

Z
d
)

→ ℓ2
(

Z
d
)

defined by τk

(

(xi)i∈Zd

)

:= (xi+k)i∈Zd .

In [KVW16], Corollary 2.6 gives the following result: under an appropriated dependence

condition on the random field (Xi)i∈Zd and under the following condition on the weights: for

any q ∈ [d],
1

‖bn‖ℓ2

∥

∥τeq
(bn) − bn

∥

∥

ℓ2 = 0, (1.5.2)

the series
∑

i∈Zd |Cov (X0, Xi)| converges and denoting

σ :=





∑

i∈Zd

Cov (X0, Xi)





1/2

, (1.5.3)

the sequence (Sn/ ‖bn‖ℓ2)n>1 converges in distribution to a centered normal distribution with

variance σ2. The argument rests on an approximation by an m-dependent random field.

Theorem 1.9. Let p > 2, p′ := min {p, 3} and let (Xj)j∈Zd = f
(

(εj−i)i∈Zd

)

be a centered

Bernoulli random field with a finite moment of order p and for any positive integer n, let

bn := (bn,i)i∈Zd be an element of ℓ2
(

Z
d
)

such that for any n > 1, the set
{

k ∈ Z
d, bn,k 6= 0

}

is

finite and nonempty, limn→+∞ ‖bn‖ℓ2 = +∞ and (1.5.2) holds for any q ∈ [d]. Assume that

for some positive α and β, the following series are convergent:

C2 (α) :=

+∞
∑

i=0

(i + 1)
d/2+α ‖X0,i‖2 and Cp (β) :=

+∞
∑

i=0

(i+ 1)
d(1−1/p)+β ‖X0,i‖p . (1.5.4)

Let Sn be defined by (1.5.1),

∆n := sup
t∈R

∣

∣

∣

∣

P

{

Sn

‖bn‖ℓ2

6 t

}

− Φ (t/σ)

∣

∣

∣

∣

and (1.5.5)

εn :=
∑

j∈Zd

E [X0Xj]





∑

i∈Zd

bn,ibn,i+j

‖bn‖ℓ2

− 1



 . (1.5.6)
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Assume that
∑

i∈Zd |Cov (X0, Xi)| is finite and that σ be given by (1.5.3) is positive. Let γ > 0

and let

n0 := inf
{

N > 1 | ∀n > N,
√

σ2 + εn − 20 (log 2)
−1
C2 (α) ([‖bn‖ℓ2 ]

γ
)
−α

> σ/2
}

. (1.5.7)

Then for each n > n0,

∆n 6 150 (20 ([‖bn‖ℓ2 ] + 21)γ + 21)(
p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′

(σ/2)−p′

+

(

2
|εn|
σ2

+ 80 (log 2)−1 ‖bn‖−γα
ℓ2

σ2
C2 (α)2

)

(2πe)−1/2

+

(

14.5p

σ log p
4d/2 ‖bn‖−γα

ℓ2 C2 (α)

)
p

p+1

+

( ‖bn‖ℓp

σ ‖bn‖ℓ2

14.5p

log p
4d(1−1/p) ‖bn‖−γβ

ℓ2 Cp (β)

)
p

p+1

.

(1.5.8)

In particular, there exists a constant κ such that for all n > n0,

∆n 6 κ

(

‖bn‖γ(p′−1)d−p′

ℓ2 ‖bn‖p′

ℓp′ + |εn| + ‖bn‖−γα p
p+1

ℓ2 + ‖bn‖
p

p+1

ℓp ‖bn‖− p
p+1 (γβ+1)

ℓ2

)

. (1.5.9)

Remark 1.10. If (1.5.2), limn→+∞ ‖bn‖ℓ2 = +∞ and the family (δi,2)
i∈Zd is summable, then

the sequence (εn)n>1 converges to 0 hence n0 is well-defined. However, it is not clear to us

whether the finiteness of of C2 (α) combined with (1.5.2) and limn→+∞ ‖bn‖ℓ2 = +∞ imply

that
∑

j∈Zd |E [X0Xj]| is finite. Nevertheless, we can use show an analogous result in terms of

δi,p coefficients by changing the following in the statement of Theorem 1.9:

(1) the definition of C2 (α) should be replaced by

C2 (α) :=
√

2
+∞
∑

j=0

(j + 1)d/2+α





∑

‖i‖=j

δ2
j,2





1/2

; (1.5.10)

(2) the definition of Cp (β) should be replaced by

Cp (β) :=
√

2 (p− 1)

+∞
∑

j=0

(j + 1)
d(1−1/p)+β





∑

‖i‖=j

δ2
j,2





1/2

. (1.5.11)

In this case, the convergence of
∑

i∈Zd |Cov (X0, Xi)| holds (cf. Proposition 2 in [EVW13]).

Recall notation (N.8). Let (Λn)n>1 be a sequence of subsets of Zd. The choice bn,j = 1 if

j ∈ Λn and 0 otherwise yields the following corollary for set-indexed partial sums.

Corollary 1.11. Let (Xi)i∈Zd be a centered Bernoulli random field with a finite moment of

order p > 2, p′ := min {p, 3} and let (Λn)n>1 be a sequence of subset of Zd such that |Λn| → +∞
and for any k ∈ Z

d, limn→+∞ |Λn ∩ (Λn − k)| / |Λn| = 0. Assume that the series defined in

(1.5.4) are convergent for some positive α and β, that
∑

i∈Zd |Cov (X0, Xi)| is finite and that

σ defined by (1.5.3) is positive. Let γ > 0 and n0 be defined by (1.5.7). There exists a constant

κ such that for any n > n0,
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sup
t∈R

∣

∣

∣

∣

∣

P

{

∑

i∈Λn
Xi

|Λn|1/2
6 t

}

− Φ (t/σ)

∣

∣

∣

∣

∣

6 κ



|Λn|q +
∑

j∈Zd

|E [X0Xj]|
∣

∣

∣

∣

|Λn ∩ (Λn − j)|
|Λn| − 1

∣

∣

∣

∣



 , (1.5.12)

where

q := max

{

γ (p′ − 1)d− p′

2
+ 1; −γα p

2 (p+ 1)
;

1 − p− pγβ

p+ 1

}

. (1.5.13)

1.6. Rate of convergence of kernel estimates in a regression model. We consider the

following regression model:

Yi = g

(

i

n

)

+ Xi, i ∈ Λn := {1, . . . , n}d
, (1.6.1)

where g : [0, 1]d → R is an unknown smooth function and (Xi)i∈Zd is a zero mean stationary

Bernoulli random field. Let K be a probability kernel defined on R
d and let (hn)n>1 be a

sequence of positive numbers which converges to zero and which satisfies

lim
n→+∞

nhn = +∞ and lim
n→+∞

nhd+1
n = 0. (1.6.2)

We estimate the function g by the kernel estimator gn defined by

gn (x) =

∑

i∈Λn
YiK

(

x−i/n
hn

)

∑

i∈Λn
K
(

x−i/n
hn

) , x ∈ [0, 1]d, (1.6.3)

where

Λn = {1, . . . , n}d
. (1.6.4)

We make the following assumptions on the regression function g and the probability kernel

K:

(A1) The probability kernel K fulfills
∫

Rd K (u) du = 1, is symmetric, non-negative, sup-

ported by [−1, 1]d. Moreover, there exist positive constants r, c and C such that for

any x,y ∈ [−1, 1]d, |K (x) −K (y)| 6 r ‖x − y‖∞ and c 6 K (x) 6 C.

(A2) There exists a positive constant B such that the absolute values of all the derivatives

of first order of g are bounded by B on [0, 1]d.

Assumption (A2) will not be used in the following result. However, by Proposition 1 in

[EM07], this guarantees that

sup
x∈[0,1]d

sup
g∈Lip(B)

|E [gn (x)] − g (x)| = O (hn) , (1.6.5)

where Lip (B) denotes the collection of all B-Lipschitz functions on R
d.

Theorem 1.12. Let p > 2, p′ := min {p, 3} and let (Xj)j∈Zd = f
(

(εj−i)i∈Zd

)

be a centered

Bernoulli random field with a finite moment of order p. Assume that for some positive α and

β, the following series are convergent:

C2 (α) :=

+∞
∑

i=0

(i + 1)
d/2+α ‖X0,i‖2 and Cp (β) :=

+∞
∑

i=0

(i+ 1)
d(1−1/p)+β ‖X0,i‖p . (1.6.6)
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Let gn (x) be defined by (1.6.3), (hn)n>1 be a sequence which converges to 0 and satisfies

(1.6.2),

∆n := sup
t∈R

∣

∣

∣

∣

P

{

(nhn)
d/2

(gn(x) − E [gn(x)]) 6 t
}

− Φ

(

t

σ ‖K‖2

)∣

∣

∣

∣

, (1.6.7)

An := (nhn)
d/2





∑

i∈Λn

K2

(

x − i/n

hn

)





1/2

‖K‖−1
L2(Rd)





∑

i∈Λn

K

(

x − i/n

hn

)





−1/2

and

(1.6.8)

εn :=
∑

j∈Zd

E [X0Xj]





∑

i∈Λn∩(Λn−j)

K
(

x−i/n
hn

)

K
(

x−(i−j)/n
hn

)

∑

k∈Λn
K2
(

x−k/n
hn

) − 1



 . (1.6.9)

Assume that
∑

i∈Zd |Cov (X0, Xi)| is finite and that σ :=
∑

j∈Zd Cov (X0, Xj) > 0. Let n1 ∈ N

be such that for each n > n1,

1

2
6 (nhn)−dK

(

x − i/n

hn

)

6
3

2
and (1.6.10)

1

2
‖K‖

L2(Rd) 6 (nhn)
−d
K2

(

x − i/n

hn

)

6
3

2
‖K‖

L2(Rd) . (1.6.11)

Let n0 be the smallest integer for which for all n > n0,

√

σ2 + εn − 20 (log 2)−1 C2 (α)

















∑

i∈Λn

K

(

1

hn

(

x − i

n

))2




1/2






γ





−α

> σ/2. (1.6.12)

Then there exists a constant κ such that for each n > max {n0, n1},

∆n 6 κ |An − 1|
p

p+1 + |εn| + κ (nhn)
d
2 (γ(p′−1)d−p′+2)

+ (nhn)
− d

2 γα p
p+1 + (nhn)

2d−p(γβ+1)

2(p+1) . (1.6.13)

Lemma 1 in [EMS10] shows that under (1.6.2), the sequence (An)n>1 goes to 1 as n goes to

infinity and that the integer n1 is well-defined. Moreover, a rate can be given in terms of K,

by following the computations in the proof of that lemma.

2. Proofs

2.1. Proof of Theorem 1.4. We define for j > 1 and i ∈ Z
d,

Xi,j = E [Xi | σ (εu, ‖u − i‖∞ 6 j)] − E [Xi | σ (εu, ‖u − i‖∞ 6 j − 1)] . (2.1.1)

In this way, by the martingale convergence theorem,

Xi − E [Xi | εi] = lim
N→+∞

N
∑

j=1

Xi,j (2.1.2)

hence
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6

+∞
∑

j=1

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi,j

∥

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiE [Xi | εi]

∥

∥

∥

∥

∥

∥

p

. (2.1.3)
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Let us fix j > 1. We divide Z
d into blocks. For v ∈ Z

d, we define

Av :=

d
∏

q=1

([(2j + 2) vq, (2j + 2) (vq + 1) − 1] ∩ Z) , (2.1.4)

and if K is a subset of [d], we define

EK :=
{

v ∈ Z
d, vq is even if and only if q ∈ K

}

. (2.1.5)

Therefore, the following inequality takes place
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi,j

∥

∥

∥

∥

∥

∥

p

6
∑

K⊂[d]

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

. (2.1.6)

Observe that the random variable
∑

i∈Av
aiXi,j is measurable for the σ-algebra generated by

εu, where u satisfies (2j + 2) vq −(j + 1) 6 uq 6 j+1+(2j + 2) (vq + 1)−1 for all q ∈ [d]. Since

the family
{

εu,u ∈ Z
d
}

is independent, the family
{
∑

i∈Av
aiXi,j,v ∈ EK

}

is independent for

each fixed K ⊂ [d]. Using inequality (1.1.2), it thus follows that

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p





∑

v∈EK

∥

∥

∥

∥

∥

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

2

2





1/2

+
14.5p

log p





∑

v∈EK

∥

∥

∥

∥

∥

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

p





1/p

. (2.1.7)

By stationarity, one can see that ‖Xi,j‖q = ‖X0,j‖q for q ∈ {2, p}, hence the triangle inequality

yields

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p
‖X0,j‖2





∑

v∈EK

(

∑

i∈Av

|ai|
)2




1/2

+
14.5p

log p
‖X0,j‖p

(

∑

v∈EK

(

∑

i∈Av

|ai|
)p)1/p

. (2.1.8)

By Jensen’s inequality, for q ∈ {2, p},
(

∑

i∈Av

|ai|
)q

6 |Av|q−1
∑

i∈Av

|ai|q 6 (2j + 2)
d(q−1)

∑

i∈Av

|ai|q (2.1.9)

and using
∑N

i=1 x
1/q
i 6 N

q−1
q

(

∑N
i=1 xi

)1/q

, it follows that

∑

K⊂[d]

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p
‖X0,j‖2





∑

i∈Zd

a2
i





1/2

(4j + 4)
d/2

+
14.5p

log p
‖X0,j‖p





∑

i∈Zd

|ai|p




1/p

(4j + 4)
d(1−1/p)

. (2.1.10)
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Combining (2.1.3), (2.1.6) and (2.1.10), we derive that

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
14.5p

log p

+∞
∑

j=1

‖X0,j‖2





∑

i∈Zd

a2
i





1/2

(4j + 4)
d/2

+
14.5p

log p

+∞
∑

j=1

‖X0,j‖p





∑

i∈Zd

|ai|p




1/p

(4j + 4)d(1−1/p) +

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiE [Xi | εi]

∥

∥

∥

∥

∥

∥

p

. (2.1.11)

In order to control the last term, we use inequality (1.1.2) and bound ‖E [Xi | εi]‖q by ‖X0,0‖q

for q ∈ {1, 2}. This ends the proof of Theorem 1.4.

Proof of Corollary 1.5.

Lemma 2.1. For q ∈ {2, p} and j ∈ N, the following inequality holds

‖X0,j‖q 6



”
∑

i∈Zd,‖i‖
∞

=j

δ2
i,q





1/2

. (2.1.12)

Proof. Let us write the set of elements of Zd whose infinite norm is equal to j as {vs, 1 6 s 6 Nj}
where Nj ∈ N. We also assume that vs − vs−1 ∈ {ek, 1 6 k 6 d} for all s ∈ {2, . . . , Nj}.

Denote

Fs := σ (εu, ‖u‖∞ 6 j, εvt
, 1 6 t 6 s) , (2.1.13)

and F0 := σ (εu, ‖u‖∞ 6 j). Then X0,j =
∑Nj

s=1 E [X0 | Fs] − E [X0 | Fs−1], from which it

follows, by Theorem 2.1 in [Rio09], that

‖X0,j‖2
q 6 (q − 1)

Nj
∑

s=1

‖E [X0 | Fs] − E [X0 | Fs−1]‖2
q . (2.1.14)

Then using similar arguments as in the proof of Theorem 1 (i) in [Wu05] give the bound

‖E [X0 | Fs] − E [X0 | Fs−1]‖q 6 δvs,q + δvs−1,q. �

�

2.2. Proof of Theorem 1.9. Denote for a random variable Z the quantity

δ (Z) := sup
t∈R

|P {Z 6 t} − Φ (t)| . (2.2.1)

We say that a random field (Yi)i∈Zd is m-dependent if the collections of random variables

(Yi, i ∈ A) and (Yi, i ∈ B) are independent whenever inf {‖a − b‖∞ ,a ∈ A,b ∈ B} > m. The

proof of Theorem 1.9 will use the following tools.

(T.1) By Theorem 2.6 in [CS04], if I is a finite subset of Zd, (Yi)i∈I an m-dependent cen-

tered random field such that E [|Yi|p] < +∞ for each i ∈ I and some p ∈ (2, 3] and

Var
(
∑

i∈I Yi

)

= 1, then

δ

(

∑

i∈I

Yi

)

6 75 (10m+ 1)(p−1)d
∑

i∈I

E [|Yi|p] . (2.2.2)
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(T.2) By Lemma 1 in [EMO07], for any two random variables Z and Z ′ and p > 1,

δ (Z + Z ′) 6 2δ (Z) + ‖Z ′‖
p

p+1
p . (2.2.3)

Let (εu)u∈Zd be an i.i.d. random field and let f : RZ
d → R be a measurable function such

that for each i ∈ Z
d, Xi = f (εi−u). Let γ > 0 and n0 defined by (1.5.7).

Let m := ([‖bn‖ℓ2 ] + 1)γ and let us define

X
(m)
i := E [Xi | σ (εu, i −m1 4 u 4 i +m1)] . (2.2.4)

Since the random field (εu)u∈Zd is independent, the following properties hold.

(P.1) The random field
(

X
(m)
i

)

i∈Zd
is (2m+ 1)-dependent.

(P.2) The random field
(

X
(m)
i

)

i∈Zd
is identically distributed and

∥

∥

∥X
(m)
i

∥

∥

∥

p′

6 ‖X0‖p′ .

(P.3) For any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

and q > 2, the following inequality holds:

∥

∥

∥

∥

∥

∥

∑

i∈Zd

ai

(

Xi −X
(m)
i

)

∥

∥

∥

∥

∥

∥

q

6
14.5q

log q





∑

i∈Zd

a2
i





1/2
∑

j>m

(4j + 4)
d/2 ‖X0,j‖2

+
14.5q

log q





∑

i∈Zd

|ai|q




1/q
∑

j>m

(4j + 4)
d(1−1/q) ‖X0,j‖q . (2.2.5)

In order to prove (2.2.5), we follow the proof of Theorem 1.4 and start from the

decomposition Xi −X
(m)
i

= limN→+∞

∑N
j=m Xi,j instead of (2.1.2).

Define S
(m)
n :=

∑

i∈Zd bn,iX
(m)
i

. An application of (T.2) to Z := S
(m)
n ‖bn‖−1

ℓ2 σ−1 and Z ′ :=
(

Sn − S
(m)
n

)

‖bn‖−1
ℓ2 σ−1 yields

∆n 6 2δ

(

S
(m)
n

σ ‖bn‖ℓ2

)

+ σ− p
p+1

1

‖bn‖
p

p+1

ℓ2

∥

∥

∥Sn − S(m)
n

∥

∥

∥

p
p+1

p
. (2.2.6)

Moreover,

δ

(

S
(m)
n

δ ‖bn‖ℓ2

)

= sup
t∈R

∣

∣

∣

∣

∣

P

{

S
(m)
n

δ ‖bn‖ℓ2

6 t

}

− Φ (t)

∣

∣

∣

∣

∣

(2.2.7)

= sup
u∈R

∣

∣

∣

∣

∣

∣

P







S
(m)
n

∥

∥

∥
S

(m)
n

∥

∥

∥

2

6 u







− Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

δ ‖bn‖ℓ2





∣

∣

∣

∣

∣

∣

(2.2.8)

6 δ





S
(m)
n

∥

∥

∥S
(m)
n

∥

∥

∥

2



+ sup
u∈R

∣

∣

∣

∣

∣

∣

Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2



− Φ (u)

∣

∣

∣

∣

∣

∣

, (2.2.9)

hence, by (P.1) and (T.1) applied with Yi := X
(m)
i /

∥

∥

∥S
(m)
n

∥

∥

∥

2
, p′ instead of p and 2m+1 instead

of m, we derive that

∆n 6 (I) + (II) + (III) (2.2.10)
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where

(I) := 150 (20m+ 21)(
p′−1)d

∑

i∈Zd

|bn,i|p
′
∥

∥

∥X
(m)
i

∥

∥

∥

p′

p′

∥

∥

∥S(m)
n

∥

∥

∥

−p′

2
, (2.2.11)

(II) := 2 sup
u∈R

∣

∣

∣

∣

∣

∣

Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2



− Φ (u)

∣

∣

∣

∣

∣

∣

and (2.2.12)

(III) := σ− p

p+1
1

‖bn‖
p

p+1

ℓ2

∥

∥

∥Sn − S(m)
n

∥

∥

∥

p

p+1

p
. (2.2.13)

By (P.2) and the reversed triangular inequality, the term (I) can be bounded in the following

way

(I) 6 150 (20m+ 21)(
p′−1)d ‖X0‖p′

p′ ‖bn‖p′

ℓp′

(

‖Sn‖2 −
∥

∥

∥Sn − S(m)
n

∥

∥

∥

)−p′

(2.2.14)

and by (P.2) with q = 2, we obtain that

(

‖Sn‖2 −
∥

∥

∥
Sn − S(m)

n

∥

∥

∥

)−p′

6

(

‖Sn‖2 − 20 (log 2)−1 m−α ‖bn‖ℓ2 C2 (α)
)−p′

. (2.2.15)

By (1.5.6), we have

‖Sn‖2
2

‖bn‖2
ℓ2

= σ2 + εn, (2.2.16)

and we eventually get

(I) 6 150 (20m+ 21)(
p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′

(

√

σ2 + εn − 20 (log 2)
−1
m−αC2 (α)

)−p′

.

Since n > n0, we derive, in view of (1.5.7),

(I) 6 150 (20m+ 21)(p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′

(σ/2)−p′

(2.2.17)

In order to bound (II), we argue as in [YWLH12] (p. 456). Doing similar computations as

in [EM14] (p. 272), we obtain that

(II) 6 (2πe)
−1/2

(

inf
k>1

ak

)−1
∣

∣a2
n − 1

∣

∣ , (2.2.18)

where an :=
∥

∥

∥S
(m)
n

∥

∥

∥

2
σ−1 ‖bn‖−1

ℓ2 . Observe that for any n, by (P.2),

an >

‖Sn‖2 −
∥

∥

∥Sn − S
(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2

>

√
σ2 + εn − 20 (log 2)−1 C2 (α)m−α

σ
(2.2.19)
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and using again (P.2) combined with Theorem 1.4 for p = 2,

∣

∣a2
n − 1

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥S
(m)
n

∥

∥

∥

2

2

σ2 ‖bn‖2
ℓ2

− 1

∣

∣

∣

∣

∣

∣

∣

(2.2.20)

6

∣

∣

∣

∣

∣

‖Sn‖2
2

σ2 ‖bn‖2
ℓ2

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∥

∥

∥
S

(m)
n

∥

∥

∥

2

2
− ‖Sn‖2

2

∣

∣

∣

∣

σ2 ‖bn‖2
ℓ2

(2.2.21)

6
|εn|
σ2

+

∣

∣

∣

∥

∥

∥S
(m)
n

∥

∥

∥

2
− ‖Sn‖2

∣

∣

∣

(∥

∥

∥S
(m)
n

∥

∥

∥

2
+ ‖Sn‖2

)

σ2 ‖bn‖2
ℓ2

(2.2.22)

6
|εn|
σ2

+

∥

∥

∥S
(m)
n − Sn

∥

∥

∥

2

(∥

∥

∥S
(m)
n

∥

∥

∥

2
+ ‖Sn‖2

)

σ2 ‖bn‖2
ℓ2

(2.2.23)

6
|εn|
σ2

+ 40 (log 2)−1 m
−α

σ2
C2 (α)2 . (2.2.24)

This leads to the estimate

(II) 6
(2πe)

−1/2

√
σ2 + εn − 20 (log 2)−1 C2 (α)m−α

( |εn|
σ

+ 40 (log 2)−1 m
−α

σ
C2 (α)2

)

, (2.2.25)

and since n > n0, we derive, in view of (1.5.7),

(II) 6

(

2
|εn|
σ2

+ 80 (log 2)
−1 ‖bn‖−γα

ℓ2

σ2
C2 (α)

2

)

(2πe)
−1/2

. (2.2.26)

The estimate of (III) rests on (P.3):

(III) 6 σ− p

p+1





14.5p

log p

∑

j>m

(4j + 4)
d/2 ‖X0,j‖2





p

p+1

+ σ− p
p+1 ‖bn‖− p

p+1

ℓ2 ‖bn‖
p

p+1

ℓp





14.5p

log p

∑

j>m

(4j + 4)d(1−1/p) ‖X0,j‖p





p

p+1

(2.2.27)

hence

(III) 6

(

14.5p

σ log p
4d/2 ‖bn‖−γα

ℓ2 C2 (α)

)

p

p+1

+

( ‖bn‖ℓp

σ ‖bn‖ℓ2

14.5p

log p
4d(1−1/p) ‖bn‖−γβ

ℓ2 Cp (β)

)

p

p+1

.

(2.2.28)

The combination of (2.2.10), (2.2.17), (2.2.26) and (2.2.28) gives (1.5.8).

2.3. Proof of Theorem 1.12. Since the random variables Xi are centered, we derive by

definition of gn (x) that

(nhn)
d/2

(gn(x) − E [gn(x)]) = (nhn)
d/2

∑

i∈Λn
XiK

(

x−i/n
hn

)

∑

i∈Λn
K
(

x−i/n
hn

) . (2.3.1)
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Keeping in mind (1.6.4), we define

bn,i = K

(

1

hn

(

x − i

n

))

, i ∈ Λn (2.3.2)

and bn,i = 0 otherwise. Denote bn = (bn,i)i∈Zd and ‖bn‖ℓ2 :=
(

∑

i∈Zd b2
n,i

)1/2

. In this way, by

(2.3.1) and (1.6.8),

1

‖K‖
L2(Rd) σ

(nhn)
d/2

(gn(x) − E [gn(x)]) =
1

σ

∑

i∈Zd

bniXi ‖bn‖−1
ℓ2 An. (2.3.3)

Applying (T.2) to Z =
∑

i∈Zd bniXi ‖bn‖−1
ℓ2 and Z ′ =

∑

i∈Zd bniXi ‖bn‖−1
ℓ2 σ−1 (An − 1) and

using Proposition 1 in [EVW13], we derive that

∆n 6 2∆′
n + 3

∥

∥

∥

∥

∥

∥

(2p)
1/2

σ−1
∑

j∈Zd

δj,p

∥

∥

∥

∥

∥

∥

p
p+1

|An − 1|
p

p+1 , (2.3.4)

where

∆′
n = sup

t∈R

∣

∣

∣

∣

P {Z 6 t} − Φ

(

t

σ

)∣

∣

∣

∣

. (2.3.5)

We then use Theorem 1.9 to handle ∆′
n (which is allowed, by (A1)). Using boundedness of

K, we control the ℓp and ℓp′

norms , by a constant times the ℓ2-norm. This ends the proof of

Theorem 1.12.
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