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CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR
WEIGHTED SUMS OF BERNOULLI RANDOM FIELDS

DAVIDE GIRAUDO

ABSTRACT. We prove moment inequalities for a class of functionals of i.i.d. random fields.
We then derive rates in the central limit theorem for weighted sums of such randoms fields
via an approximation by m-dependent random fields.

1. INTRODUCTION AND MAIN RESULTS

1.1. Rosenthal’s inequality. By Theorem 3 in [Ros70], we know that for any p > 2, there
exists a constant C depending only on p such that for any finite sequence (Y;)!_, of independent
centered random variables with a finite moment of order p, then

1/p

n 1/2 "
<¢ (Z |m||§> + (Z ||m-|5> : (1.1.1)
i=1 i=1

where ||V, := (E[]Y|"))"/ for ¢ > 1.
In order to give explicit constants, we will use the following version of Rosenthal’s inequality

n

> Y

=1

P

due to Johnson, Schechtman and Zinn [JSZ85]: if (V;);_, are independent centered random
variables with a finite moment of order p > 2, then

n

> Y

i=1

14.5 n 1/2 n 1/p

0P 2

<7 Sl ) (e . (1.12)
P o8P =1 i=1

Various extension of Rosenthal-type inequalities have been obtained under mixing conditions
[Sha95,Rio00] or projective conditions [PUW07,Rio09,MP13]. We are interested by extensions
of (1.1.2) to the setting of dependent random fields.

One of the main application of such an inequality is the estimate of the convergence rates in
the central limit theorem for random fields which can be expressed as a functional of an i.i.d.
one. The method consists in approximating the considered random field by an m-dependent
one, and in controlling the approximation with the help of the established moment inequality.

1.2. Notations and conventions. In all the paper, we shall use the following notations.

(N.1) For a positive integer d, the set {1,...,d} is denoted by [d].
(N.2) The coordinatewise order is denoted by <, that is, for i = (i4) € Z%and j =

(jq)jzl € 74, i < j means that iy < ji for any k € [d).
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2 DAVIDE GIRAUDO

(N.3) For k € [d], ex denotes the element of Z¢ whose gth coordinate is 1 and all the others
are zero. Moreover, we write 0 = (0,...,0) and 1 = (1,...,1).

(N.4) Forn = (”k)zzl € N4, we write the product HZ:l ng as |n|.

(N.5) The cardinality of a set I is denoted by |I].

(N.6) For a real number z, we denote by [z] the unique integer such that [z] < z < [z] + 1.

(N.7) We write ® for the cumulative distribution function of a standard normal law.

(N.8) If A is a subset of Z? and k € Z¢, then A — k is defined as {1 —k,1€ A}.

(N.9) For g > 1, we denote by £7 (Z?) the space of sequences a := (a;);cz4 such that ||al|,, =
(Xiezs |ai|q)1/q < +00.

(N.10) For i= (iq)ZZI, the quantity ||i||  is defined as maxi<q<ad |iq]-

Let (Yi);cz4 be arandom field. The sum } ;. Y; is understood as the IL” limit of the sequence

(Sk)g>1 where Sy = ZieZd,HiHoogk Yi.

1.3. Physical dependence measure. In the sequel, we will be interested in the so-called
Bernoulli random fields.

Definition 1.1. Let d > 1 be an integer. The random field (Xn),cza s said to be Bernoulli

if there exists an i.i.d. random field (€;);cza and a measurable function f: RZ' -5 R such that
Xn = f ((en-i)ijega) for eachn € Z9.

Following [Wu05] we define the physical dependence measure.

Definition 1.2. Let (Xi)icza == (f (€i-j))jeza be a Bernoulli random field, p > 1 and (€},) yez0
be an i.i.d. random field which is independent of the i.i.d. random field (cu),cza and has the
same distribution as (€u)yegza. Fori€ 72, we introduce the physical dependence measure

dip = [|X5 = X7, (1.3.1)

where X = f (5* ) and e, = eq ifu#0, e = ¢gp.

i—j

In [EVW13,BD14], various examples of Bernoulli random fields are given, for which the
physical dependence measure is either computed or estimated. Proposition 1 of [EVW13] also
gives the following moment inequality: if I is a finite subset of Z%, (a;);op is a family of real
numbers and p > 2, then for any Bernoulli random field (Xy,)

nez
1/2
D aXi|| < <2pza§> Y i (1.3.2)
iel p iel jeza

This was used in [EVW13,BD14] in order to establish functional central limit theorems. Tru-
quet [Trul0] also obtained an inequality in this spirit. However, we cannot recover Rosenthal’s
inequality (1.1.1) from (1.3.2). If (Xi);cza is i.i.d. and centered, (1.1.1) would give

1/2 1/p
Y aXi| <C (Z a§> > G2+ C (Z |ai|p> > G (1.3.3)

iel’ iel jezd iel jezd

P
In the case of linear processes, equality d; , < K2 holds for a constant K which does not
depend on j. However, there are processes for which such an inequality does not hold.
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Ezample 1.3. Let (£1);cz4 be an iid. random field and for each k € Z%, let fi.: R — R be a
function such that the random variable Zy := fx (¢0) is centered and has a finite moment of
order p, and Y, 4 | Zi||3 < +00. Define Xy := limy 1 o0 > Ni<j<N1 Jk (En—k), where the
limit is taken in L2. Then X; — X;" = fi (g0) — fi (¢p) hence d; 2 is of order || Zi||, while d;, is
of order [|Zi|,,-

Consequently, having the /P-norm instead of the £>-norm of the (a;) ier is more suitable. The
goal of this paper is to get Rosenthal-like inequalities for weighted sums of Bernoulli random
fields. In the one dimensional case, probability and moment inequalities have been established
in [LXW13] for maxima of partial sums of Bernoulli sequences. The techniques used therein
permit to derive results for weighted sums of such sequences.

1.4. Moment inequality. We now give a Rosenthal-like inequality for weighted sums of
Bernoulli random fields in terms of the physical dependence measure.

Theorem 1.4. Let {ai,i € Zd} be an i.i.d. set of random variables. Then for any measurable
function f: RZ* 5 R such that Xj := f((Xj-i));cga has a finite moment of order p > 2 and
is centered, and any (a3);cza € 02 (27),

14.5p = d/2
: 2 .
Z a; Xi|| < Tog p Z a; Z (45 + D)7 | Xo I,
i€zd » iezd =0
1/p
14.5p b SN (4 01

RS Z |as] Z (45 +4) [Xo,ll,, (1.4.1)

&p iezd j=0

where for j > 1,

Xoj =E[Xo | o {eu [ull, <5} ~EXo | o {eu, ull, <j -1} (1.4.2)

and Xo)o =E [Xo | 0'{80}].

Corollary 1.5. Let {Ei,i € Zd} be an i.i.d. set of random variables. Then for any measurable
function f: RZ" 5 R such that Xj = f((Xj-i));cga has a finite moment of order p > 2 and
is centered, and any (ai);cza € €2 (Z%),

15 1/2 . » 1/2
: 2 . 2
> aiXi|| < ﬁlogp > 4 2(43 +4) .Z _51,2
iezd » iezd j=0 1]l oo =7
1/p 1/2
145p —— N L d(-1/p) )
+ \/5@ p—1 Z |ai|p Z (4] + 4) p Z 6i,p . (143)
iezd 7=0 il oo =3

Remark 1.6. Like in [EMO02], the fact that the constants are explicit allows to derive Kahane-
Khintchine inequalities, that is, inequalities on the Orlicz norm associated to the Young func-
tion

Yg: T — exp ((x + hg)ﬁ) —exp (hg), (1.4.4)

where 8 > 0 and hg = ((1 — f) /B)l/’g if 0 < f < 1 and 0 otherwise.
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Remark 1.7. Using Remark 7 in [JS88] and Rosenthal’s inequality in weak LP-spaces, it is
possible to obtain a version of Theorem 1.4 where the L” norm is replaced by [|X|[, . =
sup 4 7 P(A)/PTE[|X] 14].

Remark 1.8. We can bound the L9-norm of Xgq ; by Zield:l\illm:j Il and formulate a version of
inequality (1.4.1) where the right hand side is expressed in terms of the coefficients of physical
dependence measure. The obtained result is not directly comparable to (1.3.2) because of the
presence of the /P-norm of the coefficients.

1.5. Convergence rates in the central limit theorem for weighted sums. Let (Xj);c;. =
f ((Eifi)iezd) be a centered square integrable Bernoulli random field and for any positive in-
teger n, let b, = (bnvi)iGZd be an element of ¢2 (Zd). We are interested in the asymptotic

behavior of the sequence (S,),,, defined by

Spi=>_ bniXi. (1.5.1)

iezd
Let us denote for k € Z% the map 7 : £2 (Zd) — 02 (Zd) defined by 7y ((Ii)iezd) = (Tigk)jeze-
In [KVW16], Corollary 2.6 gives the following result: under an appropriated dependence
condition on the random field (Xj);.5« and under the following condition on the weights: for

any ¢ € [d],
1

[1bnl 2

the series ) ;4 |Cov (Xo, Xj)| converges and denoting

||Teq (bn) - bn”gz = 07 (152)

1/2

o= | Y Cov(Xo,X;) , (1.5.3)
i€zd

the sequence (Sy,/ ||bnl|,2),~, converges in distribution to a centered normal distribution with

n>1
variance o2. The argument rests on an approximation by an m-dependent random field.

Theorem 1.9. Let p > 2, p' := min{p,3} and let (Xj)jcza = f ((65-i)seza) be a centered
Bernoulli random field with a finite moment of order p and for any positive integer n, let
by, = (bnvi)ieZd be an element of £2 (Zd) such that for anyn > 1, the set {k €Z% by x # O} 18
finite and nonempty, limy, o [|bn|l,2 = +00 and (1.5.2) holds for any q € [d]. Assume that

for some positive o and B, the following series are convergent:

+o00 too
Co () =3 (i + D)"* | Xoll, and Cp (8) == > (i + D)™ VPP X4l (15.4)
1=0 1=0

Let Sy, be defined by (1.5.1),

A, :=sup |P {L < t} —®(t/o)| and (1.5.5)
ter | Ullonllp
br.ibn it
eni= Y E[XoXj] | > -1, (1.5.6)

jezd iczd (LR
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Assume that ) 3 ,a |Cov (Xo, Xi)| is finite and that o be given by (1.5.3) is positive. Let y >0
and let

no := inf {N >1]¥n > N,o2 +e, — 20 (log2) " Cy (@) ([[bnll,2]) " = a/z} . (157)

Then for each n = nyg,

'_1\d r (bl pr P o
B < 15020 (I8 l] + 217 + 200 ol (20 (/)7
nilg

o2

|en] -1 ||bn||e_27a 2 —1/2
+ (2 + 80 (log2) " ——5—C2 (a)” | (27e)
o

P

P
14.5p 4 _ P+l 1bn]l, 14.5p _ _ P+l
442 ||, || 7 C Wnller —Z98 4d(1=1/p) \1p, 11578 ¢ '
(1.5.8)

In particular, there exists a constant k such that for all n > ng,
' —1)d—p’ ’ —~ya P _P_ — -2 (vB+1)
B (Il U0l + el Bl BT Bl 7). 59)

Remark 1.10. If (1.5.2), limy,— o0 [[bn|l,2 = +00 and the family (0;2);c54 is summable, then
the sequence (g,,),,, converges to 0 hence ng is well-defined. However, it is not clear to us
whether the finiteness of of Cs () combined with (1.5.2) and lim, 4o ||bn||,2 = +00 imply
that > ;c;q [E[XoXj]| is finite. Nevertheless, we can use show an analogous result in terms of
03,p coefficients by changing the following in the statement of Theorem 1.9:

(1) the definition of C5 («) should be replaced by

1/2
+oo
Ca(a) =v2Y_ (G+1)"* | N a2, | (1.5.10)
J=0 llill=3
(2) the definition of C), (8) should be replaced by
N 1/2
Co(B)=2(p—1)>_ G+ 1)L N 62, | (1.5.11)
3=0 llill=5

In this case, the convergence of » . ;. |Cov (Xo, Xj)| holds (cf. Proposition 2 in [EVW13]).

Recall notation (N.8). Let (Ay),; be a sequence of subsets of Z*. The choice b, ; = 1 if
j € A, and 0 otherwise yields the following corollary for set-indexed partial sums.

Corollary 1.11. Let (Xj);cza be a centered Bernoulli random field with a finite moment of
orderp > 2, p' :=min {p, 3} and let (Ay,),,, be a sequence of subset of Z2 such that |A,,| — +o0
and for any k € Z%, limy, o0 |An N (An — k)| /|An| = 0. Assume that the series defined in
(1.5.4) are convergent for some positive a and (3, that ) ;. |Cov (Xo, Xi)| is finite and that
o defined by (1.5.3) is positive. Let v > 0 and ng be defined by (1.5.7). There exists a constant
K such that for any n = ng,
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sup

P{M gt} —®(t)o)

teR |An|1/2
Ap O (Ay —
<k A"+ D B [XoXj]| |(A—J)|—1' ., (15.12)
jezd [An]
where W 1)d ) ) s
YD — - D p —Dp—DPY
= — 4+ 1;,— ; . 1.5.13
gimmax { L g 2 2P om0 (15.13)

1.6. Rate of convergence of kernel estimates in a regression model. We consider the
following regression model:

Kzg(%)—i—Xi, ic A, ={1,...,n}", (1.6.1)

where g: [0,1]% — R is an unknown smooth function and (Xi)ieza is a zero mean stationary
Bernoulli random field. Let K be a probability kernel defined on R? and let (hn)n>1 be a
sequence of positive numbers which converges to zero and which satisfies

lim nh, = +ooand lim nhdt! =0. (1.6.2)

n—-+o0o n—-+o0o

We estimate the function g by the kernel estimator g,, defined by
Siea, NK (352
Sien, K (57)

gn (X) = x € [0,1]% (1.6.3)
where
An={1,...,n}". (1.6.4)
We make the following assumptions on the regression function g and the probability kernel
K:
(A1) The probability kernel K fulfills [,, K (u)du = 1, is symmetric, non-negative, sup-
ported by [—1,1]%. Moreover, there exist positive constants r, ¢ and C such that for
any x,y € [-1,1]%, |K (x) - K (y)| <r|x—yl, and c < K (x) < C.
(A2) There exists a positive constant B such that the absolute values of all the derivatives
of first order of g are bounded by B on [0, 1]¢.

Assumption (A2) will not be used in the following result. However, by Proposition 1 in
[EMO7], this guarantees that
sup  sup |Egn (x)] —g(x)| =0 (hy), (1.6.5)
x€[0,1]¢ geLip(B)

where Lip (B) denotes the collection of all B-Lipschitz functions on R.

Theorem 1.12. Let p > 2, p' := min{p,3} and let (Xj);cp0 = f ((€5=i)jeza) be a centered
Bernoulli random field with a finite moment of order p. Assume that for some positive o and
B, the following series are convergent:

—+oo —+oo
Co(0) = > (i + D" | Xoully, and Cp (8) = i+ )P Xou),. (1.6.6)
1=0 =0
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Let gn (x) be defined by (1.6.3), (hn),>, be a sequence which converges to 0 and satisfies
(1.6.2),

t
A,, :=sup |P nhnd/2 n(x) —Elg,(x)]) <t —<I><7>', 1.6.7
sup [P{ (1) (90 (x) = Elgn (o)) < ¢ = & e (16.7)
1/2 —1/2
An nh d/2 Z K2 ( l/n) ||K||£21(]Rd) Z K (x;ll/n> and
icA, icA, "

(1.6.8)

K (X*i/") K (x*(lﬁi)/n)
— 3 E[XoX;] 3 fin AR (1.6.9)
jezd ieA,N(An—])) ZkeAn K (%)
Assume that ;74 |Cov (Xo, Xi)| is finite and that o := 3 ;74 Cov (Xo, X;) > 0. Let ni € N
be such that for each n > nq,

% < (nhy) 'K (X ;L:/”) < g and (1.6.10)
%HKHLQ(W) < (nhy) " K? (X _j/”> < g 1 e ey - (1.6.11)
Let ng be the smallest integer for which for all n > ng,
) ) 1/277\ ~¢
Vo2 +en — 20 (log2) ' Cs (a) S K ( (x - 5)) >0/2. (1.6.12)

icA,
Then there exists a constant k such that for each n > max {ng,n1},
An < 1 An = 17T 4|y | + i (nhy) H01)422)
2d—p(vB+1)

+ (nhy) " F1FT 4 (nhy) " 200 . (1.6.13)
Lemma 1 in [EMS10] shows that under (1.6.2), the sequence (4y,),,, goes to 1 as n goes to
infinity and that the integer n; is well-defined. Moreover, a rate can be given in terms of K,
by following the computations in the proof of that lemma.
2. PROOFS
2.1. Proof of Theorem 1.4. We define for j > 1 and i € Z¢,
Xij =E[X; |0 (eu lu—illo <) -E[Xi|o(eu,[lu—il, <j-1)]. (2.1.1)

In this way, by the martingale convergence theorem,

X;i —E[X;|&] = lim ZXU (2.1.2)

~>+oo

+oo
Z a; X;|| < Z Z CLiXiﬁj + Z a;E [Xi | Ei] . (213)
j=1

ic7d ic7d ic7zd
ieZ » iceZ » icZ P
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Let us fix j > 1. We divide Z? into blocks. For v € Z%, we define

d
Ay = [T 25 +2) 4. (25 +2) (0, +1) ~ 1N 2, (2.1.4)

q=1

and if K is a subset of [d], we define
Ex:={ve 74, v, is even if and only if ¢ € K}. (2.1.5)
Therefore, the following inequality takes place

ZaiXi,j < Z

iczd » KC[d]

> D aiXiy

veEk i€Ay

(2.1.6)

P

Observe that the random variable 7, 4, @iXi,j is measurable for the o-algebra generated by
€u, where u satisfies (2j + 2) v, —(j + 1) < ug < j+1+(2j5 + 2) (vy + 1)—1for all g € [d]. Since
the family {au, ue Zd} is independent, the family {EieAv a; X j, vV € EK} is independent for
each fixed K C [d]. Using inequality (1.1.2), it thus follows that

o\ 1/2
14.5p
Rl [ = 10 bart
veEk i€eA, veEk IlieA, 2
p\ /P
14.5p
+ logp Z Z aiXi,j (2.1.7)
veEk llieAy p

By stationarity, one can see that || Xj ;|

. = I Xo,;ll, for ¢ € {2, p}, hence the triangle inequality

yields
2 1/2
14.5p
52 3ol <ot ( 3 (Zmn)
veEk i€eA, gp veEx \i€A,
14.5 n\ P
5p
t L |Xo,j||p(z <Z |Gi|> ) . (21.8)
&p veEgk \i€A,

By Jensen’s inequality, for ¢ € {2, p},

<Z |ai|> <A Y el < 25+ 21V S sl (2.1.9)

i€ A, i€cA, i€cA,

a— 1/q
and using EZ 1 xl/q N (Eﬁl :vi) , it follows that

1/2
14. 5p .
> ZaXU S Toap Kol > al (4 + 4"
KC[d] vEFEK i€Ay iczd
1/p
14.5p » - nd(i-1/p)
+@|\X0J|p > lail (45 + 4) . (2.1.10)

i€zd
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Combining (2.1.3), (2.1.6) and (2.1.10), we derive that

1/2
145p ) d/2
> ki <10 ZH Xosll, | a2 | (i +0)Y
iezd &P iezd
1/p

14 5p P d(l p)

 Toap ZH Xoll, [ S lail (45 +4) +HIS wEX sl - @111

&P iezd iezd

p
In order to control the last term, we use inequality (1.1.2) and bound |[E [X; | &||, by [|Xo,ll,
for ¢ € {1,2}. This ends the proof of Theorem 1.4.

Proof of Corollary 1.5.

Lemma 2.1. For g € {2,p} and j € N, the following inequality holds
1/2

Xoill, <7 > &, - (2.1.12)

i€Z, ||i]l o =7

Proof. Let us write the set of elements of Z? whose inﬁnite norm is equal to j as {vs,1 < s < N;}
where N; € N. We also assume that vs — vs_1 € {ex, 1 <d} forall s e {2,...,N;}.
Denote

]:5 ::0(5u7||u||00 <j75vt71 <t<8)7 (2113)
and Foy = 0 (ey, ||ull, <j). Then Xo,; = Zi\glE[Xo | Fs] — E[Xo | Fs—1], from which it
follows, by Theorem 2.1 in [Rio09], that

NJ

1Xo 12 < (a— 1) IE [Xo | F] — E[Xo | Foa]|2. (2.1.14)
s=1

Then using similar arguments as in the proof of Theorem 1 (i) in [Wu05] give the bound
HE [XO | ]:S] —-E [XO | ]:s—l]Hq < 5v57q + §stl7q' O

O

2.2. Proof of Theorem 1.9. Denote for a random variable Z the quantity

§(Z) :=sup|P{Z <t} —®(t)]. (2.2.1)
teR

We say that a random field (Yj);czq4 is m-dependent if the collections of random variables
(Yi,i € A) and (Yj,i € B) are independent whenever inf {||a —b|| _,a € A,b € B} > m. The
proof of Theorem 1.9 will use the following tools.

(T.1) By Theorem 2.6 in [CS04], if I is a finite subset of Z¢, (V});c; an m-dependent cen-
tered random field such that E[|Y;|’] < 400 for each i € I and some p € (2,3] and
Var (3, Yi) = 1, then

5 (Z Y) <75 (10m + 1) VIS TRy ). (2.2.2)

iel icl
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(T.2) By Lemma 1 in [EMOO07], for any two random variables Z and Z’ and p > 1
S(Z+2)<285(2)+ 2|5 . (2.2.3)

Let (€u)yeza be an iid. random field and let f: RZ" — R be a measurable function such
that for each i € Z¢, X; = f (¢i_u). Let v > 0 and ng defined by (1.5.7).

Let m := ([||bn]l,2] + 1) and let us define

X" =E[X; |0 (cu,i—ml g u<i+ml). (2.2.4)

Since the random field (€y),czq is independent, the following properties hold.

(P.1) The random field (Xi(m)) . is (2m + 1)-dependent.

i€

(P.2) The random field (X,™) is identically distributed and HX.(’")H < || Xoll,

iezd
(P.3) For any (as);czq € €2 (Z%) and ¢ > 2, the following inequality holds:

1/2
o | 145 ,
Sa(xi-xM)| <22 e X G+ %o,
ieza q &4q iezd ji=m
1/q
14 5q . (11
+ 5 Slail”| S i+ 91TV | xo),. (225)
ogq \ &, =

In order to prove (2.2.5), we follow the proof of Theorem 1.4 and start from the
decomposition X; — X.(m) =limy 400 Zjv m Xi,j instead of (2.1.2).
Define S{™ = > icza b, lX . An application of (T.2) to Z := =5t [bn]l 2 o=t and Z' =
(Sn - Sr(Lm)) anHez o~ yields

s4m) o1 2
A, <2 | —2— | 40 701 S, — Sim) (2.2.6)
 [|bnll o2 b H’)“ P
Moreover,
| = | =sup |P{ —2—— <ty —D(t) (2.2.7)
<6 ||bn||z2> teR {5 ”an£2
§(m) ’”’H
=sup[P{ ————— <up—& | u—-_~2 2.2.8
R 5Tl (228)
2
§0m) st
<0 - +sup @ | u — @ (u)], (2.2.9)
ueR o [[bnlle

hence, by (P.1) and (T.1) applied with Y; := Xi(m)

of m, we derive that

, p’ instead of p and 2m +1 instead
2

A, < (I)+ (IT) + (I1T) (2.2.10)
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where
’ ’ Pl _p/
(I) == 150 (20m + 21)(" DTS 47 HX}’”) ; SWHQ , (2.2.11)
iezd
s
(IT):=2sup |® | ut———2 | — ® (u)| and (2.2.12)
u€ER g anHZ?
» 1 77T
(II]) := g~ 71 — 1S, = sGm|| 7T (2.2.13)
Iball 2" P

By (P.2) and the reversed triangular inequality, the term (I) can be bounded in the following

way
’ ’ ’ _p/
(1) < 150 (20m + 200" Xo 12 a2y, (1Sull, = |50 = 557 (2:2.14)
and by (P.2) with ¢ = 2, we obtain that
|\ 1, a -
(1lly = [|5 = $¢[) " < (ISull, 20 (0g2) ™m0~ oull 2 Ca (@) - (2:215)
By (1.5.6), we have
Sall2
” ”22 =0%+ ¢y, (2.2.16)
[[br [z

and we eventually get

7pl

||bn||gp/
[[6n 12

(I) < 150 (20m + 21)" D | xo |7 ( )p (Vo> +en—20(10g2) ' m™2Cs ()

Since n = ng, we derive, in view of (1.5.7),

’_ / bn ’ pl o
(I) < 150 (20m+21)(P 1)d [ Xoll} <||||b ||||” > (0/2)77 (2.2.17)
n 22

In order to bound (IT), we argue as in [YWLH12] (p. 456). Doing similar computations as
in [EM14] (p. 272), we obtain that

—1
(IT) < (2me)~'/? (égfl ak> a2 —1], (2.2.18)

where a,, := HS,(zm)Hz ot ||bn||l_21. Observe that for any n, by (P.2),

(m)
[[Snlly = ’ Sn = Sn H2 < VoZ +e, —20(log2)” " Cy (a)m™®

o [|bnl 2 o

(2.2.19)

a/’ll/
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and using again (P.2) combined with Theorem 1.4 for p = 2,

Js¢]
2 2
a2 —1]=|—>"2 1 (2.2.20)
| | o2 [|ballz:
2
<|—3 -1+ 5 (2.2.21)
o2 [bn 2 o2 [|bn g2
el SE, = nsats] ([[s57], + 18alls)
<=+ 2 TR (2.2.22)
a o2 [|bn [z
el 557 = 5l (5] + )
<=+ 2 S (2.2.23)
a o2 [|bn [z
lenl —1m”“
< 5 +40(log2) ! —Cs (a)?. (2.2.24)

This leads to the estimate

(2me) '/ (|5n| +40 (log2) "t -
Vo T en —20(log2) "Co(a)ym—= \ o & -

and since n > ng, we derive, in view of (1.5.7),

(IT) < Cy (a)2) . (2.2.25)

n — bn P —
(1) < <2|z—g| +80 (log2)™" %02 (a)2> (2me) Y2 (2.2.26)
The estimate of (IIT) rests on (P.3):
21
P
_» [ 14.5p .
(UID) < o7 | =203 (4 4+ 4" [ Xoyll,
ogp
o bl 0 ET [ 222 ST (45 4 )20 | X ) " e
o g2 n | ep log p j>m( J ) [ Xo,j p i
hence
P P
14.5p d —ya )m ”an » 14.5p — -8 P
I1T) < [ —=2492 by |27 Cs (a + £ 440=1/p) 1 1177F ¢
(111 < (522497 o, 7 Ca o) il Il €, (9)
(2.2.28)

The combination of (2.2.10), (2.2.17), (2.2.26) and (2.2.28) gives (1.5.8).

2.3. Proof of Theorem 1.12. Since the random variables X; are centered, we derive by
definition of g, (x) that

ien, Gk (L)
Sien, K (L)

(1) (g (%) — E[gn(x)]) = (nhn)"? (2.3.1)
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Keeping in mind (1.6.4), we define

1 i _

1/2
and by, ; = 0 otherwise. Denote b, = (bni);cza and [[bn 2 = (ZieZd bi)i) . In this way, by
(2.3.1) and (1.6.8),
1

T (n d/2 x) — x)]) = l V. —21 ' 3
”K”V(Rd)o( hn)* (g (%) = Elgn(x)]) = = > bniXi [lonl 2" An (2.3.3)

iezd
Applying (T2) to Z = Yiepa bniXi [ball 2 and Z' = 3cpa bniXi [bnll 2t 071 (A, — 1) and
using Proposition 1 in [EVW13], we derive that

_P_
p+1
An <28, +3)20) 70t G, 1AL 17, (2.3.4)
jezd
where
t
Al =sup |P{Z <t} —® (—) ' : (2.3.5)
teR g

We then use Theorem 1.9 to handle A/ (which is allowed, by (Al)). Using boundedness of
K, we control the /7 and /7" norms , by a constant times the ¢?-norm. This ends the proof of
Theorem 1.12.
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