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CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR

WEIGHTED SUMS OF BERNOULLI RANDOM FIELDS

DAVIDE GIRAUDO

Abstract. We prove moment inequalities for a class of functionals of i.i.d. random fields.

We then derive rates in the central limit theorem for weighted sums of such randoms fields

via an approximation by m-dependent random fields.

1. Introduction and main results

1.1. Notations and conventions. In all the paper, we shall use the following notations.

(N.1) For a positive integer d, the set {1, . . . , d} is denoted by [d].

(N.2) The coordinatewise order is denoted by 4, that is, for i = (iq)
d
q=1 ∈ Z

d and j =

(jq)
d
q=1 ∈ Z

d, i 4 j means that iq 6 jq for any q ∈ [d].

(N.3) For q ∈ [d], eq denotes the element of Zd whose qth coordinate is 1 and all the others

are zero. Moreover, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

(N.4) If l =
∑d

q=1 lqeq is an element of Zd and J a subset of [d], then lJ is the element of Zd

defined by lJ =
∑

q∈J lqeq.

(N.5) For n = (nq)
d
q=1 ∈ N

d, we write the product
∏d

q=1 nq as |n|.
(N.6) The cardinality of a set I is denoted by |I|.
(N.7) For a real number x, we denote by [x] the unique integer such that [x] 6 x < [x] + 1.

(N.8) We write Φ for the cumulative distribution function of a standard normal law.

(N.9) If Λ is a subset of Zd and k ∈ Z
d, then Λ − k is defined as {l − k, l ∈ Λ}.

(N.10) For q > 1, we denote by ℓq
(

Z
d
)

the space of sequences a := (ai)i∈Zd such that ‖a‖ℓq :=
(
∑

i∈Zd |ai|q
)1/q

< +∞.

(N.11) For i = (iq)
d
q=1, the quantity ‖i‖∞ is defined as max16q6d |iq|.

Let (Yi)i∈Zd be a random field. The sum
∑

i∈Zd Yi is understood as the L
p limit of the sequence

(Sk)k>1 where Sk =
∑

i∈Zd,‖i‖∞6k Yi.

1.2. Rosenthal’s inequality. By Theorem 3 in [Ros70], we know that for any p > 2, there

exists a constant C depending only on p such that for any finite sequence (Yi)
N
i=1 of independent

centered random variables with a finite moment of order p, then

∥

∥

∥

∥

∥

n
∑

i=1

Yi

∥

∥

∥

∥

∥

p

6 C





(

n
∑

i=1

E
[

Y 2
i

]

)1/2

+

(

n
∑

i=1

E [|Yi|p]

)1/p


 . (1.2.1)
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In order to give explicit constants, we will use the following version of Rosenthal’s inequality

due to Johnson, Schechtman and Zinn [JSZ85]: if (Yi)
N
i=1 are independent centered random

variables with a finite moment of order p > 2, then

∥

∥

∥

∥

∥

n
∑

i=1

Yi

∥

∥

∥

∥

∥

p

6
14.5p

log p





(

n
∑

i=1

E
[

Y 2
i

]

)1/2

+

(

n
∑

i=1

E [|Yi|p]

)1/p


 . (1.2.2)

Various extension of Rosenthal-type inequalities have been obtained under mixing conditions

[Sha95,Rio00] or projective conditions [PUW07,Rio09,MP13].

1.3. Physical dependence measure. In the sequel, we will be interested in the so-called

Bernoulli random fields.

Definition 1.1. Let d > 1 be an integer. The random field (Xn)n∈Zd is said to be Bernoulli

if there exists an i.i.d. random field (εi)i∈Zd and a measurable function f : RZ
d → R such that

Xn = f
(

(εn−i)i∈Zd

)

for each n ∈ Z
d.

Following [Wu05] we define the physical dependence measure.

Definition 1.2. Let (Xi)i∈Zd := (f (εi−j))j∈Zd be a Bernoulli random field, p > 1 and (ε′
u)u∈Zd

be an i.i.d. random field which is independent of the i.i.d. random field (εu)u∈Zd and has the

same distribution as (εu)u∈Zd . For i ∈ Z
d, we introduce the physical dependence measure

δi,p := ‖Xi − X∗
i ‖p (1.3.1)

where X∗
i = f

(

ε∗
i−j

)

and ε∗
u = εu if u 6= 0, ε∗

0 = ε′
0.

In [EVW13, BD14], various examples of Bernoulli random fields are given, for which the

physical dependence measure is either computed or estimated. Proposition 1 of [EVW13] also

gives the following moment inequality: if Γ is a finite subset of Zd, (ai)i∈Γ is a family of real

numbers and p > 2, then for any Bernoulli random field (Xn)n∈Zd ,
∥

∥

∥

∥

∥

∑

i∈Γ

aiXi

∥

∥

∥

∥

∥

p

6

(

2p
∑

i∈Γ

a2
i

)1/2

·
∑

j∈Zd

δj,p. (1.3.2)

This was used in [EVW13,BD14] in order to establish functional central limit theorems. Tru-

quet [Tru10] also obtained an inequality in this spirit. However, we cannot recover Rosenthal’s

inequality (1.2.1) from (1.3.2). If (Xi)i∈Zd is i.i.d. and centered, (1.2.1) would give
∥

∥

∥

∥

∥

∑

i∈Γ

aiXi

∥

∥

∥

∥

∥

p

6 C

(

∑

i∈Γ

a2
i

)1/2
∑

j∈Zd

δj,2 + C

(

∑

i∈Γ

|ai|p
)1/p

∑

j∈Zd

δj,p. (1.3.3)

In the case of linear processes, equality δj,p 6 Kδj,2 holds for a constant K which does not

depend on j. However, there are processes for which such an inequality does not hold.

Example 1.3. Let (εi)i∈Zd be an i.i.d. random field and for each k ∈ Z
d, let fk : R → R be a

function such that the random variable Zk := fk (ε0) is centered and has a finite moment of

order p, and
∑

k∈Zd ‖Zk‖2
2 < +∞. . Define Xn := limN→+∞

∑

−N14j4N1 fk (εn−k), where

the limit is taken in L
2. Then Xi − X∗

i = fi (ε0) − fi (ε′
0) hence δi,2 is of order ‖Zk‖2 while

δi,p is of order ‖Zk‖p.
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Consequently, having the ℓp-norm instead of the ℓ2-norm of the (ai)i∈Γ is more suitable. The

goal of this paper is to get Rosenthal-like inequalities for weighted sums of Bernoulli random

fields. In the one dimensional case, probability and moment inequalities have been established

in [LXW13] for maxima of partial sums of Bernoulli sequences. The techniques used therein

permit to derive results for weighted sums of such sequences.

1.4. Moment inequalities. Our first inequality reads as follows.

Theorem 1.4. Let
{

εi, i ∈ Z
d
}

be an i.i.d. set of random variables. Then for any measurable

function f : RZ
d → R such that Xj := f ((Xj−i))i∈Zd has a finite moment of order p > 2 and

is centered, and any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

,

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6 2d/2 14.5p

log p





∑

i∈Zd

a2
i





1/2
∑

j∈Nd

‖πj‖2

+ 2d 2p−1
p

14.5p

log p
(p − 1)

d/2





∑

i∈Zd

|ai|p




1/p
∑

j∈Nd

|j + 1|1/2−1/p ‖πj‖p , (1.4.1)

where for j ∈ N
d, denoting Sj := {q ∈ [d] | jq 6= 0},

πj =
∑

I⊂Sj

(−1)
|I|

E

[

X0 | σ

(

εu, −j −
∑

i∈I

ei 4 u 4 j +
∑

i∈I

ei

)]

. (1.4.2)

The random variable πj is linked to projection operators introduced in [VW14] in the fol-

lowing way. Define for an integrable random variable X the operators

P
(q,0)
l : L1 → L

1, P
(q,0)
l (X) = E

[

X | σ
(

εu, u ∈ Z
d, uq 6 l

)]

(1.4.3)

P
(q,1)
l : L1 → L

1, P
(q,1)
l (X) = E

[

X | σ
(

εu, u ∈ Z
d, uq > l

)]

. (1.4.4)

In this way,

πj =
∏

q∈Sj

(

P
(q,0)
j P

(q,1)
−jq

− P
(q,0)
jq−1P

(q,1)
−jq+1

)

(X0)

=
∏

q∈Sj

(

P
(q,0)
jq

P
(q,1)
−jq

− P
(q,0)
jq

P
(q,1)
−jq+1 + P

(q,0)
jq

P
(q,1)
−jq+1 − P

(q,0)
jq−1P

(q,1)
−jq+1

)

(X0)

=
∑

I⊂Sj

(−1)
|I|
∏

q∈I

(

P
(q,0)
jq

P
(q,1)
−jq

− P
(q,0)
jq

P
(q,1)
−jq+1

)

∏

q′∈Sj\I

(

P
(q′,0)
jq

P
(q′,1)
−jq+1 − P

(q′,0)
jq−1 P

(q′,1)
−jq+1

)

(X0)

hence for any r > 1,

‖πj‖r 6
∑

I⊂Sj

∥

∥

∥

∥

∥

∥

∏

q∈I

(

P
(q,1)
−jq

− P
(q,1)
−jq+1

)

∏

q′∈Sj\I

(

P
(q′,0)
jq

− P
(q′,0)
jq−1

)

(X0)

∥

∥

∥

∥

∥

∥

r

. (1.4.5)

We denote for simplicity for j ∈ N
d and I ⊂ Sj,

P
(I)
j

=
∏

q∈I

(

P
(q,1)
−jq

− P
(q,1)
−jq+1

)

∏

q′∈Sj\I

(

P
(q′,0)
jq

− P
(q′,0)
jq−1

)

(X0) . (1.4.6)
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Notice that when I is empty, this corresponds to the operators defined in [VW14]. When I is

not empty, P (I) also corresponds to these operators but when the family (εi)i∈Zd is replaced

by (εiI )i∈Zd where iI
q = −iq if q /∈ I and iI

q = iq if q ∈ I.

We shall denote

Pi :=

d
∏

q=1

(

P
(q,0)
iq

− P
(q,0)
iq−1

)

, i ∈ Z
d. (1.4.7)

Remark 1.5. Using the arguments in the proof of Theorem 1 of [Wu05], we infer that ‖πj‖q 6

δj+1,q + δ−j−1,q for any j ∈ N, hence the right hand side of (1.4.1) can be bounded by the

physical measure dependence when d = 1. For d larger than 2, it is not clear to us how the

coefficients πj, j ∈ N
d compare with the physical dependence measure.

We now give a Rosenthal-like inequality for weighted sums of Bernoulli random fields in

terms of the physical dependence measure.

Theorem 1.6. Let
{

εi, i ∈ Z
d
}

be an i.i.d. set of random variables. Then for any measurable

function f : RZ
d → R such that Xj := f ((Xj−i))i∈Zd has a finite moment of order p > 2 and

is centered, and any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

,

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
14.5p

log p





∑

i∈Zd

a2
i





1/2
∑

j∈Nd

(4 ‖j‖∞ + 4)
d/2

δj,2

+
14.5p

log p





∑

i∈Zd

|ai|p




1/p
∑

j∈Nd

(4 ‖j‖∞ + 4)d(1−1/p) δj,p. (1.4.8)

Remark 1.7. Like in [EM02], we could derive Kahane-Khintchine inequalities. However, the

result may not be optimal due to application of Lemma 2.4, since sharpness of the constant

(p − 1)
d/2

is not clear when the filtration is generated by i.i.d. random variables.

Remark 1.8. Using Remark 7 in [JS88] and Rosenthal’s inequality in weak L
p-spaces, it is

possible to obtain a version of Theorems 1.4 and 1.6 where the L
p norm is replaced by

‖X‖p,∞ := supA∈F P(A)1/p−1
E [X1A].

1.5. Convergence rates in the central limit theorem for weighted sums. Let (Xj)j∈Zd =

f
(

(εj−i)i∈Zd

)

be a centered square integrable Bernoulli random field and for any positive in-

teger n, let bn := (bn,i)i∈Zd be an element of ℓ2
(

Z
d
)

. We are interested in the asymptotic

behavior of the sequence (Sn)n>1 defined by

Sn :=
∑

i∈Zd

bn,iXi. (1.5.1)

Let us denote for k ∈ Z
d the map τk : ℓ2

(

Z
d
)

→ ℓ2
(

Z
d
)

defined by τk

(

(xi)i∈Zd

)

:= (xi+k)i∈Zd .

In [KVW16], Corollary 2.6 states the following. Assume that the series
∑

i∈Zd ‖Pi (X0)‖2

converges and that for any q ∈ [d],

1

‖bn‖ℓ2

∥

∥τeq
(bn) − bn

∥

∥

ℓ2 = 0. (1.5.2)
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Then the series
∑

i∈Zd |Cov (X0, Xi)| converges and denoting

σ :=





∑

i∈Zd

Cov (X0, Xi)





1/2

, (1.5.3)

the sequence (Sn/ ‖bn‖ℓ2)n>1 converges in distribution to a centered normal distribution with

variance σ2. The argument rests on an approximation by an m-dependent random field. The

same conclusion holds if we combine (1.5.2) with
∑

i∈Zd δi,2 < +∞. We are interested in rates

in the previous central limit theorems. We shall state it in terms of the Wu’s coefficients,

which are more convenient than those given by (1.4.2). Nevertheless, an analogous statement

can be derived by similar arguments for the latter coefficients. It seems difficult to link the

assumption
∑

i∈Zd |Cov (X0, Xi)| < ∞ with the projectors defined in (1.4.6). However, by

Lemma 2.4 in [KVW16], the inequality

∑

i∈Zd

|Cov (X0, Xi)| 6





∑

j∈Zd

‖Pj (X0)‖2





2

(1.5.4)

holds, where Pj is defined by (1.4.7).

Theorem 1.9. Let p > 2, p′ := min {p, 3} and let (Xj)j∈Zd = f
(

(εj−i)i∈Zd

)

be a centered

Bernoulli random field with a finite moment of order p and for any positive integer n, let

bn := (bn,i)i∈Zd be an element of ℓ2
(

Z
d
)

such that for any n > 1, the set
{

k ∈ Z
d, bn,k 6= 0

}

is

finite, limn→+∞ ‖bn‖ℓ2 = +∞ and (1.5.2) holds for any q ∈ [d]. Assume that for some positive

α and β, the following series are convergent:

C2 :=
∑

i∈Zd

(‖i‖∞ + 1)
d/2+α

δi,2 and Cp :=
∑

i∈Zd

(‖i‖∞ + 1)
d(1−1/p)+β

δi,p. (1.5.5)

Let Sn be defined by (1.5.1),

∆n := sup
t∈R

∣

∣

∣

∣

P

{

Sn

‖bn‖ℓ2

6 t

}

− Φ (t/σ)

∣

∣

∣

∣

and (1.5.6)

εn :=
∑

j∈Zd

E [X0Xj]





∑

i∈Zd

bn,ibn,i+j

‖bn‖ℓ2

− 1



 . (1.5.7)

Assume that σ be given by (1.5.3) is positive. Let γ > 0 and let

n0 := inf
{

N > 1 | ∀n > N,
√

σ2 + εn − 20 (log 2)
−1

C2 ([‖bn‖ℓ2 ]
γ
)
−α

> σ/2
}

. (1.5.8)

Then for each n > n0,

∆n 6 150 (20 ([‖bn‖ℓ2 ] + 21)γ + 21)(
p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′

(σ/2)−p′

+

(

2
|εn|
σ2

+ 80 (log 2)−1 ‖bn‖−γα
ℓ2

σ2
C2

2

)

(2πe)−1/2

+

(

14.5p

σ log p
4d/2 ‖bn‖−γα

ℓ2 C2

)
p

p+1

+

( ‖bn‖ℓp

σ ‖bn‖ℓ2

14.5p

log p
4d(1−1/p) ‖bn‖−γβ

ℓ2 Cp

)
p

p+1

. (1.5.9)
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In particular, there exists a constant κ such that for all n > n0,

∆n 6 κ

(

‖bn‖γ(p′−1)d−p′

ℓ2 ‖bn‖p′

ℓp′ + |εn| + ‖bn‖−γα p
p+1

ℓ2 + ‖bn‖
p

p+1

ℓp ‖bn‖− p
p+1 (γβ+1)

ℓ2

)

. (1.5.10)

Observe that (1.5.2), the fact that limn→+∞ ‖bn‖ℓ2 = +∞ and finiteness of C2 imply that

the sequence (εn)n>1 converges to 0 hence n0 is well-defined.

Recall notation (N.9). Let (Λn)n>1 be a sequence of subsets of Zd. The choice bn,j = 1 if

j ∈ Λn and 0 otherwise yields the following corollary for set-indexed partial sums.

Corollary 1.10. Let (Xi)i∈Zd be a centered Bernoulli random field with a finite moment of

order p > 2, p′ := min {p, 3} and let (Λn)n>1 be a sequence of subset of Zd such that |Λn| → +∞
and for any k ∈ Z

d, limn→+∞ |Λn ∩ (Λn − k)| / |Λn| = 0. Assume that the series defined in

(1.5.5) are convergent for some positive α and β and that σ defined by (1.5.3) is positive. Let

γ > 0 and n0 be defined by (1.5.8). There exists a constant κ such that for any n > n0,

sup
t∈R

∣

∣

∣

∣

∣

P

{

∑

i∈Λn
Xi

|Λn|1/2
6 t

}

− Φ (t/σ)

∣

∣

∣

∣

∣

6 κ



|Λn|q +
∑

j∈Zd

|E [X0Xj]|
∣

∣

∣

∣

|Λn ∩ (Λn − j)|
|Λn| − 1

∣

∣

∣

∣



 , (1.5.11)

where

q := max

{

γ (p′ − 1) d − p′

2
+ 1; −γα

p

2 (p + 1)
;

1 − p − pγβ

p + 1

}

. (1.5.12)

1.6. Rate of convergence of kernel estimates in a regression model. We consider the

following regression model:

Yi = g

(

i

n

)

+ Xi, i ∈ Λn := {1, . . . , n}d
, (1.6.1)

where g : [0, 1]d → R is an unknown smooth function and (Xi)i∈Zd is a zero mean stationary

Bernoulli random field. Let K be a probability kernel defined on R
d and let (hn)n>1 be a

sequence of positive numbers which converges to zero and which satisfies

lim
n→+∞

nhn = +∞ and lim
n→+∞

nhd+1
n = 0. (1.6.2)

We estimate the function g by the kernel estimator gn defined by

gn (x) =

∑

i∈Λn
YiK

(

x−i/n
hn

)

∑

i∈Λn
K
(

x−i/n
hn

) , x ∈ [0, 1]d, (1.6.3)

where

Λn = {1, . . . , n}d . (1.6.4)

We make the following assumptions on the regression function g and the probability kernel

K:

(A1) The probability kernel K fulfils
∫

Rd K (u) du = 1, is symmetric, non-negative, sup-

ported by [−1, 1]d. Moreover, there exist positive constants r, c and C such that for

any x, y ∈ [−1, 1]d, |K (x) − K (y)| 6 r ‖x − y‖∞ and c 6 K (x) 6 C.
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(A2) There exists a positive constant B such that the absolute values of all the derivatives

of first order of g are bounded by B on [0, 1]d.

Assumption (A2) will not be used in the following result. However, by Proposition 1 in

[EM07], this guarantees that

sup
x∈[0,1]d

sup
g∈Lip(B)

|E [gn (x)] − g (x)| = O (hn) , (1.6.5)

where Lip (B) denotes the collection of all B-Lipschitz functions on R
d.

Theorem 1.11. Let p > 2, p′ := min {p, 3} and let (Xj)j∈Zd = f
(

(εj−i)i∈Zd

)

be a centered

Bernoulli random field with a finite moment of order p. Assume that for some positive α and

β, the following series are convergent:

C2 :=
∑

i∈Zd

(‖i‖∞ + 1)
d/2+α

δi,2 and Cp :=
∑

i∈Zd

(‖i‖∞ + 1)
d(1−1/p)+β

δi,p. (1.6.6)

Let gn (x) be defined by (1.6.3), (hn)n>1 be a sequence which converges to 0 and satisfies

(1.6.2),

∆n := sup
t∈R

∣

∣

∣

∣

P

{

(nhn)
d/2

(gn(x) − E [gn(x)]) 6 t
}

− Φ

(

t

σ ‖K‖2

)∣

∣

∣

∣

, (1.6.7)

An := (nhn)d/2





∑

i∈Λn

K2

(

x − i/n

hn

)





1/2

‖K‖−1
L2(Rd)





∑

i∈Λn

K

(

x − i/n

hn

)





−1/2

and

(1.6.8)

εn :=
∑

j∈Zd

E [X0Xj]





∑

i∈Λn∩(Λn−j)

K
(

x−i/n
hn

)

K
(

x−(i−j)/n
hn

)

∑

k∈Λn
K2
(

x−k/n
hn

) − 1



 . (1.6.9)

Assume that σ :=
∑

j∈Zd Cov (X0, Xj) > 0. Let n1 ∈ N be such that for each n > n1,

1

2
6 (nhn)

−d
K

(

x − i/n

hn

)

6
3

2
and (1.6.10)

1

2
‖K‖

L2(Rd) 6 (nhn)
−d

K2

(

x − i/n

hn

)

6
3

2
‖K‖

L2(Rd) . (1.6.11)

Then there exists a constant κ such that for each n > max {n0, n1},

∆n 6 κ |An − 1|
p

p+1 + |εn| + κ (nhn)
d
2 (γ(p′−1)d−p′+2)

+ (nhn)
− d

2 γα p

p+1 + (nhn)
2d−p(γβ+1)

2(p+1) . (1.6.12)

Lemma 1 in [EMS10] shows that under (1.6.2), the sequence (An)n>1 goes to 1 as n goes to

infinity and that the integer n1 is well-defined. Moreover, a rate can be given in terms of K,

by following the computations in the proof of that lemma.
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2. Proofs

2.1. Tools. We briefly review orthomartingales, following [Kho02].

Definition 2.1. We say that (Fi)i∈Zd is a commuting filtration if for any integrable random

variable Y and any i, j ∈ Z
d,

E [E [Y | Fi] | Fj] = E
[

Y | Fmin{i,j}

]

. (2.1.1)

Definition 2.2. A collection of random variables
{

Mn, n ∈ Z
d
}

is said to be an orthomartin-

gale random field with respect to the commuting filtration (Fi)i∈Zd if for all n ∈ Z
d, the random

variable Mn is Fn-measurable, integrable and

for all i, j ∈ Z
d such that i 4 j, E [Mj | Fi] = Mi. (2.1.2)

Definition 2.3. A collection of random variables
{

Dn, n ∈ Z
d
}

(where only finite many of

them are not zero) is said to be an orthomartingale differences random field with respect to

the commuting filtration (Fi)i∈Zd if for all n ∈ Z
d, the random variable Dn is Fn-measurable,

integrable and the random field (Mn)n∈Zd defined by Mn :=
∑

i4n Di is an orthomartingale

differences random field.

Notice that
{

Dn, n ∈ Z
d
}

is said to be an orthomartingale differences random field with

respect to the commuting filtration (Fi)i∈Zd if and only if for each n ∈ Z
d and each q ∈ [d],

E
[

Mn | Fn−eq

]

= 0.

Observe that if
{

Dn, n ∈ Z
d
}

is an orthomartingale differences random field, then for any

fixed (n1, . . . , nd−1) ∈ Z
d−1, the random field

(

D(n1,...,nd−1,n)

)

n∈Z
is a martingale differences

sequence for the filtration (Gn)n∈Z
, where

Gn = σ





⋃

n1,...,nd−1∈Zd−1

F(n1,...,nd−1,n)



 . (2.1.3)

Rio’s version of Burkholder’s inequality (Theorem 2.1 in [Rio09]) states the following: if

(Xn)n>1 is a martingale differences sequence and p > 2, then

∥

∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

∥

2

p

6 (p − 1)

n
∑

i=1

‖Xi‖2
p . (2.1.4)

With the previous observation, this can be extended to orthomartingale differences by induction

on the dimension.

Lemma 2.4. Let (Yi)m4i4n,i∈Zd be an orthomartingale differences random field with respect

to the commuting filtration (Fi)m4i4n,i∈Zd . Then

∥

∥

∥

∥

∥

∥

∑

m4i4n

Yi

∥

∥

∥

∥

∥

∥

2

p

6 (p − 1)d
∑

m4i4n

‖Yi‖2
p . (2.1.5)
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2.2. Proof of Theorem 1.4. We assume that there are only finitely many indexes i such

that ai 6= 0. The general case can be deduced from the latter by considering for a fixed u the

weights a
(u)
i instead of ai, where

a
(u)
i

=

{

ai if ‖i‖∞ 6 m,

0 otherwise,
(2.2.1)

and letting u going to infinity.

For i ∈ Z
d and v ∈ N

d, we define

Xi,v = E [Xi | σ (εu, i − v 4 u 4 i + v)] (2.2.2)

and for a subset J of [d] and a positive integer n,

X
(n)
i,J =

∑

I⊂J

(−1)|I|
∑

0J4kJ4n1J

Xi,kI+1I
. (2.2.3)

In this way,

X
(n)
i,J =

∑

I⊂J

(−1)
|I|

Xi,(n+1)1I
, (2.2.4)

hence

∑

J⊂[d]

(−1)
|J|

X
(n)
i,J =

∑

J⊂[d]

(−1)
|J|
∑

I⊂J

(−1)
|I|

Xi,(n+1)1I

=
∑

I⊂[d]

(−1)
|I|

Xi,(n+1)1I

∑

I⊂J⊂[d]

(−1)
|J|

.

Taking into account that
∑

I⊂J⊂[d] (−1)|J| equals zero except when I = [d], we derive that

∑

J⊂[d]

(−1)
|J|

X
(n)
i,J = (−1)

d
Xi,(n+1)1. (2.2.5)

Therefore, by martingale convergence theorem,
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

= lim
n→+∞

∥

∥

∥

∥

∥

∥

∑

i∈Zd

ai

∑

J⊂[d]

(−1)
|J|

X
(n)
i,J

∥

∥

∥

∥

∥

∥

p

(2.2.6)

6 lim
n→+∞

∑

J⊂[d]

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiX
(n)
i,J

∥

∥

∥

∥

∥

∥

p

, (2.2.7)

and by (2.2.3), we have.
∑

i∈Zd

aiX
(n)
i,J =

∑

0J4kJ4n1J

∑

i∈Zd

ai

∑

I⊂J

(−1)
|I|

Xi,kI+1I
. (2.2.8)

Using the triangular inequality, it follows that
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
∑

J⊂[d]

∑

0J4kJ

∥

∥

∥

∥

∥

∥

∑

i∈Zd

ai

∑

I⊂J

(−1)|I| Xi,kI+1I

∥

∥

∥

∥

∥

∥

p

. (2.2.9)
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We are thus reduced to estimate the quantities

cJ,k :=

∥

∥

∥

∥

∥

∥

∑

i∈Zd

ai

∑

I⊂J

(−1)
|I|

Xi,kI+1I

∥

∥

∥

∥

∥

∥

p

, J ⊂ [d], k ∈ Z
d. (2.2.10)

Let us fix J ⊂ [d] and k ∈ Z
d. Define

Av :=

d
∏

q=1

Av,q, v ∈ Z
d, (2.2.11)

where

Av,q :=

{

[(2kq + 2) vj , (2kq + 2) (vj + 1)) if q ∈ J,

{vq} if q /∈ J,
(2.2.12)

and for a subset K of J ,

EK :=
{

v ∈ Z
d, vq is even if and only if q ∈ K

}

. (2.2.13)

By (2.2.10) and the fact that Z
d is the disjoint union

⋃

K⊂J

⋃

v∈EK
Av, we derive that

cJ,k 6
∑

K⊂J

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

ai

∑

I⊂J

(−1)|I| Xi,kI+1I

∥

∥

∥

∥

∥

p

. (2.2.14)

Lemma 2.5. For any K ⊂ J , the collection of random variables
{

∑

i∈Av

ai

∑

I⊂J

(−1)
|I|

Xi,kI+1I
, v ∈ EK

}

(2.2.15)

is zero-mean and independent.

Proof. That
∑

i∈Av
ai

∑

I⊂J (−1)|I| Xi,kI+1I
follows from the fact that each random variable

Xi, i ∈ Z
d is centered. For a subset S of Zd, denote by FS the σ-algebra generated by the ran-

dom variables εs, s ∈ S. Then for any v ∈ EK , the random variable
∑

i∈Av
ai

∑

I⊂J (−1)
|I|

Xi,kI+1I

is FSv
-measurable, where Sv =

∏d
q=1 Sv,q and

Sv,q :=

{

[(2kq + 2) vj − kq − 1, (2kq + 2) (vj + 1) + kq + 1) if q ∈ J,

{vq} if q /∈ J.
(2.2.16)

If v and v′ are two distinct elements of EK , then Sv ∩Sv′ is empty. Since the set
{

εu, u ∈ Z
d
}

is independent, this proves Lemma 2.5. �

Combining Lemma 2.5 with inequality (1.2.2), we derive form (2.2.14)

cJ,k 6
∑

K⊂J

14.5p

log p





∑

v∈EK

E





(

∑

i∈Av

ai

∑

I⊂J

(−1)
|I|

Xi,kI+1I

)2








1/2

+
∑

K⊂J

14.5p

log p

(

∑

v∈EK

E

[∣

∣

∣

∣

∣

∑

i∈Av

ai

∑

I⊂J

(−1)|I| Xi,kI+1I

∣

∣

∣

∣

∣

p])1/p

. (2.2.17)
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Lemma 2.6. The random field (Yi)i∈Zd defined by

Yi =

{

ai

∑

I⊂J (−1)|I| Xi,kI+1I
if i ∈ Av

0 otherwise,
(2.2.18)

is an orthomartingale differences random field with respect to the commuting filtration (Fi)i∈Zd

defined by

Fi := σ (εu, u 4 i + kJ + 1J) . (2.2.19)

Proof. Measurability of Yi with respect to Fi follows by the definition of Xi,v given in (2.2.2).

Let i ∈ Av and let us check that for any q ∈ [d],

E
[

Yi | Fi−eq

]

= 0. (2.2.20)

If q does not belong to J , then (2.2.20) holds because Yi is centered and measurable with

respect to the σ-algebra generated by εu, uq = iq, which is independent of Fi−eq
. Assume now

that q belongs to J . Then the equality

E
[

Yi | Fi−eq

]

= ai

∑

I⊂J,q /∈I

(−1)
|I|

E
[

Xi,kI+1I
| Fi−eq

]

− ai

∑

I⊂J,q /∈I

(−1)
|I|

E
[

Xi,kI∪{q}+1I∪{q}
| Fi−eq

]

(2.2.21)

holds. For a subset S of Zd, denote by FS the σ-algebra generated by the random variables

εs, s ∈ S. By Proposition in [WW13], equality E [E [Y | FS ] | FS′ ] = E [Y | FS∩S′ ] takes place

for any integrable random variable Y . Applying this to

S =
{

u ∈ Z
d, i − kI∪{q} − 1I∪{q} 4 u 4 i + kI∪{q} + 1I∪{q}

}

(2.2.22)

and S′ = {u, u 4 i + kJ + 1J}, we derive (2.2.20). This ends the proof of Lemma 2.6. �

Using Lemmas 2.4 and 2.6, we infer from (2.2.17) that

cJ,k 6
∑

K⊂J

14.5p

log p





∑

v∈EK

∑

i∈Av

a2
i E





(

∑

I⊂J

(−1)
|I|

Xi,kI+1I

)2








1/2

+
∑

K⊂J

14.5p

log p
(p − 1)d/2







∑

v∈EK





∑

i∈Av

|ai|2
∥

∥

∥

∥

∥

∑

I⊂J

(−1)|I| Xi,kI+1I

∥

∥

∥

∥

∥

2

p





p/2






1/p

. (2.2.23)

Lemma 2.7. The random field
(

∑

I⊂J (−1)
|I|

Xi,kI+1I

)

i∈Zd
is identically distributed and

∥

∥

∥

∥

∥

∑

I⊂J

(−1)
|I|

Xi,kI+1I

∥

∥

∥

∥

∥

q

= ‖πk‖q , q ∈ {2, p} . (2.2.24)

Proof. Denote by T i the map defined from R
Z

d

to itself by T i
(

(xj)j∈Zd

)

= (xi+j)j∈Zd . Then

the equality
∑

I⊂J

(−1)
|I|

Xi,kI+1I
=

(

∑

I⊂J

(−1)
|I|

X0,kI+1I

)

◦ T i (2.2.25)
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holds. Observe that for any function f : RZ
d → R, the random fields (f (εn−i))i∈Zd and

(

f ◦ T l (εn−i)
)

i∈Zd have the same distribution. Equality (2.2.24) follows from the fact that

πk =
∑

I⊂J (−1)
|I|

X0,kI+1I
. This ends the proof of Lemma 2.7. �

By Lemma 2.7 and (2.2.23), we derive that

cJ,k 6
∑

K⊂J

14.5p

log p
‖πk‖2

(

∑

v∈EK

∑

i∈Av

a2
i

)1/2

+
∑

K⊂J

14.5p

log p
(p − 1)

d/2 ‖πk‖2





∑

v∈EK

(

∑

i∈Av

|ai|2
)p/2





1/p

. (2.2.26)

Defining BK :=
⋃

v∈EK
Av, the equality

∑

v∈EK

∑

i∈Av

a2
i =

∑

i∈BK

a2
i (2.2.27)

takes place, by disjointness of the family (Av)v∈EK
. Moreover, since p > 2, the function

t 7→ tp/2 is convex on R+ hence by Jensen’s inequality,

∑

v∈EK

(

∑

i∈Av

|ai|2
)p/2

=
∑

v∈EK

|Av|p/2

(

1

|Av|
∑

i∈Av

|ai|2
)p/2

(2.2.28)

6
∑

v∈EK

|Av|p/2−1
∑

i∈Av

|ai|p . (2.2.29)

By (2.2.11) and (2.2.12), |Av| =
∏

q∈J (2kq + 2) hence

∑

v∈EK

(

∑

i∈Av

|ai|2
)p/2

6
∏

q∈J

(2kq + 2)
p/2−1

∑

i∈BK

|ai|p . (2.2.30)

Plugging the bounds (2.2.27) and (2.2.30) into (2.2.26), we deduce

cJ,k 6
∑

K⊂J

14.5p

log p
‖πk‖2

(

∑

i∈BK

a2
i

)1/2

+
∑

K⊂J

14.5p

log p
(p − 1)d/2

∏

q∈J

(2kq + 2)1/2−1/p ‖πk‖2

(

∑

i∈BK

|ai|p
)1/p

. (2.2.31)
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Using concavity of the function t 7→ t1/q on R+ for q ∈ {2, p}, we derive equality
∑N

i=1 x
1/q
i 6

N
q−1

q

(

∑N
i=1 xi

)1/q

. Since Z
d is the disjoint union

⋃

K⊂J BK , we eventually get

cJ,k 6 2d/2 14.5p

log p
‖πk‖2





∑

i∈Zd

a2
i





1/2

+ 2d 2p−1
p

14.5p

log p
(p − 1)

d/2
∏

q∈J

(kq + 1)
1/2−1/p ‖πk‖p





∑

i∈Zd

|ai|p




1/p

. (2.2.32)

Inequality (1.4.1) follows from (2.2.9), (2.2.10) and (2.2.32).

2.3. Proof of Theorem 1.6. We define for j ∈ N and i ∈ Z
d,

Xi,j = E [Xi | σ (εu, ‖u − i‖∞ 6 j + 1)] − E [Xi | σ (εu, ‖u − i‖∞ 6 j)] . (2.3.1)

In this way, by martingale convergence,

Xi − E [Xi | εi] = lim
N→+∞

N
∑

j=0

Xi,j (2.3.2)

hence
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6

+∞
∑

j=0

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi,j

∥

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiE [Xi | εi]

∥

∥

∥

∥

∥

∥

p

(2.3.3)

Let us fix j ∈ N. Like in the proof of Theorem 1.4, we shall divide Z
d into blocks. For v ∈ Z

d,

we define

Av :=

d
∏

q=1

[(2j + 2) vq, (2j + 2) (vq + 1)) , (2.3.4)

and if K is a subset of [d], we define

EK :=
{

v ∈ Z
d, vq is even if and only if q ∈ K

}

. (2.3.5)

Therefore, the following inequality takes place
∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi,j

∥

∥

∥

∥

∥

∥

p

6
∑

K⊂[d]

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

(2.3.6)

Observe that the random variable
∑

i∈Av
aiXi,j is measurable for the σ-algebra generated by

εu, where u satisfies (2j + 2) vq −(j + 1) 6 uq 6 j+1+(2j + 2) (vq + 1)−1 for all q ∈ [d]. Since

the family
{

εu, u ∈ Z
d
}

is independent, the family
{
∑

i∈Av
aiXi,j, v ∈ EK

}

is independent for

all K ⊂ [d]. Using inequality (1.2.2), it thus follows that

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p





∑

v∈EK

∥

∥

∥

∥

∥

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

2

2





1/2

+
14.5p

log p





∑

v∈EK

∥

∥

∥

∥

∥

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

p





1/p

. (2.3.7)
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Adapting the proof of Lemma 2.7, one can see that ‖Xi,j‖q = ‖X0,j‖q for q ∈ {2, p}, hence the

triangle inequality yields

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p
‖X0,j‖2





∑

v∈EK

(

∑

i∈Av

|ai|
)2




1/2

+
14.5p

log p
‖X0,j‖p

(

∑

v∈EK

(

∑

i∈Av

|ai|
)p)1/p

. (2.3.8)

By Jensen’s inequality, for q ∈ {2, p},
(

∑

i∈Av

|ai|
)q

6 |Av|q−1
∑

i∈Av

|ai|q 6 (2j + 2)
d(q−1)

∑

i∈Av

|ai|q (2.3.9)

and using
∑N

i=1 x
1/q
i 6 N

q−1
q

(

∑N
i=1 xi

)1/q

, it follows that

∑

K⊂[d]

∥

∥

∥

∥

∥

∑

v∈EK

∑

i∈Av

aiXi,j

∥

∥

∥

∥

∥

p

6
14.5p

log p
‖X0,j‖2





∑

i∈Zd

a2
i





1/2

(4j + 4)
d/2

+
14.5p

log p
‖X0,j‖p





∑

i∈Zd

|ai|p




1/p

(4j + 4)d(1−1/p) . (2.3.10)

Lemma 2.8. For q ∈ {2, p} and j ∈ N, the following inequality holds

‖X0,j‖q 6
∑

i∈Zd,‖i‖∞=j+1

δi,p. (2.3.11)

Proof. Let us write the set of elements of Zd whose infinite norm is equal to j+1 as {vs, 1 6 s 6 Nj}
where Nj ∈ N and denote

Fs := σ (εu, ‖u‖∞ 6 j, εvt
, 1 6 t 6 s) , (2.3.12)

and F0 := σ (εu, ‖u‖∞ 6 j). Then X0,j =
∑Nj

s=1 E [X0 | Fs] − E [X0 | Fs−1], from which it

follows that

‖X0,j‖q 6

Nj
∑

s=1

‖E [X0 | Fs] − E [X0 | Fs−1]‖q . (2.3.13)

Let Y
(s)

0 := f
(

(

ε∗
−u

)

u∈Zd

)

, where ε∗
v = εv if v 6= vs and ε∗

vs
= ε′

vs
, where (ε′

u)u∈Zd is an

independent copy of (εu)u∈Zd . Since εvs
is independent of the σ-algebra generated by Y

(s)
0 and

ε∗
vs

, we have

E [X0 | Fs] = E

[

X0 − Y
(s)

0 | Fs

]

+ E

[

Y
(s)

0 | Fs−1

]

. (2.3.14)

If A belongs to Fs−1, then Y
(s)

0 1A and X01A have the same distribution hence E
[

Y
(s)

0 | Fs−1

]

=

E [X0 | Fs−1]. Consequently,

‖X0,j‖q 6

Nj
∑

s=1

∥

∥

∥X0 − Y
(s)

0

∥

∥

∥

q
(2.3.15)
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and using the shift introduced in the proof of Lemma 2.7, we derive that
∥

∥

∥X0 − Y
(s)

0

∥

∥

∥

q
6 δ−vs,q

hence

‖X0,j‖q 6

Nj
∑

s=1

δ−vs,q. (2.3.16)

Since {−vs, 1 6 s 6 Nj} = {vs, 1 6 s 6 Nj}, we get the wanted conclusion. �

Combining (2.3.3), (2.3.6), (2.3.10) and (2.3.11), we derive that

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiXi

∥

∥

∥

∥

∥

∥

p

6
14.5p

log p

+∞
∑

j=1

∑

i∈Zd,‖i‖∞=j

δi,2





∑

i∈Zd

a2
i





1/2

(4j + 4)d/2

+
14.5p

log p

+∞
∑

j=1

∑

i∈Zd,‖i‖∞=j

δi,p





∑

i∈Zd

|ai|p




1/p

(4j + 4)
d(1−1/p)

+

∥

∥

∥

∥

∥

∥

∑

i∈Zd

aiE [Xi | εi]

∥

∥

∥

∥

∥

∥

p

. (2.3.17)

In order to control the last term, we use inequality (1.2.2) and bound ‖E [Xi | εi]‖q by δ0,q.

This ends the proof of Theorem 1.6.

2.4. Proof of Theorem 1.9. Denote for a random variable Z the quantity

δ (Z) := sup
t∈R

|P {Z 6 t} − Φ (t)| . (2.4.1)

We say that a random field (Yi)i∈Zd is m-dependent if the collections of random variables

(Yi, i ∈ A) and (Yi, i ∈ B) are independent whenever inf {‖a − b‖∞ , a ∈ A, b ∈ B} > m. The

proof of Theorem 1.9 will use the following tools.

(T.1) By Theorem 2.6 in [CS04], if I is a finite subset of Zd, (Yi)i∈I an m-dependent cen-

tered random field such that E [|Yi|p] < +∞ for each i ∈ I and some p ∈ (2, 3] and

Var
(
∑

i∈I Yi

)

= 1, then

δ

(

∑

i∈I

Yi

)

6 75 (10m + 1)
(p−1)d

∑

i∈I

E [|Yi|p] . (2.4.2)

(T.2) By Lemma 1 in [EMO07], for any two random variables Z and Z ′ and p > 1,

δ (Z + Z ′) 6 2δ (Z) + ‖Z ′‖
p

p+1
p . (2.4.3)

Let (εu)u∈Zd be an i.i.d. random field and let f : RZ
d → R be a measurable function such

that for each i ∈ Z
d, Xi = f (εi−u). Let γ > 0 and n0 defined by (1.5.8).

Let m := ([‖bn‖ℓ2 ] + 1)
γ

and let us define

X
(m)
i

:= E [Xi | σ (εu, i − m1 4 u 4 i + m1)] . (2.4.4)

Since the random field (εu)u∈Zd is independent, the following properties hold.

(P.1) The random field
(

X
(m)
i

)

i∈Zd
is (2m + 1)-dependent.

(P.2) The random field
(

X
(m)
i

)

i∈Zd
is identically distributed and

∥

∥

∥X
(m)
i

∥

∥

∥

p′
6 ‖X0‖p′ .
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(P.3) For any (ai)i∈Zd ∈ ℓ2
(

Z
d
)

and q > 2, the following inequality holds:

∥

∥

∥

∥

∥

∥

∑

i∈Zd

ai

(

Xi − X
(m)
i

)

∥

∥

∥

∥

∥

∥

q

6
14.5q

log q





∑

i∈Zd

a2
i





1/2
∑

j∈N
d

‖j‖∞>m

(4 ‖j‖∞ + 4)
d/2

δj,2

+
14.5q

log q





∑

i∈Zd

|ai|q




1/q
∑

j∈N
d

‖j‖∞>m

(4 ‖j‖∞ + 4)d(1−1/q) δj,q. (2.4.5)

In order to prove (2.4.5), we follow the proof of Theorem 1.6 and start from the

decomposition Xi − X
(m)
i = limN→+∞

∑N
j=m Xi,j instead of (2.3.2).

Define S
(m)
n :=

∑

i∈Zd bn,iX
(m)
i

. An application of (T.2) to Z := S
(m)
n ‖bn‖−1

ℓ2 σ−1 and Z ′ :=
(

Sn − S
(m)
n

)

‖bn‖−1
ℓ2 σ−1 yields

∆n 6 2δ

(

S
(m)
n

σ ‖bn‖ℓ2

)

+ σ− p
p+1

1

‖bn‖
p

p+1

ℓ2

∥

∥

∥
Sn − S(m)

n

∥

∥

∥

p

p+1

p
. (2.4.6)

Moreover,

δ

(

S
(m)
n

δ ‖bn‖ℓ2

)

= sup
t∈R

∣

∣

∣

∣

∣

P

{

S
(m)
n

δ ‖bn‖ℓ2

6 t

}

− Φ (t)

∣

∣

∣

∣

∣

(2.4.7)

= sup
u∈R

∣

∣

∣

∣

∣

∣

P







S
(m)
n

∥

∥

∥S
(m)
n

∥

∥

∥

2

6 u







− Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

δ ‖bn‖ℓ2





∣

∣

∣

∣

∣

∣

(2.4.8)

6 δ





S
(m)
n

∥

∥

∥S
(m)
n

∥

∥

∥

2



+ sup
u∈R

∣

∣

∣

∣

∣

∣

Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2



− Φ (u)

∣

∣

∣

∣

∣

∣

, (2.4.9)

hence, by (P.1) and (T.1) applied with Yi := X
(m)
i

/
∥

∥

∥
S

(m)
n

∥

∥

∥

2
, p′ instead of p and 2m+1 instead

of m, we derive that

∆n 6 (I) + (II) + (III) (2.4.10)

where

(I) := 150 (20m + 21)(p′−1)d
∑

i∈Zd

|bn,i|p
′
∥

∥

∥
X

(m)
i

∥

∥

∥

p′

p′

∥

∥

∥
S(m)

n

∥

∥

∥

−p′

2
, (2.4.11)

(II) := 2 sup
u∈R

∣

∣

∣

∣

∣

∣

Φ



u

∥

∥

∥S
(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2



− Φ (u)

∣

∣

∣

∣

∣

∣

and (2.4.12)

(III) := σ− p

p+1
1

‖bn‖
p

p+1

ℓ2

∥

∥

∥Sn − S(m)
n

∥

∥

∥

p
p+1

p
. (2.4.13)

By (P.2) and the reversed triangular inequality, the term (I) can be bounded in the following

way

(I) 6 150 (20m + 21)(p′−1)d ‖X0‖p′

p′ ‖bn‖p′

ℓp′

(

‖Sn‖2 −
∥

∥

∥
Sn − S(m)

n

∥

∥

∥

)−p′

(2.4.14)
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and by (P.2) with q = 2, we obtain that

(

‖Sn‖2 −
∥

∥

∥Sn − S(m)
n

∥

∥

∥

)−p′

6

(

‖Sn‖2 − 20 (log 2)
−1

m−α ‖bn‖ℓ2 C2

)−p′

. (2.4.15)

By (1.5.7), we have

‖Sn‖2
2

‖bn‖2
ℓ2

= σ2 + εn, (2.4.16)

and we eventually get

(I) 6 150 (20m + 21)(
p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′
(

√

σ2 + εn − 20 (log 2)
−1

m−αC2

)−p′

.

Since n > n0, we derive, in view of (1.5.8),

(I) 6 150 (20m + 21)(p′−1)d ‖X0‖p′

p′

(‖bn‖ℓp′

‖bn‖ℓ2

)p′

(σ/2)−p′

(2.4.17)

In order to bound (II), we argue as in [YWLH12] (p. 456). Doing similar computations as

in [EM14] (p. 272), we obtain that

(II) 6 (2πe)
−1/2

(

inf
k>1

ak

)−1
∣

∣a2
n − 1

∣

∣ , (2.4.18)

where an :=
∥

∥

∥S
(m)
n

∥

∥

∥

2
σ−1 ‖bn‖−1

ℓ2 . Observe that for any n, by (P.2),

an >

‖Sn‖2 −
∥

∥

∥
Sn − S

(m)
n

∥

∥

∥

2

σ ‖bn‖ℓ2

>

√
σ2 + εn − 20 (log 2)

−1
C2m−α

σ
(2.4.19)

and using again (P.2) combined with Theorem 1.6 for p = 2,

∣

∣a2
n − 1

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥S
(m)
n

∥

∥

∥

2

2

σ2 ‖bn‖2
ℓ2

− 1

∣

∣

∣

∣

∣

∣

∣

(2.4.20)

6

∣

∣

∣

∣

∣

‖Sn‖2
2

σ2 ‖bn‖2
ℓ2

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∥

∥

∥S
(m)
n

∥

∥

∥

2

2
− ‖Sn‖2

2

∣

∣

∣

∣

σ2 ‖bn‖2
ℓ2

(2.4.21)

6
|εn|
σ2

+

∣

∣

∣

∥

∥

∥S
(m)
n

∥

∥

∥

2
− ‖Sn‖2

∣

∣

∣

(∥

∥

∥S
(m)
n

∥

∥

∥

2
+ ‖Sn‖2

)

σ2 ‖bn‖2
ℓ2

(2.4.22)

6
|εn|
σ2

+

∥

∥

∥S
(m)
n − Sn

∥

∥

∥

2

(∥

∥

∥S
(m)
n

∥

∥

∥

2
+ ‖Sn‖2

)

σ2 ‖bn‖2
ℓ2

(2.4.23)

6
|εn|
σ2

+ 40 (log 2)−1 m−α

σ2
C2

2 . (2.4.24)

This leads to the estimate

(II) 6
(2πe)−1/2

√
σ2 + εn − 20 (log 2)

−1
C2m−α

( |εn|
σ

+ 40 (log 2)
−1 m−α

σ
C2

2

)

, (2.4.25)
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and since n > n0, we derive, in view of (1.5.8),

(II) 6

(

2
|εn|
σ2

+ 80 (log 2)−1 ‖bn‖−γα
ℓ2

σ2
C2

2

)

(2πe)−1/2 . (2.4.26)

The estimate of (III) rests on (P.2):

(III) 6 σ− p

p+1











14.5p

log p

∑

j∈N
d

‖j‖∞>m

(4 ‖j‖∞ + 4)
d/2

δj,2











p
p+1

+ σ− p

p+1 ‖bn‖− p

p+1

ℓ2 ‖bn‖
p

p+1

ℓp











14.5p

log p

∑

j∈N
d

‖j‖∞>m

(4 ‖j‖∞ + 4)
d(1−1/p)

δj,p











p
p+1

(2.4.27)

hence

(III) 6

(

14.5p

σ log p
4d/2 ‖bn‖−γα

ℓ2 C2

)
p

p+1

+

( ‖bn‖ℓp

σ ‖bn‖ℓ2

14.5p

log p
4d(1−1/p) ‖bn‖−γβ

ℓ2 Cp

)
p

p+1

. (2.4.28)

The combination of (2.4.10), (2.4.17), (2.4.26) and (2.4.28) gives (1.5.9).

2.5. Proof of Theorem 1.11. Since the random variables Xi are centered, we derive by

definition of gn (x) that

(nhn)d/2 (gn(x) − E [gn(x)]) = (nhn)d/2

∑

i∈Λn
XiK

(

x−i/n
hn

)

∑

i∈Λn
K
(

x−i/n
hn

) . (2.5.1)

Keeping in mind (1.6.4), we define

bn,i = K

(

1

hn

(

x − i

n

))

, i ∈ Λn (2.5.2)

and bn,i = 0 otherwise. Denote bn = (bn,i)i∈Zd and ‖bn‖ℓ2 :=
(

∑

i∈Zd b2
n,i

)1/2

. In this way, by

(2.5.1) and (1.6.8),

1

‖K‖
L2(Rd) σ

(nhn)d/2 (gn(x) − E [gn(x)]) =
1

σ

∑

i∈Zd

bniXi ‖bn‖−1
ℓ2 An. (2.5.3)

Applying (T.2) to Z =
∑

i∈Zd bniXi ‖bn‖−1
ℓ2 and Z ′ =

∑

i∈Zd bniXi ‖bn‖−1
ℓ2 σ−1 (An − 1) and

using Proposition 1 in [EVW13], we derive that

∆n 6 2∆′
n + 3

∥

∥

∥

∥

∥

∥

(2p)
1/2

σ−1
∑

j∈Zd

δj,p

∥

∥

∥

∥

∥

∥

p

p+1

|An − 1|
p

p+1 , (2.5.4)

where

∆′
n = sup

t∈R

∣

∣

∣

∣

P {Z 6 t} − Φ

(

t

σ

)∣

∣

∣

∣

. (2.5.5)
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We then use Theorem 1.9 to handle ∆′
n (which is allowed, by (A1)). Using boundedness of

K, we control the ℓp and ℓp′

norms , by a constant times the ℓ2-norm. This ends the proof of

Theorem 1.11.
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