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CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR
WEIGHTED SUMS OF BERNOULLI RANDOM FIELDS

DAVIDE GIRAUDO

ABSTRACT. We prove moment inequalities for a class of functionals of i.i.d. random fields.
We then derive rates in the central limit theorem for weighted sums of such randoms fields
via an approximation by m-dependent random fields.

1. INTRODUCTION AND MAIN RESULTS

1.1. Goal of the paper. In its simplest form, the central limit theorem states that if (Xi)@1
is an independent identically distributed (i.i.d.) sequence of centered random variables having

variance one, then the sequence (n=%/23°7" | X;) converges in distribution to a standard

n>=1
normal random variable. If X; has a finite moment of order three, Berry [Ber41] and Esseen

[Ess42] gave the following convergence rate:

P{n_l/QZXi < t} —P{N <t}
i=1

where C' is a numerical constant and N has a standard normal distribution. The question

sup

< CE [|X1|3} n=1/2, (1.1.1)
teR

of extending the previous result to a larger class of sequence have received a lot of attention.
When X; can be represented as a function of an i.i.d. sequence, optimal convergence rates are
given in [Jir16].

In this paper, we will focus on random fields, that is, collection of random variables indexed
by Z¢ and more precisely in Bernoulli random fields, which are defined as follows.

Definition 1.1. Let d > 1 be an integer. The random field (Xn), czq is said to be Bernoulli

if there exist an i.i.d. random field (Ei)iezd and a measurable function f: RZ? 5 R such that
Xn = f ((en—i)jeza) for eachn € Z°.

We are interested in the asymptotic behavior of the sequence (Sy),,, defined by

Spi=3_ bniXi, (1.1.2)

i€z
where by, = (bn,i);czq is an element of 02 (Zd). Under appropriated conditions on the depen-
dence of the random field (X;);c;. and the sequence of weights (), that will be specified

later, the sequence (Sy/ ||bn|l5) converges in law to a normal distribution [KVW16]. The

n>1
goal of this paper is to provide bounds of the type Berry-Esseen in order to give convergence

rates in the central limit theorem.
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This type of question has been addressed for the so-called BL (#)-dependent random fields
[BKO06], martingale differences random fields [NP04], positively and negatively dependent ran-
dom fields [Bul96, Pav93] and mixing random fields [BS07, BD90].

In order to establish this kind of results, we need several ingredients. First, we need con-
vergence rates for m-dependent random fields. Second, a Bernoulli random field can be de-
composed as the sum of an m-dependent random field and a remainder. The control of the
contribution of the remainder is done by a moment inequality in the spirit of Rosenthal’s in-
equality [Ros70]. One of the main applications of such an inequality is the estimate of the
convergence rates in the central limit theorem for random fields that can be expressed as a
functional of a random field consisting of i.i.d. random variables. The method consists in
approximating the considered random field by an m-dependent one, and in controlling the ap-
proximation with the help of the established moment inequality. In the one dimensional case,
probability and moment inequalities have been established in [LXW13] for maxima of partial
sums of Bernoulli sequences. The techniques used therein permit to derive results for weighted
sums of such sequences.

The paper is organized as follows. In Subsections 1.2, we give the material which is nec-
essary to understand the moment inequality stated in Theorem 1.4. We then give the results
on convergence rates in Subsection 1.3 (for weighted sums, sums on subsets of Z? and in a
regression model) and compare the obtained results in the case of linear random fields with
some existing ones. Section 2 is devoted to the proofs.

1.2. Backgroud. The following version of Rosenthal’s inequality is due to Johnson, Schecht-
man and Zinn [JSZ85]: if (V;);_, are independent centered random variables with a finite
moment of order p > 2, then

1/p

n n 1/2 n
DYl <5 Doz )+ DIl ; (1.2.1)
i=1 p o8P i=1 i=1

where [|[Y ], := (E[[Y|")" for ¢ > 1.
It was first estalish without explicit constant in Theorem 3 of [Ros70].

Various extension of Rosenthal-type inequalities have been obtained under mixing conditions
[Sha95,Rio00] or projective conditions [PUW07,Rio09,MP13]. We are interested by extensions
of (1.2.1) to the setting of dependent random fields.

Throughout the paper, we shall use the following notations.

(N.1) For a positive integer d, the set {1,...,d} is denoted by [d].

(N.2) The coordinatewise order is denoted by <, that is, for ¢ = (iq)d

=1 € 7% and j =
(jq)Zzl € 74, i < j means that iy < ji, for any k € [d].

(N.3) For k € [d], ey, denotes the element of Z? whose gth coordinate is 1 and all the others
are zero. Moreover, we write 0 = (0,...,0) and 1 = (1,...,1).

(N.4) For n = (”k)zzl € N?, we write the product HZ:l ng as |n|.

(N.5) The cardinality of a set I is denoted by |I].

(N.6) For a real number x, we denote by [z] the unique integer such that [z] < z < [z] + 1.

(N.7)

We write ® for the cumulative distribution function of a standard normal law.
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(N.8) If A is a subset of Z? and k € Z4, then A — k is defined as {l — k,1 € A}.
(N.9) For ¢ > 1, we denote by ¢4 (Z%) the space of sequences a := (a;);cza such that
1/
lall = (Cieza lasl*) " < +oo.
(N.10) For ¢ = (iq)jzl, the quantity ||2|| _ is defined as maxi<g<a|iql-
Let (Y3);cz4 be a random field. The sum Y, ;4 Y; is understood as the L'-limit of the sequence
(Sk)k21 where Sk = EiEZd,Hillooék }/z
Following [Wu05] we define the physical dependence measure.

Definition 1.2. Let (X;);czq := (f ((Ei_j))jezd>‘ . be a Bernoulli random field, p > 1 and
€

(€w)ueze be an ii.d. random field which is independent of the i.i.d. random field (), czq

and has the same distribution as (g4,) For i € 74, we introduce the physical dependence

u€ezd-
measure

i i= X — X7, (12.2)
where szf((s;f]) ) and ek, = ey ifu #£0, e = €p.
jezd

In [EVW13,BD14], various examples of Bernoulli random fields are given, for which the
physical dependence measure is either computed or estimated. Proposition 1 of [EVW13] also
gives the following moment inequality: if " is a finite subset of Z<, (ai);er is a family of real
numbers and p > 2, then for any Bernoulli random field (X,,)

nezds
1/2
D aiXi|| < <2pza§> > b (1.2.3)
iel p el jezd

This was used in [EVW13,BD14] in order to establish functional central limit theorems. Tru-
quet [Trul(] also obtained an inequality in this spirit. If (X;);c;a is i.i.d. and centered, (1.2.1)
would give

Z a,'Xi

icl

1/2
<C <Z a%f) X1l . (1.2.4)
p

iel
while Rosenthal’s inequality (1.2.1) would give

1/2 1/p
> aiXi| <C <Zaf~> [X1ll, +C <Z|@i|p> [ Xall, (1.2.5)

i€l icl icl

P
a better result in this context.

In the case of linear processes, equality d; , < Kd; 2 holds for a constant K which does not
depend on j. However, there are processes for which such an inequality does not hold.

Example 1.3. We give an example of a random field such that there is no constant K such
that 85, < Kd;2 holds for all j € Z%. Let p > 2 and let (£;);.54 be an i.i.d. random field
and for each k € Z¢, let fi: R — R be a function such that the random variable Zy :=
fx (€0) is centered and has a finite moment of order p, and ;. ||Zk||§ < +o00. Define
Xp = limy_y00 Zle%j#Nl fr (En—k), where the limit is taken in L?. Then X; — X} =
fi(e0) — fi(eg) hence &; 2 is of order ||Z;||, while J;, is of order [ Z;]|,,.

Consequently, having the fP-norm instead of the £2-norm of the (a3);cr is more suitable.
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1.3. Mains results. We now give a Rosenthal-like inequality for weighted sums of Bernoulli
random fields in terms of the physical dependence measure.

Theorem 1.4. Let {ai,i € Zd} be an i.i.d. set of random variables. Then for any measurable
function f: RZ' - R such that X;j=f ((Xj—i)iezd) has a finite moment of order p > 2 and
is centered, and any (a;);cza € > (Zd),

14.5p e d/2
: ) ,
SoaiXi| < | D] 3 i+ Xyl
i€Z4 » iczd =0
1/p
14.5p » = d(1-1/p)
T > lail > (4j+4) [Xo,ll,, (1.3.1)
&P\ jeza =0
where for j > 1,
Xoj =E[Xo | o {ew [ully <} —E[Xo | o {zw, [ully, <j—1}] (13.2)

and X()’O =E [XO | 0’{50}].

We can formulate a version of inequality (1.3.1) where the right hand side is expressed in
terms of the coefficients of physical dependence measure. The obtained result is not directly
comparable to (1.2.3) because of the presence of the ¢P-norm of the coefficients.

Corollary 1.5. Let {Ei,i € Zd} be an i.i.d. set of random variables. Then for any measurable
function f: RZ* 5 R such that X;j=f ((Xj*i)iezd) has a finite moment of order p > 2 and
is centered, and any (a;);cqa € €% (2),

1/2 1/2
14.5p 9 R . d/2 2
Z a; Xi|| <V2 o Z a; Z (47 +4) Z 032
ieze ) 8P \ jeza =0 lill o=3
1/pJr 1/2
14.5 X -
+\/§E§\/p—l Slal” | S @i+a S s, L (133)
i€Zd j=0 1]l o =3

Let (Xj);ez0 = f ((6j-4);eza) be a centered square integrable Bernoulli random field and
for any positive integer n, let b, := (bnvi)iGZd be an element of (2 (Zd). We are interested in
the asymptotic behavior of the sequence (S,),,, defined by

Spi= Y bniXi. (1.3.4)
i€z
Let us denote for k € Z% the map 73, : £2 (Zd) — 02 (Zd) defined by 7% ((wi)iezd) = (Tirk) ez
In [KVW16], Corollary 2.6 gives the following result: under a Hannan type condition on the
random field (X;);.;« and under the following condition on the weights: for any ¢ € [d],

1

ol |7eq (bn) = bn||,» =0, (1.3.5)
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the series ) ;4 |Cov (Xo, X;)| converges and with
1/2
o= [ Cov(Xo, Xi) , (1.3.6)
i€
the sequence (Sy/ ||bn|l;2),~, converges in distribution to a centered normal distribution with
variance o2. The argument relies on an approximation by an m-dependent random field.

The purpose of the next theorem is to give a general speed of convergence. In order to

measure it, we define
Sn
A, :=sup P{— < t} —®(t/o)
teR ||bn||e2

The following quantity will also play an important role in the estimation of convergence rates.

eni= Y [E[XoXj)| Y

JEZA i€Z4

. (1.3.7)

nilniti | (1.3.8)
[[0n |2

Theorem 1.6. Let p > 2, p' := min{p,3} and let (X;); 5. = (f ((Ej*i)iezd))jezd be a
centered Bernoulli random field with a finite moment of order p and for any positive integer n,
let b, = (bnﬂ')z‘ezd be an element of 2 (Zd) such that for any n > 1, the set {k €Z% by # O}
is finite and nonempty, limy, 4 o ||bn| 2 = +00 and (1.3.5) holds for any q € [d]. Assume that
for some positive o and B, the following series are convergent:

+o00 too
Co (o) = (i + ) Xolly, and C,p (8) = (i + )"V Xg ). (1.3.9)
1=0 1=0

Let Sy, be defined by (1.3.4),
Assume that ) ;a4 |Cov (Xo, X3)| is finite and that o be given by (1.3.6) is positive. Let
v >0 and let

no := inf {N >1[Vn >N, v/o2+ e, — 29 (log2) " Cs (@) ([[Iball,2]) ™ = 0/2} . (1.3.10)

Then for each n = ny,

— - - v -
K, <1500 ([l + 207 + 200 ol (et ) oy
n é2
len| “1 [1ball2"” -
+ (2?+80(10g2) 1075202 (a)* | (2me)~1/?

v

14.5p e 7 bl 1459 - - aE
+(—4d/2||bn|uﬂ Cz(a)) +(7£—4d“ Y bl G (8) )

ologp o [[bnllp2 logp
(1.3.11)
In particular, there exists a constant k such that for all n > ng,
y(p'~1)d—p’ / —yoagks T — s (vA+1)
A, <x (ubnné P 12+ feal + ol 7T 4 15l 1517 ) - (13.12)

Remark 1.7. If (1.3.5), limy, 4o [|bnll,>» = +00 and the family (0;2),.,
the sequence (g,,),,, converges to 0 hence ng is well-defined. However, it is not clear to us
whether the finiteness of Cs () combined with (1.3.5) and lim,,—, 4 [|bs||,2 = +00 imply that

< is summable, then
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ZjeZd |E[Xo0Xj]| is finite. Nevertheless, we can show an analogous result in terms of d;
coefficients by changing the following in the statement of Theorem 1.6:

(1) the definition of C5 (a) should be replaced by

1/2
+oo
Coy(a) =v2Y_ (G+D"* [N a2, (1.3.13)
=0 lill =i
(2) the definition of C), (§) should be replaced by
N 1/2
Cp(B) =20 1) G+ 52| (1.3.14)
7=0 llell o =3

In this case, the convergence of ) ;. |Cov (Xo, X;)| holds (cf. Proposition 2 in [EVW13]).

Recall notation (N.8). Let (Ay),, be a sequence of subsets of Z%. The choice b, ; = 1 if
7 € A, and 0 otherwise yields the following corollary for set-indexed partial sums.

Corollary 1.8. Let (X;);cza be a centered Bernoulli random field with a finite moment of order
p =2, p' :== min{p,3} and let (Ay),, be a sequence of subset of 7% such that |A,| — +oo
and for any k € Z4, lim,, o |A N (A, — k)| / |An| = 1. Assume that the series defined in
(1.3.9) are convergent for some positive o and 3, that ) ;4 |Cov (Xo, X3)| is finite and that o
defined by (1.3.6) is positive. Let v > 0 and ng be defined by (1.3.10). There exists a constant
K such that for any n = no,

P{M gt} —®(t)o)

sup

teR |An|1/2
ANy —3
< [ A7+ Y E[Xo XS]] "(A—J)' - 1‘ . (1.3.15)
jezd [An]
where . .
—1)d-— 2—p—
q:= max{u—kl;—'ya P ; P p”yﬂ}. (1.3.16)
2 2(p+1)" 2(p+1)
We consider now the following regression model:
Y,-:g(f> + X, i€, ={1,...,n}%, (1.3.17)
n

where g: [0,1] — R is an unknown smooth function and (X;);cza is a zero mean stationary
Bernoulli random field. Let K be a probability kernel defined on R? and let (hn),>, be a
sequence of positive numbers which converges to zero and which satisfies

lim nh, = 400 and lim nhdt! =0. (1.3.18)

n—-+oo n—-+oo

We estimate the function g by the kernel estimator g,, defined by
Sien, Yilt (272)
Sien, K (27)

gn (z) = x € [0,1)% (1.3.19)
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We make the following assumptions on the regression function g and the probability kernel K:

(A) The probability kernel K fulfills [, K (u)du = 1, is symmetric, non-negative, sup-
ported by [—1,1]¢. Moreover, there ex1st posmve constants r, ¢ and C such that for
any ,y € [~1,1]%, |K (z) - K (y)| < r[lz -y and c < K (z) < C.
We measure the speed of convergence of ((nhn)d/2 (gn(x) — E [gn(w)])) to a normal
n>1
distribution by the use of the quantity

A, :=sup
teR

P{ (nho)"? (gu(@) ~ Elgu(e)]) <t} — @ (#K”Q) ’ . (1.3.20)

Two other quantities will be involved, namely,

—1/2
A= (o) [ 3 52 (2 ’/") HKHU(W S (2]
1€EN, 16 n n
(1.3.21)
(m z/n) (m i— J)/n)
= > [E[XoX;]| > e=runttd (1.3.22)
jezd ieA(An—d) ke, K ( hn )

Theorem 1.9. Let p > 2, p' := min{p,3} and let (X;);c50 = (f ((Ej—i)iezd))jezd be a
centered Bernoulli random field with a finite moment of order p. Assume that for some positive

a and B, the following series are convergent:

+oo too
Co(a) =" (i+ )" Xosll, and Cyp (8) :=_ (i + D)™V )Xo, (1.3.23)
1=0 1=0

Let gy, (z) be defined by (1.3.19), (hn),, be a sequence which converges to 0 and satisfies
(1.3.18),

Assume that 3 ;g |Cov (Xo, X;)| ds finite and that o = 3 ; ;. Cov(Xo, X;) > 0. Let
n1 € N be such that for each n > nq,

1 _d T —1i/n 3
- < < = 3.
2\(nhn) K( T >\2and (1.3.24)
1 _d T —1i/n 3
3 1K hagmey < () 82 (T2 ) € 2 1R (1.3.25)
Let ng be the smallest integer for which for all n > ng,
17277\ ¢
NN
VoZ+e, —29(log2)” Lo, (@) Z K i T — * >o0/2. (1.3.26)
ha, n

€N,

Then there exists a constant k such that for each n > max {ng,n1},

An < 1 An = 17T 4 |eg| + i (nhy) H01)422)

2d—p(vB+1)

+ (nhy) " F1FT 4 (k)" 200 . (1.3.27)
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Lemma 1 in [EMS10] shows that under (1.3.18), the sequence (Ay),,, goes to 1 as n goes
to infinity and that the integer n; is well-defined.
We now consider the case of linear random fields in dimension 2, that is,

Xji g = Z iy iz €1 —i1,ja—iz> (1.3.28)

11,i2€Z

where (a4, ,i5);, 4,7 € (' (Z?) and (Eur,us )y, upeze 18 1-1.d., centered and €¢,0 has a finite variance.
We will focus on the case where the weights are of the form by, 4, 5, = 1 if 1 < 41,42 < n and
bn.i, i, = 0 otherwise.

Mielkaitis and Paulauskas [MP11] established the following convergence rate. Denoting

1 n
Al ==sup|P{ |— Z Xiio| <7 p —P{IN| <1} (1.3.29)
n

r>0 ir,iz=1

and assuming that E [|50,0|2+6] is finite and

> (kal+ 1) (Jkol + 1)%af, 4, < +00, (1.3.30)
ki1,ko€Z

the following estimate holds for Al :

AL=0(n""), r:= %min {5, 1- ﬁ} : (1.3.31)

In the context of Corollary 1.8, the condition on the coefficients reads as follows:

1/2
+oo
Z ((z F DM 4 (4 1)2—2/p+6) Z a? < 400, (1.3.32)
i=0 (71,32): 11 (g1552) | oo =1

where p = 2 4+ 6. Let us compare (1.3.30) with (1.3.32). Let s := max {1+ a,2 —2/p+ S}.
When s > 2, (1.3.32) implies (1.3.30). However, this implication does not hold if s < 3/2.
Indeed, let r € (s +1,5/2) and define ay, k, := k7" if k1 = ko > 1 and ay, x, := 0 otherwise.
Then (1.3.32) holds whereas (1.3.30) does not.

Let us discuss the convergence rates in the following example. Let ag, i, := 2~ Ikal=lk2] gpnd
let p =2+ 4, where § € (0,1]. In our context,

a0 o )| | 0= (=g (=) actie (1333)
[An n? "

hence the convergence of > 7 1Cov (Xo0,0, Xj, 4, )| (1 + j2) guarantees that e, in Corol-

J1,J2€
lary 1.8 is of order 1/n. Moreover, since (1.3.32) holds for all a and 3, the choice of v allows
to reach rates of the form n=°+" for any fixed 7. In particular, when 6 = 1, one can reach for
any fixed 7 rates of the form n~'77. In comparison, with the same assumptions, the result

of [MP11] gives n=3/8,
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2. PROOFS
2.1. Proof of Theorem 1.4. We define for j > 1 and ¢ € Zd
Xij=E[Xi|o(eu llu—il, <] -E[Xi|o(eu llu—il, <j-1)]. (2.1.1)

In this way, by the martingale convergence theorem,
N
X; —E[X; | e = NHTOOZ;X,.J (2.1.2)
j=

hence

+oo
Z a; Xill < Z Z CLiXi_’j + Z a; E [Xl | Ei] . (213)

ic7d i=1 ||ic7d ic7d
1EZL » J 1EZL » 1EZL »

Let us fix j > 1. We divide Z? into blocks. For v € Z%, we define

([(27 +2) vy, (25 +2) (v, +1) — 1] N Z), (2.1.4)

HE&

and if K is a subset of [d], we define
Ex:={ve 74, v, is even if and only if ¢ € K}. (2.1.5)
Therefore, the following inequality takes place

ZaiXi,j < Z

i€z p KCl[d]

>, D ki

VEEK 1€A,

(2.1.6)

Observe that the random variable ", , a;X; ; is measurable for the o-algebra generated
by eu, where uw satisfies (25 +2)vg — (j+1) < ug < j+ 14+ (25+2)(vg+1) — 1 for all
q € [d]. Since the family {ey,u € Z%} is independent, the family {Zz‘eAv ai X j,v € Ex} is
independent for each fixed K C [d]. Using inequality (1.2.1), it thus follows that

o\ 1/2
14.5p
> X ek] <pr | 3|5 e
VEEK 1€A, veEFK ||1€A, 2
p\ /P
14.5p
T Toap > Z ai X j (2.1.7)
vEEK ||1€A, p

By stationarity, one can see that || X;;||, = [[Xo,;l, for ¢ € {2, p}, hence the triangle inequality

yields
o\ 1/2
14.5p
ISP S L1 P (3 1o
VEEK 1€EA, &P vEEK \1€A,
14.5 "
-Op
+10—H 0,j||p(z (Z |ai|> ) . (2.1.8)
gp veFEK 1€EAL
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By Jensen’s inequality, for ¢ € {2, p},

<Z |ai|> <A Y aal " < @25+ 2"V N agl (2.1.9)

1€A, 1€A, 1€A,

q—1

1/q
and using Y2 /1 < N'T (Zfil xl) , it follows that

1/2
14. 5p ) d/2
T |5 5] <h(xe) wen
Kc[d] llveEEK i€A, i€z
1/p
14.5p P ) d(1-1/p)
Togp X0il, Z Jai| (45 +4) . (2.1.10)
i€Z4
Combining (2.1.3), (2.1.6) and (2.1.10), we derive that
1/2
14 5p ) d/2
D il <3 ZH oilly | doaf | i+ 4”
i€z gp iczd
1/p
14 5p » a(1— 1/p
* Togp Z [ Xo,ll, Z |a;] (4 +4) HY @l [X; el . (21.11)
A iezd »
In order to control the last term, we use inequality (1.2.1) and bound ||E [X; | &;] ||q by ||X0,0||q

for ¢ € {1,2}. This ends the proof of Theorem 1.4.

Proof of Corollary 1.5. The following lemma, gives a control of the L?-norm of Xg ; in terms
of the physical measure dependence.

Lemma 2.1. For g € {2,p} and j € N, the following inequality holds
1/2

20¢-1) > &, : (2.1.12)

1€Z4,||8]| =5

[Xo0,ll, <

Proof. Let j be fixed. Let us write the set of elements of Z¢ whose infinite norm is equal to j

as {vs,1 < s < N;} where N; € N. We also assume that vs — vs—1 € {ex,1 < d} for all
s€{2,...,N;}.
Denote
Fs =0 (eu, vl < J v, 1 << s), (2.1.13)

and Fo := 0 (€, ||u]|, < j). Then Xo,; = ZS 1E[Xo | Fs] — E[Xo | Fs—1], from which it
follows, by Theorem 2.1 in [Rio09], that

N
1Xo 2 < (¢ = 1) |E[Xo | Fi] - E[Xo | Faur]ll2. (2.1.14)

s=1

Then using similar arguments as in the proof of Theorem 1 (i) in [Wu05] give the bound
|E[Xo | Fs] — E[Xo | Fs—1]ll, < dv,,g + 0v,_,,q- This ends the proof of Lemma 2.1. O
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Now, Corollary 1.5 follows from an application of Lemma 2.1 with ¢ = 2 and g = p respec-
tively. g

2.2. Proof of Theorem 1.6. Denote for a random variable Z the quantity

0(2):= ilelng [P{Z <t} —D(1)]. (2.2.1)

We say that a random field (Y;);c;q is m-dependent if the collections of random variables
(Y;,i € A) and (Y;,¢ € B) are independent whenever inf {||la — b||_ ,a € A,b € B} > m. The
proof of Theorem 1.6 will use the following tools.

(T.1) By Theorem 2.6 in [CS04], if I is a finite subset of Z%, (Y;);c; an m-dependent cen-
tered random field such that E [|Y;”] < 400 for each ¢ € I and some p € (2,3] and
Var (3;.;Ys) =1, then

5 (Z Y) <75 (10m + )P VIS TRV (2.2.2)

iel iel

(T.2) By Lemma 1 in [EMOO07], for any two random variables Z and Z’ and p > 1
S(Z+2)<285(2)+ |27 . (2.2.3)

Let (€u)ycza be an iid. random field and let f: RZ* — R be a measurable function such
that for each ¢ € Z9, X; = f ((€i—u)yeza)- Let v > 0 and ng defined by (1.3.10).
Let m := ([||bn||,2] +1)” and let us define

X =B [X; | 0 (cu,i —ml < u<i+ml). (2.2.4)
Since the random field (€4),,czq is independent, the following properties hold.
(P.1) The random field (Xz.(m)) Lo 08 (2m + 1)-dependent.
ie

(P.2) The random field (X-(m))
(P.3) For any (a;)

. is identically distributed and HX(m H [ Xoll,-
1€
4 €02 (Zd) and g > 2, the following inequality holds:

i€Z
1/2
my || - 145 .
Ya(Xi-x)| < [ X e Y @i+ Xyl
1€Z4 q g4 iczd jzm
1/q
L 145 _
1 TSl | Y @i+ 0™ 0 X, (2.2.5)
084 icz4 jzm

In order to prove (2.2.5), we follow the proof of Theorem 1.4 and start from the
decomposition X; — Xz.(m) = limy_ 100 Zjv:m X;,; instead of (2.1.2).
Define S{™ = Y iczd bn,,-Xi(m). An application of (T.2) to Z := s4m [bnlls' o=t and Z7 :=
(Sn - ng>) [ballat o yields

(m)
A, <26 _Sn + o P !
o [[bnll 2 lbal|

_p_
)| 7T

(2.2.6)

P
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Moreover,
(m) (m)
P = sup |P Sn <ty —() (2.2.7)
Uan”e? teR o ||bn||z2
sim) ’ Sr(Lm)Hz
=sup |P{ o <uyp -0 | u—7—2 2.2.8
S o ol 228
2
§(m) Bl
<O | = +sup [® | u——-2 | — @ (u)], (2.2.9)
Sflm)H u€eR o [[bnll 2
2

hence, by (P.1) and (T.1) applied with Y; := Xi(m)/ HSflm)‘

of m, we derive that

, ¢’ instead of p and 2m+ 1 instead
2

A, < (I)+ (IT) + (II1) (2.2.10)
where
(1) =150 @om + 20 DY ot X s @2
1€Z4
¢
(II) :=2sup |® | u 21 —®(u)| and (2.2.12)
u€R g ||bn||e2
p 1 5T
(III) := ¢~ 71 — |5, — sim) (2.2.13)
6nll 2" P

By (P.2) and the reversed triangular inequality, the term (I) can be bounded in the following
way

’_ d ’ ’ m *;D,
(I) < 150 (20m + 21) =9 | 0|7 (15,7, (||Sn||2 - ’ S, — S0 >H2) (2.2.14)

and by (P.3) with ¢ = 2, we obtain that

’

| )7 1 a r
(I8ully = [[$n = S||) ™ < (USully =20 (tog2) " m= floull e Ca (@)~ . (2:215)
By (1.3.8), we have
Sall2
” “22=a2+an, (2.2.16)
”ane?

and we eventually get

7pl

1651l
[1bnll 2

Since n > ng, we derive, in view of (1.3.10),

(I) < 150 (20m + 21) "D x| 7 < )p (Vo2 +2 =20 (10g2) ' mCs ()

’

’_ / bn 1'% p !
(1) <150 (20m+21)(” 1)d [ Xoll} (||||b ||||42> (0/2)77 (2.2.17)
nilg
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In order to bound (I7), we argue as in [YWLH12] (p. 456). Doing similar computations as
in [EM14] (p. 272), we obtain that

—1
(I1) < (2me) /2 (ér;flak> a2 — 1], (2.2.18)
where a,, := HS,({”)H o1 ||bn||z21. Observe that for any n, by (P.3),
2
HSnH - ‘ Sn - Sr(zm)H 2 _ -1 —«
s 2 2 5 Vo2 +e, —29(log2)” Co(a)m (2.2.19)
o [[bnl 2 o
and using again (P.3) combined with Theorem 1.4 for p = ¢ = 2,
e
a2 —1|=|1—1z 4 (2.2.20)
| | o2 |[bnll72
2
: (B WA
< |l = 2.2.21
=2 2 2 2 (2:2.21)
o2 [|bn [z o2 [|bn I
< len] + H Sr(Lm)‘ 2 HS"H2‘ ( Sém)Hz + ”SnHQ) (2.2.22)
S o [bn 72 ;
el 157 = 5], (s, + 1)
< nl 2 M (2.2.23)
7 o2 [[nll2
len] 1m” 2
< poy + 40 (log 2) = Cs (). (2.2.24)
This leads to the estimate
(IT) < (2me) 12 (M +40(log2) e (a)2) (2.2.25)
S VoTxe,—29 (log2) ' Cy (@)m—a \ o & ? 7 o
and since n > ng, we derive, in view of (1.3.10),
i < (22 4 50 aoe oyt 112 o 2 (are)-172 2.2.26
(1) < ?‘i‘ (log2) TMG) (2me) . (2.2.26)
The estimate of (III) relies on (P.3):
_P_
14.5p o
S (14 SUNLITS
(I1I) < o 71 — Z (45 + )% | Xo 4,
jzm
7T
__p_ -2 2 [ 14.5p . _
+ o7 bl " (|bnll 5 Togp Z (45 + 4)* 0P [ Xo,1l,, (2.2.27)
jzm
hence
P P
14.5p _ P 10nllpp 14.5p g1 _ )
II1) < [ =242 b, || 27 C i 44012 b, 177 ©
(111) < (s o7 Co @)+ (S bl €y (8)

(2.2.28)
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The combination of (2.2.10), (2.2.17), (2.2.26) and (2.2.28) gives (1.3.11).

2.3. Proof of Theorem 1.9. Since the random variables X; are centered, we derive by defi-
nition of g, (x) that

/2 Dien, Xill (ZZZ/n)
Sien, K (572)

bni=K (h—ln (m - %)) . ieA, (2.3.2)

and by, ; = 0 otherwise. Denote b, = (b,i);cza and [[by| 2 == (ZieZd b?”) 1/2. In this way, by
(2.3.1) and (1.3.21),
1
T

(nhn)"? (g (@) — E [gn(2)]) = (nhn) (2.3.1)

We define

d/2 1 -1
(1) (gn(@) = Elgn(@)]) = = > b iXi[[bulla’ An. (23.3)
iczd
Applying (T.2) to Z = ;4 bniXs |ballz’ and Z' = 30 bniXi [|ball 2 0 (A, — 1) and
using Theorem 1.4, we derive that

A, < A, + ¢y (07100 () + Cy (B)) 777 |A, — 1]75T (2.3.4)
where
t
Al =sup |P{Z <t} —® <—> ' . (2.3.5)
teR g

We then use Theorem 1.6 to handle A/ (which is allowed, by (A)). Using boundedness of
K, we control the ¢ and 2" norms by a constant times the ¢2-norm. This ends the proof of
Theorem 1.9.
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