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Abstract. Understanding a text in order to learn is subject to modeling and is 
partly dependent to the complexity of the read text. We transpose the evaluation 
process of textual complexity into measurable factors, identify linearly 
independent variables and combine multiple perspectives to obtain a holistic 
approach, addressing lexical, syntactic and semantic levels of textual analysis.  
Also, the proposed evaluation model combines statistical factors and traditional 
readability metrics with information theory, specific information retrieval 
techniques, probabilistic parsers, Latent Semantic Analysis and Support Vector 
Machines for best-matching all components of the analysis. First results show a 
promising overall precision (>50%) and near precision (>85%). 

Keywords: textual complexity, Latent Semantic Analysis, readability, Support 
Vector Machines 

1 Introduction 

Measuring textual complexity is in general a difficult task because the measure itself 
is relative to the reader and high differences in the perception for a given lecture can 
arise due to prior knowledge in the specific domain, familiarity with the language or 
to personal motivation and interest. Readability ease and comprehension are related to 
the readers’  education,  cognitive  capabilities  and  background  experiences.  Therefore 
a cognitive model of the reader must be taken into consideration and the measured 
complexity should be adapted to this model. Additionally, software implementing 
such functionalities should be adaptive in the sense that, for a given target audience, 
the estimated levels of textual complexity measured for specific texts should be 
adequate and relevant. Fortunately, the target texts processed in this paper were 
accessible from a syntactical and vocabulary viewpoint by primary school pupils, and 
the required level of knowledge to grasp the read story was also on the same range. 

Assessing the textual complexity of the material given to pupils is a common task 
that teachers encounter very often. However, this assessment cannot be performed 
without taking into account the   actual   pupils’   reading proficiency and this point 
makes it time-consuming. Moreover, the impact of textual complexity on instruction 
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and learning is important: pupils read faster and learn better if textual materials are 
not too complex nor too easy. A web-based system can help teachers select and 
calibrate the appropriate texts presented to students and also help the latter attain their 
own learning objectives in selecting not too simple nor too difficult reading materials. 

Our aim is to design and implement a system that automatically gives a measure of 
the complexity of texts read by children by studying the relations between human vs. 
computer measures of this textual complexity, similar to some extent to [9]. Although 
there are numerous applications that give estimates regarding textual complexity, they 
often do not rely on cognitive models of human reading or use only simple lexical or 
syntactic factors. An example of a complex system covering multiple perspectives of 
discourse analysis is Coh-Metrix 2 [1] that automatically calculates the coherence of 
texts and determines how text elements and constituents are connected for specific 
types of cohesion. Besides lexical and syntactic factors, POS tagging and Latent 
Semantic Analysis (LSA), used also within Coh-Metrix 2, we provide an integrated 
approach through Support Vector Machines (SVMs) that covers in a novel manner all 
previous dimensions, tightly connected to the implemented discourse model. 
Therefore, our model is capable of automatically adapting its categories based on the 
training corpus, enabling us to personalize even further the classification process and 
the assigned weights to each evaluation factor. 

Due to the fact that textual complexity cannot be determined by enforcing a single 
factor of evaluation, we propose a multitude of factors, categorized in a multilayered 
pyramid [3], from the simplest to the more complex ones, that combined provide 
relevant information to the tutor regarding   the  actual   “hardness”  of  a   text. The first 
and simplest factors are at a surface (word) level and include readability metrics, 
utterance entropy at stem level and proxies extracted or derived from   Page’s   [4] 
automatic essay grading technique. At the syntactic level, structural complexity is 
estimated from the parsing tree in terms of max depth and size of the parsing structure 
[6]. Moreover, normalized values of occurrences of specific parts of speech (mostly 
prepositions) provide additional information at this level. Semantics is addressed 
through topics that are determined by combining Tf-Idf with cosine similarity between 
the utterance vector and that of the entire documents. The textual complexity at this 
level is expressed as a weighted mean of the difficulty of each topic, estimated in 
computations as the number of syllables of each word. Moreover, textual complexity 
is evaluated in terms of semantic cohesion determined upon social networks analysis 
metrics applied at macroscopic level upon the utterance graph [5]. Discourse markers, 
co-references, rhetorical schemas and argumentation structures are also considered, 
but are not included in current experiments. 

By considering the disparate facets of textual complexity and by proposing 
possible automatic methods of evaluation, the resulted measurement vectors provide 
tutors valuable information regarding the hardness of presented texts. The remainder 
of this paper details the various metrics. All the measures used to evaluate textual 
complexity are then unified into a single result by using SVMs in the effort to best 
align automatic results to the classes manually assigned by teachers. The paper ends 
with conclusions and future improvements 

2



 

2 Surface Analysis 

Surface analysis addresses lexical and syntactic levels and consists of measures 
computed to determine factors like fluency, complexity, readability taking into 
account lexical and syntactic elements (e.g., words, commas, phrase length, periods). 

2.1 Readability 

Traditional readability formulas [7] are simple methods for evaluating a text’s reading 
ease based on simple statistical factors as sentence length or word length. Although 
criticized by discourse analysts [8] as being weak indicators of comprehensibility and 
for not closely aligning with the cognitive processes involved in text comprehension, 
their simple mechanical evaluation makes them appealing for integration in our 
model. Moreover, by considering the fact that reading speed, retention and reading 
persistence are greatly influenced by the complexity of terms and overall reading 
volume, readability formulas can provide a viable approximation of the complexity of 
a given text, considering that prior knowledge, personal skills and traits (e.g. 
intelligence), interest and motivation are at an adequate level or of a similar level for 
all individuals of the target audience. In addition, the domain of texts, itself, must be 
similar because subjectivity increases dramatically when addressing cross-domain 
evaluation of textual complexity. Starting from simple lexical indicators, numerous 
mathematical formulas were developed to tackle the issue of readability. The 
following three measures can be considered the most famous: 

1. The Flesch Reading Ease Readability Formula scores texts on a 100 point scale, 
providing a simple approach to assess the grade-level of pupils: the higher the 
score, the easier the text is to read (not necessarily to be understood). 

2. The Gunning’s  Fog  Index  (or FOG) Readability Formula estimates the number of 
years of formal education a reader of average intelligence needs to understand the 
given text on the first reading. Although considering that words with more than 
two syllables are complex can be seen as a drawback, we chose this estimation due 
to its high precision and simplicity. 

3. The Flesch Grade Level Readability Formula uses the same factors as the first 
readability metric and rates texts based on U.S. grade school levels. 

2.2 Trins and proxes 

Page’s   initial study was centered on the idea that computers can be used to 
automatically evaluate and grade student essays using only statistically and easily 
detectable attributes, as effective as human teachers [4, 5]. In order to perform a 
statistical analysis, Page correlated two concepts: proxes (computer approximations of 
interest) with human trins (intrinsic variables - human measures used for evaluation) 
for better quantifying   an   essay’s   complexity. A correlation of 0.71 proved that 
computer programs could predict grades quite reliably, similar to the inter-human 
correlation. Starting   for   Page’s   metrics   of automatically grading essays and taking 
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into consideration   Slotnick’s   method of grouping proxes based on their intrinsic 
values, the following categories were used for estimating complexity (see Table 1). 

Table 1. Surface analysis proxes 

Quality Proxes 
Fluency Normalized number of commas 

Normalized number of words 
Average number of words per sentence 

Diction Average word length 
Average number of syllables per word 
Percent of hard words (extracted from FOG Formula)  

Structure Normalized number of blocks (paragraphs) 
Average block (paragraph) size 
Normalized number of utterances (sentences) 
Average utterance (sentence) length 

Normalization is inspired from Data-Mining and our results improved by applying 
the logarithmic function on some of the previous factors in order to smooth results, 
while comparing documents of different size. All the above proxes determine the 
average consistency of sentences and model adequately their complexity at surface 
level in terms of the analyzed lexical items. 

2.3 Complexity, Accuracy and Fluency 

Complexity, accuracy, and fluency (CAF) measures of texts have been used in 
linguistic development and in second language acquisition (SLA) research. 
Complexity captures   the   characteristic   of   a   learner’s   language,   reflected   in   a   wider  
range of vocabulary and grammatical constructions, as well as communicative 
functions and genres [2]. Accuracy highlights a text’s  conformation to our experience 
with other texts, while fluency, in oral communication, captures the actual volume of 
text produced in a certain amount of time. Similar to the previous factors, these 
measures play an important role in automated essay scoring and textual complexity 
analysis. Schulze [2] considered that selected complexity measures should be divided 
into two main facets of textual complexity: sophistication (richness) and diversity 
(variability of forms). The defined measures depend on six units of analysis: letter (l), 
word form (w), bigram (b – groups of two words) and period unit (p), word form 
types (t) and unique bigrams (u). Additionally, textual complexity is devised into 
lexical and syntactic complexity: 

Lexical Complexity: 
 Diversity is  measured  using  Carroll’s  Adjusted  Token Type Ratio (Eq. 1) [2]: 

𝑣ଵ =
௧

√ଶ௪
, 𝑤𝑖𝑡ℎ   ଵ

√ଶ௪
≤ 𝑣ଵ ≤ ට௪

ଶ
  (1) 

 Sophistication estimates  the  complexity  of  a  word’s  form in terms of average 
number of characters (Eq. 2) [2]: 
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𝑣ଶ =
௟
௪
, 𝑤𝑖𝑡ℎ  1 ≤ 𝑣ଶ ≤ 𝑙  (2) 

Syntactic Complexity: 
 Diversity captures syntactic variety at the smallest possible unit of two 

consecutive word forms. Therefore Token Type Ratio is also used, but at a 
bigram level (Eq. 3) [2]: 

𝑣ଷ =
௨

√ଶ௕
, 𝑤𝑖𝑡ℎ   ଵ

√ଶ௕
≤ 𝑣ଷ ≤ ට௕

ଶ
  (3) 

 Sophistication is expressed in terms of mean number of words per period unit 
length  and  it’s  intuitive  justification  is  that  longer  clauses  are, in general, more 
complex than short ones (Eq. 4) [2]: 

𝑣ସ =
௪
௣
, 𝑤𝑖𝑡ℎ  1 ≤ 𝑣ସ ≤ 𝑝  (4) 

All the previous measures can be integrated into a unique measure of textual 
complexity at lexical and syntactic levels. Following this idea, these factors were 
balanced by computing a rectilinear distance (Raw Complexity - RC) as if the learner 
had to cover the distance along each of these dimensions [2]. Therefore, in order to 
reach a higher level of textual complexity, the learner needs to improve on all four 
dimensions (Eq. 5) [2]: 

𝑅𝐶 = ቚ𝑣ଵ −
ଵ

√ଶ௪
ቚ + |𝑣ଶ − 1| + ቚ𝑣ଷ −

ଵ
√ଶ௕

ቚ + |𝑣ସ − 1| (5) 

Afterwards, CAF is computed as a balanced complexity by subtracting the range of 
the four complexity measures (max - min) from the raw complexity measure (Eq. 6): 

𝐶𝐴𝐹 = 𝑅𝐶 − (max(𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ) − min(𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ)) (6) 

The ground argument for this adjustment is that if one measure increases too much, 
it will always be to the detriment of another. Therefore, the measure of raw 
complexity is decreased by a large amount if the four vector measures vary widely 
and by a small amount if they are very similar. Moreover, the defined measure 
captures lexical and syntactic complexity evenly, provides two measures for 
sophistication and two measures for diversity and, in the end, compensates for large 
variations of the four vector measures. 

2.4 Entropy 

Entropy, derived from Information Theory, models the text in an ergodic manner and 
provides relevant insight regarding textual complexity at character and word level by 
ensuring diversity among the elements of the analysis. The presumption of induced 
complexity pursues the following hypothesis: a more complex text contains more 
information and requires more memory and more time for the reader to process. 
Therefore, disorder modeled through entropy is reflected in the diversity of characters 
and of word stems used, within our implemented model, as analysis elements. The use 

5



 

of stems instead of the actual concepts is argued by their better expression of the root 
form of related concepts, more relevant when addressing diversity at syntactic level. 

3 Part of Speech Tagging and Parsing Tree Structure 

Starting from different linguistic categories of lexical items, our aim is to convert 
morphological information regarding the words and the sentence structure into 
relevant metrics to be assessed in order to better comprehend textual complexity. In 
this context, parsing and part of speech (POS) tagging play an important role in the 
morphological analysis of texts, in terms of textual complexity, by providing two 
possible vectors of evaluation: the normalized frequency of each part of speech and 
the structural factors derived from the parsing tree. Although the most common parts 
of speech used in discourse analysis are nouns and verbs, our focus was aimed at 
prepositions, adjectives and adverbs that dictate a more elaborate and complex 
structure of the text. Moreover, pronouns, that through their use indicate the presence 
of co-references, also indicate a more inter-twined and complex structure of the 
discourse. On the other hand, multiple factors can be derived from analyzing the 
structure of the parsing tree: an increased number of leafs, a greater overall size of the 
tree and a higher maximum depth indicate a more complex structure, therefore an 
increased textual complexity. Our implemented system uses the log-linear Part of 
Speech Tagger publicly available from Stanford University [11] with the 
”bidirectional-wsj-0-18.tagger” package as English tagger, therefore ensuring an 
accuracy of 97.18% on WSJ 19-21 concepts and of 89.30% on unknown words. 

4 Semantic Analysis – Coherence through LSA 

Coherence is a central issue to text comprehension and comprehension is strongly 
related to textual complexity. In order to understand a text, the reader must first create 
a well-connected representation of the information withheld. This connected 
representation is based on linking related pieces of textual information that occur 
throughout the text. Coherence is determined and maintained through the links 
identified within the utterance graph [5]. Our implemented discourse model 
characterizes the degree of semantic relatedness between different segments through 
means of Information Retrieval (Term Frequency – Inverse Document Frequency) 
reflected in word repetitions [3] and of LSA, capable of measuring similarity between 
discourse segments through concepts of the vector space [1]. 

The power of computing semantic similarity with LSA comes from analyzing a 
large corpus from which LSA builds relationships between a set of documents and 
terms contained within. The main assumption is that semantically related words will 
co-appear throughout documents of the corpus and will be indirectly linked by 
concepts after the Single Value Decomposition specific to LSA. 

Coherence is determined using the utterance graph modeled as a Directed Acyclic 
Graph (DAG) of sentences, ordered sequentially through the ongoing discourse. The 
first thing that needs to be addressed is semantic cohesion between two sentences 
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which is seen as the degree of inter-connection among them [3]. This similarity is 
computed by combining repetitions of stems and Jaccard similarity as measures of 
lexical cohesion, with semantic similarity computed by means of LSA (Eq. 7 and 8): 

𝑐𝑜ℎ(𝑢, 𝑣) = |𝑟𝑒𝑝𝑒𝑡𝑖𝑜𝑛𝑠| × |௦௧௘௠௦  ௜௡  ௖௢௠௠௢௡  ௨,௩|
|௦௧௘௠௦  ௜௡  ௨  ௢௥  ௩|

× 𝑐𝑜𝑠(𝑣𝑒𝑐𝑡𝑜𝑟(𝑢), 𝑣𝑒𝑐𝑡𝑜𝑟(𝑣)) (7) 

𝑣𝑒𝑐𝑡𝑜𝑟௞(𝑢) = ∑ (1 + |𝑤𝑜𝑟𝑑௜ ∈ 𝑢|௜ ) × ቀ |஽|
|௪௢௥ௗ೔∈஽|

ቁ × 𝑈௞[𝑤𝑜𝑟𝑑௜] (8) 

where 𝑈௞[𝑤𝑜𝑟𝑑௜] is the vector of 𝑤𝑜𝑟𝑑௜  in the 𝑈௞ matrix from LSA. 
After determining all possible connections between the sentences of a text through 

the previous equations, the utterance graph is built by selecting the links that have 
their corresponding values above a threshold (in our experiments, the best empirical 
value was the mean value of all viable cohesion values determined for any possible 
link within our initial text). Overall, coherence is evaluated at a macroscopic level as 
the average value for all links in the constructed utterance graph. Co-references and 
other specific discourse analysis methods (e.g., argumentation acts) will be used to 
further refine the previous DAG. 

5 Support Vector Machines 

All the measures previously defined capture in some degree different properties of the 
analyzed text (readability, fluency, accuracy, language diversity, coherence, etc.) and 
therefore can be viewed as attributes that describe the text. In order to use these 
attributes to estimate the complexity of the text, we have used a classifier that accepts 
as inputs text attributes and outputs the minimum grade level required by a reader to 
comprehend the specified text. Therefore multiple Support Vector Machine (SVM) 
classifiers are used to achieve the desired result. A SVM is typically a binary linear 
classifier that maps the input texts seen as d-dimensional vectors to a higher 
dimensional space (hyperspace) in which, hopefully, these vectors are linearly 
separable by a hyperplane. 

Due to the fact that binary classifiers can map objects only into two classes, our 
multiclass problem can be solved using multiple SVM, each classifying a category of 
texts with different predefined classes of complexity. A one-versus-all approach 
implementing the winner-takes-all strategy is used to deal with the problem of 
multiple SVM kernel returning 1 for a specific text (the classifier with the highest 
output function assigns the class). 

LIBSVM [10] was used to ease the implementation of the classifier. An RBF with 
degree 3 was selected and a Grid Search method was enforced to increase the 
effectiveness of the SVM through the parameter selection process. Exponentially 
growing sequences for C and γ were used (𝐶 ∈ {2ିହ, 2ିଷ, … , 2ଵଷ, 2ଵହ}, 𝛾 ∈
{2ିଵହ, 2ିଵଷ, … , 2ଵ, 2ଷ}) and each combination of parameter choices was checked 
using a predefined testing corpus. In the end, the parameters with the best obtained 
precision were picked. 
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6 Preliminary validation results 

The preliminary validation experiments were run on 249 reading assignments given 
by teachers to pupils ranging from 1st grade to the 5th grade (29 – C1, 41 – C1, 66 – 
C3, 71 – C4, 42 – C5). All the previous measurements have been automatically 
extracted for each these texts and were later used as inputs for the SVM. The split 
between the training corpus and the testing one was manually performed by assigning 
166 texts as training set and the remaining for evaluation. Additional to data 
normalization that was previously performed, all factors were linearly scaled to the  
[-1; 1] range. Two types of measures were used to evaluate the performance of our 
model: Precision (P), as the percent to which the SVM predicted the correct 
classification for the test input, and Near Precision (NP), as the percent to which the 
SVM was close in predicting the correct classification (i.e. answered nth grade instead 
of (n+1)th grade). NP was introduced due to the subjectivity of the evaluation of the 
corresponding grade level and also due to the fact that the complexity of the finishing 
nth year text may be very close to one from the beginning of the (n+1)th year. 

Table 2 presents in detail the optimum C and 𝛾 parameters determined for the 
SVMs via Grid Search method, precision and near precision for all classes, average 
and weighted average of both precision and near precision. 

Table 2. Precision (P%) and Near Precision (NP%) for all evaluation factors 

Factor C 𝜸 
C1 
P / 
NP  

C2 
P / 
NP  

C3 
P / 
NP  

C4 
P / 
NP  

C5 
P / 
NP  

Avg. 
P/NP 

Weig. 
Avg. 
P/NP 

Readability 
Flesch 

128 0.125 90 / 
90 

14 / 
64 

27 / 
91 

78 / 
100 

14 / 
86 

44.6 / 
86.2 

44.5 / 
88.2 

Readability FOG 32 0.5 80 / 
90 

29 / 
64 

32 / 
100 

83 / 
91 

7 / 
79 

46.2 / 
84.8 

47.4 / 
86.8 

Readability 
Kincaid 

32768 2 90 / 
90 

7 / 
57 

45 / 
95 

57 / 
100 

14 / 
57 

42.6 / 
79.8 

42.2 / 
83.2 

Normalized no. of 
commas 

0.5 2 0 / 
80 

29 / 
57 

14 / 
100 

83 / 
91 

0 / 
71 

25.2 / 
79.8 

32.2 / 
83.1 

Avg. sentence 
length 

32 2 80 / 
80 

7 / 
93 

55 / 
82 

61 / 
100 

36 / 
50 

47.8 / 
81 

48.5 / 
83.3 

Normalized no. of 
words 

2048 0.008 50 / 
100 

79 / 
86 

0 / 
91 

83 / 
83 

0 / 
71 

42.4 / 
86.2 

42.5 / 
85.6 

Avg. word length 2048 0.008 80 / 
80 

43 / 
93 

50 / 
86 

61 / 
96 

29 / 
50 

52.6 / 
81 

51.9 / 
83.2 

Avg. no. of 
words/ sentence 

128 0.031 100/ 
100 

0 / 
21 

5 / 
95 

100/ 
100 

0 / 
93 

41 / 
81.8 

41.5 / 
84.5 

Avg. no. of 
syllables/word 

2 0.125 60 / 
60 

0 / 
71 

41 / 
100 

87 / 
100 

0 / 
79 

37.6 / 
82 

42.7 / 
87 

Percent of 
complex words 

0.5 0.5 70 / 
70 

0 / 
86 

41 / 
91 

83 / 
100 

0 / 
79 

38.8 / 
85.2 

42.7 / 
88.3 

Word Entropy 0.125 8 80 / 
100 

57 / 
100 

23 / 
95 

65 / 
83 

0 / 
64 

45 / 
88.4 

43.3 / 
87.8 

Character Entropy 8 0.5 70 / 
70 

7 / 
14 

18 / 
100 

87 / 
96 

0 / 
86 

36.4 / 
73.2 

38.9 / 
78.8 
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Lexical diversity 2 0.125 50 / 
100 

79 / 
100 

27 / 
100 

74 / 
87 

0 / 
79 

46 / 
93.2 

47.1 / 
92.8 

Lexical 
sophistication 

8 8 40 / 
60 

14 / 
64 

45 / 
86 

65 / 
100 

14 / 
50 

35.6 / 
72 

39.8 / 
77.3 

Syntactic 
diversity 

0.5 2 40 / 
40 

0 / 
64 

45 / 
100 

91 / 
100 

0 / 
93 

35.2 / 
79.4 

42.5 / 
85.9 

Syntactic 
sophistication 

32768 8 80 / 
90 

0 / 
93 

50 / 
82 

61 / 
96 

21 / 
50 

42.4 / 
82.2 

43.5 / 
83.3 

Balanced CAF 512 0.5 70 / 
100 

79 / 
100 

50 / 
100 

57 / 
91 

0 / 
71 

51.2 / 
92.4 

50.7 / 
92.5 

Average number 
of nouns 

2 0.125 0 / 
0 

0 / 
79 

68 / 
100 

74 / 
100 

0 / 
71 

28.4 / 
70 

39.1 / 
80 

Average no. of 
pronouns 

128 2 40 / 
60 

14 / 
71 

50 / 
91 

39 / 
96 

7 / 
64 

30 / 
76.4 

32.5 / 
81 

Average no. of 
verbs 

128 0.5 80 / 
80 

0 / 
36 

5 / 
77 

96 / 
96 

0 / 
93 

36.2 / 
76.4 

38 / 
78.7 

Average no. of 
adverbs 

2 8 40 / 
60 

14 / 
64 

27 / 
95 

61 / 
91 

29 / 
79 

34.2 / 
77.8 

36.4 / 
82 

Average no. of 
adjectives 

32 0.125 30 / 
30 

0 / 
93 

55 / 
100 

70 / 
100 

0 / 
71 

31 / 
78.8 

38 / 
85.8 

Average no. of 
prepositions 

128 8 30 / 
70 

50 / 
79 

36 / 
91 

65 / 
96 

14 / 
64 

39 / 
80 

42.2 / 
83.4 

Average POS tree 
depth 

2048 8 80 / 
90 

14 / 
93 

55 / 
82 

65 / 
96 

14 / 
50 

45.6 / 
82.2 

47.1 / 
83.3 

Average POS tree 
size 

512 2 80 / 
80 

0 / 
93 

45 / 
77 

57 / 
100 

36 / 
64 

43.6 / 
82.8 

43.6 / 
84.3 

Avg. doc. 
cohesion 

2 2 40 / 
50 

0 / 
64 

32 / 
95 

74 / 
100 

0 / 
71 

29.2 / 
76 

34.2 / 
82 

Comb. lexical-
syntactic 

512 0.002 100/ 
100 

43 / 
93 

41 / 
82 

48 / 
100 

36 / 
86 

53.6 / 
92.2 

49.4 / 
91.7 

Combined POS 2 0.125 80 / 
80 

14 / 
93 

55 / 
82 

52 / 
100 

29 / 
71 

46 / 
85.2 

45.9 / 
86.9 

Combined 
semantic 

2048 0.008 70 / 
70 

7 / 
86 

45 / 
91 

70 / 
96 

0 / 
79 

38.4 / 
84.4 

41.2 / 
87.1 

Combined all 32768 0.008 100/ 
100 

57 / 
100 

55 / 
86 

35 / 
91 

50 / 
64 

59.4 / 
88.2 

54 / 
87.7 

Taking into consideration the previous experiment, we have obtained a promising 
overall precision (>50%) and an excellent near precision (>85%), taking into 
consideration the difficulty and the subjectivity of the task at hand. Moreover, as 
expected, the effectives of our method increased by combining multiple factors and, 
although simple in nature, readability formulas, average sentence length, average 
word length and balanced CAF provided the best alternatives at lexical and syntactic 
level. Also, character entropy proved to be a lesser relevant factor than word entropy 
that reflects vocabulary diversity. In term of parts of speech tagging, prepositions had 
the highest correlation of all types of parts of speech, whereas depth and size of the 
parsing tree provided a good insight of textual complexity. In contrast, semantic 
factors had lower scores because the evaluation process at this level is based on the 
links between sentences; but texts used in educational environments are characterized 
by a low variance between different classes in terms of the computed semantic 
cohesion function (a text belonging to C3 does not necessarily have to be more 
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cohesive than a text from C1). Also, the most difficult class to identify was the last 
one because, in general, there are relatively small changes in comparison to the 
previous  class  and  it’s  difficult  to  highlight the differences. 

7 Conclusions and Future Development 

By combining different factors as readability, lexical and syntactic complexity, 
accuracy and fluency metrics, part of speech evaluation and characteristics of the 
parsing tree with LSA embedded within the discourse model, we obtained an 
elaborate and multi-perspective model capable of providing an overall balanced 
measure for textual complexity. In order to fine-tune even further the results, 
additional investigations and experiments are to be conducted to find the best 
parameters for the SVM, making predictions more reliable, whereas additional 
coherence measurement techniques will be included for enriching the semantic 
perspective of our analysis. Our research can be easily extended to any online 
materials and can be considered a cornerstone in developing an adaptive system for 
proposing personalized reading materials. This adaptive system would also assess the 
relation between textual complexity and pupils' understanding, as measured by online 
questionnaires. 
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