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ARROW CALCULUS FOR WELDED AND CLASSICAL LINKS

JEAN-BAPTISTE MEILHAN AND AKIRA YASUHARA

Abstract. We develop a diagrammatic calculus for welded and classical knot-

ted objects. We define Arrow presentations, which are essentially equivalent
to Gauss diagrams but carry no sign on arrows, and more generally w-tree pre-

sentations, which can be seen as ‘higher order Gauss diagrams’. We provide a

complete set of moves for Arrow and w-tree presentations. This Arrow calculus
is used to characterize finite type invariants of welded knots and long knots.

Using S. Satoh’s Tube map, which realizes welded objects into knotted surfaces

in 4-space, we recover several topological results due to K. Habiro, A. Shima,
and to T. Watanabe. We also classify welded string links up to homotopy,

thus recovering a result of the first author with B. Audoux, P. Bellingeri and

E. Wagner.

1. Introduction

A Gauss diagram is a combinatorial object, introduced by M. Polyak and O.Viro
in [25], which encodes faithfully 1-dimensional knotted objects in 3-space. To a
knot diagram, one associates a Gauss diagram by connecting, on a copy of S1,
the two preimages of each crossing by an arrow, oriented from the over- to the
under-passing strand and labeled by the sign of the crossing. Gauss diagrams form
a powerful tool for studying knot and their invariants. In particular, a result of
M. Goussarov [7] states that any finite type (Goussarov-Vassiliev) knot invariant
admits a Gauss diagram formula, i.e. can be expressed as a weighted count of
arrow configurations in a Gauss diagram. A remarkable feature of this result is
that, although it concerns classical knots, its proof heavily relies on virtual knot
theory. Indeed, Gauss diagrams are inherently related to virtual knots, since an
arbitrary Gauss diagram doesn’t always represent a classical knot, but a virtual
one [7, 16].

More recently, further topological applications of virtual knot theory arose from
its welded quotient, where one allows a strand to pass over a virtual crossing.
This quotient is completely natural from the virtual knot group viewpoint, which
naturally satisfies this additional local move. Hence all virtual invariants derived
from the knot group, such as the Alexander polynomial or Milnor invariants, are
intrinsically invariants of welded knotted objects. Welded theory is also natural by
the fact that classical knots and (string) links embed in their welded counterparts.
The topological significance of welded theory was enlightened by S. Satoh [26];
building on early works of T. Yajima [30], he defined the so-called Tube map, which
‘inflates’ welded diagrams into ribbon knotted surfaces in dimension 4. Using the
Tube map, welded theory was successfully used in [1] to classify ribbon knotted
annuli and tori up to link-homotopy (for knotted annuli, it was later shown that
the ribbon case can be used to give a general link-homotopy classification [3]).

In this paper, we develop an arrow calculus for welded knotted objects, which
can be regarded as a kind of ‘higher order Gauss diagram’ theory. We first recast
the notion of Gauss diagram into so-called Arrow presentations for classical and
welded knotted objects. These are like Gauss diagrams without signs, and they
satisfy a set of Arrow moves, which we prove to be complete, in the following sense.
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2 J.B. MEILHAN AND A. YASUHARA

Theorem 1 (Thm. 4.5). Two Arrow presentations represent equivalent diagrams
if and only if they are related by Arrow moves.

We stress that, unlike Gauss diagrams analogues of Reidmeister moves, which
involve rather delicate compatibility conditions in terms of the arrow signs and local
strands orientations, Arrow moves involve no such restrictions.

More generally, we define w-tree presentations for diagrams, where arrows of
Gauss diagrams are generalized to oriented trees. Arrow moves are then extended
to a calculus of w-tree moves, i.e. we have a w-tree version of Theorem 1.

This work should also be regarded as a welded version of the Goussarov-Habiro
theory [11, 8], solving partially a problem set by M. Polyak in [22, Problem 2.25]. In
[11], Habiro introduced the notion of clasper for (classical) knotted objects, which is
a kind of embedded graph carrying a surgery instruction. Any knot or (string) link
can be obtained from the trivial one by clasper surgery, and a set of moves is known,
relating any two such presentations. A striking result is that clasper theory gives a
topological characterization of the information carried by finite type invariants of
knots. More precisely, Habiro used claspers to define the Ck-equivalence relation,
for any integer k ≥ 1, and showed that two knots share all finite type invariants up to
degree < k if and only if there are Ck-equivalent. This result was also independently
obtained by Goussarov in [8]. In this paper, we use w-tree presentations to define a
notion of wk-equivalence, and prove similar characterization results. More precisely,
we use Arrow calculus to show the following.

Theorem 2 (Cor. 8.2). There is no non-trivial finite type invariant of welded knots.

Theorem 3 (Cor. 8.6). The following assertions are equivalent, for any k ≥ 1:

(1) two welded long knots are wk-equivalent,
(2) two welded long knots share all finite type invariants of degree < k,
(3) two welded long knots have same invariants {αi} for 2 ≤ i ≤ k.

Here, the invariants αi are given by the coefficients of the power series expansion
at t = 1 of the normalized Alexander polynomial.

Theorem 2 and the equivalence (2)⇔(3) of Theorem 3 were independently shown
for rational-valued finite type invariants by D. Bar-Natan and S. Dancso [5].

Using Satoh’s Tube map, we can promote these results to topological ones. More
precisely, we obtain that there is no non-trivial finite type invariant of ribbon torus-
knots (Cor. 8.3), and reprove a result of Habiro and A. Shima [13] stating that finite
type invariants of ribbon 2-knots are determined by the (normalized) Alexander
polynomial (Cor. 8.7). Moreover, we show that Theorem 3 implies a result of
T. Watanabe [29] which characterizes topologically finite type invariants of ribbon
2-knots. See Section 10.3.

We also develop a version of Arrow calculus up to homotopy. Here, the notion
of homotopy for welded diagrams is generated by the self-(de)virtualization move,
which replaces a classical crossing between two strands of a same component by
a virtual one, or vice-versa. We use the homotopy Arrow calculus to prove the
following.

Theorem 4 (Cor. 9.5). Welded string links are classified up to homotopy by welded
Milnor invariants.

This result, which is a generalization of Habegger-Lin’s classification of string
links up to link-homotopy [9], was first shown by B. Audoux, P. Bellingeri, E. Wag-
ner and the first author in [1]. Our version is stronger in that it gives, in terms of
w-trees, an explicit representative for the homotopy class of a welded string links,
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see Theorem 9.4. Moreover, this result can be used to give homotopy classifications
of ribbon annuli and torus-links, as shown in [1].

The rest of this paper is organized as follows.
We recall in Section 2 the basics on classical and welded knotted objects, and

the connection to ribbon knotted objects in dimension 4. In Section 3, we give the
main definition of this paper, introducing w-arrows and w-trees. We then focus on
w-arrows in Section 4. We define Arrow presentations and Arrow moves, and prove
Theorem 1. The relation to Gauss diagrams is also discussed in more details in
Section 4.4. Next, in Section 5 we turn to w-trees. We define the Expansion move
(E), which leads to the notion of w-tree presentation, and we provide a collection
of moves on such presentations. In Section 6, we give the definitions and some
properties of the welded extensions of the knot group, the normalized Alexander
polynomial, and Milnor invariants. We also review the finite type invariant theory
for welded knotted objects. The wk-equivalence relation is introduced and studied
in Section 7. We also clarify there the relation to finite type invariants and to
Habiro’s Cn-equivalence. Theorems 2 and 3 are proved in Section 8. In Section 9,
we consider Arrow calculus up to homotopy, and prove Theorem 4. We close this
paper with Section 10, where we gather several comments, questions and remarks.
In particular, we prove in Section 10.3 the topological consequences of our results,
stated above.

Acknowledgments. The authors would like to thank Benjamin Audoux for stim-
ulating conversations. This paper was completed during a visit of first author at
Tsuda College, Tokyo, whose hospitality and support is warmly acknowledged. The
second author is partially supported by a Grant-in-Aid for Scientific Research (C)
(#23540074) of the Japan Society for the Promotion of Science.

2. A quick review of classical and welded knotted objects

2.1. Basic definitions. A classical knotted object is the image of an embedding of
some oriented 1-manifold in 3-dimensional space. Typical examples include knots
and links, braids, string links, and more generally tangles. It is well known that
such embeddings are faithfully represented by a generic planar projection, where
the only singularities are transverse double points endowed with a diagrammatic
over/under information, as on the left-hand side of Figure 2.1, modulo Reidemeister
moves I, II and III.

This diagrammatic realization of classical knotted objects generalizes to virtual
and welded knotted objects, as we briefly outline below.

A virtual diagram is an immersion of some oriented 1-manifold in the plane,
whose singularities are a finite number of transverse double points that are labeled,
either as a classical crossing or as a virtual crossing, as shown in Figure 2.1.

Figure 2.1. A classical and a virtual crossing.

Convention 2.1. Note that we do not use here the usual drawing convention for
virtual crossings, with a circle around the corresponding double point.

There are three classes of local moves that one considers on virtual diagrams.

• the three classical Reidemeister moves,
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• the three virtual Reidemeister moves, which are the exact analogues of the
classical ones with all classical crossings replaced by virtual ones,
• the Mixed Reidemeister move, shown on the left-hand side of Figure 2.2.

We call these three classes of moves the generalized Reidemeister moves. A virtual

Figure 2.2. The Mixed, OC and UC moves on virtual diagrams

knotted object is the equivalence class of a virtual diagram under planar isotopy
and generalized Reidemeister moves. This notion was introduced by Kauffman in
[16], where we refer the reader for a much more detailed treatment.

Recall that generalized Reidemeister moves in particular imply the so-called
detour move, which replaces an arc passing through a number of virtual crossings
by any other such arc, with same endpoints.

Recall also that there are two ‘forbidden’ local moves, called OC and UC moves
(for Overcrossings and Undercrossings Commute), as illustrated in Figure 2.2.

In this paper, we shall rather consider the following natural quotient of virtual
theory.

Definition 2.2. A welded knotted object is the equivalence class of a virtual diagram
under planar isotopy, generalized Reidemeister moves and OC moves.

There are several reasons that makes this notion both natural and interesting.
The virtual knot group introduced by Kauffman in [16] at the early stages of virtual
knot theory, is intrasically a welded invariants. As a consequence, the virtual
extensions of classical invariants derived from (quotients of) the fundamental group
are in fact welded invariants, see Section 6. Another, topological motivation is the
relation with ribbon knotted objects in codimension 2, see Section 2.2.

In what follows, we will be mainly interested in welded links and welded string
links, which are the welded extensions of classical link and string link diagrams.
Recall that, roughly speaking, an n-component welded string link is a diagram
made of n arcs properly immersed in a square with n points marked on the lower
and upper faces, such that the kth arc runs from the kth lower to the kth upper
marked point. A 1-component string link is often called long knot in the literature
– we shall use this terminology here as well.

Welded (string) links are a genuine extension of classical (string) links, in the
sense that the latter embed into the former ones. This is shown strictly as in the
knot case [7, Thm.1.B], and actually also holds for virtual objects.

Convention 2.3. In the rest of this paper, by ‘diagram’ we will implicitly mean
an oriented diagram, containing classical and/or virtual crossings, and the natural
equivalence relation on diagrams will be that of Definition 2.2. We shall sometimes
use the terminology ‘welded diagram’ to emphasize this fact. As noted above, this
includes in particular classical (string) link diagrams.

Remark 2.4. Notice that the OC move, together with generalized Reidemeister
moves, implies a welded version of the detour move, called w-detour move, which
replaces an arc passing through a number of over-crossings by any other such arc,
with same endpoints. This is proved strictly as for the detour move, the OC move
playing the role of the Mixed move.
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2.2. Welded theory and ribbon knotted objects in codimension 2. As al-
ready indicated, one of the main interests of welded knot theory is that it allows to
study certain knotted surfaces in 4-space. As a matter of fact, the main results of
this paper will have such topological applications, so we briefly review these objects
and their connection to welded theory.

Recall that a ribbon immersion of a 3-manifold M in 4-space is an immersion
admitting only ribbon singularities. Here, a ribbon singularity is a 2-disk with two
preimages, one being embedded in the interior of M , and the other being properly
embedded.

A ribbon 2-knot is the boundary of a ribbon immersed 3-ball in 4-space, and a
ribbon torus-knot is, likewise, the boundary of an immersed solid torus in 4-space.
A ribbon 2-link (resp. torus-link) is the boundary of a ribbon immersed disjoint
union of 3-balls (resp. solid tori) in 4-space. More generally, one can define ribbon
2-string links, which are the natural analogues of string links, see [1, 3]. Ribbon
2-links admit two natural closure operations, by either capping off each component
by 2-disks or by a braid-type closure operation; the first closure operation produces
a ribbon 2-link, while the second one yields a ribbon torus-link. By ribbon knot-
ted object, we mean a knotted surface obtained as the boundary of some ribbon
immersed 3-manifold in 4-space.

Using works of T. Yajima [30], S. Satoh defined in [26] a surjective Tube map,
from welded diagrams to ribbon 2-knotted objects. Roughly speaking, the Tube
map assigns, to each classical crossing of a diagram, a pair of locally linked annuli
in a 4-ball as shown in Figure 2.3 (we use the same drawing convention as [26]);
next, it only remains to connect these annuli to one another by unlinked annuli, as
prescribed by the diagram.

Figure 2.3. The Tube map

Although not injective in general,1 the Tube map acts faithfully on the ‘fun-
damental group’. This key fact, which will be made precise in Remark 6.1, will
allow to draw several topological consequences from our diagrammatic results. See
Section 10.3.

Remark 2.5. One can more generally define k-dimensional ribbon knotted objects
in codimension 2, for any k ≥ 2, and the Tube map generalizes straightforwardly
to a surjective Tubek map from welded diagrams to k-dimensional ribbon knotted
objects. See for example [3]. As a matter of fact, most of the topological results of
this paper extend freely to ribbon knotted objects in codimension 2.

3. w-arrows and w-trees

Let D be a diagram. The following is the main definition of this paper.

Definition 3.1. A w-tree for D is a connected uni-trivalent tree T , immersed in
the plane of the diagram such that:

• the trivalent vertices of T are pairwise disjoint and disjoint from D,

1The Tube map is not injective for welded knots [14], but is injective for welded braids [6] and
welded string links up to homotopy [1].
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• the univalent vertices of T are pairwise disjoint and are contained in D \
{crossings of D},
• all edges of T are oriented, such that each trivalent vertex has two ingoing

and one outgoing edge,
• each vertex is equipped with a cyclic order on the three incident edges/strands

of D,
• we allow virtual crossings between edges of T , and between D and edges of
T , but classical crossings involving T are not allowed,
• each edge of T is assigned a number (possibly zero) of decorations •, called

twists, which are disjoint from all vertices and crossings.

A w-tree with a single edge is called a w-arrow.

For a union of w-trees for D, vertices are assumed to be pairwise disjoint, and
all crossings among edges are assumed to be virtual. See Figure 3.1 for an example.

Figure 3.1. Example of a union of w-trees

We call tails the univalent vertices of T with outgoing edges, and we call the
head the unique univalent vertex with an ingoing edge. We will call endpoint any
univalent vertex of T , when we do not need to distinguish between tails and head.
The edge which is incident to the head is called terminal.

Two endpoints of a union of w-trees for D are called adjacent if, when travelling
along D, these two endpoints are met consecutively, without encountering any
crossing or endpoint.

Remark 3.2. Note that, given a uni-trivalent tree, picking a univalent vertex as
the head uniquely determines an orientation on all edges respecting the above rule.
Thus, we usually only indicate the orientation on w-trees at the terminal edge.
However, it will occasionnally be useful to indicate the orientation on other edges,
for example when drawing local pictures.

Definition 3.3. Let k ≥ 1 be an integer. A w-tree of degree k, or wk-tree, for D is
a w-tree for D with k tails.

Convention 3.4. We will use the following drawing conventions. Diagrams are
drawn with bold lines, while w-trees are drawn with thin lines. The cyclic order
at each vertex is always counterclockwise. See Figure 3.1. We shall also use the
symbol ◦ to describe a w-tree that may or may not contain a twist at the indicated
edge:

or=

4. Arrow presentations of diagrams

In this section, we focus on w-arrows. We explain how w-arrows carry ‘surgery’
instructions on diagrams, so that they provide a way to encode diagrams. A com-
plete set of moves is provided, relating any two w-arrow presentations of equivalent
diagrams. The relation to the theory of Gauss diagrams is also discussed.
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4.1. Surgery along w-arrows. Let A be a union of w-arrows for a diagram D.
Surgery along A yields a new diagram, denoted by DA, which is defined as follows.

Suppose that there is a disk in the plane that intersects D∪A as shown in Figure
4.1. The figure then represents the result of surgery along A on D. We emphasize

= =

Figure 4.1. Surgery along a w-arrow

the fact that the orientation of the portion of diagram containing the tail needs to
be specified to define the surgery move.

If some w-arrow of A intersects the diagram D (at some virtual crossing disjoint
from its endpoints), then this introduces pairs of virtual crossings as indicated on
the left-hand side of the figure below. Likewise, the right-hand side of the figure
indicates the rule when two portions of (possibly of the same) w-arrow(s) of A
intersect.

==

Finally, if some w-arrow of A contains some twists, we simply insert virtual
crossings accordingly, as indicated below.

=

An example is given in Figure 4.2.

= =

Figure 4.2. An example of diagram obtained by surgery along w-arrows

4.2. Arrow presentations. Having defined surgery along w-arrows, we are led to
the following.

Definition 4.1. An Arrow presentation for a diagram D is a union of a diagram V
without classical crossings and a collection of w-arrows A for V , such that surgery
on V along A yields the diagram D.
We say that two Arrow presentations are equivalent if the surgeries yield equivalent
diagrams. We will simply denote this equivalence by =.

In the next section, we address the problem of generating this equivalence relation
by local moves on Arrow presentations.

As Figure 4.3 illustrates, surgery along a w-arrow is equivalent to a devirtualiza-
tion move, which is a local move that replaces a virtual crossing by a classical one.
This observation implies the following.

Proposition 4.2. Any diagram admits an Arrow presentation.
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= =

Figure 4.3. Surgery along a w-arrow is a devirtualization move.

More precisely, for a diagram D, there is a uniquely defined Arrow resentation
VD ∪ A which is obtained by applying the rule of Figure 4.3 at each (classical)
crossing. Note that VD is obtained from D by replacing all classical crossings by
virtual ones.

Definition 4.3. We call the union VD ∪A the wA-presentation of the diagram D.

In other words, the wA-presentation of a diagram should be thought of as its
canonical Arrow presentation. For example, for the diagram of the trefoil show in
Figure 4.13, the wA-presentation is given in the center of the figure.

4.3. Arrow moves. We call Arrow moves the following eight types of local moves
among Arrow presentations.

(1) Virtual Isotopy. Virtual Reidemeister-type moves involving edges of w-
arrows and/or strands of diagram, along with the following local moves:2

== =

(2) Involutivity.

=

(3) Head Reversal.

=

(4) Tail Reversal.

=

(5) Tails Exchange.

=

(6) Isolated Arrow.

==

(7) Inverse.

=

(8) Slide.

=

2Here, in the figures, the vertical strand is either a portion of diagram or of a w-arrow.
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Lemma 4.4. Arrow moves yield equivalent Arrow presentations.

Proof. Virtual Isotopy moves (1) are easy consequences of the surgery definition of
w-arrows and virtual Reidemeister moves. This is clear for the Reidemeister-type
moves, since all such moves locally involve only virtual crossings. The remaining
local moves essentially follow from detour moves. For example, the figure below
illustrates the proof of one instance of the second move, for one choice of orientation
at the tail:

===

All other moves of (1) are given likewise by virtual Reidemeister moves.
Move (2) follows from the definition of a twist and the virtual Reidemeister II

move, as shown below:

= = =

Having proved these first sets of moves, we can freely use them to simplify the
proof of the remaining moves. For example, we can freely assume that the w-arrow
involved in the Tail Reversal move (4) is either as shown on the left-hand side of
Figure 4.4 below, or differs from this figure by a single twist.

The proof of (4) is given in Figure 4.4 in the case where the w-arrow has no twist
and the strand is oriented upwards (in the figure of the lemma). It only uses the

= ==

Figure 4.4. Proving the Tail Reversal move

definition of a w-arrow and the virtual Reidemeister II move. The other cases are
similar, and left to the reader.

Likewise, we only prove (3) in Figure 4.5 when the w-arrow has no twist. Note
that the Tail Reversal and Isotopy moves (3) and (1) allows us to chose the strand
orientation as depicted. The identities in the figure follow from elementary appli-

= == =

Figure 4.5. Proving the Head Reversal move

cations of generalized Reidemeister moves.
Figure 4.6 shows (5). There, the second and fourth identities are applications of

the detour move, while the third move uses the OC move.
In Figure 4.6, we had to choose a local orientation for the upper strand. This
implies the result for the other choice of orientation, by using the Tail Reversal
move (4).

Moves (6) and (7) are direct consequences of the definition, and are left to the
reader.
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= == = =

Figure 4.6. Proving the Tails Exchange move

Finaly, we prove (8). There are a priori several choices of local orientations to
consider, which are all declined in two versions, depending on whether we insert
a twist on the ◦-marked w-arrow or not. Figure 4.7 illustrates the proof for one
choice of orientation, in the case where no twist is inserted. The sequence of iden-
tities in this figure is given as follows: the second and third identities use isotopies
and detour moves, the fourth (vertical) one uses the OC move, then followed by
isotopies and detour moves which give the fifth equality. The final step uses the
Tails Exchange move (5).

=

==

=

==

=

Figure 4.7. Proving the Slide move

Now, notice that the exact same proof applies in the case where there is a twist
on the ◦-marked w-arrow. Moreover, if we change the local orientation of, say,
the bottom strand in the figure, the result follows from the previous case by the
Reversal moves (3) and (4), the Tails Exchange move (5) and the Involutivity move
(2), as the following picture indicates:

===

We leave it to the reader to check that, similarly, all other choices of local orienta-
tions follow from the first one. �

The main result of this section is that this set of moves is complete.

Theorem 4.5. Two Arrow presentations represent equivalent diagrams if and only
if they are related by Arrow moves.

The if part of the statement is shown in Lemma 4.4. In order to prove the only
if part, we will need the following.

Lemma 4.6. If two diagrams are equivalent, then their wA-presentations are re-
lated by Arrow moves.
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Proof. It suffices to show that generalized Reidemeister moves and OC moves are
realized by Arrow moves among wA-presentations.

Virtual Reidemeister moves and the Mixed move follow from Virtual Isotopy
moves (1). For example, the case of the Mixed move is illustrated in Figure 4.8
(the argument holds for any choice of orientation).

= = =

Figure 4.8. Realizing the Mixed move by Arrow moves

The OC move is, expectedly, essentially a consequence of the Tails Exchange
move (5). More precisely, Figure 4.9 shows how applying the Tails Exchange to-
gether with Isotopy moves (1), followed by Tail Reversal moves (4), and further
Isotopy moves, realizes the OC move.

= = = =

Figure 4.9. Realizing the OC move by Arrow moves

We now turn to classical Reidemeister moves. The proof for the Reidemeister I
move is illustrated in Figure 4.10. There, the second equality uses move (1), while
the third equality uses the Isolated Arrow move (6). (More precisely, one has to
consider both orientations in the figure, as well as the opposite crossing, but these
other cases are similar.) The proof for the Reidemeister II move is shown in Figure

== =

Figure 4.10. Realizing the Reidemeister I move by Arrow moves

4.11, where the second equality uses moves (1) and the Head Reversal move (3),
and the third equality uses the Inverse move (7). Finally, for the Reidemeister move

= = =

Figure 4.11. Realizing the Reidemeister II move by Arrow moves

III, we first note that, although there are a priori eight choices of orientation to be
considered, Polyak showed that only one is necessary [24]. We consider this move
in Figure 4.12. There, the second equality uses the Reversal and Isotopy moves
(3), (4) and (1), the third equality uses the Inverse move (7), and the fourth one
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=

=

=

=

=

==

=

Figure 4.12. Realizing the Reidemeister III move by Arrow moves

uses the Slide move (8) as well as the Tails Exchange move (5). Then the fifth
equality uses the Inverse move back again, the sixth equality uses the Reversal,
Isotopy and Tails Exchange moves, and the seventh one uses further Reversal and
Isotopy moves. �

Remark 4.7. We note from the above proof that some of the Arrow moves appear
as essential analogues of the generalized Reidemeister moves: the Isolated move (6)
gives Reidemeister I move, while the Inverse move (7) and Slide move (8) give Rei-
demeister II and III, respectively. Finaly, the Tails Exchange move (5) corresponds
to the OC move.

We can now prove the main result of this section.

Proof of Theorem 4.5. As already mentioned, it suffices to prove the only if part.
Observe that, given a diagram D, any Arrow presentation of D is equivalent to the
wA-presentation of some diagram. Indeed, by the Involutivity and Head Reversal
moves (2) and (3), we can assume that the Arrow presentation of D contains no
twist. We can then apply Isotopy and Tail Reversal moves (1) and (4) to assume
that each w-arrow is contained in a disk where it looks as on the left-hand side of
Figure 4.1; by using virtual Reidemeister moves II, we can actually assume that it
is next to a (virtual) crossing, as on the left-hand side of Figure 4.3. The resulting
Arrow presentation is thus a wA-presentation of some diagram (which is equivalent
to D, by Lemma 4.4).

Now, consider two equivalent diagrams, and pick any Arrow presentations for
these diagrams. By the previous observation, these Arrow presentations are equiv-
alent to wA-presentations of equivalent diagrams. The result then follows from
Lemma 4.6. �

4.4. Relation to Gauss diagrams. Although similar-looking and closely related,
w-arrows are not to be confused with arrows of Gauss diagrams. In particular, the
signs on arrows of a Gauss diagram are not equivalent to twists on w-arrows. Indeed,
the sign of the crossing defined by a w-arrow relies on the local orientation of the
strand where its head is attached. The local orientation at the tail, however, is
irrelevant. Let us clarify here the relationship between these two objects.

Given an Arrow presentation V ∪ A for some diagram K (of, say, a knot) one
can always turn it by Arrow moves into an Arrow presentation V0∪A0, where V0 is
a trivial diagram, with no crossing. See for example the case of the trefoil in Figure
4.13. There is a unique Gauss diagram for K associated to V0∪A0, which is simply
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==

Figure 4.13. The right-handed trefoil as obtained by surgery on
w-arrows

obtained by the following rule. First, each w-arrow in A0 enherits a sign, which is +
(resp. −) if, when running along V0 following the orientation, the head is attached
to the right-hand (resp. left-hand) side. Next, change this sign if and only if the
w-arrow contains an odd number of twists. For example, the Gauss diagram for the
right-handed trefoil shown in Figure 4.13 is obtained from the Arrow presentation
on the right-hand side by labeling all three arrows by +. Note that, if the head of
a w-arrow is attached to the right-hand side of the diagram, then the parity of the
number of twists corresponds to the sign.

Conversely, any Gauss diagram can be converted to an Arrow presentation, by
attaching the head of an arrow to the right-hand (resp. left-hand) side of the
(trivial) diagram if it is labeled by a + (resp. −).

Theorem 4.5 provides a complete calculus (Arrow moves) for this alternative
version of Gauss diagrams (Arrow presentations), which is to be compared with the
Gauss diagram versions of Reidemeister moves. Although the set of Arrow moves
is larger, and hence less suitable for (say) proving invariance results, it is in general
much simpler to manipulate. Indeed, Gauss diagram versions of Reidemeister moves
III and (to a lesser extent) II contain rather delicate compatibility conditions, given
by both the arrow signs and local orientations of the strands, see [7]; Arrow moves,
on the other hand, involve no such condition.

Moreover, we shall see in the next sections that Arrow calculus generalizes widely
to w-trees. This can thus be seen as an ‘higher order Gauss diagram’ calculus.

5. Surgery along w-trees

In this section, we show how w-trees allow to generalize surgery along w-arrows.

5.1. Subtrees, expansion, and surgery along w-trees. We start with a couple
preliminary definitions.

A subtree of a w-tree is a connected union of edges and vertices of this w-tree.
Given a subtree S of a w-tree T for a diagram D (possibly T itself), consider for
each endpoint e of S a point e′ on D which is adjacent to e, so that e and e′ are met
consecutively, in this order, when running along D following the orientation. One
can then form a new subtree S′, by joining these new points by the same directed
subtree as S, so that it runs parallel to it and crosses it only at virtual crossings.
We then say that S and S′ are two parallel subtrees.

We now introduce the Expansion move (E), which comes in two versions as
shown in Figure 5.1.

(E)

= =
(E)

Figure 5.1. Expanding w-trees by using (E)
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Convention 5.1. In Figure 5.1, the dotted lines on the left-hand side of the equality
represent two subtrees, forming along with the part which is shown a w-tree. The
dotted parts on the right-hand side then represent parallel copies of both subtrees.
Together with the represented part, they form pairs of parallel w-tree which only
differ by a twist on the terminal edge. An example is given in Figure 5.2. We shall

=T T

T

T

T2
3

41

Figure 5.2. Applying (E) to a w4-tree

use this diagrammatic convention throughout the paper.

By applying (E) recursively, we can eventually turn any w-tree into a union of
w-arrows. Note that this process is uniquely defined. An example is given in Figure
5.3.

Definition 5.2. The expansion of a w-tree is the union of w-arrows obtained from
repeated applications of (E).

T =

Figure 5.3. Expansion of a w3-tree

Remark 5.3. As Figure 5.3 illustrates, the expansion of a wk-tree T takes the form
of an ‘iterated commutators of w-arrows’. More precisely, labeling the tails of T
from 1 to k, and denoting by i a w-arrow running from (a neighborhood of) tail i
to (a neighborhood of) the head of T , and by i−1 a similar w-arrow with a twist,
then the heads of the w-arrows in the expansion of T are met along D according to
a k-fold commutator in 1, · · · , k. See Section 6.1.2 for a more rigorous and detailed
treatment.

The notion of expansion leads to the following.

Definition 5.4. The surgery along a w-tree is surgery along its expansion.

As before, we shall denote by DT the result of surgery on a diagram D along a
union T of w-trees.

Remark 5.5. We have the following Brunnian-type property. Given a w-tree T ,
consider the trivial tangle D given by a neighborhood of its endpoints: the tangle
DT is Brunnian, in the sense that deleting any component yields a trivial tangle.
Indeed, in the expansion of T , we have that deleting all w-arrows which have their
tails on a same component of D, produces a union of w-arrows which yields a trivial
surgery, thanks to the Inverse move (7).
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5.2. Moves on w-trees. In this section, we extend the Arrow calculus set up
in Section 4 to w-trees. The expansion process, combined with Lemma 4.4, gives
immediately the following.

Lemma 5.6. Arrow moves (1) to (5) hold for w-trees as well. More precisely:

• one should add the following local moves to (1):

strand of diagram or edge of w−tree  s
=

• The Tails Exchange move (5) may involves tails from different components
or from a single component.

Remark 5.7. As a consequence of the Tails Exchange move for w-trees, the relative
position of two (sub)trees for a diagram is completely specified by the relative
position of the two heads. In particular, we can unambiguously refer to parallel
w-trees by only specifying the relative position of their heads. Likewise, we can
freely refer to ‘parallel subtrees’ of two w-trees if these subtrees do not contain the
head.

Convention 5.8. In the rest of the paper, we will use the same terminology for
the w-tree versions of moves (1) to (6), and in particular we will use the same
numbering. As for moves (7) and (8), we will rather refer to the next two lemmas
when used for w-trees.

As a generalization of the Inverse move (7), we have the following.

Lemma 5.9 (Inverse). Two parallel w-trees which only differ by a twist on the
terminal edge yield a trivial surgery.3

=

Proof. We proceed by induction on the degree of the w-trees involved. The w-arrow
case is given by move (7). Now, suppose that the left-hand side in the above figure
involves two wk-trees. Then, one can apply (E) to both to obtain a union of eight
w-trees of degree < k. Figure 5.4 then shows how repeated use of the induction
hypothesis implies the result. �

== =

Figure 5.4. Proving the Inverse move for w-trees

Convention 5.10. In the rest of this paper, when given a union S of w-trees with
adjacent heads, we will denote by S the union of w-trees such that we have

=

...

S S

...

3Recall from Convention 5.1 that, in the figure, the dotted parts represent two parallel subtrees.
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Note that S can be described explicitly from S, by using the Inverse Lemma 5.9
recursively.

Likewise, we have the following natural generalization of the Slide move (8).

Lemma 5.11 (Slide). The following equivalence holds.

=

Figure 5.5. The Slide move for w-trees

Proof. The proof is done by induction on the degree of the w-trees involved in
the move, as in the proof of Lemma 5.9. The degree 1 case is the Slide move (8)
for w-arrows. Now, suppose that the left-hand side in the figure of Lemma 5.11
involves two wk-trees, and apply (E) to obtain a union of eight w-trees of degree
< k. Figure 5.6 then shows how repeated use of the induction hypothesis implies
the result. We simply apply the induction hypothesis four times, together with the

= = =

Figure 5.6. Proving the Slide move for w-trees

Tails Exchange move (5), and apply (E) back again to express the right-hand-side
of Figure 5.6 as the desired pair of wk-trees. �

Remark 5.12. The Slide Lemma 5.11 generalizes as follows. If one replace the w-
arrow in Figure 5.5 by a bunch of parallel w-arrows, then the lemma still applies.
Indeed, it suffices to insert, using the Inverse Lemma 5.9, pairs of parrallel w-trees
between the endpoints of each pair of consecutive w-arrows, apply the Slide Lemma
5.11, then remove pairwise all the added w-trees again by the Inverse Lemma. Note
that this applies for any parallel bunch of w-arrows, for any choice of orientation
and twist on each individual w-arrow.

We now provide several supplementary moves for w-trees.

Lemma 5.13 (Head Traversal). A w-tree head can pass through an isolated union
of w-trees:4

=

Proof. Clearly, by (E), it suffices to prove the result for a w-arrow head. The proof
is given in Figure 5.7. (More precisely, the figure proves the equality for one choice
of orientation; the other case is strictly similar.) Surgery yields the diagram shown

4In the figure, the shaded part indicates a portion of diagram with some w-trees, which is
contained in a disk as shown.
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= = = =

Figure 5.7. Proving the Head Traversal move

on the left-hand side of the figure, which can be deformed into the second diagram
by a planar isotopy. Successive applications of the detour move and of the w-detour
move (Remark 2.4) then give the next two equalities, and another planar isotopy
completes the proof. �

Lemma 5.14 (Heads Exchange). Exchanging two heads can be achieved at the
expense of an additional w-tree, as shown below:

=

Proof. Starting from the right-hand side of the above equality, applying the Ex-
pansion move (E) gives the first equality in Figure 5.8. Using the Involutivity move
(2) gives the second equality, and two applications of the Inverse Lemma 5.9 then
conclude the proof. �

= =

Figure 5.8. Proving the Heads Exchange move

Remark 5.15. By strictly similar arguments, one can show the simple variants of
the Heads Exchange move given in Figure 5.9.

===

Figure 5.9. Some variants of the Heads Exchange move

Lemma 5.16 (Head/Tail Exchange). Exchanging a w-tree head and a w-arrow tail
can be achieved at the expense of an additional w-tree, as shown in Figure 5.10.

==

Figure 5.10. The Head/Tail Exchange move
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Proof. We only prove the version of the equality where there is no twist on the
left-hand side, the other one being strictly similar. The proof is given in Figure
5.11. The three identities depicted there respectively use the Inverse Lemma 5.9,

===

Figure 5.11. Proving the Head/Tail Exchange move

the Slide Lemma 5.11 and the Heads Exchange Lemma 5.14. Another application
of the Inverse Lemma then concludes the argument. �

Lemma 5.17 (Antisymmetry). The cyclic order at a trivalent vertex may be
changed, at the cost of a twist on the three incident edges at that vertex:

=

Proof. The proof is by induction on the number of edges from the head to the
trivalent vertex involved in the move. When there is only one edge, the result
simply follows from (E), isotopy of the resulting w-trees, and (E) back again, as
shown in Figure 5.12. (Here, we only show the case where the terminal edge contains

== =

Figure 5.12. Proving the Antisymmetry move: initial step

no twist: the other case is similar.) Likewise, in the general case, we use (E) to
apply the induction hypothesis to the resulting w-trees, and use (E) back again, as
illustrated in Figure 5.13 (we leave to the reader the case where the terminal edge
contains a twist). �

== =

Figure 5.13. Proving the Antisymmetry move: inductive step

A fork is a subtree which consists of two adjacent tails connected to the same
trivalent vertex (possibly containing some twists). See Figure 5.14.
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=

Figure 5.14. The Fork move

Lemma 5.18 (Fork move). Surgery along a w-tree containing a fork does not
change the equivalence class of a diagram.

Proof. The proof is by induction on the number of edges from the head to the fork.
The initial case of a w2-tree with adjacent tails is shown in Figure 5.15, in the case
where no edge contain a twist (the other cases are similar).

== =

Figure 5.15. Proving the Fork move

The inductive step is clear: applying (E) to a w-tree containing a fork yields four
w-trees, two of which contain a fork, by the Tails Exchange move (5). Using the
induction hypothesis, we are thus left with two w-trees which cancel by the Inverse
Lemma 5.9. �

5.3. w-tree presentations for welded knotted objects. We have the following
natural generalization of the notion of Arrow presentation.

Definition 5.19. Suppose that a diagram is obtained from a diagram U without
classical crossings by surgery along a union T of w-trees. Then U ∪ T is called a
w-tree presentation of the diagram.
Two w-tree presentations are equivalent if they represent equivalent diagrams.

Let us call w-tree moves the set of moves on w-trees given by the results of Sec-
tion 5. More precisely, w-tree moves consists of the Expansion move (E), Moves
(1)-(6) of Lemma 5.6, and the Inverse (Lem. 5.9), Slide (Lem. 5.11), Head Traversal
(Lem. 5.13), Heads Exchange (Lem. 5.14), Head/Tail Exchange (Lem. 5.16), An-
tisymmetry (Lem. 5.17) and Fork (Lem. 5.18) moves. Clearly, w-tree moves yield
equivalent w-tree presentations.

Examples of w-tree presentations for the right-handed trefoil are given in Figure
5.16. There, starting from the Arrow presentation of Figure 4.13, we apply the
Head/Tail Exchange Lemma 5.16, the Tails Exchange move (5) and the Isolated
Arrow move (6). As mentioned in Section 4.4, these can be regarded as kinds of

== =

Figure 5.16. Tree-presentation for the trefoil

‘higher order Gauss diagram’ presentation for the trefoil.
It follows from Theorem 4.5 that w-tree moves provide a complete calculus for

w-tree presentations. In other words, we have the following.
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Theorem 5.20. Two w-tree presentations represent equivalent diagrams if and
only if they are related by w-tree moves.

Note that the set of w-tree moves is highly non-minimal. In fact, the above
remains true when only considering the Expansion move (E) and Arrow moves
(1)-(8).

6. Welded invariants

In this section, we review several welded extensions of classical invariants.

6.1. Virtual knot group. Let L be a welded (string) link diagram.
Recall that the group G(L) of L is defined by a Wirtinger-like presentation, as

follows. Each arc of L (i.e. each piece of strand bounded by either a strand endpoint
or an underpassing arc in a classical crossing) yields a generator, and each classical
crossing gives a relation, as indicated in Figure 6.1.

ba

c

a   bac
−1 −1

a

c

b

−1
aba   c

−1

Figure 6.1. Wirtinger relation at each crossing

Since virtual crossings do not produce any generator or relation, virtual and
Mixed Reidemeister moves obviously preserve the group presentation [16]. It turns
out that this ‘virtual knot group’ is also invariant under the OC move, and is thus
a welded invariant [16, 26].

6.1.1. Wirtinger-like presentation using w-trees. Given a w-tree presentation of a
diagram L, we can associate a Wirtinger-like presentation of G(L) which involves
in general fewer generators and relations. More precisely, let U ∪ T be a w-tree
presentation of L, where T = T1 ∪ · · · ∪ Tr has r connected components. The r
heads of T split U into a collection of n arcs,5 and we pick a generator mi for each of
them. Consider the free group F generated by these generators, where the inverse
of a generator mi will be denoted by mi. Arrange the heads of T (applying the
Head Reversal move (3) if needed) so that it looks locally as in Figure 6.2. Then
we have

G(L) = 〈{mi}i |Rj (j = 1, · · · , r)〉,
where Rj is a relation associated with Tj as illustrated in the figure. There, w(Tj)
is a word in F , constructed as follows.

R =abac 

a b
a=w(T )j

j

b c

a

[a,b] a

Figure 6.2. Wirtinger-type relation at a head, and the procedure
to define w(T )

5More precisely, the heads of T split U into a collections of arcs and possibly several circles,
corresponding to closed components of U with no head attached.



ARROW CALCULUS 21

First, label each edges of Tj which is incident to a tail by the generator mi

inherited from its attaching point. Next, label all edges of Tj by elements of F
by applying recursively the rules illustrated in Figure 6.2. More precisely, assign
recursively to each outgoing edge at a trivalent vertex the formal bracket

[a, b] := abab,

where a and b are the labels of the two ingoing edge, following the cyclic orientation
of the vertex; we also require that a label meeting a twist is replaced by its inverse.
This procedure yields a word w(Tj) ∈ F associated to Tj , which is defined as the
label at its terminal edge. Note that this procedure more generally associates a
formal word to any subtree of Tj , and that, by the Tail Reversal move (4), the local
orientation of the diagram at each tail is not relevant in this process.

In the case of a wA-presentation of a diagram, the above procedure recovers
the usual Wirtinger presentation of the diagram, and it is easily checked that, in
general, this procedure indeed gives a presentation of the same group.

Remark 6.1. As outlined in Section 2.2, the Tube map that ‘inflates’ a welded
diagram L into a ribbon knotted surface acts faithfully on the virtual knot group,
in the sense that we have π1

(
Tube(L)

) ∼= G(L),6 and that it maps meridians to
meridians and (preferred) longitudes to (preferred) longitudes, so that the Wirtinger
presentations are in one–to–one correspondence (see [26, 30, 1]).

6.1.2. Algebraic formalism for w-trees. Let us push a bit further the algebraic tool
introduced in the previous section.

Given two w-trees T and T ′ with adjacent heads in a w-tree presentation, such
that the head of T is met before that of T ′ when following the orientation, we define

w(T ∪ T ′) := w(T )w(T ′) ∈ F.

Convention 6.2. Here F denotes the free group on the set of Wirtinger-like gener-
ators of the given w-tree presentation, as defined in Section 6.1.1. In what follows,
we will always use this implicit notation.

Note that, if T is obtained from T by inserting a twist in its terminal edge, then
w(T ) = w(T ), and w(T ∪ T ) = 1, which is compatible with Convention 5.10.

Now, if we denote by E(T ) the result of one application of (E) to some w-tree
T , then we have w(T ) = w(E(T )). More precisely, if we simply denote by A and B
the words associated with the two subtrees at the two ingoing edges of the vertex
where (E) is applied, then we have

w(T ) = [A,B] = ABAB.

We can therefore reformulate (and actually, easily reprove) some of the results
of Section 5.2 in these algebraic terms. For example, the Heads Exchange Lemma
5.14 translates to

AB = B[B,A]A,

and its variants given in Figure 5.9, to

AB = B[A,B]A = BA[A,B] = [A,B]BA.

The Antisymmetry Lemma 5.17 also reformulates nicely; for example the ‘initial
case’ shown in Figure 5.12 can be restated as

[B,A] = [A,B].

6Here, π1
(
Tube(L)

)
denote the fundamental group of the complement of the surface Tube(L)

in 4-space.
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Finally, the Fork Lemma 5.18 is simply

[ · · · [A,A] · · ·] = 1.

In the sequel, although we will still favor the more explicit diagrammatical lan-
guage, we shall sometimes make use of this algebraic formalism.

6.2. The normalized Alexander polynomial for welded long knots. Let
L be a welded long knot diagram. Suppose that the group of L has presentation
G(L) = 〈x1, · · · , xm|r1, · · · , rn〉 for some m,n such that m ≥ n. Consider the n×m

Jacobian matrix M =

(
ϕ

(
∂ri
∂xj

))
i,j

, where ∂
∂xj

denote the Fox free derivative in

variable xj , and where ϕ : ZF (x1, · · · , xm) → Z[t±1] is the ring homomorphism
mapping each generator xi of the free group F (x1, · · · , xm) to t.

The Alexander polynomial of L, denoted by ∆L(t) ∈ Z[t±1], is defined as the
greatest common divisor of the n × n-minors of M , which is well-defined up to a
unit factor [27, 28].

Remark 6.3. If the presentation for G(L) is given from the Wirtinger procedure,
with one generator for each classical crossing, then each line of M has exactly 3
nonzero entries, which are −t−1, 1 and −1 + t−1, so that the sum of its columns
yields a column of zeros. Consequently, ∆L(t) is given by any n× n-minors of M .
This observation extends to any presentation of G(L) with deficiency one, and in
particular for the Wirtinger-like presentations extracted from w-tree presentations
of L, as presented in the previous section.

In order to remove the indeterminacy in the definition of ∆L(t), we further
require that ∆L(1) = 1 and that d∆L

dt (1) = 0. The resulting invariant is the

normalized Alexander polynomial of L, denoted by ∆̃L (see e.g. [12]); it decomposes
as

∆̃L(t) = 1 +
∑
k≥2

αk(L)(1− t)k ∈ Z[t− 1],

thus defining a sequence of integer-valued invariants αk of welded long knots.7

Definition 6.4. We call the invariant αk the kth normalized coefficient of the
Alexander polynomial.

We now give a realization result for the coefficients αk in terms of w-trees.
Consider the welded long knots Lk or Lk (k ≥ 2) defined in Figure 6.3.

Lemma 6.5. Let k ≥ 2. The normalized Alexander polynomial of Lk and Lk are
given by

∆̃Lk(t) = 1 + (1− t)k and ∆̃Lk
(t) = 1− (1− t)k.

Note that these are genuine equalities: there are no higher order terms. In
particular, we have αi(Lk) = −αi(Lk) = δik.

...

...

Lk

...

...

Lk

Figure 6.3. The welded long knots Lk or Lk, given by surgery
along a single wk-tree (k ≥ 2).

7Note that our definition for αk slightly differs from the one used in [12], by a factor (−1)k.
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Proof of Lemma 6.5. The presentation for G(Lk) given by the defining wk-tree pre-
sentation is 〈l, r|RklR−1

k r−1〉, where Rk =
[
[· · · [[[l, r−1], r−1], r−1] · · · ], r−1

]
is a

length k commutator. One can show inductively that
∂Rk
∂l

= (1 − r)k−1, so that

the normalized Alexander polynomial is given by

∆̃Lk(t) = ϕ

(
∂RklR

−1
k r−1

∂l

)
= 1 + (1− t)k,

thus completing the computation for Lk. The result for Lk is completely similar,
and is left to the reader. �

Although the following might be well-known, we add a short proof as we could
not find any in the literature.

Lemma 6.6. The normalized Alexander polynomial of welded long knots is multi-
plicative.

Proof. The proof is straightforward. Let K and K ′ be two welded long knots, with
groups given by 〈x1, · · · , xm+1|r1, · · · , rm〉 and 〈y1, · · · , yn+1|s1, · · · , sn〉. Then the
group of the welded long knot K ·K ′ is given by

〈x1, · · · , xm, y1, · · · , yn+1|r̃1, · · · , r̃m, s1, · · · , sn〉,

where r̃i is obtained from ri by replacing xm+1 by y1. The Jacobian matrix thus
decomposes as

(
ϕ
(
∂r̃i
∂xj

))
1≤i≤m
1≤j≤m

(
ϕ
(
∂r̃i
∂y1

))
1≤i≤m

0

0
(
ϕ
(
∂si
∂y1

))
1≤i≤n

(
ϕ
(
∂si
∂yj

))
1≤i≤n

2≤j≤n+1


i,j

,

and the result follows by taking the determinant after removing, say, the (m+ 1)st
column. �

Theorem 6.6 implies the following additivity result.

Corollary 6.7. Let k be a positive integer and let K be a welded long knot with
αi(K) = 0 (i ≤ k − 1). Then, for any welded long knot K ′, αk(K ·K ′) = αk(K) +
αk(K ′).

6.3. Welded Milnor invariants. We now recall the general virtual extension of
Milnor invariants given in [1], which is an invariant of welded string links. This
construction is intrasically topological, since it is defined via the Tube map as the
4-dimensional analogue of Milnor invariants for (ribbon) knotted annuli in 4-space;
we will however give here a purely combinatorial reformulation.

Given an n-component welded string link L, consider the group G(L) defined
in Section 6.1. Consider also the free group F l and Fu generated by the n ‘lower’
and ‘upper’ Wirtinger generators, i.e. the generators associated with the n arcs
of L containing the initial, resp. terminal, point of each component. Recall that
the lower central series of a group G is the family of nested subgroups {ΓkG}k≥1

defined recursively by Γ1G = G and Γk+1G = [G,ΓkG]. Then, for each k ≥ 1, we
have a sequence of isomorphisms8

Fn/ΓkFn ' F l/ΓkF l ' G(L)/ΓkG(L) ' Fu/ΓkFu ' Fn/ΓkFn,

8This relies heavily on the topological realization of welded string links as ribbon knotted
annuli in 4-space by the Tube map, which acts faithfully at the level of the group system: see
Section 6 of [1] for the details.
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where Fn is the free group on m1, · · · ,mn. In this way, we associate to L an element
ϕk(L) of Aut(Fn/ΓkFn). This is more precisely a conjugating automorphism, in the

sense that, for each i, ϕk(L) maps mi to a conjugate m
λki
i ; we call this conjugating

element λki ∈ Fn/ΓkFn the combinatorial ith longitude. Now, consider the Magnus
expansion, which is the group homomorphism E : Fn → Z〈〈X1, · · · , Xn〉〉 mapping
each generator mi to the formal power series 1 +Xi.

Definition 6.8. For each sequence I = i1 · · · im−1im of (possibly repeating) indices
in {1, · · · , n}, the welded Milnor invariant µwI (L) of L is the coefficient of the
monomial Xi1 · · ·Xim−1

in E(λkim), for any k ≥ m. The number of indices in I is
called the length of the invariant.

For example, the simplest welded Milnor invariants µwij indexed by two distinct
integers i, j are the so-called virtual linking numbers lki/j (see [7, §1.7].

Remark 6.9. This is a welded extension of the classical Milnor µ-invariants, in the
sense that if L is a (classical) string link, then µI(L) = µwI (L) for any sequence I.

The following realization result, in terms of w-trees, is to be compared with [20,
pp.190] and [31, Lem. 4.1].

Lemma 6.10. Let I = i1 · · · ik be a sequence of indices in {1, · · · , n}, and, for any
σ in the symmetric group Sk−2 of degree k − 2, set σ(I) = iσ(1) · · · iσ(k−2)ik−1ik.
Consider the w-tree TI for the trivial n-string link diagram 1n shown in Figure 6.4.

1
k

ik− i

...ik−

i2 12

i

Figure 6.4. The wk−1-tree Ti1,i2,··· ,ik−1,ik for 1n

Then we have

µwσ(I) ((1n)TI ) =

{
1 if σ =Id,
0 otherwise.

Moreover for all σ ∈ Sk−2, we have

µwσ(I) ((1n)TI ) = −µwσ(I)

(
(1n)T I

)
,

where T I is the w-tree obtained from TI by inserting a twist in the terminal edge.

Proof. This is a straightforward calculation, based on the observation that the
combinatorial ikth longitude of TI is given by

λkik = [i1, [i2, · · · , [ik−3, [ik−2, i
−1
k−1]−1]−1 · · · ]−1]

(all other longitudes are clearly trivial). �

Remark 6.11. The above definition can be adapted to welded link invariants, which
involves, as in the classical case, a recurring indeterminacy depending on lower order
invariants. In particular, the first non-vanishing invariants are well defined integers,
and Lemma 6.10 applies in this case.

Finally, let us add the following additivity result.

Lemma 6.12. Let L and L′ be two welded string links of the same number of
components. Let m, resp. m′, be the integer such that all welded Milnor invariants
of L, resp. L′, of length ≤ m, resp. ≤ m′, are zero. Then µwI (L · L′) = µwI (L) +
µwI (L′) for any sequence I of length ≤ m+m′.
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The proof is strictly the same as in the classical case, as for example in [18, Lem.
3.3], and is therefore left to the reader.

6.4. Finite type invariants. The virtualization move is a local move on diagrams
which replaces a classical crossing by a virtual one. We call the converse local move
the devirtualization move.

Given a welded diagram L, and a set C of classical crossings of L, we denote
by LC the welded diagram obtained by applying the virtualization move to all
crossings in C; we also denote by |C| the cardinality of C.

Definition 6.13. An invariant v of welded knotted objects, taking values in an
abelian group, is a finite type invariant of degree ≤ k if, for any welded diagram L
and any set S of k + 1 classical crossings of D, we have

(6.1)
∑
S′⊂S

(−1)|S
′|v (LS′) = 0.

An invariant is of degree k if it is of degree ≤ k, but not of degree ≤ k − 1.

Remark 6.14. This definition is strictly similar to the usual notion of finite type (or
Goussarov-Vassiliev) invariants for classical knotted objects, with the virtualization
move now playing the role of the crossing change. Since a crossing change can be
realized by (de)virtualization moves, we have that the restriction of any welded
finite type invariant to classical objects is a Goussarov-Vassilev invariants.

The following is shown in [12] (in the context of ribbon 2-knots, see Remark 6.1).

Lemma 6.15. For each k ≥ 2, the kth normalized coefficient αk of the Alexander
polynomial is a finite type invariant of degree k.

It is known that classical Milnor invariants are of finite type [4, 17]. Using
essentially the same arguments, it can be shown that, for each k ≥ 1, length k + 1
welded Milnor invariants of string links are finite type invariants of degree k. The
key point here is that a virtualization, just a like a crossing change, corresponds
to conjugating or not at the virtual knot group level. Since we will not make
use of this fact in this paper, we will not provide a full and rigorous proof here.
Indeed, formalizing the above very simple idea, as done by D. Bar-Natan in [4]
in the classical case, turns out to be rather involved. Note, however, that we will
use a consequence of this fact which, fortunately, can easily be proved directly, see
Remark 7.6.

Remark 6.16. The Tube map recalled in Section 2.2 is also compatible with this
finite type invariant theory, in the following sense. Suppose that some invariant of
welded knotted objects v extends naturally to an invariant v(4) of ribbon knotted
objects, so that

v(4)(Tube(D)) = v(D),

for any diagram D. Note that this is the case for the virtual knot group, the nor-
malized Alexander polynomial and welded Milnor invariants, essentially by Remark
6.1. Then, if v is a degree k finite type invariant, then so is v(4), in the sense of the
finite type invariant theory of [12, 15]. Indeed, if two diagrams differ by a virtual-
ization move, then their images by Tube differ by a ‘crossing changes at crossing
circles’, which is a local move that generates the finite type filtration for ribbon
knotted objects, see [15].

7. wk-equivalence

We now define and study a family of equivalence relations on welded knotted
objects, using w-trees. We explain the relation with finite type invariants, and give
several supplementary technical lemmas for w-trees.
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7.1. Definitions.

Definition 7.1. For each k ≥ 1, the wk-equivalence is the equivalence relation on
welded knotted objects generated by generalized Reidemeister moves and surgery
along wl-trees, l ≥ k. More precisely, two welded knotted objects W and W ′ are
wk-equivalent if there exists a finite sequence {W i}ni=0 of welded knotted objects
such that, for each i ∈ {1, · · · , n}, W i is obtained from W i−1 either by a generalized
Reidemeister move or by surgery along a wl-tree, for some l ≥ k.

By definition, the wk-equivalence becomes finer as the degree k increases, in the
sense that the wk+1-equivalence implies the wk-equivalence.

The notion of wk-equivalence is a bit subtle, in the sense that it involves both
moves on diagrams and on w-tree presentations. Let us try to clarify this point by
introducing the following.

Notation 7.2. Let V ∪ T and V ∪ T ′ be two w-tree presentations of some diagram,
and let k ≥ 1 be an integer. Then we use the notation

V ∪ T
k
→ V ∪ T ′

if there exists a union T ′′ of w-trees for V of degree≥ k such that V ∪T = V ∪T ′∪T ′′.

Note that we have the implication(
V ∪ T

k
→ V ∪ T ′

)
⇒
(
VT

k∼ VT ′
)
.

Therefore, statements given in the terms of Notation 7.2 will be given when possible.
The converse implication, however, does not seem to hold in general. In other

words, we do not know whether a wk–equivalence version of [11, Prop. 3.22] holds
– see also Section 7.5.

7.2. Cases k = 1 and 2. We now observe that w1-moves and w2-moves are equiv-
alent to simple local moves on diagrams.

We already saw in Figure 4.3 that surgery along a w-arrow is equivalent to a
devirtualization move. Clearly, by the inverse move (7), this is also true for a
virtualization move. It follows immediately that any two welded links or string link
of the same number of components are w1-equivalent.

Let us now turn to the w2-equivalence relation. Recall that the right-hand side
of Figure 2.2 depicts the UC move, which is the forbidden move in welded theory.
We have

Lemma 7.3. A w2-move is equivalent to a UC move.

Proof. Figure 7.1 below shows that the UC move is realized by surgery along a
w2-tree. Note that, in the figure, we had to choose several local orientations on the
strands: we leave it to the reader to check that the other cases of local orientations
follow from the same argument, by simply inserting twists near the corresponding
tails.

= = = = =

Figure 7.1. Surgery along a w2-tree implies the UC move

Conversely, Figure 7.2 shows that surgery along a w2-tree is achieved by the UC
move, hence that these two local moves are equivalent. �
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= = = =

Figure 7.2. The UC move implies surgery along a w2-tree

It was shown in [2] that two welded (string) links are related by a sequence of UC
move, i.e. are w2-equivalent, if and only if they have same welded Milnor invariants
µwij . In particular, any two welded (long) knots are w2-equivalent.

Remark 7.4. The fact that any two welded (long) knots are w2-equivalent can also
easily be checked directly using arrow calculus. Starting from an Arrow presentation
of a welded (long) knot, one can use the (Tails, Heads and Head/Tail) Exchange
move (5) and Lemmas 5.14 and 5.16 to separate and isolate all w-arrows, as in
the figure of the Isolated move (6), up to addition of higher order w-trees. Each
w-arrow is then equivalent to the empty one by move (6).

7.3. Relation to finite type invariants. One of the main point in studying
welded (and classical) knotted objects up to wk-equivalence is the following.

Proposition 7.5. Two welded knotted objects that are wk-equivalent (k ≥ 1) can-
not be distinguished by finite type invariants of degree < k.

Proof. The proof is formally the same as Habiro’s result relating Cn-equivalence
(see Section 7.5) to Goussarov-Vassiliev finite type invariants [11, §6.2], and is
summarized below.

First, recall that, given a diagram L and k unions W1, · · · ,Wk of w-arrows for L,
the bracket [L;W1, · · · ,Wk] stands for the formal linear combination of diagrams

[L;W1, · · · ,Wk] :=
∑

I⊂{1,··· ,k}

(−1)|I|L∪i∈IWi
.

Note that, if each Wi consists of a single w-arrow, then the defining equation
(6.1) of finite type invariants can be reformulated as the vanishing of (the natural
linear extension of) a welded invariant on such a bracket. Note also that if, say,
W1 is a union of w-arrow W 1

1 , · · · ,Wn
1 , then we have the equality

[L;W1,W2, · · · ,Wk] =

n∑
j=1

[LW 1
1∪···∪W

j−1
1

;W j
1 ,W2, · · · ,Wk].

Hence if an invariant is of degree ≤ k, then it vanishes on [L;W1, · · · ,Wk].
Now, suppose that T is a wk-tree for some diagram L, and label the tails of

T from 1 to k. Consider the expansion of T , and denote by Wi the union of all
w-arrows running from (a neighborhood of) tail i to (a neighborhood of) the head
of T . Then LT = L∪ki=1Wi

and, according to the Brunnian-type property of w-trees

noted in Remark 5.5, we have L∪i∈IWi
= L for any I ( {1, · · · , k}. Therefore, we

have
LT − L = (−1)k[L;W, · · · ,Wk],

which, according to the above observation, implies Proposition 7.5. �

We will show in Section 8 that the converse of Proposition 7.5 holds for welded
knots and long knots.

Remark 7.6. It follows in particular from Proposition 7.5 that Milnor invariants of
length ≤ k are invariants under wk-equivalence. This can also be shown directly
by noting that, if we perform surgery on a diagram L along some wk-tree, this can
only change elements of G(L) by terms in ΓkF .
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7.4. Some technical lemmas. We now collect some supplementary technical lem-
mas, in terms of wk-equivalence. We will use an additional tool, called the index,
which we define below.

Let D be a welded (string) link diagram with n components labeled by 1 to n.
Let T be a wk-tree for D.

Definition 7.7. The index of T , denoted by i(T ), is the subset of {1, ..., n} of all
indices i such that T intersects the ith component of D at some endpoint.

Note that i(T ) has cardinality at most k + 1.
When referring to a w-tree using a word W ∈ F (using the algebraic formalism

of Section 6.1.2), we will freely use the notation i(W ) to refer to the index of the
corresponding w-tree.

The next result allows to move twists across vertices.

Lemma 7.8 (Twist). Let k ≥ 2. The following holds for a wk-tree.

k+1

Note that this move implies the converse one, by using the Antisymmetry Lemma
5.17 and Involutivity move (2).

Proof. Denote by d+1 the number of edges of T in the unique path connecting the
trivalent vertex shown in the statement to the head. Note that 0 ≤ d ≤ k − 1. We
will prove by induction on d the following claim, which is a stronger form of the
desired statement.

Claim 7.9. For all k ≥ 2, and for any wk-tree T , the following equalities hold

T =

...

G

where G denotes a union of w-trees of degree > k, each with index equal to i(T ).

The case d = 0 of the claim is given in Figure 7.3. There, the first equality uses
(E) and the second equality follows from the Heads Exchange Lemma 5.14 (actually,
from Remark 5.15) applied at the two rightmost heads, and the Inverse Lemma 5.9.
The third equality also follows from Remark 5.15 and the Inverse Lemma. Note

== =

Figure 7.3. Proof of the Twist Lemma: case d = 0

that this can equivalently be shown using the algebraic formalism of Section 6.1.2;
more precisely, the above figure translates to the simple equalities

[A,B] = ABAB = A [A,B]A = [A, [A,B]] [A,B].
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Observe that, in this algebraic setting, d is the depth of [A,B] in an iterated
commutator [ · · · , [A,B]···] ∈ ΓmF , which is defined as the number of elements Di ∈
F such that [ · · · , [A,B]···] = [Dd, [Dd−1, · · · , [D1, [A,B]]···]]. For the inductive step,
consider an element

[
C, [ · · · , [A,B]···]

]
∈ ΓkF , where C ∈ ΓlF and [ · · · , [A,B]···] ∈

ΓmF for some integers l,m such that l + m = k. Observe also that the induction
hypothesis gives the existence of some S ∈ Γm+1F , with i(S) = i([ · · · , [A,B]···]),
such that

[ · · · , [A,B]···] = S [ · · · , [A,B]···].
The inductive step is then given by[
C, [ · · · , [A,B]···]

]
= C [ · · · , [A,B]···]C [ · · · , [A,B]···]

= C [ · · · , [A,B]···]S C S [ · · · , [A,B]···] (induction hypothesis)

= GC [ · · · , [A,B]···]C [ · · · , [A,B]···] (Heads Exch. Lem. 5.14)

= G
[
C, [ · · · , [A,B]···]

]
,

where G is some term in Γk+1F with i(G) = i(
[
C, [ · · · , [A,B]···]

]
). (The reader is

invited to draw the corresponding diagrammatic argument.) �

Remark 7.10. By a symmetric argument, we can prove a variant of Claim 7.9 where
the heads of G are to the right-hand side of the w-tree in the figure.

Next, we address the move exchanging a head and a tail of two w-trees of arbi-
trary degree.

Lemma 7.11. The following holds.

W W’

1k+k’+

T

Here, W and W ′ are a wk-tree and a wk′-tree, respectively, for some k, k′ ≥ 1, and
T is a wk+k′-tree as shown.

Proof. Consider the path of edges of W ′ connecting the tail shown in the figure to
the head, and denote by n the number of edges in this path: we have 1 ≤ n ≤ k′.
The proof is by induction on n. More precisely, we prove by induction on n the
following stronger statement.

Claim 7.12. Let k, k′ ≥ 2. Let W , W ′ and T be as above. The following equality
holds.

TW

W’ =

.
.
.S

where S denotes a union of w-trees of degree > k + k′, each with index equal to
i(W ) ∪ i(W ′).

The case n = 1 of the claim is a consequence of the Head/Tails Exchange Lemma
5.16, Claim 7.9 and the Involutivity move (2). The proof of the inductive step is
illustrated in Figure 7.4 below. The first equality in Figure 7.4 is an application
of (E) to the wk-tree W ′, while the second equality uses the induction hypothesis.
The third (vertical) equality then follows from recursive applications of the Heads
Exchange Lemma 5.14, and uses also Convention 5.10. Further Heads Exchanges
give the fourth equality, and the final one is given by (E). �
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= =
.
.
.

.
.
.

=

= =

.
.
.

.
.
.

.
.
.

T
H

H

G

S

W’
S

Figure 7.4. Here, S (resp. G and H) represent a union of w-trees
of degree > k − 1 (resp. degree > k) and with index i(T )

We note the following consequence of Lemma 5.14 and Claim 7.12.

Corollary 7.13. Let T and T ′ be two w-trees, of degree k and k′. We can ex-
change the relative position of two adjacent endpoints of T and T ′, at the expense
of additional w-trees of degree ≥ k + k′ and with index equal to i(T ) ∪ i(T ′).

Proof. There are three types of moves to be considered. First, exchanging two tails
can be freely performed by the Tails Exchange move (5). Second, it follows from
the Heads Exchange Lemma 5.14 that exchanging the heads of these two w-trees
can be performed at the cost of one wk+k′ -tree with the desired index. Third, by
Claim 7.12, exchanging a tail of one of these w-trees and the head of the other can
be achieved up to addition of w-trees of degree ≥ k+k′ with index i(T )∪ i(T ′). �

Let us also note, for future use, the following consequence of these Exchange
results. We denote by 1n the trivial n-component string link diagram, without
crossings, and, given a union of w-trees W for 1n, we call a w-tree T ⊂W separated
if (1n)T is a factor of the welded string link (1n)W , i.e. if W splits as disjoint union
W1 t T tW2 such that (1n)W = (1n)W1 · (1n)T · (1n)W2 .

Corollary 7.14. Let k, l be integers such that k ≥ l ≥ 1. Let W be a union of
w-trees for 1n of degree ≥ l. Then (1n)W is wk+1-equivalent to a welded string
link obtained from 1n by surgery along separated wl-trees and w-trees of degree in
{l + 1, · · · , k}.

Proof. This is shown by repeated applications of Corollary 7.13. More precisely,
we use Exchange moves to rearrange the wl-trees T1, . . . , Tm in W so that they
sit in disjoint disks Di (i = 1, . . . ,m), which intersects each component of 1n at a
single trivial arc, so that (1n)∪iTi = (1n)T1 · . . . · (1n)Tm . By Corollary 7.13, this
is achieved at the expense of w-trees of degree ≥ l + 1, which may intersect those
disks. But further Exchange moves allow to move all higher degree w-trees under
∪iDi, according to the orientation of 1n, now at the cost of additional w-trees of
degree ≥ l + 2, which possibly intersect ∪iDi. We can repeat this procedure until
the only higher degree w-trees intersecting ∪iDi have degree > k, which gives the
equivalence

(1n)W
k+1∼ (1n)T1

· . . . · (1n)Tm · (1n)W ′ ,

where W ′ is a union of w-trees of degree in {l + 1, · · · , k}. �
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Finally, we give a w-tree version of the IHX relation.

Lemma 7.15 (IHX). The following holds.

I H X
v

k+1

Figure 7.5. The IHX relation for w-trees

Here, I, H and X are three wk-tree for some k ≥ 3.

Proof. We prove this lemma using the algebraic formalism of Section 6.1.2, for
simplicity (we leave it as an exercise to the interested reader to reformulate the
arguments diagrammatically). We prove the following stronger version.

Claim 7.16. For all k ≥ 2, we have

[ · · · , [A, [B,C]]···]︸ ︷︷ ︸
∈ΓkF

= S [ · · · , [[A,B], C]···][ · · · , [[A,C], B]···],

for some S ∈ Γk+1F , with i(S) = i([ · · · , [A, [B,C]]···]).
The proof is by induction on the depth d of [A, [B,C]] in the iterated commutator

[ · · · , [A, [B,C]]···], as defined in the proof of Claim 7.9. Recall that, diagrammat-
ically, the depth of [A, [B,C]] is the number of edges connecting the vertex v in
Figure 7.5 to the head. The case d = 0 is given by

[A, [B,C]] = AC BC BABC BC

= AC BC A [A,B]C BC

= AC BC A [[A,B], C] C [A,B]BC

= R′ [[A,B], C] AC BC AC [A,B]BC (Heads Exchange Lem. 5.14)

= R′ [[A,B], C] AC BC AC ABAC

= R′ [[A,B], C] AC B [C,A]BAC

= R′ [[A,B], C] AC [C,A]
[
[A,C], B

]
AC

= R [[A,B], C]
[
[A,C], B

]
(Heads Exchange Lem. 5.14)

= R [[A,B], C] S′
[
[A,C], B

]
, (Twist Lem. 7.8)

= S [[A,B], C]
[
[A,C], B

]
, (Heads Exchange Lem. 5.14)

where R,R′, S′ and S are some elements of Γk+1F with index i([A, [B,C]]).
For the inductive step, let I ′ = [ · · · , [A, [B,C]]···] be an element of ΓmF , for

some m ≥ 3, such that [A, [B,C]] has depth d, and set H ′ = [ · · · , [[A,B], C]···]
and X ′ = [ · · · , [[A,C], B]···]. By the induction hypothesis, there exists an element
S ∈ Γm+1 with index i(I ′) such that I ′ = S H ′X ′. Let D ∈ ΓlF such that l+m = k.
Then we have

[D, I ′] = D I ′DI ′ = DX ′H ′ S DS H ′X ′ (induction hypothesis)

= R′DX ′H ′DH ′X ′ (Heads Exchange Lem. 5.14)

= R′DX ′D [D,H ′]X ′

= R [D,H ′]DX ′DX ′ (Heads Exchange Lem. 5.14)

= R [D,H ′] [D,X ′],
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where R,R′ ∈ Γk+1F are some elements with index i([D, I ′]). �

7.5. Relation to Cn-equivalence. Recall that, for n ≥ 1, a Cn-move is a local
move on knotted objects involving n + 1 strands, as shown in Figure 7.6. (A C1-

...

...

...

...

Figure 7.6. A Cn-move.

move is by convention a crossing change.) The Cn-equivalence is the equivalence
relation generated by Cn-moves and isotopies. The next result states that this
equivalence relation is a refinement of the wn-equivalence.

Proposition 7.17. For all n ≥ 1, Cn-equivalence implies wn-equivalence.

Proof. It suffices to show that a Cn-move can be realized by surgery along w-trees
of degree ≥ n, which is done by induction. Actually, we prove the following.

Claim 7.18. For all n ≥ 1, the diagram shown on the left-hand side of Figure 7.6
is obtained from the (n+ 1)-strand trivial diagram by surgery along a union Fn of
w-trees, such that each component of Fn has index {0, 1, · · · , i} for some i.

Before showing Claim 7.18, let us observe that it implies Proposition 7.17. Note
that, if we delete those w-trees in Fn having index {0, 1, ..., n}, we obtain a w-tree
presentation of the right-hand side of Figure 7.6. Such w-trees have degree ≥ n, and
by the Inverse Lemma 5.9, deleting them can be realized by surgery along w-trees
of degree ≥ n. Therefore we have shown Proposition 7.17.

Let us now turn to the proof of Claim 7.18. The case n = 1 is clear, since
it was already noted that a crossing change can be achieved by a sequence of
(de)virtualization moves or, equivalently, by surgery along w-arrows (see Section
7.2). Now, using the induction hypothesis, consider the following w-tree presenta-
tion for the (n+ 1)-strand diagram on the left-hand side of Figure 7.6:

=

2 n−1 1
...

nn

...

...
21 n−0 0 1

n−F 1

(Here, we have made a choice of orientation of the strands, but it is not hard to check
that other choices can be handled similarly.) By moving their endpoints accross
Fn−1, the four depicted w-arrows with index {n− 1, n} can be cancelled pairwise.
By Corollary 7.13, moving w-arrow ends accross Fn−1 can be made at the expense
of additional w-trees with index {0, 1, · · · , n}. This completes the induction. �

8. Finite type invariants of welded knots and long knots

We now use the wk-equivalence relation to characterize finite type invariants of
welded (long) knots. Topological applications for surfaces in 4-space are also given.

8.1. wk-equivalence for welded knots. The fact, noted in Section 7.2, that any
two welded knots are wi-equivalent for i = 1, 2, generalizes widely as follows.

Theorem 8.1. Any two welded knots are wk-equivalent, for any k ≥ 1.

An immediate consequence is the following.

Corollary 8.2. There is no non-trivial finite type invariant of welded knots.
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This was already noted for rational-valued finite type invariants by D. Bar-Natan
and S. Dancso [5]. Also, we have the following topological consequence, which we
show in Section 10.3.

Corollary 8.3. There is no non-trivial finite type invariant of ribbon torus-knots.

Theorem 8.1 is a consequence of the following, stronger statement.

Lemma 8.4. Let k, l be integers such that k ≥ l ≥ 1 and let K be a welded knot.

Then there is a welded knot Wl such that K
k+1∼ Wl and Wl

l→ O.

Proof. The proof is by induction on l. The initial case, i.e., l = 1 for any fixed
integer k ≥ 1, was given in Section 7.2, so we assume that K is wk+1-equivalent to

a welded knot Wl such that Wl
l→ O.

Using Corollary 7.14, we have that Wl is wk+1-equivalent to a welded knot which
is obtained from O by surgery along a union of isolated wl-trees, and w-trees of
degree in {l+ 1, · · · , k}. Here, a wl-tree T for O is called isolated if it is contained
in a disk B which is disjoint from all other w-trees and intersects O at a single arc.

Consider such an isolated wl-tree T . Suppose that, when traveling along O, the
first endpoint of T which is met in B is its head; then, up to applications of the Tails
Exchange move (5) and Antisymmetry Lemma 5.17, we have that T contains a fork,
so that it is equivalent to the empty w-tree by the Fork Lemma 5.18. Note that
these moves can be done in the disk B. If we first meet some tail when traveling
along O in B, we can slide this tail outside B and use Corollary 7.13 to move it
around O, up to addition of w-trees of degree ≥ l+ 1, until we can move it back in
B. In this case, by Corollary 7.14, we may assume that the new w-trees of degree
≥ l + 1 do not intersect B up to wk+1-equivalence. Using this and the preceding
argument, we have that T can be deleted. This completes the proof. �

8.2. wk-equivalence for welded long knots. We now turn to the case of long
knots. In what follows, we use the notation 1 for the trivial long knot diagram
(with no crossing).

As recalled in Section 7.2, it is known that any two welded long knots are wi-
equivalent for i = 1, 2. The main result of this section is the following generalization.

Theorem 8.5. For each k ≥ 1, welded long knots are classified up to wk-equivalence
by the first k − 1 normalized coefficients {αi}2≤i≤k of the Alexander polynomial.

Since the normalized coefficients of the Alexander polynomial are of finite type,
we obtain the following, which in particular gives the converse to Proposition 7.5
for welded long knots.

Corollary 8.6. The following assertions are equivalent, for any integer k ≥ 1:

(1) two welded long knots are wk-equivalent,
(2) two welded long knots share all finite type invariants of degree < k,
(3) two welded long knots have same invariants {αi} for i < k.

Theorem 8.5 also implies the following, which was first shown by K. Habiro and
A. Shima [13].

Corollary 8.7. Finite type invariant of ribbon 2-knots are determined by the (nor-
malized) Alexander polynomial.

Actually, we also recover a topological characterization of finite type invariants of
ribbon 2-knots due to T. Watanabe, see Section 10.3.

Moreover, by the multiplicative property of the normalized Alexander polynomial
(Lemma 6.6), we have the following consequence.
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Corollary 8.8. Welded long knots up to wk-equivalence form a finitely generated
abelian group, for any k ≥ 1.

Actually, the fact that welded long knots, and more generally welded string links,
up to wk-equivalence form a finitely generated group can be proved directly, using
w-tree moves, as in Section 5.2 of [11].

The proof of Theorem 8.5 uses the next technical lemma, which refer to the
welded long knots Lk or Lk defined in Figure 6.3.

Lemma 8.9. Let k, l be integers such that k ≥ l ≥ 1, and let L be a welded long

knot obtained from 1 by surgery along w-trees of degree ≥ l ( i.e. L
l
→ 1). Then

L
k+1∼ Lxl · L′,

for some x ∈ Z, where L−1
l := Ll and L′

l + 1
→ 1.

Let us show how Lemma 8.9 allows to prove Theorem 8.5.

Proof of Theorem 8.5 assuming Lemma 8.9. We prove that, for any k, l such that
k ≥ l ≥ 1, a welded long knot K satisfies

(8.1) K
k+1∼

(
l−1∏
i=2

L
xi(K)
i

)
·Wl,

where Wl
l
→ 1, and where

xi(K) =

{
αi(K) if i = 2,

αi(K)− αi
(∏i−1

j=2 L
xj(K)
j

)
if i > 2.

We proceed by induction on l. Assume Equation (8.1) for some l ≥ 1 and any

fixed k ≥ l. By applying Lemma 8.9 to the welded long knot Wl, we have Wl
k+1∼

Lxl ·Wl+1, where Wl+1
l + 1→ 1. Using the additivity (Corollary 6.7) and finite type

(Lemma 6.15 and Proposition 7.5) properties of the normalized coefficients of the
Alexander polynomial, we obtain that x = xl(K), thus completing the proof. �

Proof of Lemma 8.9. By Corollary 7.14, we may assume that K is wk+1-equivalent
to a welded long knot which is obtained from 1 by surgery along a union of separated
wl-trees and w-trees of degree in {l + 1, · · · , k}.

Consider such a separated wl-tree T . Let us call ‘external’ any vertex of T that
is connected to two tails. In general, T might contain several external vertices, but
by the IHX Lemma 7.15 and Corollary 7.14, we can freely assume that T has only
one external vertex, up to wk+1-equivalence.

By the Fork Lemma 5.18 and the Tails Exchange move (5), if the two tails
connected to this vertex are not separated by the head, then T is equivalent to the
empty w-tree. Otherwise, using the Tails Exchange move, we can assume that these
two tails are at the leftmost and rightmost positions among all endpoints of T along
1, as for example for the wl-tree shown in Figure 8.1. The result then follows from
the technical observations shown in this figure. Indeed, combining these equalities

..
.

...

~
k+1

...

G

Figure 8.1. The shaded part contains all non-represented edges
of the wl-tree, and G is a union of w-trees of degree in {l+1, · · · , k}

with the Involutivily move (2) and the Twist Lemma 7.8, we have that T can be
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deformed into one of the two separated wl-trees of Figure 6.3, at the cost of adding
a union of w-trees of degree in {l + 1, · · · , k}, up to wk+1-equivalence.

Let us prove the equivalence of Figure 8.1. To this end, consider the union A∪F
of a w-arrow A and a wl−1-tree F as shown on the left-hand side of Figure 8.2.
On one hand, by the Fork Lemma 5.18, followed by the the Isolated move (6),
we have that 1A∪F = 1. On the other hand, we can use the Head/Tail Exchange

~
k+1

A
F

..
.

...

~

~
k+

k+1

1

...

...

...

G

G’

G’’

Figure 8.2. Here, G, G′ and G′′ are unions of w-trees of degree
in {l + 1, · · · , k}

Lemma 7.11 to move the head of A across the adjacent tail of F , and apply the Tails
Exchange move (5) to move the tail of A towards the head of F , thus producing,
by Corollary 7.14, the first equivalence of Figure 8.2. We can then apply the
Head/Tail Exchange Lemma to move the head of A across the head of F , which
by Corollary 7.14 yields the second equivalence. Further applications of Corollary
7.14, together with the Antisymmetry and Twist Lemmas 5.17 and 7.8, give the
third equivalence. Finally, the first term in the right-hand side of this equivalence
is trivial by the Isolated move (6) and the Fork Lemma. The equivalence of Figure
8.1 is then easily deduced, using the Inverse Lemma 5.9 and Corollary 7.14. �

9. Homotopy arrow calculus

The previous section shows how the study of welded knotted objects of one
components is well-understood when working up to wk-equivalence. The case of
several components (welded links and string links), though maybe not out of reach,
is significantly more involved.

One intermediate step towards a complete understanding of knotted objects of
several components is to study these objects ‘modulo knot theory’. In the context
of classical (string) links, this leads to the notion of link-homotopy, were each in-
dividual component is allowed to cross itself; this notion was first introduced by
Milnor [20], and culminated with the work of Habegger and Lin [9] who used Milnor
invariants to classify string link up to link-homotopy. In the welded context, the
analogue of this relation is generated by the self-virtualization move, where a cross-
ing involving two strands of a same component can be replaced by a virtual one. In
what follows, we simply call homotopy this equivalence relation on welded knotted

objects, which we denote by
h∼. This is indeed a generalization of link-homotopy,

since a crossing change between two strands of a same component can be generated
by two self-(de)virtualizations.

We have the following natural generalization of [21, Thm. 8].

Lemma 9.1. If I is a sequence of non repeated indices, then µwI is invariant under
homotopy.
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Proof. The proof is essentially the same as in the classical case. Set I = i1 · · · im,
such that ij 6= ik if j 6= k. It suffices to show that µwI remains unchanged when a
self-(de)virtualization move is performed on the ith component, which is done by
distinguishing two cases. If i = im, then the effect of this move on the combinatorial
imth longitude is multiplication by an element of the normal subgroup Ni gener-
ated by mi; each (non trivial) term in the Magnus expansion of such an element
necessarily contains Xim at least once, and thus µwI remains unchanged. If i 6= im,
then this move can only affect the combinatorial imth longitude by multiplication
by an element of [Ni, Ni]: any non trivial term in the Magnus expansion of such an
element necessarily contains Xi at least twice. �

9.1. w-tree moves up to homotopy. Clearly, the w-arrow incarnation of a self-
virtualization move is the deletion of a w-arrow whose tail and head are attached
to a same component. In what follows, we will call such a w-arrow a self-arrow.
More generally, a repeated w-tree is a w-tree having two endpoints attached to a
same component of a diagram.

Lemma 9.2. Surgery along a repeated w-tree does not change the homotopy class
of a diagram.

Proof. Let T be a w-tree having two endpoints attached to a same component.
We must distinguish between two cases, depending on whether these two endpoints
contain the head of T or not.
Case 1: The head and some tail t of T are attached to a same component. Then
we can simply expand T : the result contains a bunch of self-arrows, joining (a
neighborhood of) t to (a neighborhood of) the head of T . By the Brunnian-type
property of w-trees (Remark 5.5), deleting all these self-arrows yields a union of
w-arrows which is equivalent to the empty one.
Case 2: Two tails t1 and t2 of T are attached to a same component. Consider
the path of edges connecting these two tails, and denote by n the number of edges
connecting this path to the head: we proceed by induction on this number n. The
case n = 1 is illustrated in Figure 9.1. As the first equality shows, one application
of (E) yields four w-trees T1, T1, T2, T2. For the second equality, expand the w-tree

T T

=
...

...

=

t t1 2

1 1 T

−arrowst

2 T2

2

...

E(T )2

Figure 9.1. Proof of Lemma 9.2

T2, and denote by E(T2) the result of this expansion. Let us call ‘t2-arrows’ the
w-arrows in E(T2) whose tail lie in a neighborhood of t2. We can successively slide
all other w-arrows in E(T2) along the t2-arrows, and next slide the two w-trees T1

and T1, using Remark 5.12: the result is a pair of repeated w-trees as in Case 1
above, which we can delete up to homotopy. Reversing the slide and expansion
process in E(T2), we then recover T2 ∪ T2, which can be deleted by the Inverse
Lemma 5.9. The inductive step is clear, using (E) and the Inverse Lemma 5.9. �

Remark 9.3. Thanks to the previous result, the Twist and IHX Lemmas given in
Section 7.4 for w-trees presentation still hold when working up to homotopy. More
precisely, Lemmas 7.8 and 7.15 remain valid when replacing, in the statement, the



ARROW CALCULUS 37

notation
k + 1
→ by

h∼. This is a consequence of Claims 7.9 and 7.16, which show that
the equality in these lemmas is achieved by surgery along repeated w-trees. In what
follows, we will implicitly make use of this fact, and freely refer to the lemmas of
the previous sections when using their homotopy versions.

9.2. Homotopy classification of welded string links. Let n ≥ 2. For each
integer i ∈ {1, · · · , n}, denote by Sl(i) the set of all sequences i1 · · · il of l distinct
integers from {1, · · · , n} \ {i} such that ij < il for all j = 1, . . . , l − 1. Note that
the lexicographic order endows the set Sl(i) with a total order.

For any sequence I = i1 · · · ik−1 ∈ Sk−1(i), consider the wk−1-trees TIi and TIi
for the trivial diagram 1n introduced in Lemma 6.10. Set

WIi := (1n)TIi and W−1
Ii := (1n)TIi .

We prove the following (compare with Theorem 4.3 of [31]).

Theorem 9.4. Let L be an n-component welded string link. Then L is homotopic
to l1 · · · ln−1, where for each k,

lk =

n∏
i=1

∏
I∈Sk(i)

(WIi)
xI , where xI =

{
µwji(L) if k = 1 and I = j,
µwIi(L)− µwIi(l1 · · · lk−1) if k > 1.

As a consequence, we recover the following classification results.

Corollary 9.5. Welded string links are classified up to homotopy by welded Milnor
invariants indexed by non-repeated sequences.

This result was first shown by Audoux, Bellingeri, Wagner and the first author
in [1]: their proof consists in defining a global map from welded string links up
to homotopy to conjugating automorphisms of the reduced free group, then to use
Gauss diagram to build an inverse map. Corollary 9.5 is a generalization of the
classification of string links up to link-homotopy of Habegger and Lin [9]: it is
indeed shown in [1] that string links up to link-homotopy embed in welded string
links up to homotopy.

Remark 9.6. Theorem 9.4 does not allow to recover the result of [9]. By Remark 6.9,
it only implies that two classical string link diagrams are related by a sequence of
isotopies and self-(de)virtualizations if and only if they have same Milnor invariants.

Proof of Theorem 9.4. Let L be an n-component welded string link. Pick an Arrow
presentation for L. By Corollary 7.14, we can freely rearrange the w-arrows up to
wn-equivalence, so that

L
n∼
∏
j 6=i

(Wji)
xji · (1n)R1 · (1n)S≥2

,

where R1 is a union of self-arrows, and S≥2 is a union of w-trees of degree ≥ 2 and
< n. Up to homotopy, we can freely delete all self-arrows, and using the properties
of Milnor invariants (Lemmas 6.12 and 6.10, Remark 7.6, and Lemma 9.1), we have
that xji = µwji(L) for all j 6= i. Hence we have

L
h∼ l1 · (1n)S≥2

.

Next, we can separate, by a similar procedure, all w2-trees in S≥2. We need the
following general fact, which is easily checked using the Antisymmetry, IHX and
Twist Lemmas 5.17, 7.15 and 7.8.
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Claim 9.7. Let T be a wk-tree for 1n. Suppose that i(T ) = {i1, · · · , ik−1, ik},
where the head of T is attached to the ikth component, and with ij < ik−1 for all
j < k − 1. Then

(1n)T
n∼

N∏
i=1

(1n)Ti · (1n)S≥k+1
,

for some N ≥ 1, where S≥k+1 is a union of w-trees of degree ≥ k+ 1 and < n, and

where each Ti is a copy of either Tiσ(1)···iσ(k−2)ik−1ik or T iσ(1)···iσ(k−2)ik−1ik for some
σ ∈ Sk−2.

Hence, we obtain

L
n∼ l1 ·

n∏
i=1

∏
I∈S2(i)

(WIi)
xI · (1n)R2 · (1n)S≥3

,

for some integers xI , where R2 is a union of repeated w2-trees, and where S≥3

is a union of w-trees of degree ≥ 3 and < n. By using the properties of Milnor
invariants, we have

µwIi(L) = µwIi

l1 · n∏
i=1

∏
I∈S2(i)

(WIi)
xI


= µwIi(l1) +

n∑
i=1

∑
I∈S2(i)

xIµ
w
Ii (WIi)

= µwIi(l1) + xI ,

thus showing, using Lemma 9.2, that

L
h∼ l1 · l2 · (1n)S≥3

.

Iterating this procedure, using Claim 9.7 and the same properties of Milnor invari-

ants, we eventually obtain that L
n∼ l1 · · · ln−1. The result follows by Lemma 9.2,

since a union of w-trees of degree ≥ n for 1n is necessarily repeated. �

Remark 9.8. It was shown in [1] that Corollary 9.5, together with the Tube map,
gives homotopy classifications of ribbon tubes and ribbon torus-links (see Section
2.2). Actually, we can deduce easily a homotopy classification of ribbon string links
in codimension 2, in any dimension, see [3].

10. Concluding remarks and questions

10.1. Arrow presentation allowing classical crossings. In the definition of an
Arrow presentation (Def. 4.1), we have restricted ourselves to diagrams with only
virtual crossings. Actually, we could relax this condition, and consider more general
Arrow presentations with both classical and virtual crossings. The inconvenience of
this more general setting is that some of the moves involving w-arrows and crossings
are not valid in general. For example, although passing a diagram strand above a
w-arrow tail is a valid move (as one can easily check using the OC move), passing
under a w-arrow tail is not permitted, as it would violate the forbidden UC move.
Note that passing above or under a w-arrow head is allowed. Since one of the main
interests of Arrow calculus resides, in our opinion, in its simplicity of use, we do
not further develop this more general (and delicate) version in this paper.
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10.2. Welded arcs. There is yet another class of welded knotted object that we
should mention here. A welded arc is an immersed oriented arc in the plane, up to
generalized Reidemeister moves, OC moves, and the additional move of Figure 10.1
(left-hand side). There, we represent the arc endpoints by large dots. We emphasize
that these large dots are ‘free’ in the sense that they can be freely isotoped in the
plane. It can be checked that welded arcs have a well-defined composition rule,
given by gluing two arc endpoints, respecting the orientations. This is actually a
very natural notion from the 4-dimensional point of view, see Section 10.3 below.

= ==

Figure 10.1. Additional moves for welded arcs, and the corre-
sponding extra w-tree move

Figure 10.1 also gives the additional move for welded arcs in terms of w-trees:
we can freely delete a w-tree whose head is adjacent to an arc endpoint. This
is reminiscent of the case of welded long knots. Indeed, if a welded long knot is
obtained from the trivial diagram 1 by surgery along a w-tree T whose head is
adjacent to an endpoint of 1, then by the Fork Lemma 5.18, we have 1T = 1. This
was observed in the proof of Lemma 8.5. A consequence is that the proof of this
lemma can be applied verbatim to welded arcs (in particular, the key fact of Figure
8.1 applies). This shows that welded arcs up to wk-equivalence form an abelian
group, which is isomorphic to that of welded long knots up to wk-equivalence, for
any k ≥ 1. Finite type invariants of welded arcs are thus classified similarly.

To be more precise, there is a natural capping map C from welded long knots to
welded arcs, which replaces the (fixed) endpoints by (free) large dots. This map C
is clearly surjective and the above observation says that it induces a bijective map
when working up to wk-equivalence. It seems however unknown whether the map
C itself is injective.

10.3. Finite type invariants of ribbon 2-knots and torus-knots. As outlined
above, the notion of welded arcs is relevant for the study of ribbon 2-knots in 4-
space. Indeed, applying the Tube map to a welded arc, capping off by disks at the
endpoints, yields a ribbon 2-knot, and any ribbon 2-knot arises in this way [26].
Combining this with the surjective map C from Section 10.2 above, we obtain:

Fact 5. Any ribbon 2-knot can be presented, via the Tube map, by a welded long
knot.

Recall that K. Habiro introduced in [11] the notion of Ck-equivalence, and more
generally the calculus of claspers, and proved that two knots share all finite type in-
variants of degree < k if and only if they are Ck-equivalent. As a 4-dimensional ana-
logue of this result, T. Watanabe introduced in [29] the notion of RCk-equivalence,
and a topological calculus for ribbon 2-knots. He proved the following.

Theorem 10.1. Two ribbon 2-knots share all finite type invariants of degree < k
if and only if they are RCk-equivalent.

We will not recall the definition of the RCk-equivalence here, but only note the
following.

Fact 6. If two welded long knots are wk-equivalent, then their images by the Tube
map are RCk-equivalent.
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This follows from the definitions for k = 1 (see Figure 3 of [29]), and can be verified
using (E) and Watanabe’s moves [29, Fig. 6] for higher degrees.

Corollary 8.6 gives a welded version of Theorem 10.1, and can actually be used
to reprove it.

Proof of Theorem 10.1. Let R and R′ be two ribbon 2-knots and, using Fact 5, let
K and K ′ be two welded long knots representing R and R′, respectively. If R and
R′ share all finite type invariants of degree < k, then they have same normalized
coefficients of the Alexander polynomial αi for 1 < i < k, by [12]. As seen in
Remark 6.1, this means that K and K ′ have same αi for 1 < i < k, hence are
wk-equivalent by Corollary 8.6. By Fact 6, this shows that R and R′ are RCk-
equivalent, as desired. (The converse implication is easy, see [29, Lem. 5.7]). �

Using very similar arguments, we now provide quick proofs for the topological
consequences of Corollaries 8.6 and 8.2.

Proof of Corollary 8.7. If two ribbon 2-knots have same invariants αi for 1 < i < k,
then the above argument using Corollary 8.6 shows that they are RCk-equivalent.
This implies that they cannot be distinguished by any finite type invariant ([29,
Lem. 5.7]). �

Proof of Corollary 8.3. Let T be a ribbon torus-knot. In order to show that T and
the trivial torus-knot share all finite type invariants, it suffices to show that they
are RCk-equivalent for any integer k. But this is now clear from Fact 6, since any
welded knot K such that Tube(K) = T is wk-equivalent to the trivial diagram, by
Theorem 8.1. �

10.4. Welded string links and universal invariant. We expect that Arrow
calculus can be successfully used to study welded string links, beyond the homotopy
case treated in Section 9. In view of Corollary 8.2, and of Habiro’s work in the
classical case [11], it is natural to ask whether finite type invariants of degree < k
classify welded string links up to wk-equivalence. A study of the low degree cases,
using the techniques of [19], seem to support this fact.

A closely related problem is to understand the space of finite type invariants of
weldeds string links. One can expect that there are essentially no further invariants
than those studied in this paper, i.e. that the normalized Alexander polynomial and
welded Milnor invariants together provide a universal finite type invariant of welded
string links. One way to attack this problem, at least in the case of rational-valued
invariants, is to relate those invariants to the universal invariant Zw of D. Bar-Natan
and Z. Dancso [5]. It is actually already shown in [5] that Zw is equivalent to the
normalized Alexander polynomial for welded long knots, and it is very natural to
conjecture that the ‘tree-part’ of Zw is equivalent to welded Milnor invariants, in
view of the classical case [10]. Observe that, from this perspective, w-trees appear
as a natural tool, as they provide a ‘realization’ of the space of oriented diagrams
where Zw takes its values (see also [23]), just like Habiro’s claspers realize Jacobi
diagrams for classical knotted objects. In this sense, Arrow calculus provides the
Goussarov-Habiro theory for welded knotted objects, solving partially a problem
posed by M. Polyak in [22, Problem 2.25].
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