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Abstract

This article study the strong stability of finite difference scheme approximations for hyperbolic systems
of equations in the quarter space. The main result is that as in the continuous framework of PDE impose
the so-called uniform GKS () condition (which is the condition characterizing the strong stability of
the finite difference scheme approximations in the half space) on each side of the quarter space is not
sufficient to ensure the strong stability of the scheme in the quarter space. We decribe in this paper a new
necessary inversibility condition. This condition seems to be some discretized version of the condition
imposed in [Osh73] in the PDE framework.
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1 Introduction

In this article we are interested in the strong stability of finite difference scheme approximations for hyperbolic
systems of partial differential equations in the quarter space. Such systems of partial differential equations
read: 

∂tu+A1∂1u+A2∂2u = f, for (t, x) ∈ R+ × R2
+,

B1u|x1=0 = g1, for (t, x2) ∈ R+ × R+,

B2u|x2=0 = g2, for (t, x1) ∈ R+ × R+,

u|t≤0 = 0, for x ∈ R2
+,

(1)

where the matrices A1, A2 ∈MN×N (R) and where the matrices enconding the boundary conditions B1 and
B2 are respectively in Mp1×N (R) and Mp2×N (R). The integer p1 (resp. p2) equals the number of positive
eigenvalues of A1 (resp. A2) and is the only number of boundary conditions ensuring that the system (1) is
not overdetermined or underdetermined. Indeed, in the hyperbolic setting only the incoming components of
the trace of the solution have to be specified by the boundary condition.

In all this article () we will restrict our attention to homogeneous initial conditions and to corner problems
and associated finite difference schemes with only two space dimensions. The following analysis can be
extended with minor changes to corner problems or schemes set in cylindrical domains, that is to say
R2

+ × Rd−2.
About results concerning the semi-group stability of finite difference schemes (that is stability when ini-

tial conditions are not zero) we refer to [CG11] and [Cou15] for results in the half space and to [Ben] to a
recent extension of these theorems to finite difference schemes in the quarter space.

Our main motivation to study such schemes in the quarter space is that in numerical simulations of
Cauchy problems, due to the impossibility to implement the full space Rd, the space of simulation is re-
stricted to a ”big” box. Then there are two main possibilities, firstly we can stop the simulation as soon
as the simulated solution hits the boundary or a corner of the box. This process leads to a maximal time
of simulation which can virtually be smaller than the desired time of simulation. Secondly, we can impose
some artificial boundary conditions, that are call absorbing or transparent boundary conditions, which tend
to minimize the rellections of the computed solution against the artificial boundary (see for example [Ehr10]-
[EM77]). As a consequence understand what are the admissible boundary and corner conditions leading
to strong stability and to obtain a full characterization of these conditions is a first step in the study of
absorbing/transparent boundary conditions for schemes set in a rectangle.() (ou clairement le virer)
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Before to give a precise definition of strong stability for finite difference schemes associated to (1) is it
interesting to give a brief overview about the analogous concept concerning partial differential equations. In
this continous setting this concept is refered as strong well-posedness. This is the object of the next paragraph
in which we will give some elements about strong well-posedness for corner and half space problems.

1.1 Strong well-posedness in corner and half space domains

In the author’s knowledge the full characterization of the boundary conditions leading to a strongly well-
posed system set in the quarter space has not been achieved yet. By strong well-posedness we mean that
for all choice () of source terms f , g1 and g2 in L2, the system (1) admits a unique solution u in L2, with
traces on the sides of the boundary of R2

+, which satisfies the following energy estimate: there exists C > 0
such that for all γ > 0 we have:

γ‖u‖2L2
γ(R×R2

+) + ‖u|x1=0‖2L2
γ(R×R+) + ‖u|x2=0‖2L2

γ(R×R+)

≤ C

(
1

γ
‖f‖2L2

γ(R×R2
+) + ‖g1‖2L2

γ(R×R+) + ‖g2‖2L2
γ(R×R+)

)
, (2)

where for some Banach space X, L2
γ(X) denotes the L2 space with weight e−γt.

In other words by strong well-posedness we mean existence and uniqueness of a solution which is con-
trollable by the source terms of the problem. This definition of strong well-posedness for corner problems
is a straightforward generalization of the concept of strong well-posedness for hyperbolic initial boundary
value problems in the half space (see (4)) for which the weighted spaces L2

γ appear naturally due to Laplace
transform (see for example [BG07]-[CP81]).

1.1.1 Strong well-posedness of problems in the half space

The full characterization of the boundary conditions leading to strong well-posedness has been achieved in
[Kre70] and it is known that strong well-posedness is equivalent to the so-called uniform Kreiss-Lopatinskii
condition. This condition states that in the normal mode analysis no stable modes is solution of the homo-
geneous (on the boundary) problem in the half space. Roughly speaking it means that without source term
on the boundary then the boundary can not, by itself, generates incoming non trivial () information.

More precisely if we consider the boundary value problem in the half space:
∂tu+A1∂1u+A2∂2u = f, for (t, x1, x2) ∈ R× R+ × R,
Bu|x1=0 = g, for (t, x2) ∈ R× R,
u|t≤0 = 0, for (x1, x2) ∈ R+ × R.

(3)

We say that this boundary value problem is strongly well-posed if for all f , g in L2
γ then there exists a unique

solution of (3), u, satisfying the energy estimate: there exists C > 0 such that for all γ > 0 we have:

γ‖u‖2L2
γ(R×R+×R) + ‖u|x1=0‖2L2

γ(R×R) ≤ C
(

1

γ
‖f‖2L2

γ(R×R+×R) + ‖g‖2L2
γ(R×R)

)
. (4)

Then by Laplace transform in time and Fourier transform in the tangential space variable x2 this problem
becomes: {

d
dx1

u = A1(σ, ξ2)u+A−1
1 f, for (t, x) ∈ R+ × R+ × R,

Bu|x1=0 = g, for (t, x2) ∈ R+ × R,
(5)

where σ := γ + iτ , γ > 0, τ ∈ R is the dual variable of t and where ξ2 ∈ R is the dual variable of x2. In (3),
A1(σ, ξ2) is the so-called resolvent matrix defined by:

A1(σ, ξ2) := −A−1
1 (σ + iξ2A2).
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When γ > 0, by hyperbolicity of (3), this matrix only has eigenvalues with nonzero real part (see
[Her63]) and we can define the generalized stable (resp. unstable) eigenspaces Es(σ, ξ2) (resp. Eu(σ, ξ2))
as the eigenspace associated to the eigenvalues of positive (resp. negative) real part of A1(σ, ξ2). Then the
analysis of [Kre70]-[Mét00] shows that these stable and unstable subspaces admit continuous extension up
to γ = 0. The uniform Kreiss-Lopatinskii condition then states that:

∀γ ≥ 0, τ ∈ R, ξ2 ∈ R, kerB ∩ Es(σ, ξ2) = {0} .

In particular, the uniform Kreiss-Lopatinskii condition states that the restriction of the boundary matrix
B to the stable subspace Es(σ, ξ2) is invertible.

1.1.2 Strong well-posedness of corner problems

About the characterization of strong well-posedness for corner problems the main contribution is due to
Osher in [Osh73]-[Osh74]. In these articles the author imposes the uniform Kreiss-Lopatinskii condition on
each side () of the boundary (this is easy to see, by finite speed of propagation arguments, that it is a neces-
sary condition for the strong well-posedness of the corner problem). However the author also imposes a new
inversibility condition determining the value of the trace of the solution on one side in terms of the source
term on this side. The way to obtain this new (expected to be) necessary condition for strong well-posedness
will be describe precisely in Section 2 so we will here only give the main ideas of the analysis.

The first step to obtain Osher corner condition is, as for problems in the half space, to perform a Laplace
transform in time to replace the time derivative by a complex parameter. However, in the quarter space
geometry the space variables x1 and x2 do not lie in R so we can not take Fourier transform to treat one of
this variable as a parameter and study an ordinary differential equation reading under the form (5).

The way proposed in [Osh73] to overcome this difficulty is to extend the solution by zero for negative
x1. The extended solution then solves a boundary value problem in the half space where the source term in
the interior depends on the value of the trace on {x1 = 0}. We can then perform Fourier transform in the
variable x1, solve the obtained boundary value problem in the half space thanks to Duhamel formula and
return in the x1 variable by reverse Fourier transform. This process give us a compatibility condition between
the value of the trace on {x2 = 0}, in terms of the value of the trace on {x1 = 0}. Then we reiterate these
computations, but this time after an extension by zero for negative x2, this gives a compatibility condition
between the trace on {x1 = 0} and the trace on {x2 = 0}. At last we combine these two conditions to show
that the trace on {x1 = 0} has to satisfy an equation reading:

(I − T2→1T1→2)u|x1=0 = Pg1, (6)

where P is some Fourier multiplier and where T1→2 (resp. T2→1) is an operator taking in input the value
of the trace on {x1 = 0} (resp. {x2 = 0}) and gives in output the value of the trace on {x1 = 0} (resp.
{x1 = 0}). We refer to (20)-(22) for a precise expression of these operators.

Osher corner condition states that the operator (I−T2→1T1→2) is invertible on L2(R+). It is interesting
to remark that as the uniform Kreiss-Lopatinskii condition, Osher’s corner condition is an inversibility con-
dition. However, this time we do not require the inversibility of a matrix but we require the inversibility of
the Fourier integral operator (I −T2→1T1→2). That is why Osher’s corner condition is much more technical
than the uniform Kreiss-Lopatinskii condition and seems to be hard to check concretely.

Thanks to this condition Osher demonstrates a apriori energy estimate of the form (2) but which includes
a non explicit number of loss of derivatives. By loss of derivative, we mean that to control the L2-norm in
the left hand side of (2) then we need to use higher order sobolev norms in the right hand side. Moreover
in [Osh73]-[Osh74] nothing is say about the existence of a solution. So we are still far of a complete
characterization of the boundary conditions leading to strong well-posedness. We refer to [[Ben15], Chapitre
4 and Chapitre 5] for a result showing the strong well-posedness of corner problems for a particular kind
of boundary conditions (namely the strictly dissipative ones) and to some improvements of the result of
[Osh73]. We also refer to [HR16] and to [HT14] for results of strong well-posedness for particular boundary
conditions in trihedral corners and in a rectangle respectively.
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1.2 Strong stability of finite difference schemes

In this paragraph we give the definition of strong stability that we will use for finite difference scheme
approximations of (1) and we also describe our main result that states that, as in the continous framework,
a new inversibility condition is necessary for a finite difference scheme approximation of (1) to be strongly
stable.

But before that we give some results about the strong stability of finite difference scheme approximations
in the half space.

1.2.1 Strong stability for schemes in the half space

We consider a cartesian discretization of the space R+ × R+ × R of the form of a collection of boxes
[n∆t, (n+ 1)∆t[× [j1∆x1, (j1 + 1)∆x1[× [j2∆x2, (j2 + 1)∆x2[, where ∆t, ∆x1 and ∆x2 are the steps of the
discretization and where n ∈ N, j2 ∈ Z and j1 is an integer (the precise set in which j1 lie will be described
in the following lines).

As usual in the study of difference scheme approximations for hyperbolic problems, it is natural to as-
sume that these discretization parameters are linked by the so-called CFL (COURANT-FRIEDRICHS-LEWY)
condition. That is to say that the ratios λ1 := ∆t

∆x1
and λ2 := ∆t

∆x2
are kept constant as the time step ∆t

goes to zero.

Let (Unj ) (from now on j := (j1, j2)) be a sequence that approximates the value of the exact solution of
the problem in the half space (3) on the cell [n∆t, (n+ 1)∆t[× [j1∆x1, (j1 + 1)∆x1[× [j2∆x2, (j2 + 1)∆x2[.
More precisely, in the interior of the half space (indexed by j1 ≥ 1) the sequence (Unj ) solves a finite difference
scheme reading:

Un+s+1
j +

s∑
σ=0

QσUn+σ
j = ∆tfn+s+1

j , for n ≥ 0, j1 ≥ 1 and j2 ∈ Z, (7)

where (fnj ) is some discretization of the source term f and where the Qσ are matrices that discretized the
differential operator A1∂1 + A2∂2. In view of its definition, the scheme that we are considering is explicit
with s time steps. The coefficients Qσ are choosen under the form:

Qσ :=

r1∑
µ1=−`1

r2∑
µ2=−`2

Aσ,µTµ1

1 Tµ2

2 ,

where the Aσ,µ are given matrices in MN×N (R) and where T1 (resp. T2) is the unitary shift operator in the
j1(resp. j2)-direction. Consequently, the finite scheme approximation (7) has stencil (`1 +r1) (resp. `2 +r2))
in the j1(resp. j2)-direction.

One of the simplest examples of such discretization is the well-known Lax-Friedrichs scheme defined by:

Un+1
j =

1

4

[
Unj1+1,j2 + Unj1−1,j2 + Unj1,j2+1 + Unj1,j2−1

]
− λ1

2
A1

[
Unj1+1,j2 − U

n
j1−1,j2

]
− λ2

2
A2

[
Unj1,j2+1 − Unj1,j2−1

]
,

which can be express under the generic form (7) with s = 0, `1 = r1 = `2 = r2 = 1 and with suitable
coefficients A0,µ.

An important remark is that if we assume that the Upj , j1 ≥ 1 are known up to the time n+ s then, in

view of the definition of Qσ, to compute the Un+s+1
j , j1 ≥ 1 it is necessary to know the Unj for 1−`1 ≤ j1 ≤ 0.

That is why we have to impose some extra equations determining these terms. This is done by choosing a
discretization of the boundary condition on {x1 = 0}. In the litterature, the considered discretizations of
the boundary condition read:

Un+s+1
j +

s+1∑
σ=0

Bσ,j1Un+σ
1,j2

= gn+s+1
j , for n ≥ 0, 1− `1 ≤ j1 ≤ 0 and j2 ∈ Z, (8)
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where the matrices Bσ,j1 ∈MN×N (R) are given by:

Bσ,j1 :=

b1∑
µ1=0

b2∑
µ2=−b2

Bσ,µ,j1Tµ1

1 Tµ2

2 ,

and where gn+s+1
j stands for some discretization of the source term g.

This choice of discretization of the boundary condition permits to compute the Un+s
j for 1− `1 ≤ j1 ≤ 0

and consequently the scheme (7)-(8) effectively permits to determine Un+s+1
j .

We remark that contrary to the system of partial differential equations (3), the boundary condition (8)
involves all the components of the trace on {x1 = 0}. This is a substantial difference between initial bound-
ary value problems and finite difference scheme approximations.

However, as in the continous setting, the full characterization of the discretized boundary conditions
(8) leading to strong stability has been established in [BGS72] and then generalized in [Cou09]-[Cou11] (at
least in R+ × R). The condition ensuring the strong stability of (7)-(8) is the so-called discrete uniform
Kreiss-Lopatinskii (or uniform Godunov-Ryabenkii) condition.

By strong stability for the scheme (7)-(8) (with homogeneous initial conditions) we mean that the solution
(Unj ) satisfies some discretized version of the energy estimate (4). More precisely we ask that there exists
C > 0 such that for all γ > 0 and all ∆t ∈ [0, 1[:

γ

γ∆t+ 1

∑
n≥s+1

∑
j1≥1−`1

∑
j2∈Z

∆t∆xe−2γn∆t|Unj |2 +
∑

n≥s+1

r1∑
j1=1−`1

∑
j2∈Z

∆t∆x2e
−2γn∆t|Unj |2

≤ C

γ∆t+ 1

γ

∑
n≥s+1

∑
j1≥1

∑
j2∈Z

∆t∆xe−2γn∆t|fnj |2 +
∑

n≥s+1

0∑
j1=1−`1

∑
j2∈Z

∆t∆x2e
−2γn∆t|gnj |2

 ,

where ∆x := ∆x1∆x2.

The way to obtain the uniform Kreiss-Lopatinskii condition for (7)-(8) is more or less the same than
the one to derive the uniform Kreiss-Lopatinskii condition in the continous setting. Firstly we replace the
”discrete derivative” in time by a complex parameter z, and to replace the ”discrete derivative” in x2 by a
real parameter, ξ2. Then this new scheme is expressed in terms of an augmented vector Xj1 :{

Xj1+1 = M(z, ξ2)Xj1 + Fj1 , for j1 ≥ 1,
B(z, ξ2)X1 = G, (9)

for suitable matrices M, B and source terms (Fj1) and G. We refer to Section 6.1 or [[Cou13], Paragraph
2.3.3] for more details about this construction.

Then we can show that, for z with modulus greater than one and for ξ2 in R , the matrix M(z, ξ2)
only admits stable (that is to say with modulus less than one) or unstable (with modulus greater than one)
eigenvalues. The eigenspace associated to the stable eigenvalues is denoted by Es(z, ξ2). It can also be show
that the stable subspace Es(z, ξ2) admits continous extensions up to z with modulus one.

Thus the uniform Kreiss-Lopatinskii for finite difference schemes states that:

∀z ∈ C, |z| ≥ 1,∀ξ2 ∈ R, Es(z, ξ2) ∩ kerB(z, ξ2) = {0} ,

and as to be compared with the uniform Kreiss-Lopatinskii condition in the continous setting.

1.2.2 Strong stability for schemes in the quarter space

The litterature about the question of the strong stability for schemes in the quarter space is much more poor
than in the half space and in the author’s knowledge this question is widely open.
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In this article we will see how the work of [Osh73] can be translated in the discrete setting which will
permit us to exhibated a new necessary condition for strong well-posed of finite difference schemes in the
quarter space. However the question of the sufficiency of this condition is left to future works.

Schemes that we will consider read under the form:
Un+s+1
j +

∑s
σ=0Q

σUn+σ
j = ∆tfn+s+1

j , for j1, j2 ≥ 1, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j1
1 Un+σ

1,j2
= gn+s+1

1,j , for 1− `1 ≤ j1 ≤ 0, j2 ≥ 1, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j2
2 Un+σ

j1,1
= gn+s+1

2,j , for j1 ≥ 1, 1− `2 ≤ j2 ≤ 1, n ≥ 0,

Unj = 0, for j ∈ R, n ∈ J0, sK,

and thus are the most natural generalization of the scheme (7)-(8) from the half space to the quarter space
geometry. However and extra condition determining the discretization of the solution near the corner will
also have to be specified (see Paragraph 3.2 for more details).

The way to derive the new inversibility condition will follow the analysis in the continous setting. That
is to say that we will firstly replace the ” discrete time derivative” by a complex valued paramater. Then
we will extend the solution by zero for j1 ≤ 1−`1 in order to obtain a scheme set in the half space j2 ≥ 1−`2.

This extension will, as in the continous setting, induce an error term in the interior (that is for j2 ≥ 1)
that can be seen as the discretized value of the trace of (Unj ) on the side ” {x1 = 0} ”. However do to the
discrete nature of the scheme this error will involve several values of the (Unj ) and not only the values for
j1 = 0. It will also have a more delicate expression than in the continous setting.

An other notable fact is that, compared to the continous setting, this extension will also induce an error
term on the boundary (that is for 1− `2 ≤ j2 ≤ 0). However, this extra error term on the boundary will also
depends on the value of the trace of (Unj ) on the side ” {x1 = 0} ”.

Once we are in the half space geometry, the variable j1 will be replaced by a real parameter ξ1 by Fourier
transform and this we will have to study a scheme reading under the form (9). Such a problem will be easily
solvable by discrete Duhamel’s formula and this will permits to express the value of the trace of (Unj ) on the
side ” {x2 = 0} ” in terms of the errors in the interior and on the boundary and thus in terms of the trace of
(Unj ) on the side ” {x1 = 0} ”.

We will then reiterate the process but by extending the solution by zero for j2 ≤ 1−`2 this time to derive
a compatibility condition between the trace of (Unj ) on ” {x1 = 0} ” in terms of the trace of (Unj ) on the side
” {x2 = 0} ”.Combining these two relations gives a compatbility condition for the trace of (Unj ) on the side
” {x1 = 0} ” which will be similar to the one obtain in the continous setting (see (6)) except for some new
terms induced by the erros on the sides.

1.3 Organization of the article and notations

1.3.1 Organization of the paper

The paper is organized as follows, in Section 2 we describe the way to derive the so-called Osher’s corner
condition for strong well-posedness for PDE. This section gives the main steps of the construction that we
will adapt to finite difference schemes.

Then in Section 3 we describe the schemes that we will consider and state the main assumptions.
Section 4 is devoted to the first reduction of the finite difference scheme, that is to say that the strong

stability for the considered scheme is equivalent to the strong stability of a so-called time resolvent scheme
(for which the time variable n is replace) by a complex parameter.

Section 5 aims to extend the time resolvent scheme to a scheme in the half space by considering the
extension of the solution by zero for negative values of j1. This procedure is the main step to derive Osher’s
corner condition for PDE. However, in the setting of finite difference scheme, as the reader will see, the
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extension is much more delicated and will lead us to more complicated error source terms in the interior and
on the boundary.

Then Section 6 describes the new necessary inversibility condition for strong stability.

At last, Section 7 contains some explicit computations and numerical results.

1.3.2 Notations

In all what follows we define the following subsets of C:

U := {z ∈ C| |z| > 1} ,D := {z ∈ C| |z| < 1} .

For a, b ∈ R, we will use the short hand notation Ja, bK for the ”intervals of integers”. More precisely,
Ja, bK := Z ∩ [a, b].

2 Osher’s corner condition for PDE

This section describes how the corner condition for hyperbolic corner problems in the continous framework
is obtained in [Osh73]. As we have already mentionned, the derivation of the necessary condition for strong
stability for finite difference schemes will follows the same lines. Consequently this section is a good intro-
duction before we turn to finite difference schemes.

We consider the hyperbolic corner problem:
(∂t +A1∂1 +A2∂2)u = f, for (t, x) ∈ R× R2

+,

B1u|x1=0 = g1, for (t, x2) ∈ ]−∞, T ]× R+,

B2u|x2=0 = g2, for (t, x1) ∈ ]−∞, T ]× R+,

u|t≤0 = 0, for x ∈ R2
+,

(10)

for which we will make the following assumptions:

Assumption 2.1 (Constant hyperbolicity) There exists M ∈ N∗, analytic functions on Rd\{0} denoted
by λ1, ..., λM with real values and positive integers ν1, ..., νM such that:

∀ξ ∈ S1, det (τ + ξ1A1 + ξ2A2) =

M∏
k=1

(τ − λk(ξ))νk ,

where λ1(ξ) < ... < λM (ξ) and such that the eigenvalues λk(ξ) of
∑2
j=1 ξjAj are semi-simple.

and

Assumption 2.2 (Non characteristic boundaries) The matrices A1 and A2 are invertible.

We also introduce the following definition of strong well-posedness for corner problems which specifies
the one given in the introduction:

Definition 2.1 (Strong well-posedness) We say that the corner problem (10) is strongly well-posed if
for all source terms f ∈ L2

γ(R× R2
+), g1 ∈ L2

γ(R× R+), g2 ∈ L2
γ(R× R+), the system (10) admits a unique

solution u ∈ L2
γ(R2

+), with traces in L2
γ(R+) satisfying the energy estimate: there exists C > 0 such that for

all γ > 0,

γ‖u‖2L2
γ(R×R2

+) + ‖u|x1=0‖2L2
γ(R×R+) + ‖u|x2=0‖2L2

γ(R×R+)

≤ C

(
1

γ
‖f‖2L2

γ(R×R2
+) + ‖g1‖2L2

γ(R×R+) + ‖g2‖2L2
γ(R×R+)

)
, (11)
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where the weighted L2 spaces, L2
γ(X) (here X denotes a Banach space), are defined by:

L2
γ(X) :=

{
u ∈ D(X)|e−γtu ∈ L2(X)

}
,

with norm:
‖ · ‖L2

γ(X) := ‖e−γt · ‖2L2(X).

The first step to obtain the corner condition is to ”kill” the time variable by Laplace transform. This point
is made in the following paragraph.

2.1 The time-resolvent PDE

We denote by ·̂ the Laplace transform in the time variable and v := û where u is the solution of (10). Let
σ := γ + iτ , with γ > 0 be the dual variable of t. Then v solves the boundary value problem (remark that
we have homogeneous initial conditions):

σv +A1∂1v +A2∂2v = f̂ , for x ∈ R2
+,

B1v|x1=0 = ĝ1, for x2 ∈ R+,

B2v|x2=0 = ĝ2, for x1 ∈ R+.

(12)

The boundary value problem (12) is refered as the time-resolvent corner problem.

We introduce the following concept of strong stability for the time-resolvent corner problem:

Definition 2.2 We say that the time resolvent corner problem (12) is strongly well-posed if for all source
terms f ∈ L2(R2

+), g1, g2 ∈ L2(R+), the system (12) admits a unique solution v ∈ L2(R2
+), with traces in

L2(R+) satisfying the energy estimate: there exists C > 0 such that for all γ > 0,

γ‖v‖2L2(R2
+) + ‖v|x1=0‖2L2(R+) + ‖v|x2=0‖2L2(R+) ≤ C

(
1

γ
‖f̂‖2L2(R2

+) + ‖ĝ1‖2L2(R+) + ‖ĝ2‖2L2(R+)

)
. (13)

The main result of this paragraph is the following and states that the study of the strong stability (10)
of reduces to the study of the strong stability of (12). More precisely:

Proposition 2.1 ([Ben15], Proposition 5.3.1) The corner problem (10) is strongly well-posed in the
sense of Definition 2.1 if and only if the time-resolvent corner problem (12) is strongly well-posed in the
sense of Definition 2.2.

Proof : The fact that the strong well-posedness of (12) implies the well-posedness of (10) is a direct conse-
quence of Paley-Wiener theorem.

We turn to the proof of ”(10) well posed implies (12) well-posed”. The Laplace transform in time of u
the solution of (10) solves (12) so a solution exists it remains to show the energy estimate (13). Indeed the
uniqueness follows from the linearity and (13).

Let σ := γ + iτ , with γ > 0 and τ ∈ R be a fixed Laplace parameter. We introduce a sequence of
functions (ϕn)n∈N ∈ C∞c (R) satisfying that there exists C0 > 0 independent of n such that:

ϕn(t) = 1, for |t| ≤ n,
ϕn(t) = 0, for |t| ≥ n+ 1,

ϕn(t) ∈ [0, 1] , ∀t ∈ R, ∀n ∈ N,
|ϕ′n(t)| ≤ C0, ∀t ∈ R, ∀n ∈ N.

We define a sequence of functions (vn)n∈N by:

vn(t, x) :=
eσt√
2n
ϕn(t)v(x),

9



where we recall that v denotes the Laplace transform in time of u. We have:

L(∂)vn =
eσt√
2n

(
ϕnf̂ + ϕ′nv

)
:= fn,

and for k ∈ {1, 2}:

Bkvn|xk=0
=

eσt√
2n
ϕnĝk := gk,n.

By assumption the corner problem (10) is strongly well-posed so thanks to the energy estimate (11) we
have:

γ‖vn‖2L2
γ(R×R2

+) + ‖vn|x1=0
‖2L2

γ(R×R+) + ‖vn|x2=0
‖2L2

γ(R×R+) (14)

≤ C

(
1

γ
‖fn‖2L2

γ(R×R2
+) + ‖g1,n‖2L2

γ(R×R+) + ‖g2,n‖2L2
γ(R×R+)

)
.

A direct computation gives:

‖vn‖2L2
γ(R×R2

+) =
1

2n

(∫
R
|ϕn(t)|2 dt

)
‖v‖2L2(R2

+),

and by definition of (ϕn)n∈N we have:

2n ≤
∫
R
|ϕn(t)|2 dt ≤ 2(n+ 1). (15)

So we immediately deduce that

lim
n→+∞

‖vn‖2L2
γ(R×R2

+) = ‖v‖2L2(R2
+).

The same kind of computations also gives, that for k ∈ {1, 2},

lim
n→+∞

‖vn|xk=0
‖2L2

γ(R×R2
+) = ‖v|xk=0‖2L2(R2

+) and lim
n→+∞

‖gk,n‖2L2
γ(R×R2

+) = ‖ĝk‖2L2(R2
+).

Consequently to establish (13) it is sufficient to show that lim
n→+∞

‖fn‖2L2
γ(R×R2

+)
= ‖f̂‖2

L2(R2
+)

, and to take

the limit n ↑ ∞ in (14).

We decompose
‖fn‖2L2

γ(R×R2
+) = ‖fn‖2L2

γ([−n,n]×R2
+) + ‖fn‖2L2

γ(Cn×R2
+),

where Cn := [−(n+ 1), n+ 1] \ [−n, n]. Using the fact that ϕ′ ≡ 0 on [−n, n] and the bounds (15) we obtain
that

lim
n→+∞

‖fn‖2L2
γ([−n,n]×R2

+) = ‖f̂‖2L2(R2
+),

so it remains to show that lim
n→+∞

‖fn‖2L2
γ(Cn×R2

+)
= 0. In view of the definition of (fn)n∈N and the properties

imposed on (ϕn)n∈N we have:

‖fn‖2L2
γ(Cn×R2

+) ≤
MK

n
,

where M := max(‖v‖2
L2(R2

+)
, ‖f̂‖2

L2(R2
+)

) and K := max(C0, 1). It follows that lim
n→+∞

‖fn‖2L2
γ(Cn×R2

+)
= 0 and

this concludes the proof of (13).

�
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2.2 The corner condition of [Osh73]

Once we have restricted the study to question of the well-posedness of the time-resolvent corner problem, we
can describe the new inversibility imposed in [Osh73]. To do this we consider the following time-resolvent
corner problem: 

σv +A1∂1v +A2∂2v = 0, for x ∈ R2
+,

B1v|x1=0 = g1, for x2 ∈ R+,

B2v|x2=0 = 0, for x1 ∈ R+,

(16)

where the Laplace parameter σ now acts like a parameter.

We assume that (16) is strongly well-posed in the sense of Definition (2.2) and we define w the extension
of v the solution of (16) by zero for negative x1. This extension solves the following boundary value problem
in the half space {x1 ∈ R, x2 ≥ 0}:{

σw +A1∂1w +A2∂2w = δ0(x1)A1v|x1=0, for x1 ∈ R, x2 ≥ 0,

B2v|x2=0 = 0, for x1 ∈ R.
(17)

The variable x1 now lie in the full space R so we can perform the Fourier transform of w with respect to x1.
Indeed by strong well posednes v ∈ L2(R2

+) and consequently w ∈ L2(R× R+). Let ξ1 be the dual variable
of x1 and ·̂ denotes the x1-Fourier transform. Then ŵ is solution of:{

∂2ŵ = A2(σ, ξ1)ŵ +A−1
2 A1v|x1=0, for x1 ∈ R, x2 ≥ 0,

B2ŵ|x2=0 = 0, for x1 ∈ R,
(18)

where A2(σ, ξ1) is the so-called resolvent matrix defined by:

A2(σ, ξ1) := −A−1
2 (σ + iξ1A1) .

Remark in particular that to derive (18) we used the non-charcteristicity assumption 2.2. This assumption
will also have its discrete version for finite diffrence schemes (see () for more details).

Before to give a solution of (18) thanks to Duhamel’s formula we have to study the eigenvalues/eigenspaces
of the resolvent matrix A2(σ, ξ1). The following result due to [Her63] is classical and admits an analogous
version for finite difference schemes (see Lemma 6.1).

Lemma 2.1 ([Her63]) Assume that A2 is invertible and that the corner problem (10) satisfies Assumption
2.1. Then for all γ > 0, ξ1 ∈ R, τ ∈ R, the eigenvalues of A2(σ, ξ1) have non zero real parts. Moreover the
number of eigenvalues with strictly negative real part is constant and is equals to p2.

As a consequence we have the following decomposition:

∀σ ∈ C such that γ > 0, ∀ξ1 ∈ R, C = Es2(σ, ξ1)⊕ Eu2 (σ, ξ1),

where Es2(σ, ξ1) (resp. Eu2 (σ, ξ1)) denotes the stable (resp. unstable) subspace of A2(σ, ξ1) that is the gener-
alized eigenspace associated to eigenvalues with negative (resp. positive) real parts.

The proof is classical but we will give because it is a good introduction for the proof of the analogous version
of Lemma 2.1 in the discrete setting (see Lemma 6.1).

Proof : Let λ ∈ iR be an eigenvalue of A2(σ, ξ1) for some γ > 0, then we have:

0 = det(A2(σ, ξ1)− λI) = (−1)d detA−1
2 det(σ + iξ1A1 + λA2).

Consequently σ is an eigenvalue of ξ1A1 + λ
iA2. By Assumption 2.1, it implies that σ ∈ iR which is incom-

patible with the fact that γ > 0.
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We now justify that the number of eigenvalues with strictly negative real part is equals to p2. The applica-
tion that (σ, ξ1) 7→ det(A2(σ, ξ1)−λI) is continous with constant degree. So the number of roots λ (counted
with multiplicity) with negative real part may not vary locally. The set of parameters {z ∈ C,Re z > 0}×R
is connected so the number of roots with negative real part must be constant on {z ∈ C,Re z > 0} × R.
Evaluating in (1, 0), we obtain:

0 = det(A2(1, 0)− λI) = (−1)d det(A−1
2 + λI),

which admits p2 strictly negative real roots.

�

We introduce Πs
2(σ, ξ1) (resp. Πu

2 (σ, ξ1)) the projector upon Es2(σ, ξ1) (resp. Eu2 (σ, ξ1)) according to the
decomposition given in Lemma 2.1.

We can decompose ŵ, the solution of (18) into a stable and an unstable part:

ŵ(ξ1, x2) := Πs
2(σ, ξ1)ŵ(ξ1, x2) + Πu

2 (σ, ξ1)ŵ(ξ1, x2),

where each part is given by the Duhamel’s formula:

Πs
2(σ, ξ1)ŵ(ξ1, x2) = ex2A2(σ,ξ1)Πs

2(σ, ξ1)ŵ(ξ1, 0) +

∫ x2

0

e(x2−s)A2(σ,ξ1)Πs
2A
−1
2 A1v|x1=0(s) ds,

Πu
2 (σ, ξ1)ŵ(ξ1, x2) = −

∫ +∞

x2

e(x2−s)A2(σ,ξ1)Πs
2A
−1
2 A1v|x1=0(s) ds.

But from (), we know that from the Kreiss-Lopatinskii condition, at the level of the boundary {x2 = 0}, the
stable part of the trace depends on the unstable part. More precisely we can write:

Πs
2(σ, ξ1)ŵ(ξ1, 0) = −φ2(σ, ξ1)B2Πu

2 (σ, ξ1)ŵ(ξ1, 0),

where we recall that φ2(σ, ξ1) = B−1
2|Es2(σ,ξ1)

. So the expression of the trace of ŵ on the boundary {x2 = 0}
becomes:

ŵ(ξ1, 0) = [I − φ2(σ, ξ1)B2] Πu
2 (σ, ξ1)ŵ(ξ1, 0),

= [φ2(σ, ξ1)B2 − I]

∫ +∞

0

e−sA2(σ,ξ1)Πu
2A
−1
2 A1v|x1=0(s) ds.

By reverse Fourier transform of the previous expression it follows that:

w|x2=0(x1) = (T1→2(σ)v|x1=0)(x1), (19)

where the operator T1→2(σ) is a Fourier integral operator defined by:

(T1→2(σ)u) :=
1

2π

∫
R
eix1ξ1 [φ2(σ, ξ1)B2 − I]

∫ +∞

0

e−sA2(σ,ξ1)Πu
2A
−1
2 A1u(s) ds dξ1. (20)

However by definition of w we have w|x2=0 = v|x2=0 so (19) is a compatibility relation between v|x2=0 and
v|x1=0. More precisely it says that the value of the trace of the solution on the side {x2 = 0} is given by the
value of the trace on the side {x1 = 0} under the action of the operator T1→2(σ).

Then we can reiterate exactly the same construction but after an extension by zero for x2 negative to
obtain an analogous relation to (19) which associates the value of the trace on {x1 = 0} in terms of the value
of the trace on {x2 = 0}:

v|x1=0(x2) = (T2→1(σ)v|x2=0)(x2) + (P (σ)g1)(x2), (21)
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where the operator T2→1(σ) is a Fourier integral operator whose expression is similar to the expression of
T1→2(σ):

(T2→1(σ)u)(x2) :=
1

2π

∫
R
eix2ξ2 [φ1(σ, ξ1)B1 − I]

∫ +∞

0

e−sA1(σ,ξ2)Πu
1 (σ, ξ2)A−1

1 A2u(s) ds dξ2, (22)

with A1(σ, ξ2) := −A−1
1 (σ + iξ2A2) , and where Πu

1 (σ, ξ2) is the projector upon Eu1 (σ, ξ2) the unstable sub-
space of A1(σ, ξ2) (see Lemma 2.1).

In (21), P (σ) is a Fourier multiplier defined by:

(P (σ)g)(x2) :=
1

2π

∫
R
eix2ξ2φ1(σ, ξ2)g(ξ2) dξ2.

Combining (19) and (21) leads to the following necessary compatibility condition on the trace v|x1=0:

[I − T1(σ)] v|x1=0 = P (σ)g1, (23)

where we defined T1(σ) := T2→1(σ)T1→2(σ).

If one believes that the value of the source term g1 on the side {x1 = 0} determines the value of the trace
v|x1=0 it is thus natural to ask that the operator [I − T1(σ)] is invertible on L2(R+) with values in L2(R+).
Moreover as in the energy estimate defining the well-posedness of the time-resolvent system (13) we ask that
the constant C does not depends on γ. Finally we ask that [I − T1(σ)] is uniformly invertible compared to σ.

It is the so-called Osher’s corner condition:

Definition 2.3 ([Osh73]) We say that the corner problem (10) satisfies the Osher’s corner condition if for
all σ := γ + iτ with γ > 0, the operator [I − T1(σ)] is invertible on L2(R+) uniformly in terms of σ.

In particular there exists a constant C > 0 such that for all σ with γ > 0 and for all u ∈ L2(R+) we
have:

‖u‖2L2(R+) ≤ C‖ [I − T1(σ)]u‖2L2(R+).

Under this condition, it is possible to construct a ”Kreiss type symmetrizor” to show an a priori energy
estimate for the solution u, see [Osh73]. However, the energy estimate obtained in [Osh73] contains a non
explicit number of losses of derivatives and consequently is not suitable to characterize the strong well-
posedness.

So note that neither the necessary nature nor of the sufficient nature of Osher’s corner condition has
been rigorously demonstrate yet. In the author’s opinion it is due to two main difficulties. On the one hand
we do not, at the present time, understand sufficiently well their influence upon the traces on the solution.
And one the other hand, generically the operators T2→1(σ) and T2→1(σ) are not explicitely computable.

Indeed, in the author’s knowledge, the only example where the operators T2→1(σ) and T2→1(σ) are
computable is the quite simple system:

∂tu+

[
1 0
0 −1

]
∂1u+

[
−1 0
0 1

]
∂2u = 0,[

1 −a
]
u|x1=0 = g1,[

−b 1
]
u|x2=0 = 0,

u|t≤0 = 0,

for which it can be shown (see [?]) that the strong well posedness is equivalent to Osher’s condition. In terms
of the parameters a, b ∈ R the strong well-posedness is equivalent to impose that |ab| < 1. Which means, in
terms of wave packets propagation, that the energy is descreasing after on couple of reflections against the
sides {x1 = 0} and {x2 = 0}.

However, even if the necessary nature of Osher’s corner has not rigorously demonstrated yet, we stress
that the compatability condition on the trace v|x1=0, (23) is a rigorous condition for the strong well-posedness
of (10). Thus we have the following result:
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Theorem 2.1 Under Assumptions 2.1-2.2, assume that the system (10) is strongly well posed in the sense
of Definiton 2.1 then the trace of the solution v of (12) on {x1 = 0} satisfies (23).

3 Description of the scheme, definitions and assumptions

3.1 Strong stability of finite difference schemes in the full space

In this paragraph we recall some definition about the strong stability of finite difference scheme approxima-
tions for hyperbolic Cauchy problem. Thus we consider the scheme:{

Un+s+1
j +

∑s
σ=0Q

σUn+σ
j = 0, for j ∈ Z2, n ≥ 0,

Unj = un0j , for j ∈ Z2, n ∈ J0, sK,
(24)

where the matrices Qσ ∈MN×N (R) are given by:

Qσ :=

r1∑
µ1=−`1

r2∑
µ2=−`2

Aσ,µTµ1

1 Tµ2

2 , (25)

with Aσ,µ ∈MN×N (R) and where for k ∈ {1, 2}, Tµk
k is the µk-shift operator in the direction jk:

∀u ∈ `2(Z2), (Tµ1

1 u)j := uj1+µ1,j2 , (Tµ2

2 u)j := uj1,j2+µ2
.

Note that in (25), µ := (µ1, µ2).

The stability of (24) is defined as follows:

Definition 3.1 The scheme (24) is strongly stable if there exists C > 0 such that for all ∆t ∈ ]0, 1], for all
initial condition (un0j )n∈J0,sK,j∈`2(Z2) and for all n ∈ N, we have the estimate:

∑
j∈Z2

∆x|Unj |2 ≤ C
s∑

n=0

∑
j∈Z2

∆x|un0j |
2, (26)

where ∆x := ∆x1∆x2.

We introduce the following so-called amplification matrix A ∈ MN(s+1)×N(s+1)(R) defined for all κ =
(κ1, κ2) ∈ C2 \ {0} by:

A (κ) :=


Q̂0(κ) · · · · · · Q̂s(κ)
I 0 · · · 0

0
. . .

. . .
...

0 0 I 0

 , where ∀σ ∈ J0, sK, Q̂σ(κ) :=

r1∑
µ1=−`1

r2∑
µ2=−`2

κµ1

1 κµ2

2 Aσ,µ. (27)

Then we have the following (classical) characterization of the strong stability in terms of the spectrum
of the amplification matrix (which is analogous to the hyperbolicity assumption in the continous setting) for
the scheme (24):

Proposition 3.1 The scheme (24) is strongly stable in the sense of Definition 3.1 if and only if the ampli-
fication matrix A (κ) is power bounded. More precisely, there exists C > 0 such that for all m ∈ N, for all
ξ1, ξ2 ∈ R:

|A (eiξ1 , eiξ2)n| ≤ C.

In particular if (24) is strongly stable in the sense of Definition 3.1 then we have the so-called Von-
Neumann condition: ξ1, ξ2 ∈ R, ρ(A (eiξ1 , eiξ2)) ≤ 1, where ρ denotes the spectral radius.
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3.2 Finite difference schemes in the quarter space

Firstly let us define the following matrices: for all z ∈ C \ {0} and ξ2 ∈ R,

Aµ1

1 (z, ξ2) := δµ1,0 −
s∑

σ=0

r2∑
µ2=−`2

z−(σ+1)eiµ2ξ2Aσ,µ, (28)

and ∀ξ1 ∈ R,

∀µ2 ∈ J−`2, r2K, Aµ2

2 (z, ξ1) := δµ2,0 −
s∑

σ=0

r1∑
µ1=−`1

z−(σ+1)eiµ1ξ1Aσ,µ. (29)

The first assumption that we will make upon the finite difference scheme in the quarter space is that both
of the sides corresponding to ”{x1 = 0}” and ”{x2 = 0}” are non characteristic in the sense that :

Assumption 3.1 For all couple (z, ξ1) ∈ U × R (resp. (z, ξ2) ∈ U × R), the matrices Ar22 (z, ξ1) and
A−`22 (z, ξ1) (resp. Ar11 (z, ξ2) and A−`11 (z, ξ2)) are invertible.

This assumption has to be understand has a discrete version of the non characteristicity assumption in the
continous framework (see Assumption 2.2).

We define the following subsets of Z2:

I :=
{
j = (j1, j2) ∈ Z2|j1, j2 ≥ 1

}
, (30)

C :=
{
j = (j1, j2) ∈ Z2|j1 ∈ J1− `1, 0K, j2 ∈ J1− `2, 0K

}
B1 :=

{
j = (j1, j2) ∈ Z2|j1 ∈ J1− `1, 0K, j2 ≥ 1

}
B2 :=

{
j = (j1, j2) ∈ Z2|j1 ≥ 1, j2 ∈ J1− `2, 0K

}
,

for two fixed integers `1 and `2 corresponding respectively to the stencils of the scheme in the ”left” and in
the ”bottom” directions.

The set I is a discretization of the interior of the quarter space, B1 and B2 are discretizations of the
two sides of the boundary of the quarter space and finally C represents a discretization of the corner. The
full set of resolution R is defined by:

R := I ∪B1 ∪B2 ∪ C =
{
j = (j1, j2) ∈ Z2|j1 ≥ 1− `1, j2 ≥ 1− `2

}
.

In order to state the strong stability estimate for the solution of the finite difference scheme it will be
convenient to introduce the extended discretizations of the two sides of the boundary. They are defined by:

B1 :=
{
j = (j1, j2) ∈ Z2|j1 ∈ J1− `1, r1K, j2 ≥ 1− `2

}
(31)

B2 :=
{
j = (j1, j2) ∈ Z2|j1 ≥ 1− `1, j2 ∈ J1− `2, r2K

}
,

where r1 and r2 are two fixed integers that will correspond to the stencils of the scheme in the ”right” and
in the ”top” directions.

The finite difference scheme approximation of (10) that we will consider in this article reads:

Un+s+1
j +

∑s
σ=0Q

σUn+σ
j = ∆tfn+s+1

j , for j ∈ I , n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j1
1 Un+σ

1,j2
= gn+s+1

1,j , for j ∈ B1, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j2
2 Un+σ

j1,1
= gn+s+1

2,j , for j ∈ B2, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0 C

σ,jUn+σ
1,1 = hn+s+1

j , for j ∈ C , n ≥ 0,

Unj = 0, for j ∈ R, n ∈ J0, sK,

(32)

where we recall that the discretizing operators in the interior Qσ ∈MN×N (R) are defined in (25).

15



The boundary operators Bσ,j11 , Bσ,j22 are defined by:

Bσ,j11 :=

b11∑
µ1=0

b12∑
µ2=0

Bσ,µ,j11 Tµ1

1 Tµ2

2 , and Bσ,j12 :=

b21∑
µ1=0

b22∑
µ2=0

Bσ,µ,j22 Tµ1

1 Tµ2

2 , (33)

for some fixed intergers b11, b12, b21 and b22 corresponding to the number of space discretization steps for
the boundary conditions, and where the matrices Bσ,µ,j11 and Bσ,µ,j22 are fixed elements of MN (R).

The corner operator is given by:

Cσ,j :=

c1∑
µ1=0

c2∑
µ2=0

Cσ,µ,j1 Tµ1

1 Tµ2

2 , (34)

for two fixed integers c1 and c2 and where the matrices Cσ,µ,j are fixed in MN (R).

j1

j2

I

C

B1

B2•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

?

Figure 1: The set of resolution and the dependency set in the interior of U2,2 for `1 = 3, `2 = 2 and
r1 = r2 = 1.

Before we turn to the definition of strong stability for the scheme (32) we give some comments about how
this scheme operates. The initial condition gives the value of the Unj for n ∈ J0, sK, we describe how Us+1

j

is computed. The discretization in the interior only involve the Unj , for n ∈ J0, sK and j ∈ R so its permits

to determine the Us+1
j for j ∈ I . Then the boundary and corner conditions involve the Unj , for n ∈ J0, sK

but also the Us+1
j for j ∈ I which has already been determined. Consequently it permits to determine the

values of the Us+1
j for j ∈ R \I and thus complete the determination of (Us+1

j ).

Note that with this choice of boundary and corners condition the boundary and corner values only de-
pend on the value of the solution in I at the time of computation. As mentionned in [?] others choices of
boundary and corner conditions are possible. For example one can choose to compute the value at the corner
in terms of the boundary and interior values. These schemes are of course more complicated and their study
is left for future works.

The strong stability definition is the following.

Definition 3.2 (Strong stability) We say that the finite difference schme approximation (32) is strongly
stable if there exists a constant C > 0 such that for all source terms (fnj ) ∈ `2(I ), (gn1,j) ∈ `2(B1),

(gn2,j) ∈ `2(B2) and (hnj ) ∈ `2(C ) and for all ∆t ∈ ]0, 1] for all γ > 0, the solution (Unj )j∈R of (32) satisfies
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j1

j2

I

C

B1

B2

? ? ? ?

�

�

� �

�

�
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� �

�

Figure 2: The sets of dependancy at the boundaries and at the corner of U−1,3 (?), U2,0 (�) and U−2,0 (�)
for b11 = 2, b12 = 0, b21 = b22 = c1 = c2 = 1

the estimate:

γ

γ∆t+ 1

∑
n≥s+1

∆te−2γn∆t
∣∣∣∣∣∣Unj ∣∣∣∣∣∣2R +

2∑
k=1

∑
n≥s+1

∆t∆x3−k‖Unj ‖2Bk
(35)

≤ C

γ∆t+ 1

γ

∑
n≥s+1

∆te−2γn∆t
∣∣∣∣∣∣fnj ∣∣∣∣∣∣2I

+

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖gnk,j‖2Bk

+
∑

n≥s+1

∆t∆x2e
−2γn∆t‖hnj ‖2C

 ,

where for I ⊂ Z2 the weighted `2-norm |||·|||I is defined by:

∀(Uj) ∈ `2(I), |||U |||I := ∆x
∑
j∈I

|Uj |2.

Remark • The estimate (35) is just a natural generalization of the standard energy estimate in the half
space geometry used for example in [Cou11].The only changes are that in the left hand side of (35) we ask a
control of the two boundaries and that the right hand side involves the source term at the corner (hnj )j∈C .
In the enrergy estimate in the continous setting, see (11), the right hand side only involves the source terms
of the source terms in the interior and on the two sides of the boundary. However in for schemes we have
to ask the source term at the corner ohterwise the solution of a totally homogeneous scheme except at the
corner should be zero which is clearly not the case.

• Also note that when we take the limit ∆t ↓ 0 under suitable CFL conditions then we recover (at least
formally) the energy estimate for the continous problem that is to say (11). So this estimate seems to be con-
sistent with the litterature at least at the formal level and thus (35) is effectively a discretized version of (11).

• An other possible choice for the boundary control in the left hand side of (35) is of course to choose
the norms on Bk, k ∈ {1, 2} which leads to a weaker stability definition. However has we will see in () the
necessary condition for strong stability, the norms on Bk, k ∈ {1, 2}, are much more natural because they
are the quantities involved in the necessary condition for strong stability.
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• A last remark is that the choice of the weight in front of the source term at the corner in the right
hand side of (35) is totally arbitrary. Indeed from the CFL conditions we have ∆x1 ∼ ∆x2.

Without loss of generality we can assume that in (35), ∆t = 1. Consequently from the definition of the
CFL numbers we have ∆xj = 1

λj
and the energy estimate (36) equivalently reads: there exists C > 0 such

that for all γ > 0 we have:

γ

γ + 1

∑
n≥s+1

e−2γn‖Unj ‖2R +

2∑
k=1

∑
n≥s+1

e−2γn‖Unj ‖2Bk
(36)

≤ C

γ + 1

γ

∑
n≥s+1

e−2γn‖fnj ‖2I +

2∑
k=1

∑
n≥s+1

e−2γn‖gnk,j‖2Bk

+
∑

n≥s+1

e−2γn‖hnj ‖2C

 ,

that is to say that to check the strong stability it is sufficient to assume ∆t = 1.

As it as been done in Paragraph 2.1, the first step in the study of the strong stability of (32) is to replace
the time variable n by a complex parameter z ∈ U . This is the aim of the following Section.

4 The time-resolvent scheme

In the PDE framework (see Paragraph 2.1) to transform the time derivative in time to a dependency according
to a complex parameter it is sufficient to make a Laplace transform in time. This gives the time-resolvent
pde. In the discrete setting to obtain the time-resolvent scheme it is sufficient to set:

Unj := znVj , f
n
j := znfj , g

n
1,j := zng1,j , g

n
2,j := zng2,j and hnj := znhj ,

where z ∈ C \ {0}. The sequence (Vj)j∈R then formally satisfies the so-called time-resolvent scheme:
Vj +

∑s
σ=0 z

−(σ+1)Qs−σVj = fj , for j ∈ I ,

Vj +
∑s
σ=−1 z

−(σ+1)Bs−σ,j11 Vj = g1,j , for j ∈ B1,

Vj +
∑s
σ=−1 z

−(σ+1)Bs−σ,j22 Vj = g2,j , for j ∈ B2,

Vj +
∑s
σ=−1 z

−(σ+1)Cs−σ,jVj = hj , for j ∈ C ,

(37)

and we introduce the following definition for strong stability of the time-resolvent scheme (37):

Definition 4.1 [Time-resolvent strong stability]The time resolvent scheme (37) is said to be strongly stable
if there exits a constant C > 0 such that for all z ∈ U , for all source terms (fj) ∈ `2(I ), (g1,j) ∈ `2(B1),
(g2,j) ∈ `2(B2) and (hj) ∈ `2(C ), the time-resolvent scheme (37) admits a unique solution (Vj) ∈ `2(R)
satisfying that there exists C > 0 such that for all z ∈ U we have:

|z| − 1

|z|
∑
j∈R

|Vj |2 +

2∑
k=1

∑
j∈Bk

|Vj |2 ≤ C

 |z|
|z| − 1

∑
j∈I

|fj |2 +

2∑
k=1

∑
j∈Bk

|gk,j |2 +
∑
j∈C

|hj |2
 . (38)

Once again, we remark that (38) is just a disretized version of the energy estimate for the time-resolvent
PDE (13).

As in the continous framework the strong stability for the scheme (32) is equivalent to the strong stability
of the time-resolvent scheme (37). More precisely:

Theorem 4.1 ([BGS72]) The scheme (32) is strongly stable in the sense of Definition 3.2 if and only if
the time-resolvent scheme (37) is strongly stable in the sense of Definition 4.1.
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Proof : We are mainly interested in the statement of a necessary condition for the strong stability of (32)
so we will only demonstrate the implication ”If the scheme (32) is strongly stable then the time resolvent
scheme (37) is strongly stable”. The counterpart is a straightforward generalization of the existing result in
the half space geometry and can be find in [BGS72] or [Cou13] for example.

The proof described here comes from [Cou13], and is based upon the following lemma:

Lemma 4.1 For all m ≥ 1 let ρm be given by

ρm(θ) :=
1√
m

m−1∑
k=0

e−ikθ,

then (ρm)m∈N∗ satisfies the following properties:

• ρm is 2π-periodic and
1

2π

∫ π

−π
|ρm(θ)|2 dθ = 1.

• For all a ∈
]
0, pi2

]
,

lim
n→+∞

∫ π

a

|ρm(θ)|2 dθ = 0.

• For all H ∈ C 0(R) such that supθ∈R(1 + θ2)|H(θ)| < +∞, we have:

lim
n→+∞

1

2π

∫
R
H(θ)|ρm(θ)|2 dθ =

∑
k∈Z

H(2kπ).

We refer to [Cou13] for a proof of this lemma.

The following proof is very similar to the one given in Paragraph 2.1, except that instead of setting
Unj := znVj , we introduce a truncated in n (and renormalized) sequence (Unj (m)) that tends to (Unj ) in `2

for large values of m. We then write the scheme satisfied by (Unj (m)) and show that the new source terms
also tends to the sequences (fj), (gk,j) and (hj). We then conclude thanks to the energy estimate (36)
assumed on (Unj (m)) and by taking the limit as m ↑ ∞.

Following [Cou13] we firstly assume that the scheme (37) has a unique solution (Vj)j∈R ∈ `2(R) and we
show the a priori energy estimate (38). To do this we define the sequences: for a fixed z ∈ U ,

∀j ∈ R, ∀n ≥ 0, Unj (m) :=

{ z√
m
Vj , if s+ 1 ≤ n ≤ s+m,

0 otherwise,

∀j ∈ I , ∀n ≥ s, fnj (m) := Un+1
j (m)−

s∑
σ=0

QσUn−σj (m),

∀j ∈ B1, ∀n ≥ s+ 1, gn1,j(m) := Un+1
j (m)−

s∑
σ=0

Bσ,j11 Un−1−σ
j (m),

∀j ∈ B2, ∀n ≥ s+ 1, gn2,j(m) := Un+1
j (m)−

s∑
σ=0

Bσ,j22 Un−1−σ
j (m),

∀j ∈ C , ∀n ≥ s+ 1, hnj (m) := Un+1
j (m)−

s∑
σ=0

Cσ,jUn−1−σ
j (m).
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By construction the sequence (Unj (m))n,j satisfies:

Un+1
j (m) =

∑s
σ=0Q

σUn−σj (m) + fnj (m), j ∈ I , n ≥ s,
Un+1
j (m) =

∑s
σ=0B

σ,j1
1 Un−σj (m) + gn1,j(m), j ∈ B1, n ≥ s,

Un+1
j (m) =

∑s
σ=0B

σ,j2
2 Un−σj (m) + gn2,j(m), j ∈ B2, n ≥ s,

Un+1
j (m) =

∑s
σ=0 C

σ,jUn−σj (m) + hnj (m), j ∈ C , n ≥ s,
Unj (m) = 0, j ∈ R, n ∈ J0, sK,

(39)

so we can apply the energy estimate (35) to the parameter γ := ln|z|. This gives:

γ

γ + 1

∑
n≥s+1

∑
j∈R

e−2γn|Unj (m)|2 +

2∑
k=1

∑
n≥s+1

e−2γn
∑
j∈Bk

|Unj (m)|2

≤ C

γ + 1

γ

∑
n≥s

∑
j∈I

e−2γn|fnj (m)|2 +

2∑
k=1

∑
n≥s+1

e−2γn
∑
j∈Bk

|gnk,j(m)|2 +
∑

n≥s+1

e−2γn
∑
j∈C

|hnj (m)|2
 .

By definition of the sequence (Unj (m)) we have that for all j ∈ R:∑
n≥s+1

e−2γn|Unj (m)|2 =

s+m∑
n=s+1

e−2γn|z|2|Vj |2 = |Vj |2,

so thanks to the inequality 1−|z|
|z| ≤

γ+1

γ ≤ 2 1−|z|
|z| , the previous energy estimate becomes:

1− |z|
|z|

∑
j∈R

|Vj |2 +

2∑
k=1

∑
j∈Bk

|V nj |2

≤ C

 |z|
1− |z|

∑
n≥s

∑
j∈I

e−2γn|fnj (m)|2 +

2∑
k=1

∑
n≥s+1

e−2γn
∑
j∈Bk

|gnk,j(m)|2 +
∑

n≥s+1

e−2γn
∑
j∈C

|hnj (m)|2
 ,

and to establish (38) it remains to pass to the limit m ↑ ∞ in the right hand side. We will here only justify
the limit for the term involving (fnj (m)) the other limits follows exactly the same arguments.

We define the following step functions on R+:

Uj(m, t) :=

{
0, if t ∈ [0, s+ 1[ ,
Unj (m) if t ∈ [n, n+ 1[ , n ≥ s+ 1,

fj(m, t) :=

{
0, if t ∈ [0, s[ ,
fnj (m) if t ∈ [n, n+ 1[ , n ≥ s,

g1,j(m, t) :=

{
0, if t ∈ [0, s+ 1[ ,
gn1,j(m) if t ∈ [n, n+ 1[ , n ≥ s+ 1,

g2,j(m, t) :=

{
0, if t ∈ [0, s+ 1[ ,
gn2,j(m) if t ∈ [n, n+ 1[ , n ≥ s+ 1,

hj(m, t) :=

{
0, if t ∈ [0, s+ 1[ ,
hnj (m) if t ∈ [n, n+ 1[ , n ≥ s+ 1.

In terms of these functions, the scheme (39) is equivalent to the continous in time, discretized in space
scheme: 

Uj(m, t+ 1) =
∑s
σ=0Q

σUj(m, t− σ) + fj(m, t), j ∈ I , t ≥ s,
Uj(m, t+ 1) =

∑s
σ=0B

σ,j1
1 Uj(m, t− σ) + g1,j(m, t), j ∈ B1, t ≥ s,

Uj(m, t+ 1) =
∑s
σ=0B

σ,j2
2 Uj(m, t− σ) + g2,j(m, t), j ∈ B2, t ≥ s,

Un+1
j (m, t+ 1) =

∑s
σ=0 C

σ,jUj(m, t− σ) + hj(m, t), j ∈ C , t ≥ s.

(40)

We take the Laplace transform of Uj(m, t) in the above equations to obtain that:
Ûj(m, τ) =

∑s
σ=0 z

−(σ+1)QσÛj(m, τ) + z−1f̂j(m, τ), j ∈ I ,

Ûj(m, τ) =
∑s
σ=0 z

−(σ+1)Bσ,j11 Ûj(m, τ) + ĝn1,j(m, τ), j ∈ B1, ,

Ûj(m, τ) =
∑s
σ=0 z

−(σ+1)Bσ,j22 Ûj(m, τ) + ĝ2,j(m, τ), j ∈ B2,

Ûj(m, τ) =
∑s
σ=0 z

−(σ+1)Cσ,jÛj(m, τ) + ĥj(m, τ), j ∈ C ,

(41)
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where τ is the dual variable of t and where we used the notation z := eτ . We can also compute explicitly:

∀θ ∈ R, Ûj(m, τ + iθ) =
1− z−1e−iθ

τ + iθ
e−i(s+1)θρm(θ)Vj .

Then the first equation of (41) gives:

z−1e−iθf̂j(m, τ + iθ) =
1− z−1e−iθ

τ + iθ
e−i(s+1)θρm(θ)

(
Vj −

s∑
σ=0

z−(σ+1)e−i(σ+1)θQσVj

)
,

from which we deduce thanks to Fubini’s and Plancherel’s theorems that:∑
n≥s

∑
j∈I

e−2γn

|z|
|fnj (m)|2 =

2γ

1− e−2γ

∑
j∈I

|z|−2

∫
R+

e−2γt|fj(m, t)|2 dt

=
2γ

1− e−2γ

∑
j∈I

|z|−2

∫
R
|f̂j(m, τ + iθ)|2 dθ

=
1

2π

2γ

1− e−2γ

∫
R
H(θ)|ρm(θ)|2dθ, (42)

where we used the notation:

H(θ) :=

∣∣∣∣1− z−1e−iθ

τ + iθ

∣∣∣∣2 ∑
j∈I

∣∣∣∣∣Vj −
s∑

σ=0

z−1e−i(σ+1)θQσWj

∣∣∣∣∣
2

.

The function H satisfies the properties i)− iii) of Lemma 4.1. So we deduce that: () la limite

∑
n≥s

∑
j∈I

e−2γn

|z|
|fnj (m)|2 =

2γ

1− e−2γ

∑
k∈Z

∣∣∣∣ 1− z−1

τ + 2ikπ

∣∣∣∣2 ∑
j∈I

|(L(z)V )j |2,

where we defined:

∀z ∈ U , V ∈ `2(R), (L(z)V )j :=


Vj −

∑s
σ=0 z

−(σ+1)QσVj , for j ∈ I ,

Vj −
∑s
σ=−1 z

−(σ+1)Bσ,j11 V1,j2 , for j ∈ B1,

Vj −
∑s
σ=−1 z

−(σ+1)Bσ,j22 Vj1,1, for j ∈ B2,

Vj −
∑s
σ=−1 z

−(σ+1)Cσ,jV1,1, for j ∈ C ,

. (43)

To conclude we use the formula:

2γ

1− e−2γ

∑
k∈Z

∣∣∣∣ 1− z−1

τ + 2ikπ

∣∣∣∣2 = 1,

whose proof can be found in [Cou13].
This complete the proof of the energy estimate (38), it remains to show the existence of a solution (Vj)j∈R

of the scheme (37). As in [Cou13] the existence of (Vj)j∈R is a consequence of the two following lemmas:

Lemma 4.2 There exists R ≥ 1 such that for all z ∈ C satisfying |z| ≥ R the operator (L(z) defined by (43)
is invertible on `2(R).

Proof : We define:

L∞ : `2(R)→ `2(R), by (L∞V )j :=


Vj , j ∈ I ,

Vj −B−1,j1
1 V1,j2 , j ∈ B1,

Vj −B−1,j2
2 Vj1,1, j ∈ B2,

Vj − C−1,jV1,1, j ∈ C ,

.
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Clearly L∞ is a bounded invertible operator on `2(R). Moreover we have:

z((L∞ − L(z))V )j :=


∑s
σ=0 z

−σQσVj , for j ∈ I ,∑s
σ=0 z

−σBσ,j11 V1,j2 , for j ∈ B1,∑s
σ=0 z

−σ+1Bσ,j22 Vj1,1, for j ∈ B2,∑s
σ=0 z

−σ+1Cσ,jV1,1, for j ∈ C ,

,

so there exists C > 0 such that:

Lemma 4.3 Let X be a Banach space, E be a nonempty connected set. Let L be a continous function on
E with values in the space of bounded operators on X, B(X). We assume that the following conditions are
fulfilled:

• there exists C > 0 such that for all e ∈ E and for all x ∈ X, ‖x‖E ≤ C‖L(e)x‖E,

• there exists e ∈ E such that L(e) is an isomorphism.

Then L(e) is an isomorphism for all e ∈ E.

We refer to [[Cou13], Lemma 12] for a proof of Lemma 4.3.

An important corollary of Theorem 4.1 is that as for finite difference schemes approximation in the half space
we recover the fact that the so-called Godunov-Ryabenkii condition is necessary for the strong stability of
the scheme. More precisely this conditions is the following:

Corollary 4.1 (Godunov-Ryabenkii condition) Assume that the scheme (37) is strongly stable in the
sense of Definition 4.1 then for all z ∈ U the only solution V ∈ `2(R) of the homogeneous scheme:

Vj −
∑s
σ=0 z

−(σ+1)QσVj = 0, for j ∈ I ,

Vj −
∑s
σ=−1 z

−(σ+1)Bσ,j11 Vj = 0, for j ∈ B1,

Vj −
∑s
σ=−1 z

−(σ+1)Bσ,j22 Vj = 0, for j ∈ B2,

Vj −
∑s
σ=−1 z

−(σ+1)Cσ,jVj = 0, for j ∈ C ,

(44)

is zero.

5 The extended time-resolvent scheme

As it as been done in Section 2, once the time variable has been replace by the complex parameter z, the
next step of the analysis is to extend the solution by zero for negative values of one of the space variable and
to consider a scheme set in the half space. In this section we describe this extension and its influence on the
error terms that it induces in the interior and on the boundary.

We have already remarked in Section 2 that the extension by zero for negative x1 induces an error
source term in the interior, namely δ|x1=0u|x1=0. In the discrete setting extending by zero the solution
of the scheme for j1 ≤ 1 − `1 will also induce an error source term in the interior (localized in the strip
J1− `1 − r1,−`1K× J1,+∞J) and it can be show that this error source terms depends on the Vj for j ∈ B1.

However, and it a new fact compared to the continous setting, the extension will also create an error
term on the boundary. To ensure that the boundary error term depends on the Vj for j ∈ B1, a restriction
upon the value of the j1-stencil in the boundary condition on B2, namely b21 will be necessary.

Let (Wj)j1∈Z,j2≥1−`2 be the extension of (Vj)j∈R , the solution of (37), by zero for j1 ≤ 1 − `1. In this
section we are interested in the scheme in the half space solved by the sequence (Wj).

First let us consider the interior of the half space {j1 ∈ Z, j2 ≥ 1− `2}, that is to say that in the following
paragraph we assume that j2 ≥ 1. Secondly we will treat the case of the boundary that is to say j2 ∈ J1−`2, 0K.
The last paragraph of this section is a summary of the error terms in the interior and on the boundary and
contains the study of some particular cases for which the expressions of these errors terms are slightly simpler.
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5.1 The error term in the interior

We separate several cases depending on the value of the parameter j1.

� j1 ≥ 1.
By definition of the operators Qσ, ((QσW )j)j∈I only involves the (Wj)j∈R. But the restriction (Wj)j∈R is
equal to (Vj)j∈R for j1, j2 ≥ 1 it follows that:

Wj −
s∑

σ=0

z−(σ+1)QσWj = Vj −
s∑

σ=0

z−(σ+1)QσVj = fj , for j ∈ I . (45)

� j1 ≤ −(`1 + r1).
Once again by definition of the operators Qσ it follows that for j1 ≤ −(`1 + r1), all the terms in the sum
((QσW )j)j1≤−(`1+r1) are zero because the right stencil r1 is not large enough to catch the Wj for j1 ≥ 1− `1.
Consequently for j1 ≤ −(`1 + r1), (Wj) satisfies the interior discretization:

Wj −
s∑

σ=0

z−(σ+1)QσWj = 0, for (j1, j2) ∈K−∞,−(`1 + r1)K× J1,+∞J. (46)

Finally we consider the last case to study.
� j1 ∈ J1− `1 − r1, 0K.

For such values of j1, the stencil r1 is large enough to catch some non trivial values of the sequence (Wj).
Some tedious, but not difficult, computations show that (Wj) satisfies:

Wj −
s∑

σ=0

z−(σ+1)QσWj = (L1(V ))j , for (j1, j2) ∈ J1− `1 − r1, 0K× J1,+∞J. (47)

where the sequence (L1V )j is defined by:

(L1(V ))j = (L1(z, V ))j := 1j1≥1−`1Vj1,j2 −
s∑

σ=0

z−(σ+1)
r1∑

µ1=1−`1−j1

r2∑
µ2=−`2

Aσ,µVµ1−j1,j2+µ2
, (48)

where 1X denotes the characteristic function of the set X.

An important remark for what follows is that as (L1V )j is defined on the strip J1− `1 − r1, 0K× J1,∞J,
(L1V )j only involves the Vj for j ∈ B1. This observation will lead us to the compatibility condition men-
tioned in the introduction.

We now treat the error term induced by the extension on the boundary, that is to say that in the next
paragraph we will assume that j2 ∈ J1− `2, 0K.

5.2 The error term on the boundary

As it as been done for the error term in the interior, we have to distinguish three cases depending on the
value of j1.

� j1 ≥ 1− `1
From the definition of Bσ,j22 , the term Bσ,j22 Wj1,1 defining the boundary condition only involves the Wj1,j2

for j1 ≥ 1− `1 and j2 ≥ 1. For these terms, by definition of (Wj), we deduce that (Wj) satisfies:

Wj −
s∑

σ=−1

z−(σ+1)Bσ,j22 Wj1,1 = g2,j , for j ∈ B2 ∪ C . (49)
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� j1 ≤ −`1 − b21

In the framework the boundary condition can not capture non trivial values of (Wj)j and, as for the interior
term, we have a homogeneous boundary condition:

Wj −
s∑

σ=−1

z−(σ+1)Bσ,j22 Wj1,1 = g2,j , for j ∈K−∞,−`1 − b21K× J1− `2, 0K, (50)

� j1 ∈ J1− `1 − b21,−`1K
In this framework, some computations show that the extension (Wj) satisfies:

Wj −
s∑

σ=−1

z−(σ+1)Bσ,j22 Wj1,1 = (K1(V ))j , for j ∈ J1− `1 − b21,−`1K× J1− `2, 0K, (51)

where the sequence (K1V )j is defined by

(K1(V ))j = (K1(z, V ))j := −
s∑

σ=0

z−(σ+1)
b21∑

µ1=1−`1−j1

b22∑
µ2=0

Bσ,j2,µ2 Vj1+µ1,j2+µ2
. (52)

5.3 Summary and particular cases

We combine (45)-(46)-(47) and (49)-(50)-(51) to obtain that the extension (Wj)j∈Z×J1−`2,+∞J is solution of
the finite difference scheme approximation in the half space:

Wj −
∑s
σ=0 z

−(σ+1)QσWj = F2(f, V )j , for j1 ∈ Z, j2 ≥ 1,

Wj −
∑s
σ=−1 z

−(σ+1)Bσ,j22 Wj1,1 = G2(g2, V )j , for j1 ∈ Z, j2 ∈ J1− `2, 0K,
, (53)

where the source terms F2(f, V ) and G2(g2, V ) are defined by:

∀j2 ≥ 1, F2(f, V ) = F2(z, f, V ) = :=


fj , if j1 ≥ 1,

(L1(V ))j , if j1 ∈ J1− `1 − r1, 0K,
0, if j1 ≤ −(`1 + r1),

(54)

and ∀j2 ∈ J1− `2, 0K, G2(g2, V ) = G2(z, g2, V ) :=


g2,j , if j1 ≥ 1− `1,
(K1(V ))j , if j1 ∈ J1− `1 − b21,−`1K,
0, if j1 ≤ −(`1 + b21).

(55)

Moreover from the energy estimate (38), the sequence (Wj) ∈ `2(Z× J1− `2,+∞J) and from the uniqueness
of (Vj) it is uniquely determined. We sum up this Section by the following proposition:

Proposition 5.1 The extension by zero for j1 ≤ 1 − `1 of (Vj) the solution of the time-resolvent scheme
(37) defined a unique element of `2(Z × J1 − `2,+∞J). Moreover, the extension (Wj) satisfies the scheme
(53) in the half space Z× J1− `2,+∞J.

Similarly if we define (W̃j)j as the extension of (Vj)j by zero for j2 ≤ 1− `2, then the same computations

show that the sequence is uniquely determined (W̃j)j in `2(J1− `1,+∞J×Z) and satisfies the scheme in the
half space J1− `1,+∞J×Z:

W̃j −
∑s
σ=0 z

−(σ+1)QσW̃j = F1(f, V )j , for j1 ≥ 1, j2 ∈ Z,

W̃j −
∑s
σ=−1 z

−(σ+1)Bσ,j11 W̃1,j2 = G1(g1, V )j , for j1 ∈ J1− `1, 0K, j2 ∈ Z,
, (56)
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where the source terms F1(f, V ) and G1(g1, V ) are defined by:

∀j1 ≥ 1, F1(f, V ) = F1(z, f, V ) = :=


fj , if j2 ≥ 1,

L1(V )j , if j2 ∈ J1− `2 − r2, 0K,
0, if j2 ≤ −(`2 + r2),

(57)

and ∀j1 ∈ J1− `1, 0K, G1(g1, V ) = G1(z, g1, V ) :=


g1,j , if j2 ≥ 1− `2,
K1(V )j , if j2 ∈ J1− `2 − b12,−`2K,
0, if j2 ≤ −(`2 + b12).

(58)

and where the sequences (L1(V ))j and (K1(V ))j are given by:

(L1(V ))j = (L1(z, V ))j := 1j2≥1−`2Vj1,j2 −
s∑

σ=0

z−(σ+1)
r2∑

µ2=1−`2−j2

r1∑
µ1=−`1

Aσ,µVµ1+j1,µ2−j2 , (59)

and

(K1(V ))j = (K1(z, V ))j := −
s∑

σ=0

z−(σ+1)
b12∑

µ2=1−`2−j2

b11∑
µ1=0

Bσ,j1,µ1 Vj1+µ1,j2+µ2
. (60)

Remark • We remark that in the particular case b21 = 0 (resp. b12 = 0) then the error term on the
boundary (G1(V ))j (resp. (G2(V ))j) reduces to:{

g2,j , if j1 ≥ 1− `1,
0, if j1 ≤ −`1,

,

(
resp.

{
g1,j , if j2 ≥ 1− `2,
0, if j2 ≤ −`2,

)

which is just the extension of (g2,j)j (resp. (g1,j)j) by zero for j1 ≤ −`1 (resp. j2 ≤ −`2). In that
particular case we do not have any error on the boundary B2 (resp. B1).

• If b21 ≤ 1 + `1 + r1 (resp. b12 ≤ 1 + `2 + r2) then the error term on the boundary (G1(V ))j (resp.
(G2(V ))j) only involves terms the Vj for j ∈ B1 (resp. j ∈ B2).

6 The necessary condition for strong stability

In this section we restrict our attention to a time resolvent finite difference scheme of the form (37) with only
a non trivial source term on the boundary B1, that is to say that we assume fj ≡ 0, g2,j ≡ 0 and hj ≡ 0.
The associated extended scheme by zero for j1 < 1− `1 reads:

W̃j −
∑s
σ=0 z

−(σ+1)QσW̃j = F2(V )j , for j1 ≥ 1, j2 ∈ Z,

W̃j −
∑s
σ=−1 z

−(σ+1)Bσ,j11 W̃1,j2 = G2(V )j , for j1 ∈ J1− `1, 0K, j2 ∈ Z,
, (61)

where according to (54) and (55) the source terms in (61) are given by:

F2(V )j = L2(V )j1J1−`1−r1,0K(j1), and G2(V )j = K2(V )j1J1−`1−b21,−`1K(j1).

As it has been done in Paragraph 2 in the PDE framework, the last step to obtain the necessary condition
for strong stability is to use Fourier transform to study a scheme set in the half space Z× J1− `2,∞J where
after the Fourier transform the variable j1 acts like a parameter. To perform Fourier transform we define
the step function associated to the sequence (Wj) defined by:

Wj2(x1) := Wj for x1 ∈ [j1, j1 + 1[ . (62)

We also define the steps functions associated to the source terms (F2(V )j)j and (G2(V )j)j by:

(F2,j2(V ))(x1) := F2(V )j for x1 ∈ [j1, j1 + 1[ and (G2,j2(V ))(x1) := G2(V )j for x1 ∈ [j1, j1 + 1[ . (63)
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In terms of the variable x1 the scheme (53) equivalently reads: ∀x1 ∈ R,{
Wj2(x1)−

∑s
σ=0 z

−(σ+1)
∑r1
µ1=−`1

∑r2
µ2=−`2 A

σ,µWj2+µ2
(x1 − µ1) = (F2,j2(V ))(x1), for j2 ≥ 1,

Wj2(x1)−
∑s
σ=−1 z

−(σ+1)
∑b21
µ1=0

∑b22
µ2=0B

σ,µ,j2
2 W1+µ2

(x1 − µ1) = (G2,j2(V ))(x1), for j2 ∈ J1− `2, 0K.
(64)

As (Wj) ∈ `2(Z × J1 − `2,∞J), the function Wj2 ∈ L2(R) for all j2 ∈ J1 − `2,∞J so we can perform a
Fourier transform in the x1 variable. Let ξ1 be the associated dual variable. So the scheme (64) becomes:{∑r2

µ2=−`2 A
µ2

2 (z, ξ1)Ŵj2+µ2
(ξ1) = ̂(F2,j2(V ))(ξ1), for j2 ≥ 1,

Ŵj2(ξ1)−
∑b22
µ2=0 B

µ2,j2
2 (z, ξ1)Ŵ1+µ2(ξ1) = ̂(G2,j2(V ))(ξ1), for j2 ∈ J1− `2, 0K,

(65)

where we recall that the matrices Aµ2

2 are defined in (29) and where we set

∀µ2 ∈ J0, b22K,∀j2 ∈ J1− `2, 0K, Bµ2,j2
2 (z, ξ1) :=

s∑
σ=−1

b21∑
µ1=0

z−(σ+1)eij1ξ1Bσ,µ,j22 . (66)

The next paragraph is devoted to a classical reformulation of the scheme (65) in terms of an augmented
vector. This reformulation is much more convenient to study because it permits, on the one hand, to give
a simple formulation of the uniform Kreiss-Lopatinskii condition and on the other hand to give a simple
expression of the solution of (65) given by a discrete Duhamel’s formula.

6.1 Reformulation of the j2-totally resolvent scheme

Let Xj2 = Xj2(ξ1) := Ŵj2(ξ1) it will be convenient to express the scheme (65) in terms of an augmented
vector Xj2 := (Xj2+r2−1, ...Xj2−`2) ∈ CN(`2+r2). To do this we have to separate two cases depending on the
respective values of b22 and r2.

� The case b22 ≤ r2. Under a such restriction upon the values of the parameters b22 and r2, the terms
appearing in the boundary condition on B2 are include in the augmented vector Xj2 .

Let M2(z) ∈ MN(`2+r2)(C) and B2(z) ∈ MN(`2+r2)(C) be defined on some neighborhood of U × R by
the equations:

M2(ζ) = M2(z, ξ1) :=


−(Ar22 (z, ξ1))−1Ar2−1

2 (z, ξ1) . . . . . . −(Ar22 (z, ξ1))−1A−`22 (z, ξ1)
I 0 · · · 0

0
. . .

. . .
...

0 0 I 0

 , (67)

B2(ζ) = B2(z, ξ1) :=

0 · · · 0 −Bb22,02 −B0,0
2 I 0

...
...

...
...

. . .

0 · · · 0 −Bb22,1−`22 −B0,1−`2
2 0 I

 . (68)

Then it is rather easy to see that in terms of the matrices M2(z, ξ1), B2(z, ξ1) and the extended vector Xj2

the scheme (65) becomes: {
Xj2+1 = M2(ζ)Xj2 + F2,j2(V ), for j2 ≥ 1,

B2(ζ)X1 = G2(V ),
(69)

where the source terms are given by:

F2,j2(V ) = F2,j2(ζ, V ) := (F2,j2(V ))(z, ξ1) := (−(Ar22 (z, ξ1))−1 ̂(F2,j2(V ))(ξ1), 0, . . . , 0) (70)

G2(V ) = G2(ζ, V ) := (G2(V ))(z, ξ1) := ( ̂(G2,0(V ))(ξ1), . . . , ̂(G2,1−`2(V ))(ξ1)).
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6.2 The trace operators

In order to solve (69) it is necessary to study the eigenvalues of M2(ζ). The following result is due to () and
states that the matrix M(ζ) does not have any eigenvalues on the unit circle S2. In particular, we have a direct
decomposition of the space CN(`2+r2) in terms of a stable subspace (the generalized eigenspace associated
to eigenvalues in D) and an unstable subspace (the generalized eigenspace associated to eigenvalues in U ).
This result is analogous to Hersh’s lemma [Her63] in the continous setting.

Lemma 6.1 [Eigenvalues of M2(ζ)]Under Assumption 3.1, we assume that the discretization for the Cauchy
problem is strongly stable in the sense of Definition 3.1. Then for all z ∈ U , the eigenvalues κ of the matrix
M2(ζ) are away from S1. They are non-zero and are characterized by the relation:

det(A (eiξ1 , κ)− zI) = 0,

where A (κ1, κ2) is the amplification matrix defined in (27).
Moreover, there are N`2 (counted with multiplicity) stable eigenvalues in D.

The generalized eigenspace associated to the eigenvalues of M2(ζ) in D is denoted by Es2(ζ), the one
associated to the eigenvalues in U is denoted by Eu2 (ζ). Thus we have:

∀z ∈ U ,∀ξ1 ∈ R, CN(`2+r2) = Es2(ζ)⊕ Eu2 (ζ). (71)

Proof : This proof is a slight modification of the one given in [Cou13] for the geometry of the half line.
However we recall it briefly for a sake of completness.

Firstly let us show that the eigenvalues of M2(ζ) are non-zero. Let Y = (Y1, . . . , Y`2+r2) ∈ kerM2(ζ).
Then from the expression of M2(ζ) (see (67)) we immediately deduce that Yk = 0 for all k ∈ J1, `2 + r2− 1K.
Then the first line of M2(ζ) reduces to (Ar22 (ζ))−1A−`22 (ζ)X`2+r2 = 0 which implies that X`2+r2 = 0 thanks
to Assumption 3.1.

Now let κ be an eigenvalue of M2(ζ) we have on one hand, because M2(ζ) and A (κ1, κ2) is a companion
matrices:

det(M2(ζ)− κI) = (−1)N(`2+r2) det

 r2−1∑
µ2=−`2

κµ2+`2(Ar22 (ζ))−1Aµ2

2 (ζ) + κ`2+r2I

 ,

= (−1)N(`2+r2)κ`2N det(Ar22 (ζ)−1) det

 r2∑
µ2=−`2

κµ2Aµ2

2 (ζ)


and on the other hand:

det(A (eiξ1 , κ)− zI) = (−1)Ns det

(
s∑

σ=0

zs−σQ̂σ(eiξ1 , κ)− zs+1I

)

= (−1)N(s+1)zN(s+1) det

 r2∑
µ2=−`2

κµ2Aµ2

2 (ζ)

 .

by definition of the matrices Aµ2

2 (ζ). So as we have already shown that κ 6= 0, det(M2(ζ) − κI) and
det(A (eiξ1 , κ)− zI) vanish for the same values of κ, z ∈ U .

Then we justify that |κ| 6= 1. By contradiction let κ ∈ S1 be an eigenvalue of M2(ζ) for z ∈ U . It
implies that z is an eigenvalue of A (eiξ1 , κ). But from the stability assumption of the scheme we have the
von Neumann condition so that |z| ≤ 1 is incompatible with the fact that z lies in U .

The fact that there are exactly N`2 eigenvalues in D comes from a connectedness argument and the
application of Rouché’s theorem. It follows exactly the arguments given in [Cou13]. So it will not be
reproduced here.
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�

We are now able to reformulate the uniform Kreiss-Lopatinskii condition under the following form:

Corollary 6.1 (Reformulation of the uniform Kreiss-Lopatinskii condition) Under Assumption 3.1,
also assume that the discretization for the Cauchy problem is strongly stable in the sense of Definition 3.1. If
the scheme (32) is strongly stable in the sense of Definition 3.2 then for all R ≥ 2 there exists CR such that
for all ζ ∈ U ×R satisfying |z| ≥ R the restriction of B2(ζ) to the stable subspace Es2(ζ) is an isomorphism.
We denote its inverse by φ2(ζ).

So far we have show the fact that the uniform Kreiss-Lopatinskii condition on the side ∂Ω2 is a necessary
condition for (32) to be well-posed. We now turn to the description of the new necessary condition for strong
stability. This condition involves two trace operators that to the value of the trace of the scheme on a side
of the boundary makes correspond the value of the trace on the other boundary and have to be seen as
discretized versions of the operators T1 and T2 in the corner condition described in Section 2.

Following the proof given in the continous setting (see Section 2) we use the decomposition:

CN(`2+r2) = Es2(ζ)⊕ Eu2 (ζ), (72)

to decompose Xj2 the solution (69) in a stable and an unstable components:

Xj2 := Πs
2(ζ)Xj2 + Πu

2 (ζ)Xj2 ,

where Πs
2(ζ) (resp.Πu

2 (ζ)) denotes the projection upon Es2(ζ) (resp. Eu2 (ζ)) with respect to the decomposition
(72). We then use discrete Duhamel’s formula1 to obtain that each of these components is given by:

Πs
2(ζ)Xj2 := M2(ζ)j2−1Πs

2(ζ)X1 +

j2−1∑
k=1

M2(ζ)j2−1−kΠs
2(ζ)F2,k(V ), (73)

Πu
2 (ζ)Xj2 := −

+∞∑
k=j2

M2(ζ)j2−1−kΠu
2 (ζ)F2,k(V ). (74)

we used the fact that M2(ζ) is invertible. Then from the uniform Kreiss-Lopatinskii condition we know that
at the level of the boundary ∂Ω2 the stable component of the trace is a function of the unstable component.
More precisely we have:

Πs
2(ζ)X1 := φ2(ζ) (G2(V )− B2(ζ)Πu

2 (ζ)X1) ,

from which we deduce that the trace of Xj2 is given by:

X1 = Πs
2(ζ)X1 + Πu

2 (ζ)X1,

= φ2(ζ)G2(V ) + [φ2(ζ)B2(ζ)− I]

+∞∑
k=1

M2(ζ)j2−1−kΠu
2 (ζ)F2,k(V ). (75)

Taking the reverse Fourier transform of X1 in terms of ξ1 such gives the relation:

(F−1X1)(x1) = (P dis2 G2(V ))(x1) + (Tdis1→2F2,j2(V ))(x1), (76)

where the operators P dis2 and Tdis1→2 are defined by: ∀U ∈ `2(J1− `2,+∞J

(Tdis1→2Uj)(x1) = (Tdis1→2Uj)(z, x1) :=
1

2π

∫
R
eix1ξ1 [φ2(ζ)B2(ζ)− I]

+∞∑
k=1

M2(ζ)j−1−kΠu
2 (ζ)U dξ1, (77)

(P dis2 U)(x1) = (P dis2 U)(z, x1) :=
1

2π

∫
R
eix1ξ1φ2(ζ)U dξ1. (78)

1Note that to use Duhamel’s formula we used the fact that M2(ζ) is invertible which is suitable from Lemma 6.1.
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From the definition of X1 we have,

(F−1X1)(x1) = (F−1Xr2 , · · · ,F−1X1−`2)(x1) = (Wr2 , · · · ,W1−`2)(x1).

Consequently, by definition of the step function Wj2 , evaluate (76) for x1 = j1, j1 ≥ 1− `1 gives the values
of Wj for j ∈ B2. By construction, these values coincide with (Vj)j∈B2

. We recall that under the restriction

b21 ≤ `1 + r1 the error term on the boundary G2(V ) only involves the values of (Vj) for j ∈ B1. The error
term in the interior F2,j2(V ) involves the values of the (Vj) for j ∈ B1, independently of the choice of the
parameters.

Consequently, (76) evaluated for x1 = j1, j1 ≥ 1−`1 gives the value of (Vj)j∈B2
in terms of (Vj)j∈B1

and

this equation of compatibility as to be seen as the ”discretized” version of (19) which is the compatibility
condition in PDE framework. The only difference about these two compatibility conditions is that due to
the discret nature of finite difference schemes, there is an extra error term on the boundary in (76) compared
to (19). However, in the particular setting b21 = 0, it has been see that this term vanish and in that case
(76) becomes:

(F−1X1)(x1) = (Tdis1→2Fj2(V ))(x1),

which is totally analogous to (19).

Note that Fj2(V ) contains the matrix (Ar22 (z, ξ1))−1 and that F2,j2 The operator Tdis1→2 seems to be a
”discretized” version of the operator T1→2 given in equation (20) in the PDE framework.

We thus have shown that: ∀j1 ∈ J1,+∞J,

V|B2
:= (Vj1,r2 , . . . , Vj1,1−`2) = (P dis2 G2(V|B1

))(j1) + (Tdis1→2F2,j2(V|B1
))(j1). (79)

Finally we reiterate the analysis made in Sections 5-6 but with an extension by zero for j2 ≤ 1− `2 this
time. For such an extension, because the source term (g1,j)j is not zero, the error terms in the interior and on
the boundary are respectively given by F1,j2(V ) and G1(g1, V ) (see (57) and (58)). We use the formulation:

(80)

G1(g1, V ) = L2(V )j1J1−`2−b12,−`2K(j2) + g1,j1J1−`2,+∞J(j2) := G1(V )j + G1(g1)j . (81)

This new extension leads us to a compatibility condition, analogous to (76), between the value of the
trace on ∂Ω1 in terms of the trace on ∂Ω2. More precisely we obtain:

(F−1X2)(x2) = (P dis1 G1(g1, V ))(x2) + (Tdis2→1F1,j2(V ))(x2), (82)

where the operators P dis1 and Tdis2→1 have an analogous expression than the operators P dis2 and Tdis1→2. More
precisely, they are defined by: ∀U ∈ `2(J1− `1,+∞J),

(Tdis2→1Uj)(x2) = (Tdis2→1Uj)(z, x2) :=
1

2π

∫
R
eix2ξ2 [φ1(ζ)B1(ζ)− I]

+∞∑
k=1

M1(ζ)j−1−kΠu
1 (ζ)U dξ2, (83)

(P dis1 U)(x2) = (P dis1 U)(z, x2) :=
1

2π

∫
R
eix2ξ2φ1(ζ)U dξ2, (84)

where the matrices are defined by:

M1(z, ξ2) :=


−(Ar11 (z, ξ2))−1Ar1−1

1 (z, ξ1) . . . . . . −(Ar11 (z, ξ2))−1A−`11 (z, ξ2)
I 0 · · · 0

0
. . .

. . .
...

0 0 I 0

 ,

B1(z, ξ2) :=

0 · · · 0 −Bb11,01 −B0,0
1 I 0

...
...

...
...

. . .

0 · · · 0 −Bb11,1−`11 −B0,1−`1
1 0 I

 ,
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with,

∀µ1 ∈ J0, b11K,∀j1 ∈ J1− `1, 0K, Bµ1,j1
1 (z, ξ2) :=

s∑
σ=−1

b12∑
µ2=0

z−(σ+1)eij2ξ2Bσ,µ,j11 .

Finally, the terms G1(V ) and F1,j2(V ) appearing in 82 are given by:

F1,j1(V ) = F1,j1(ζ, V ) := (−(Ar11 (z, ξ2))−1F̂j1(V ), 0, . . . , 0)

G1(g1, V ) = G1(z, g1, V ) := ( ̂G1(g1, V )0, . . . , ̂G1(g1, V )1−`1)

= (Ĝ1(g1)0, . . . , Ĝ1(g1)1−`1) + (Ĝ1(V )0, . . . , Ĝ1(V )1−`1),

:= G1(g1) + G1(V )

where we used the decomposition (81).
By linearity of P dis1 , the compatibility condition (82) equivalently reads:

(F−1X2)(x2) = (P dis1 G1(V ))(x2) + (Tdis2→1F1,j2(V ))(x2) + (P dis1 G1(g1))(x2). (85)

Under the restriction b12 ≤ `2 +r2, the right hand side of (85) only involves values of Vj for j ∈ B2. Reitering
the same arguments as those described in the beginning of this paragraph we thus obtain, by definition of
(Wj)j , the compatibility condition: ∀j2 ≥ 1,

V|B1
:= (Vr1,j2 , . . . , V1−`1,j2) = (P dis1 G1(V|B2

))(j2) + (Tdis2→1F1,j2(V|B2
))(j2) + (P dis1 G1(g1))(j2). (86)

Combining (79) and (86) thus gives:

V|B1
=

(
P dis1 G1((P dis2 G2(V|B1

) + Tdis1→2F2,j2(V|B1
))(j1))

)
(j2) (87)

+
(
Tdis2→1F1,j1((P dis2 G2(V|B1

) + Tdis1→2F2,j2(V|B1
))(j1))

)
(j2) + (P dis1 G1(g1))(j2),

That we rewrite under the form:

(I − Tdis(z))V|B1
= (P dis1 G1(g1)), (88)

where, from linearity, for z ∈ U , the operator Tdis(z) : `2(B1) 7→ `2(B1) is defined by: ∀V ∈ `2(B1)

Tdis(z)V := P dis1 G1(P dis2 G2(V )) + P dis1 G1(Tdis1→2F2,j2(V )) + Tdis2→1F1,j1(P dis2 G2(V ))

+ Tdis2→1F1,j1(Tdis1→2F2,j2(V )), (89)

recall that all the terms in the right hand side of (89) depend on z ∈ U .

Remark Let us stress that in the particular framework, b12 = 0 (resp. b21 = 0) we have G2(V ) = 0 (resp.
G1(V ) = 0) for all V . Consequently for b12 = b21 the operator Tdis becomes:

Tdis(z)V = Tdis2→1F1,j1(Tdis1→2F2,j2(V )),

and consequently for such parameters there is no error on the boundaries and (88) as a form which is really
close of the form of Osher’s corner condition (23).

Thus we have shown the following result, which is the main result of this paper:

Theorem 6.1 Under Assumption 3.1, also assume that the discretization for the Cauchy problem is strongly
stable in the sense of Definition 3.1. Assume that the parameters b12 and b21 appearing in (33) satisfy the
restrictions:

b12 ≤ `2 + r2 and b21 ≤ `1 + r1.

If the scheme (32) is strongly stable in the sense of Definition 3.2 then for all z ∈ U the restriction of
V the solution of (37) to B1 satisfies the compatibility condition (88).
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Formally, if we believe that the source term on the side on the boundary B1 determines the value of the
trace of the solution of the scheme then it seems natural to impose, as in the continous setting, that the
operator (I − Tdis(z)) is invertible on `2(B1). Moreover, as we are looking for energy estimates (38), where
the constant C does not depend on z ∈ U , we also ask that this inversibility property is uniform in terms
of z ∈ U . Thus we introduce the following definition:

Definition 6.1 (Discrete Osher’s condition) Under Assumption 3.1, also assume that the discretization
for the Cauchy problem is strongly stable in the sense of Definition 3.1. We say that the finite difference
scheme approximation (32) satisfies the discrete Osher’s corner condition if the operator (I − Tdis(z)) is
uniformly invertible on `2(B1), this means that there exists C > 0 such that:

∀z ∈ U , ∀V ∈ `2(B1),
∑
j∈B1

|Vj |2 ≤
∑
j∈B1

|((I − Tdis(z))V )j |2.

7 Examples and numerical results.

7.1 Examples of explicit computations for the traces operators Tdis1→2 and Tdis2→1

7.2 Numerical results
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