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HEAVY TAILS FOR AN ALTERNATIVE STOCHASTIC

PERPETUITY MODEL

THOMAS MIKOSCH, MOHSEN REZAPOUR, AND OLIVIER WINTENBERGER

Abstract. In this paper we consider a stochastic model of perpetuity-
type. In contrast to the classical affine perpetuity model of Kesten
[12] and Goldie [8] all discount factors in the model are mutually inde-
pendent. We prove that the tails of the distribution of this model are
regularly varying both in the univariate and multivariate cases. Due to
the additional randomness in the model the tails are not pure power
laws as in the Kesten-Goldie setting but involve a logarithmic term.

1. Problem description

Consider an array (Xni) of iid random variables with generic sequence
(Xi) = (X1i) and X = X1. We define a stochastic perpetuity in the following
way:

Ỹ1 = X11 ,

Ỹ2 = X11X12 +X21 ,

Ỹ3 = X11X12X13 +X21X22 +X31 , . . . .

At any time i, each of the investments in the previous and current periods

j = 1, . . . , i gets discounted by an independent factor Xij . Therefore (Ỹn)

can be interpreted as the dynamics of a perpetuity stream. Obviously, Ỹn

has the same distribution as

Yn = X11 +X21X22 +X31X32X33 + · · ·+Xn1 · · ·Xnn , n > 1 ,

and, under mild conditions, the sequence (Yn) has the a.s. limit

Y =
∞∑

n=1

Πn where Πn =
∏n

i=1 Xni for n > 1.(1.1)
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We assume that the infinite series in (1.1) converges a.s. Since Πn
a.s.→ 0 is a

necessary condition for this convergence to hold we need that

log |Πn| =
n∑

i=1

log |Xni| a.s.→ −∞ , n → ∞ .

Hence the random walk (log |Πn|) has a negative drift, i.e., E[log |X|] < 0,
possibly infinite.

Throughout this paper we assume that there exists a positive number α
such that

h(α) = E[|X|α] = 1 .(1.2)

Assume for the moment, that X > 0 a.s. By convexity of the function h(s),
h(α + ε) > 1 and h(α − ε) < 1 for small ε ∈ (0, α) where we assume that
h(s) is finite in some neighborhood of α. Then for positive ε,

E[|Y |α+ε] > E[|Πn|α+ε] = (h(α + ε))n .

The right-hand side diverges to infinity as n → ∞, hence E[|Y |α+ε] = ∞.
We also have for α 6 1 and ε ∈ (0, α),

E[|Y |α−ε] 6

n∑

i=1

E[|Πn|α−ε] =

n∑

i=1

(h(α − ε))n < ∞ .

For α > 1 a similar argument with the Minkowski inequality shows that
E[|Y |α−ε] < ∞.

These observations on the moments indicate that |Y | has some heavy
tail in the sense that certain moments are infinite. In this paper we will
investigate the precise asymptotic behavior of P(±Y > x) as x → ∞. It will
turn out that, under (1.2) and some additional mild assumptions,

P(Y > x) ∼





2

m(α)

log x

xα
, if X > 0 a.s.,

1

m(α)

log x

xα
, if P(X < 0) > 0,

x → ∞ ,

(1.3)

where m(α) = E[|X|α log |X|] is a positive constant. In the case P(X < 0) >
0 we also have P(Y > x) ∼ P(Y < −x) as x → ∞.

An inspection of (1.1) shows that the structure of Y is in a sense close to

Y ′ = 1 +

∞∑

n=1

Π′
n where Π′

n =
∏n

i=1 Xi for n > 1.

This structure has attracted a lot of attention; see the recent monograph
Buraczewski et al. [4] and the references therein. Indeed, assuming X and
Y ′ independent, it is easy to see that the following fixed point equation
holds:

Y ′ d
= X Y ′ + 1 .(1.4)
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If this equation has a solution Y ′ for given X it is not difficult to see that
the stationary solution (Y ′

t ) to the stochastic recurrence equation

Y ′
t = Xt Y

′
t−1 + 1 , t ∈ Z ,(1.5)

satisfies (1.4) for Y ′ = Y ′
t , and if Y ′ solves (1.4) it has the stationary distri-

bution of the Markov chain decribed in (1.5).
One of the fascinating properties of (1.4) and (1.5) is that, under condition

(1.2), these equations generate power-law tail behavior. Indeed, if X > 0
a.s.

P(Y ′ > x) ∼ E[(X Y ′ + 1)α − (X Y ′)α]

αm(α)

1

xα
, x → ∞ ,(1.6)

and if P(X < 0) > 0 then

P(±Y ′ > x) ∼ E[|X Y ′ + 1|α − |X Y ′|α]
2αm(α)

1

xα
, x → ∞ ,(1.7)

This follows from Kesten [12] who also proved (1.6) and (1.7) for the linear
combinations of solutions to multivariate analogs of (1.5). Goldie [8] gave
an alternative proof of (1.6) and (1.7) and also derived the scaling constants
for the tails.

We will often make use of Kesten’s [12] Theorems A and B, and Theorem
4.1 in Goldie [8]; cf. Theorem 2.4.4 and 2.4.7 in Buraczewski et al. [4].
For the reader’s convenience, we formulate these results here, tailored for
our particular setting. In the case P(X < 0) > 0 we did not find a result
of type (1.8) in the literature. Therefore we give an independent proof in
Appendix A.

Theorem 1.1. Assume the following conditions:

(1) The conditional law of log |X| given {X 6= 0} is non-arithmetic.

(2) There exists α > 0 such that E|[X|α] = 1 and E|[X|α log |X|] < ∞.

(3) P(X x+ 1 = x) < 1 for every x ∈ R.

If either X > 0 a.s. or P(X < 0) > 0 hold then (1.6) or (1.7) hold,

respectively. In both cases, there is a constant c > 0 such that

P
(
max
n>1

Π′
n > x

)
∼ c x−α , x → ∞ .(1.8)

Here and in what follows, c, c′, . . . stand for any positive constants whose
values are not of interest.

We have a corresponding result for the arithmetic case, i.e., when the
law of log |X| conditioned on {X 6= 0} is arithmetic. This means that the
support of logX (excluding zero if P(X = 0) > 0) is a subset of aZ for some
non-zero a.

Theorem 1.2. Assume conditions (2), (3) of Theorem 1.1 and

(1’) the law of log |X| conditioned on {X 6= 0} is arithmetic.
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Then there exist constants 0 < c < c′ < ∞ such that for large x,

xα P
(
max
n>1

Π′
n > x

)
∈ [c, c′] ,(1.9)

xα P
(
Y ′′ > x

)
∈ [c, c′] ,(1.10)

where Y ” =
∑∞

n=1 |Π′
n|

ForX > 0, (1.9) is part of the folklore on ruin probability in the arithmetic
case; see Asmussen [1], Remark 5.4, Section XIII. For the general case P(X <
0) > 0 we refer to the proof in Appendix A. Relation (1.10) can be found
in Grincevičius [9], Theorem 2b.

This paper has two main goals:

(1) We want to show that the function P(Y > x) is regularly varying
with index −α under the condition E[|X|α] = 1. More precisely, we
will show (1.3).

(2) We want to show that

P(Y > x) ∼
∞∑

n=1

P(Πn > x) =: p(x) , x → ∞ .(1.11)

Relation (1.11) reminds one of similar results for sums of independent regu-
larly varying or subexponential random variables; see for example Chapter
2 in Embrechts et al. [6]. The crucial difference between (1.11) and these re-
sults is that the summands Πn of Y can be light-tailed for every fixed n; the
heavy tail of Y builds up only for Πn with an index n close to log x/m(α).

Positive solutions to these two problems are provided in Theorem 2.1 and
Corollary 2.3. They also show that P(Y > x)/P(Y ′ > x) ∼ c log x for some
positive constant. The proof in Section 3 makes use of Theorems 1.1 and
1.2 as auxilary results. We use classical exponential bounds for sums of in-
dependent random variables and change-of-measure techniques; see Petrov’s
classic [15] for an exposition of these results and techniques.

We also make an attempt to understand the tails of a vector-valued version
of Y when Πn = Xn1 · · ·Xnn is the product of iid d × d matrices (Xni)
with non-negative entries and a generic element X satisfies an analog of
(1.2) defining the value α > 0; see Section 4.1 for details. We define Y =
Y(u) =

∑∞
n=1Π

⊤
nu for some unit vector u with non-negative components

and show that P(|Y| > x) is of the order log x/xα. This approximation
does not depend on the choice of u when |u| = 1. We prove this result
by showing the asymptotic equivalence between P(|Y| > x) and pu(x) =∑∞

n=1 P(|Π⊤
nu| > x). Of course, the tail of Y is not characterized by the tail

of the norm. Therefore we also consider linear combinations v⊤Y for any
unit vector v with positve components and show that P(v⊤Y > x) is also
of the asymptotic order log x/xα.

This paper is structured as follows. In Section 2 we present the main
results in the univariate case (Theorem 2.1 and Corollary 2.3) followed by a
discussion of the results. Proofs are given in Section 3. In Appendix A we
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provide proofs of relations (1.8) and (1.9) in the case when P(X < 0) > 0; we
did not find a corresponding result in the literature. The multivariate case
is treated in Section 4; Theorem 4.3 is a multivariate analog of Theorem 2.1
and Corollary 2.3.

2. Main results

We formulate one of the main results of this paper.

Theorem 2.1. Assume the conditions of Theorems 1.1 or 1.2, in particular

there exists α > 0 such that h(α) = E[|X|α] = 1. In addition, we assume that

E[|X|α(log |X|)2] < ∞, or E[|X|α(log |X|)2] = ∞ and E[|X|α11(log |X| > x)]
is regularly varying with index κ ∈ (1, 2],

(1) If X > 0 a.s. then

p(x) ∼ 2

m(α)

log x

xα
, x → ∞ .

(2) If P(X < 0) > 0 then

p(x) ∼ 1

m(α)

log x

xα
, x → ∞ .

Remark 2.2. In the course of the proof of Theorem 2.1 we show that for
X > 0 a.s.

p(x) ∼
[log x/m(α)]∑

n=1

P(Πn > x)

∼ 2x−α

[log x/m(α)]∑

n=1

Φ
(
(log x− nm(α))/

√
σ2(α)n

)
, x → ∞ ,(2.1)

where Φ is the standard normal distribution function and σ2(α) = E[Xα(logX)2]−
(m(α))2 is assumed finite.

The following result is an immediate consequence of Theorem 2.1 and
Proposition 3.1.

Corollary 2.3. Assume the conditions of Theorem 2.1. If X > 0 a.s. then

P(Y > x) ∼
∞∑

n=1

P(Πn > x) ∼ 2

m(α)

log x

xα
, x → ∞ .(2.2)

If P(X < 0) > 0 then

P(±Y > x) ∼
∞∑

n=1

P(Πn > x) ∼ 1

m(α)

log x

xα
, x → ∞ .(2.3)

In contrast to the distinct results for P(Y ′ > x) in Theorems 1.1 and
1.2 for the non-arithmetic and arithmetic cases, respectively, relations (2.2)
and (2.3) hold in both cases. In particular, in contrast to Theorem 1.2
for P(Y ′ > x), we get precise asymptotics for P(Y > x) in the arithmetic
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case. Corollary 2.3 and Kesten’s Theorem 1.1 in the general and in the
non-arithmetic cases, respectively, show that P(Y > x) and P(Y ′ > x)
are regularly varying functions with index −α. However, we have P(Y >
x)/P(Y ′ > x) → ∞ as x → ∞, accounting for the additional independence of
(Πn) in the structure of Y . In the non-arithmetic case we can even compare
the scaling constants in the tails. For example, for X > 0 a.s. we have (see
(1.6))

P(Y > x)

P(Y ′ > x)
∼ 2α

E[(X Y ′ + 1)α − (X Y ′)α]
log x .

We proved (2.2) under conditions implying that E[Xα(logX)1+δ ] < ∞
for some δ > 0 which is slightly stronger than the condition m(α) < ∞ in
Kesten’s theorem.

We observe the similarity of the results in Theorem 1.1 and Corollary 2.3
as regards the asymptotic symmetry of the tails in the case when P(X <
0) > 0. In both cases, we have P(Y ′ > x) ∼ P(Y ′ < −x) and P(Y > x) ∼
P(Y < −x) as x → ∞. Moreover, in this case we also have

P(|Y | > x) ∼ P

( ∞∑

n=1

|Πn| > x
)
, x → ∞ .

2.1. Implications and discussion of the results. The tail behavior of
P(Y > x) described by Corollary 2.3 immediately ensures limit theory for
the extremes and partial sums of an iid sequence (Yi) with generic element
Y . Assuming the conditions of Theorem 2.1 and X > 0 a.s., choose an =
(2n log n/(αm(α)))1/α. Then we know from classical theory that

a−1
n max

i=1,...,n
Yi

d→ ξα ,(2.4)

a−1
n

( n∑

i=1

Yi − cn

)
d→ Sα ;(2.5)

see for example Chapters 2 and 3 in Embrechts et al. [6]. Relation (2.4)
holds for any α > 0 and the distribution of ξα is Fréchet with parameter
α. Relation (2.5) holds only for α ∈ (0, 2) and the distribution of Sα is
α-stable. The centering constants cn can be chosen as nE[Y ] for α > 1,
nE[|Y |11(Y 6 an)] for α = 1 and cn = 0 for α ∈ (0, 1).

One can introduce the stationary time series

Yn =

n∑

i=−∞

n∏

j=n−i+1

Xij , n ∈ Z .

We observe that Yn
d
= Y . Unfortunately, Yn cannot be derived via an affine

stochastic recurrence equation as in the Kesten case; see (1.5). Therefore its
dependence structure is less straightforward. However, it is another example
of a time series whose power-law tails do not result from heavy-tailed input
variables Xni.



HEAVY TAILS FOR AN ALTERNATIVE STOCHASTIC PERPETUITY MODEL 7

Now assume for the sake of argument that X > 0 and logX has a non-
arithmetic distribution. Write S′

n = log Π′
n =

∑n
i=1 logXi. As a byproduct

from Theorem 2.1 and (1.8) we conclude that
∞∑

n=1

P
(
S′
n > x | max

j>1
S′
j > x

)
=

∑∞
n=1 P(S

′
n > x)

P
(
maxj>1 S

′
j > x

) ∼ c x .

From (2.1) and the latter relation we also obtain

1

x

[x/m(α)]∑

n=1

P
(
S′
n > x | max

j>1
S′
j > x

)

=
1

x
E

[
#{n 6 [x/m(α)] : S′

n > x} | max
j>1

S′
j > x

]
→ c , x → ∞ .

The constant c can be calculated explicitly. Indeed, it has a nice interpre-
tation in terms of a so-called extremal index; see Section 8.1 in Embrechts
et al. [6] and Leadbetter et al. [14] for its definition and properties.

Notice that the maxima of (S′
t) have the same distribution as those of the

Lindley process given by

S+
t = max(S+

t−1 + logXt, 0), t > 1, S+
0 = 0 ;(2.6)

see Asmussen [1], Section III.6. As E[logX0] < 0 the existence of the sta-

tionary solution S̃+
0 to (2.6) is ensured since {0} is an atom. The extremal

behavior of the Lindley process is well studied: its extremal index θ exists,
is positive and satisfies

E

[
#{n 6 [c′ log(x)] : S̃+

n > x} | max
16j6[c′ log x]

S̃+
j > x

]
→ 1

θ
, x → ∞ ,

for some c′ > 0 depending on the exponential moments of the return time to
the atom; see Rootzén [18]. The extremal index can be expressed by using
the Cramér constant for the associated ruin problem, i.e., the constant in
(1.8); see Collamore and Vidyashankar [5]. From the previous discussion,
we obtain
1

x
E

[
#{n 6 [x/m(α)] : S+

n > x} | max
16j6[x/m(α)]

S+
j > x

]
→ 2α

θ
, x → ∞ .

Surprisingly, under certain conditions the tail decay rate in (2.2) is the
same as for the solution to the fixed point equation

Ỹ
d
=

N∑

i=1

Xi Ỹi ,

where (Ỹi) are iid copies of Ỹ , (Xi) is an iid positive sequence and N is

positive integer-valued. Moreover, (Ỹi), (Xi) are mutually independent. In
this case, the tail index α > 0 is given as the unique solution to the equation
m̃(α) = E

[∑N
i=1 X

α
i

]
= 1. The decay rate in (2.2) is the same as for

P(Ỹ > x) if α ∈ (0, 1) and m̃′(α) = 0. Results of this type appear in the
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context of smoothing transforms, branching and telecommunication models;
see Buraczewski et al. [4], in particular Theorem 5.2.8(2), and the references
therein.

2.2. Examples. In this section we illustrate our theory by considering var-
ious examples.

Example 2.4. We assume that (Xi) is an iid lognormal sequence, where
logX has an N(µ, 1) distribution with negative µ. Then for s > 0,

log(E[Xs]) = µ s+ s2/2 , m(α) = α/2, , α = −2µ, σ2(α) = 1 .

Notice that xα p(x)/2 =
∑∞

n=1Φ
(
(log x− nα/2)/

√
n
)
.

Example 2.5. Assume that X has a Γ(γ, β)-density given by

fX(x) =
βγxγ−1 e−xβ

Γ(γ)
, β, γ, x > 0 .(2.7)

SinceX has unbounded support the equation E[Xα] = 1 always has a unique
positive solution. For given values α and γ we can determine suitable values
β such that

E[Xα] =
Γ(γ + α)

Γ(α)βα
= 1 .

We also have

m(α) =
Γ(γ + α)

βαΓ(γ)

(Γ′(γ + α)

Γ(γ + α)
− log β

)
,

E[Xα (logX)2] =
Γ(γ + α)

βαΓ(γ)

(
(log β)2 − 2 log β

Γ′(γ + α)

Γ(γ + α)
+

Γ′′(γ + α)

Γ(γ + α)

)
.

Example 2.6. Assume that X = e Z−µ for some positive µ > 0 and a
Γ(γ, β)-distributed random variable Z, i.e., X has a loggamma distribution.
For α < β we can calculate

E[Xα] = e−αµ
(
1− α

β

)−γ
.

The equation E[Xα] = 1 has a positive solution if and only if βµ > γ. Under
this assumption,

m(α) = e−αµ
(
1− α

β

)−γ−1 1

β

[
γ + µ(α− β)

]
,

σ2(α) = e−αµ
(
1− α

β

)−γ−2 1

β2

[
γ + (γ + µ(α− β))2

]
.

Consider iid copies (Zi) of Z. Then

p(x) =

∞∑

n=1

P
( n∑

j=1

Zj − nµ > log x
)
,

where
∑n

j=1Zj is Γ(nγ, β)-distributed. In principle, this formula could be
evaluated exactly by using the gamma distribution functions. However, the
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events {∑n
j=1Zj > log x} are very rare for large x. Therefore one needs

change-of-measure techniques to evaluate p(x) or suitable approximation
techniques. In the top Figure 1 we plot the ratio of the normal approxima-
tion of xαp(x) given in (2.1) and 2 log x/m(α) for µ = 5, γ = 4 and β = 1.
For the same parameter set, in the bottom figure we plot the ratio of

xαp(x) =
∞∑

n=1

P
α
( n∑

j=1

Zj > log x+ nµ
)
=

∞∑

n=1

Fn(log x+ nµ) ,

where we changed the measure from P to P
α(Z ∈ dx) = e αx

P(Z ∈ dx)
resulting in the Γ(n(γ+α), β)-distribution Fn. The rationale for this change
of measure is explained in the proof of Theorem 2.1. A comparison of the two
graphs shows the (not unexptected) result that the precise approximation
of xαp(x) via change of measure is better than the approximation via the
normal law.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.94

0.95

0.96

0.97

0.98

0.99

1

 

 

alpha=0.3714,gamma=4,beta=1,mu=5

0 100 200 300 400 500 600 700
0.975

0.98

0.985

0.99

0.995

1

1.005

log x

Figure 1. Two approximations of the ratio
xαp(x)/(2 log x/m(α)) for loggamma-distributed X with pa-
rameters β, γ, µ and the resulting α. The top figure shows the
results of the normal approximation, the bottom figure a more
precise approximation via change of measure.
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3. Proof of Theorem 2.1

3.1. First approximations. Recall the definition of p(x) from (1.11).

Proposition 3.1. Assume the conditions of Theorem 2.1 and that p(x) ∼
c log x/xα. Then

P(Y > x) ∼ p(x) , x → ∞ .(3.1)

A proof of the fact that p(x) ∼ c log x/xα will be given in Section 3.3.

Proof. Since supi>1 P(Πi > x) 6 p(x) → 0 we have

P(Y > x) >

∞∑

n=1

P(Πn > x)P(Πi 6 x , i 6= n)

=

∞∑

n=1

P(Πn > x)
∏

i 6=n

P(Πi 6 x)

=

∞∑

n=1

P(Πn > x) exp
( ∞∑

i 6=n

log(1− P(Πi > x)
)

=

∞∑

n=1

P(Πn > x) exp
(
− (1 + o(1))

∞∑

i 6=n

P(Πi > x)
)
.

Hence

P(Y > x) > p(x) e−(1+o(1))p(x) = (1 + o(1))p(x) ,

and the liminf-part in (3.1) follows.
Next we consider an upper bound for P(Y > x). We have for ε ∈ (0, 1),

P(Y > x) 6 p((1− ε)x) + P
(
C) .

where C = {Y > x ,maxn>1Πn 6 x(1− ε)}. We write for small δ > 0,

B1 =
⋃

16i<j

{|Πi| > δx, |Πj | > δx} ,

B2 =

∞⋃

i=1

{|Πi| > δx ,max
j 6=i

|Πj | 6 δx} ,

B3 = {max
i>1

|Πi| 6 δx} .

Observe that we have by Markov’s inequality for γ ∈ (0, α),

p̃(x) =

∞∑

n=1

P(|Πn| > x) 6 x−γ
∞∑

n=1

(h(γ))n 6 c x−γ .(3.2)

Hence for γ ∈ (α/2, α)

P(C ∩B1)

p((1− ε)x)
6

(
p̃(δx)

)2

p((1− ε)x)
6 c xα−2γ → 0 , x → ∞ .
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Similarly, by independence of Y −Πn and Πn for any n > 1, and since (3.2)
holds,

P(C ∩B2)

p((1− ε)x)
6

1

p((1− ε)x)

∞∑

n=1

P(|Y −Πn| > εx)P(|Πn| > δx)

6
(p̃(min(ε, δ)x))2

p((1− ε)x)
6 c xα−2γ → 0 , x → ∞ .

We also have

P(C ∩B3) 6 P

( ∞∑

n=1

|Πn| > x ,max
i

|Πi| 6 δx
)

6 P

( ∞∑

n=1

|Πn| 11(|Πn| 6 δ x) > x
)
.

Choose ξ ∈ (0, 1) and write g(x) = [c0 log x] for some positive constant c0
to be chosen later. Then

P(C ∩B3) 6 P

( g(x)∑

n=1

|Πn|11(|Πn| 6 δx) > x(1− ξ)
)

+
∞∑

n=g(x)+1

P
(
|Πn|11(|Πn| 6 δx) > xξn−g(x) (1− ξ)

)

= P1(x) + P2(x) .

We have by Markov’s inequality with γ ∈ (α/2, α),

P2(x)

p((1− ε)x)
6 c xα−γ

∞∑

n=g(x)+1

ξ−(n−g(x))γ
E[|Πn|γ ]

= c xα−γ(h(γ))g(x)
∞∑

n=0

(h(γ)
ξγ

)n

6 c xα−γ(h(γ))g(x)(1− φ)−1 .

Here we choose ξ and γ such that φ = h(γ)/ξγ < 1. Then the right-hand
side converges to zero if we choose c0 > 0 sufficiently large.

Next we find a bound for P1(x). We apply Prohorov’s inequality; see
Petrov [15], p. 77. For this reason, we need bounds on the first and second

moments of S(x) =
∑g(x)

n=1 |Πn|11(|Πn| 6 δx).
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Lemma 3.2. We have the following bounds

E[S(x)] 6





h(1) (1 − h(1))−1 < ∞ , α > 1 ,
c (log x)2 , α = 1 ,
c log xx1−α , α ∈ (0, 1) .

var(S(x)) 6





h(2)(1 − h(2))−1 < ∞ , α > 2 ,
c (log x)2 , α = 2 ,

c log x x1−α/2 , α ∈ (0, 2) .

Proof. We start with the bounds for E[S(x)]. (1) If α > 1, E[|Πn|] =
(h(1))n < 1. Hence

E[S(x)] 6
∞∑

n=1

(h(1))n = h(1)(1 − h(1))−1 .

(2) If α = 1 we use a domination argument. Indeed, we have

E[|Πn|11(|Πn| 6 z)]| =
∫ z

0
P(|Πn| > y) dy 6

∫ z

0
P(Y ′′ > y) dy , z > 0 ,

where Y ” =
∑∞

n=1 |Π′
n|. By (1.6)–(1.7) and (1.10), respectively, we have

xP(Y ” > x) ∈ [c, c′] for constants 0 < c < c′ < ∞ and large x. Hence

E[S(x)] 6 g(x)E[Y ′′11(Y ′′ 6 δx)] 6 c (log x)2 .

(3) A similar argument in the case α ∈ (0, 1) shows that xαP(Y ” > x) ∈ [c, c′]
and E[Y ”11(Y ” 6 x)] 6 c x1−α for large x. Hence E[S(x)] 6 c x1−α log x.

Our next goal is to find bounds for var(S(x)). (1) If α > 2 then

var(S(x)) 6

g(x)∑

n=1

E[Π2
n] 6 h(2)(1 − h(2))−1 < ∞ .

(2) Now assume α = 2. Then we have

var(S(x)) 6

g(x)∑

n=1

E[Π2
n 11(|Πn| 6 δx)] .

The same domination argument as for E[S(x)] in the case α = 1 yields

E[Π2
n 11(|Πn| 6 z)] =

∫ z

0
P(Π2

n > y)dy

6

∫ z

0
P((Y ′′)2 > y) dy

= E[(Y ′′)211((Y ′′)2 6 z)] ,

Hence

var(S(x)) 6 g(x)E[(Y ′′)211((Y ′′)2 6 δx)] 6 c (log x)2 .
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(3) Assume α ∈ (0, 2). In this case, similar arguments as for α = 2 yield

P((Y ”)2 > x) 6 cx−α/2 and

var(S(x)) 6 c x1−α/2 log x .

�

From Lemma 3.2 we conclude that for large x,

P1(x) 6 P
(
S(x)− E[S(x)] > 0.5x(1 − ξ)

)
.

Now an application of Prohorov’s inequality to the right-hand side yields

P1(x) 6 exp
(
− 0.5x(1 − ξ)

2(2 δx)
arsinh

(2δx)(0.5x(1 − ξ))

2var(S(x))

)

= exp
(
− 1− ξ

8 δ
arsinh

(
0.5x2 δ (1− ξ)/var(S(x))

))
,

where arsinh y = log(y +
√
y2 + 1) > log(2y) for positive y.

Now assume α > 2. Choose δ so small that (1 − ξ)/(8 δ) > α and apply
Lemma 3.2 for large x,

arsinh
(
0.5x2 δ/var(S(x))

)
> 0.5 log

(
x2 δ (1− ξ)(1− h(2))/h(2)

)

∼ log x , x → ∞ ,

Hence we may conclude that

P1(x)

p((1− ε)x)
6 c xα P1(x) → 0 , x → ∞ .(3.3)

We proved the limsup-part in (3.1) for α > 2. For α = 2, using var(S(x)) 6
c (log x)2, a slight modification of the Prohorov bound yields the same result.
For α ∈ (0, 2), we conclude from Lemma 3.2 that for large x,

arsinh
(
0.5x2 δ(1 − ξ)/var(S(x))

)
> 0.5 log

(
x1−α/2 δ (1− ξ)

)

∼ 0.5 (1 − α/2) log x ,

Now choose δ > 0 so small that (1− α/2)(1− ξ)/(16 δ) > α and then (3.3),
hence (3.1) follows. �

3.2. Preliminaries. Our next goal is to show that p(x) ∼ c log x/xα. Since
we will treat the cases X > 0 a.s. and P(X < 0) > 0 in a similar way we
will follow an idea of Goldie [8]. We define

N0 = 0 , Ni = inf{k > Ni−1 : Πk > 0} , i > 1 , I = {Ni , i > 1} ,
If X > 0 a.s. we have Ni = i a.s. We introduce the non-negative variables
X̃i =

∏Ni
j=Ni−1+1 |Xi|, i > 1, and their products Π̃n =

∏n
i=1 X̃i so that

p(x) =

∞∑

n=1

P(Πn > x) = E

[ ∞∑

n=1

11(Πn > x)
]

= E

[ ∞∑

n=1

11(Π̃n > x)
]
=

∞∑

n=1

P(Π̃n > x) .
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By independence of (Xi), (X̃i) are iid as well. Under E[|X|α] = 1, the process(∏t
j=1 |Xi|α

)
t>1

is a martingale adapted to the filtration Ft = σ(Xi, i 6 t).

As N1 is a stopping time with respect to this filtration we derive that
E[X̃α

1 ] = 1 by an application of the stopping time theorem for martingales.

Write X̃ for a generic element of (X̃i). We will use the following notation
for s > 0, assuming these moments are finite:

M̃ (s) = logE[X̃s] ,

m̃(s) = M̃ ′(s) =
E[|X̃|s log |X̃ |]

E[|X̃ |s]
,

σ̃2(α) = m̃′(s) =
E[|X̃ |s(log |X̃|)2]E[|X̃|s]− (E[|X̃ |s log |X̃|])2

(E[|X̃ |s])2
.

The expression for the distribution of log X̃ given {X̃ > 0} can be derived
by mimicing the arguments of Goldie [8]. Denote p = P(X > 0) = 1− q and

γ±(dy) =
P(±X > 0, log |X| ∈ dy)

P(±X > 0)
.

Then we have

P(log X̃ ∈ ·) = p γ+(·) +
∞∑

n=2

q2 pn−2 γ
(2)
− (·) ∗ γ+(·)(n−2) ,(3.4)

where ∗ denotes the convolution operator.
We introduce the tilted measure P

α:

dPα(log |X| 6 y) = e αydP(log |X| 6 y) ,

and denote expectation and variance with respect to P
α by E

α and varα,
respectively. Under the assumption E[|X|α(log |X|)2] < ∞ the following
moments are finite and positive

E
α[log |X|] = E[|X|α log |X|] = m(α) ,

varα(log |X|) = E
α[(log |X|)2]− (Eα[log |X|])2 ,

= E[|X|α (log |X|)2]− (m(α))2 = σ2(α) .

Since the tilted measure Pα preserves the sum structure one has the iden-
tity

dPα(log |X̃ | 6 y) = e αydP(log |X̃ | 6 y) .

Then one can also check the existence of the quantities

E
α[log |X̃ |] = E[|X̃ |α log |X̃ |] = m̃(α) ,

varα(log |X̃ |) = E
α[(log |X̃ |)2]− (Eα[log |X̃ |])2 ,

= E[|X̃ |α (log |X̃|)2]− (m̃(α))2 = σ̃2(α) .
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These quantities coincide with m(α) and σ2(α) when X > 0 a.s. Otherwise,
calculation yields

{
m̃(α) = 2m(α) ,

σ̃2(α) = 2σ2(α) +
p

q
(2m(α))2 .

Finally, notice that P(N1 = 1) = p and P(N1 = n) = q2 pn−2 so that N1

admits finite moments of any order. Moreover, E[N1] = 1 if p = P(X > 0) =
1 and 2 else. If Pα(log |X| > x) is regularly varying with index κ ∈ (1, 2],
one can apply Case (b3) on p. 130 of Resnick [16] to the stopped random

walk X̃ to obtain the equivalence

P
α(log |X̃| > x) ∼ E[N1]P

α(log |X| > x), x → ∞.(3.5)

Hence P
α(log |X̃| > x) is also regularly varying with index κ ∈ (1, 2].

3.3. More precise asymptotics. On the set {Π̃n > 0} we may write

S̃n = log Π̃n =
n∑

i=1

log X̃i , n > 1 .

We will show that

p(x) =

∞∑

n=1

P(S̃n − nE[log X̃ ] > log x− nE[log X̃] , Π̃n > 0) ∼ x−α L(x)

for a suitable slowly varying function L. Since E[log X̃] = cE[log |X|] < 0,

where c = 1 for X > 0 and c = 2 otherwise, the random walk (S̃n) has
negative drift. We will exploit the fact that, after the change of measure via
P
α, the random walk (S̃n) has a positive drift (n m̃(α)).

In what follows, we will get bounds for sums of P(Π̃n > x) over different
n-regions. It will be convenient to use the following notation

gξ(x) = [(1 + ξ) log x/m̃(α)] for real ξ.

Lemma 3.3. For any small ε > 0 we can find δ > 0 such that for sufficiently

large x,

∞∑

n=gε(x)

P(Π̃n > x) 6 c x−(α+δ) .(3.6)
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Proof. Denote h̃(s) = E[X̃s] for s 6 α and notice that M̃ (s) = log h̃(s). By
Markov’s inequality for small ε ∈ (0, α),

xα
∞∑

n=gε(x)

P(Π̃n > x)

6 xε
∞∑

n=gε(x)

(h̃(α− ε))n = xε (h̃(α− ε))gε(x)(1− h̃(α− ε))−1

= exp
(
log x

(
ε+

[(1 + ε) log x/m̃(α)]

log x
M̃(α− ε)

))
(1− h(α − ε))−1 .

By a Taylor expansion, M̃(α− ε) = M̃(α− ε)− M̃(α) ∼ −m̃(α) ε as ε ↓ 0.
This proves (3.6) for small ε. �

We apply (3.6) and the fact that
∑gε(x)

n=g0(x)+1 P(Π̃n > x) 6 c ε log x to

show that

p(x) =

∞∑

n=1

P(Π̃n > x) =

g0(x)∑

n=1

P(Π̃n > x) + o(log x) , x → ∞ .

Next define

ν(x) = e α logx

g0(x)∑

i=1

P(Π̃n > x) = e α log x

g0(x)∑

n=1

P(S̃n > log x).

Then we have

ν(x) = e α log x

g0(x)∑

n=1

∫ ∞

log x
dP(S̃n 6 t)

=

∫ ∞

log x
e−α(t−log x)d

( g0(x)∑

n=1

P
α(S̃n 6 t)

)

=

∫ ∞

0
e−αsdνα(s+ log x) ,(3.7)

where να(y) =
∑g0(x)

n=1 P
α(S̃n 6 y). We want to show that ℓ(x) = να(log x) is

a slowly varying function. More precisely, we want to show that ℓ(x) ∼ g0(x).
We have ℓ(x) 6 g0(x).

First assume Eα[(log |X|)2] = E[(log |X|)2|X|α] < ∞, then E
α[(log X̃)2] <

∞; see the expression (3.5). By the central limit theorem under the measure
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P
α we have

ℓ(x) =

g0(x)∑

n=1

P
α
( S̃n − n m̃(α)√

nσ̃(α)
6

log x− n m̃(α)√
nσ̃(α)

)

= g0(x)−
g0(x)∑

n=1

Φ
( log x− n m̃(α)√

nσ̃(α)

)
+ o(log x)

=: g0(x)− T (x) + o(log x) ,

where Φ = 1−Φ denotes the right tail of the standard normal distribution.
We have

T (x) = O(K0) +

g0(x)−K0∑

n=1

Φ
( log x− n m̃(α)√

nσ̃(α)

)

6 O(K0) + (g0(x)−K0)Φ(K) ,

where for a given K > 0 we choose an integer K0 so large that (log x −
n m̃(α))/(

√
nσ̃(α)) > K. Since we can choose K as large as we wish we

finally proved that ℓ(x) ∼ g0(x).
Now assume that Pα(log |X| > x) is regularly varying for some κ ∈ (1, 2]

and if κ = 2 also assume that Eα[(log |X|)2] = ∞. Then we also have that

P
α(log X̃ > x) is regularly varying for some κ ∈ (1, 2] and if κ = 2 that

E
α[(log X̃)2] = ∞; see the discussion at the end of Section 3.2. Choose (an)

such that

n
[
P
α(log X̃ > an) + a−2

n E
α[(log X̃)211(log X̃ 6 an)]

]
= 1 .

Then under Pα,

a−1
n (S̃n − n m̃(α))

d→ Sκ ,

where Sκ has a κ-stable distribution Φκ. The same arguments as above yield

ℓ(x) =

g0(x)∑

n=1

P
α
( S̃n − n m̃(α)

an
6

log x− n m̃(α)

an

)

= g0(x)−
g0(x)∑

n=1

Φκ

( log x− n m̃(α)

an

)
+ o(log x)

=: g0(x)− T (x) + o(log x) .

and also ℓ(x) ∼ g0(x).
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Finally, integrating by parts, we obtain from (3.7),

ν(x) =

∫ ∞

0
e−αtdℓ(xe t) = ℓ(x) + α

∫ ∞

0
e−αtℓ(xe t)dt

∼ g0(x) + α

∫ ∞

0
e−αtg0(xe

t) dt

∼ 2 log x

m̃(α)
=





2

m(α)
log x if X > 0 ,

1

m(α)
log x otherwise .

This finishes the proof of the desired bounds for p(x) and concludes the
proof of Theorem 2.1.

4. The multivariate case

4.1. Kesten’s multivariate setting. In this section we will work under
the conditions of the multivariate setting of Kesten [12]; see Section 4.4 in
Buraczewski et al. [4].

We consider iid d × d matrices (Xt) with a generic element X such that
P(X > 0) = 1 and X does not have a zero row with probability 1. Here
and in what follows, vector inequalities like x > y, x > y, . . ., in R

d are
understood componentwise. We write S

d−1 = {x ∈ R
d : |x| = 1} for the

unit sphere in R
d and S

d−1
+ = {x ∈ R

d : |x| = 1 ,x > 0}. We always
use the Euclidean norm | · | and write ‖ · ‖ for the corresponding operator
norm. Here and in what follows, all vectors are column vectors. We write
Π′

n = X1 · · ·Xn, n > 1.
Assume the following conditions.

(1) The top Lyapunov exponent γ is negative:

γ = inf
n>1

n−1
E[log ‖Π′

n‖] < 0 .

(2) Consider

h(s) = inf
n>1

(
E[‖Π′

n‖s]
)1/n

= lim
n→∞

(
E[‖Π′

n‖s]
)1/n

and assume that there is α > 0 such that h(α) = 1.
(3) E

[
‖X‖α log+ ‖X‖

]
< ∞.

(4) The additive subgroup of R generated by the numbers log λs is dense
in R, where λs is the dominant eigenvalue of s = x1 · · ·xn for xi,
i = 1, . . . , n, for some n > 1, in the support of X and such that
s > 0.

Let the R
d-dimensional column vector Y′ be independent of X. Under the

conditions above, the fixed point equation Y′ d
= XY′ + u has a unique

solution Y′, where u ∈ S
d−1 is a deterministic vector. Then one has the
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representation

Y′⊤ d
= u⊤

∞∑

n=1

Π′
n−1 = u⊤ + u⊤

∞∑

n=2

Π′
n−1 .

The next result follows from Theorems 4 and A in Kesten [12]; cf. The-
orem 4.4.5 in Buraczewski et al. [4], where the conditions below are also
compared with those in the original paper.

Theorem 4.1. Under the conditions above, there exists a finite function eα
on S

d−1 such that

lim
x→∞

xα P(v⊤Y′ > x) = eα(v) , v ∈ S
d−1 ,(4.1)

and eα(v) > 0 for v ∈ S
d−1
+ . Moreover, the limits

lim
x→∞

xα P
(
max
n>1

|Π′
n
⊤
u| > x

)
= ẽα(u) , u ∈ S

d−1 ,(4.2)

exist, are finite and positive for u ∈ S
d−1
+ .

We notice that this result is analogous to Theorem 1.1 in the non-arithmetic
case. Indeed, it is a special case for d = 1.

Remark 4.2. Under the condition of non-negativity on X and u, (4.1)
implies regular variation of Y′ (see Buraczewski et al. [4], Theorem C.2.1),

i.e., there exists a Radon measure ν on R
d
0 = (R ∪ {±∞})d\{0} such that

xα P(x−1Y′ ∈ ·) v→ ν(·) .
Here

v→ denotes vague convergence in R
d
0 and ν has the property ν(t·) =

t−αν(·), t > 0. In particular, for fixed u and any v ∈ S
d−1
+ there exist

positive constants cu and cu,v such that as x → ∞,

xα P(|Y′| > x) → cu and xα P(v⊤Y′ > x) → cu,v .

Under non-negativity of X, u and v, and if eα(v) 6= 0 for some v, (4.1) still
implies regular variation of Y′ for non-integer-valued α; see the comments
after Theorem C.2.1 in [4].

4.2. Main results. In what follows, we provide an analog of the univariate
theory built in the previous sections. For this reason, consider an iid array
(Xni)n,i=1,2,... with generic element X. Assume the conditions on X and u

from Kesten’s Theorem 4.1 and define

Y⊤ = Y⊤(u) = u⊤
∞∑

n=1

Πn , where Πn =
∏n

j=1Xnj.

For any unit vectors u,v ∈ S
d−1
+ , we define

pu(x) =
∞∑

n=1

P(|Π⊤
nu| > x) and pu,v(x) =

∞∑

n=1

P(v⊤Π⊤
nu > x) .

The following result is an analog of Theorem 2.1.



20 T. MIKOSCH, M. REZAPOUR, AND O. WINTENBERGER

Theorem 4.3. Assume the Kesten conditions of Section 4.1, in particu-

lar there exists α > 0 such that h(α) = 1. In addition, we assume that

E[‖X‖α(log ‖X‖)2] < ∞. Then we have for Y = Y(u) and any u,v ∈ S
d−1
+

P(|Y| > x) ∼ pu(x) ∼
2

m(α)

log x

xα
, x → ∞ ,(4.3)

P(v⊤Y > x) ∼ pu,v(x) ∼
2(v⊤u)α

m(α)

log x

xα
, if also u > 0,(4.4)

where m(α) = h′(α) is independent of u,v.

The proof of this result is given in Section 4.3.

Remark 4.4. As in the univariate case it is possible to relax the condition
E[‖X‖α(log ‖X‖)2] < ∞ by a regular variation condition of order κ ∈ (1, 2],
assuming for κ = 2 that E[‖X‖α(log ‖X‖)2] = ∞. This regular variation
condition has to be required under the probability measure Pα which will be
explained in the course of the proof of the theorem. Write Z =

∑
ij Xij and

V = mini=1,...,d
∑d

j=1Xij , where Xij are the entries of X. Then one needs
to assume that as x → ∞,

P
α(± logZ > x) ∼ c±

L(x)

xκ
and P

α(log V 6 −x) = O(Pα(| logZ| > x)) ,

(4.5)

where c± are non-negative constants such that c+ + c− = 1 and L is a
slowly varying function. In the case when E[‖X‖α(log ‖X‖)2] < ∞ we use
a central limit theorem with Gaussian limit of Hennion [10]. Under (4.5)
and P

α, one can instead apply a corresponding result with a κ-stable limit.
The corresponding results can be found in Hennion and Hervé [11]; see
their Theorem 1.1 (replacing Theorem 3 in [10]) and Lemma 2.1 (replacing
Lemma 5.1 in [10]). Thus, as in the univariate case, the moment condition
E[‖X‖α(log ‖X‖)2] < ∞ can be slightly relaxed.

In [10] and [11] the condition

P
(
Πn > 0 for some n > 1

)
> 0 .(4.6)

is assumed. This condition follows under the conditions of Section 4.1; see
p. 171 in [4].

Remark 4.5. We observe that

pu,v(x)

pu(x)
→ (v⊤u)α , x → ∞ .

The right-hand side is smaller than one unless u = v. In particular, for
u = v > 0 we have

P(|Y(u)| > x) ∼ P(u⊤Y(u) > x) ,

P(|Y(u)| > x,u⊤Y(u) 6 x) = o(log x/xα) .

This means that Y(u) puts most tail mass in the direction of u.
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Following Remark 4.2, we also have full regular variation of the vector
Y(u) if u > 0 since (4.4) holds for v > 0.

Corollary 4.6. Assume the conditions of Theorem 4.3 and that α is not an

integer. Then Y(u) is regularly varying with index α. In particular, there

is a Radon measure ν on R
d
0 such that

m(α)

2

xα

log x
P(x−1Y(u) ∈ ·) v→ ν(·) , x → ∞ ,

and ν is uniquely determined by its values on the sets Av = {y ∈ R
d : v⊤y},

v > 0, i.e., ν(Av) = (v⊤u)α.

4.3. Proof of Theorem 4.3. The proofs of (4.3) and (4.4) are very much
alike. We focus on (4.3) and only indicate the differences with the proof of
(4.4). We will follow the lines of the proof of Theorem 2.1 and Corollary 2.3.

With start with an analog of Proposition 3.1.

Proposition 4.7. Assume the conditions of Section 4.1 and that pu, pu,v
are regularly varying. Then for any u,v ∈ S

d−1
+ and Y = Y(u),

P(|Y| > x)

pu(x)
∼ P(v⊤Y > x)

pu,v(x)
∼ 1 , x → ∞ .(4.7)

Proof. We follow the lines of the proof of Proposition 3.1. Since h(α) = 1,
we have by convexity of h for γ ∈ (0, α), h(γ) < 1, hence for sufficiently
large n,

E[‖Πn‖γ ] < cn0 ,(4.8)

for some c0 ∈ (0, 1). By Markov’s inequality, with p̃(x) =
∑∞

n=1 P(‖Πn‖ >
x),

xγpv,u(x) 6 xγpu(x) 6 xγ
∞∑

n=1

P(‖Πn‖ > x) =: p̃(x) 6 c .(4.9)

In particular, pu(x) → 0. By (4.2) we have

sup
i>1

P(|Π⊤
i u| > x) 6 p̃(x) → 0 ,

Using this fact and the same arguments as in the univariate case, we derive

P(|Y| > x) >

∞∑

n=1

P(|Π⊤
nu| > x)P(|Π⊤

i u| 6 x , i 6= n)

= pu(x)(1 + o(1)) ,

P(v⊤Y > x) > pu,v(x)(1 + o(1)) .

This proves the liminf-part of (4.7).
Next we prove the limsup-part. We have for ε ∈ (0, 1),

P(|Y| > x) 6 pu((1− ε)x) + P
(
C) ,
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where C = {|Y| > x ,maxn>1 |Π⊤
nu| 6 x(1− ε)}. We write for small δ > 0,

B1 =
⋃

16i<j

{|Π⊤
i u| > δx, |Π⊤

j u| > δx} ,

B2 =
∞⋃

i=1

{|Π⊤
i u| > δx ,max

j 6=i
|Π⊤

j u| 6 δx} ,

B3 = {max
i

|Π⊤
i u| 6 δx} .

By (4.9) we have for γ ∈ (0, α) and large x, pu(x) 6 x−γ . Therefore we may
proceed as in the univariate case and obtain for γ ∈ (α/2, α),

P(C ∩B1)

pu((1− ε)x)
6 c xα−2γ → 0 , x → ∞ .

Similarly,

P(C ∩B2)

pu((1− ε)x)
6

∞∑

n=1

P(|Y −Π⊤
nu| > εx)P(|Π⊤

n u| > δ x)

pu((1− ε)x)
6 cxα−2γ → 0 ,

and for ξ ∈ (0, 1) and g(x) = [c0 log x], c0 > 0,

P(C ∩B3) 6 P

( g(x)∑

n=1

|Π⊤
nu|11(|Π⊤

n u| 6 δx) > x(1− ξ)
)

+
∞∑

n=g(x)+1

P
(
|Π⊤

nu|11(|Π⊤
n u| 6 δx) > xξn−g(x) (1− ξ)

)

= P1(x) + P2(x) .

The proof of P2(x)/pu((1 − ε)x) → 0 is analogous to the univariate case.
Write

S(x) =

g(x)∑

n=1

|Π⊤
nu| 11(|Π⊤

n u| 6 δx).

We have similar bounds for E[S(x)] and var(S(x)) as in the univariate case;
see Lemma 3.2. The key to this fact is domination via the inequalities

E
[
|Π⊤

nu| 11(|Π⊤
n u| 6 z)

]
=

∫ z

0
P(|Π⊤

nu| > y) dy

6

∫ z

0
P
(
max
i>1

|Π′
i
⊤
u| > y

)
dy ,

E[|Π⊤
nu|211(|Π⊤

n u| 6 z)] =

∫ z

0
P(|Π⊤

nu| >
√
y) dy

6

∫ z

0
P
(
max
i>1

|Π′
i
⊤
u| > √

y
)
dy .
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Now exploit the result for the tails in (4.2) and the same domination ar-
gument as in the univariate case. Finally, Prohorov’s inequality applies to
show that P1(x)/pu((1− ε)x) → 0.

The proof of lim supx→∞ P(v⊤Y > x)/pu,v((1−ε)x) 6 1 is analogous. �

Our next goal is to show that pu and pu,v are regularly varying functions.
For ε > 0, we write gε(x) = [(1 + ε) log x/m(α)] where m(α) = h′(α). We
continue with the following analog of Lemma 3.3.

Lemma 4.8. Assume the conditions of Section 4.1. Then

xα
∞∑

n=gε(x)

P(|Π⊤
nu| > x) = o(log x) , x → ∞ .

Proof. By Markov’s inequality and a Taylor expansion of log h(γ)− log h(α)
at α for γ < α close to α, since log h(γ) < 0,

xα
∞∑

n=gε(x)

P(|Π⊤
nu| > x) 6 xα−γ

∞∑

n=gε(x)

e n log
(
infk>1(E[‖Πk‖

γ ])1/k
)

= c e log x
(
(α−γ)+(gε(x)/ log x)(log h(γ)−log h(α))

)

6 x−δ → 0 , x → ∞ ,

for some δ > 0, depending on γ and ε. �

It follows immediately that

xα
∞∑

n=gε(x)

P(v⊤Π⊤
n > x) = o(log x) , x → ∞ .

As in the univariate case we proceed with an exponential change of mea-
sure. However, the change of measure cannot be done on the marginal

distribution but on the transition kernel of the Markov chain (Π′
n
⊤
u). It is

indeed a homogeneous Markov chain as its kernel is given by the expression

P(dy|Π′
n
⊤
u = x) = P(X⊤

n+1x ∈ dy) = P(X⊤x ∈ dy),

that does not depend on n > 1. The change of kernel is given by

P
α(dy | Π′

n
⊤
u = x) = e α log(|y|/|x|)

P(X⊤x ∈ dy).

Since this change is difficult to justify we refer the reader for details to
Buraczewski et al. [3]; see also Section 4.4.6 in the book Buraczewski et al.
[4]. In contrast to Kesten’s condition in Section 4.1, [3] require a moment
condition slightly stronger than in Kesten [12]; see the discussion on p. 181 in
[4]. This condition is satisfied because we require E[‖X‖α(log ‖X‖)1+δ ] < ∞
for some positive δ.

Next we notice that log |Π′
n
⊤
u| has the structure of a Markov random

walk associated with (Π′
n
⊤
u) under the change of measure. Indeed, since
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|u| = 1 we have the following identity for n = 2,

P
α(log |Π2

′⊤u| ∈ dx)

=

∫

Rd

P
α
(
log |Π′

2
⊤
u| ∈ dx | Π′

1
⊤
u = y

)
P
α
(
Π′

1
⊤
u ∈ dy

)

=

∫

Rd

e α (x−log |y|)
P
(
log |Π′

2
⊤
u| ∈ dx | Π′

1
⊤
u = y

)
e α log |y|

P
(
Π′

1
⊤
u ∈ dy

)

= e αx
P
(
log |Π′

2
⊤
u| ∈ dx

)
.

Thus, the structure of a Markov random walk is recovered thanks to a
recursive argument.

From the discussion on p. 181 in [4] we also learn that under the aforemen-
tioned additional moment condition, (log ‖Π′

n‖) has a positive drift under
P
α, i.e., log ‖Π′

n‖/n → h′(α) P
α-a.s. On the other hand, by the multiplica-

tive ergodic theorem this means that h′(α) is the top Lyapunov exponent
under Pα, i.e., n−1

E
α[log ‖Π′

n‖] → h′(α).
As in the univariate case, we have

ν(x) = xα
g0(x)∑

n=1

P(|Π⊤
nu| > x) =

∫ ∞

0
e−αsdνα(s + log x) ,

where

να(y) =

g0(x)∑

n=1

P
α(|Π⊤

nu| 6 y) .

Since we assume E[‖X‖α(log ‖X‖)2] < ∞ we also have E
α[(log ‖X‖)2] < ∞.

By virtue of Theorem 3 in Hennion [10] we have for any unit vectors u,v,

sup
z

∣∣Pα
(
(log u⊤Πnv − nm(α))/

√
n 6 z

)
− Φ0,σ2(α)(z)

∣∣ → 0 , n → ∞ ,

(4.10)

where Φ0,σ2(α) is the distribution function of an N(0, σ2(α))-distributed ran-

dom variable, where σ2(α) > 0 is the limiting variance which is independent
of u,v. An application of Lemma 5.1 in [10] ensures that

sup
z

∣∣Pα
(
(log |Π⊤

nu| − nm(α))/
√
n 6 z

)
− Φ0,σ2(α)(z)

∣∣ → 0 , n → ∞ ,

For these two results of Hennion one needs the condition (4.6).
Now the same arguments as in the univariate case apply to show that

ℓ(x) = να(log x)

=

g0(x)∑

n=1

P
α
(
(log |Π⊤

nu| − nm(α))/
√
n 6 (log x− nm(α))/

√
n
)

= g0(x)−
g0(x)∑

n=1

Φ0,σ2(α)

(
(log x− nm(α))/

√
n
)
+ o(log x) ∼ g0(x) .
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Now we consider P(v⊤Y(u) > x) for a given v ∈ S
d−1
+ , v > 0 and u > 0.

We will mimic the preceding arguments. Since X > 0 a.s. with non-zero

rows Π′
n
⊤
u > 0 a.s. for any n > 1. Thus, considering the Markov chain

(Π′
n
⊤
u)n>0 on the restricted state space (0,∞)d, one can change the measure

according to

P
α,v(dy | Π′

n
⊤
u = x) = e α log(v⊤

y/v⊤
x)
P(X⊤x ∈ dy)

for any x and y > 0. Under this change of measure, log v⊤Π′
n
⊤
u has the

structure of a Markov random walk associated with (Π′
n
⊤
u):

P
α(log v⊤Π2

′⊤u ∈ dx)

=

∫

Rd

P
α
(
log v⊤Π′

2
⊤
u ∈ dx | Π′

1
⊤
u = y

)
P
α
(
Π′

1
⊤
u ∈ dy

)

=

∫

Rd

e α (x−logv⊤
y)

P
(
log v⊤Π′

2
⊤
u ∈ dx | Π′

1
⊤
u = y

)

×e α log(v⊤
y/v⊤

u)
P
(
Π′

1
⊤
u ∈ dy

)

= e α (x−log(v⊤
u))

P
(
log v⊤Π′

2
⊤
u ∈ dx

)
.

Using the relation c|x| 6 v⊤x 6 c′|x| for some c, c′ > 0 and any x ∈ (0,∞)d,
we have

lim
n→∞

(
E[(v⊤Π′⊤

n u)s]
)1/n

= lim
n→∞

(
E[|Π′⊤

n u|s]
)1/n

= lim
n→∞

(
E[‖Π′

n‖s]
)1/n

= h(s).

Here, the second identity is stated in Theorem 6.1 of [3]. From these 3
identities one concludes that the mean of v⊤Π′⊤

n u is h(α), the same than
the one of |Π′⊤

n u| under their respective changes of measure. For g0 defined
as above (independently of v) we obtain

να,v(log x) =

g0(x)∑

n=1

P
α,v(v⊤Πnu 6 x) ∼ g0(x).

Similar arguments as above and as in the proof of Corollary 2.3 finish the
proof of Theorem 4.3 because

νv(x) :=
xα

(v⊤u)α

g0(x)∑

n=1

P(v⊤Π⊤
nu > x) =

∫ ∞

0
e−αsdνα,v(s+ log x) .

Appendix A

In this section we provide an auxiliary result which is the analog of (1.8)
in the case of positive X.

Proposition A.1. Assume P(X < 0) > 0. If the conditions of Theorem 1.1

hold then for some c > 0,

lim
x→∞

xα P
(
max
n>1

Π′
n > x

)
= c .



26 T. MIKOSCH, M. REZAPOUR, AND O. WINTENBERGER

If the conditions of Theorem 1.2 hold then for some 0 < c < c′ < ∞ and for

x large enough,

xα P
(
max
n>1

Π′
n > x

)
∈ [c, c′].

Proof. Here and in what follows, we interpret Π′
0 = 1. We can also work

given that X ′
n 6= 0 as otherwise Π′

t = 0 for all t > n and max16t6n−1 Πt has
a negligible tail for any fixed n.

The proof follows the arguments of Goldie [8]. One first observes that

P
(
max
n>0

Π′
n > x

)
= E

[
P
(
max
n>0

Π′
n > x | Z

)]
,(A.1)

where Z = (Zn)n>1 is a Markov chain on {−1, 1} given by Zn = Π′
n/|Π′

n|.
We define

N0 = 0 , Ni = inf{k > Ni−1 : Zk = 1} , i > 1 , I = {Ni , i > 1} .
We have

E
[
P
(
max
n>0

Π′
n > x | Z

)]
= E

[
P
(
max
n∈I

Π′
n > x | Z

)]

= E
[
P
(
max
n∈I

|Π′
n| > x | Z

)]

= P(τ < ∞) ,(A.2)

where τ is defined as the stopping time

τ = inf
{
k ∈ I :

k∑

i=1

log |Xi| > log x
}
.

We change the measure as follows

dPα(log |Xn| 6 y, Zn = ±1) = e αy dP(log |Xn| 6 y, Zn = ±1) .

We notice that the tilted distribution conditionally on Z is given by

dPα(log |Xn| 6 y | Z) = 11(Zn = Zn−1) η+(dy) + 11(Zn 6= Zn−1) η−(dy) ,

where

η±(dy) =
P
α(±X > 0, log |X| ∈ dy)

Pα(±X > 0)
.

Then we have the identity

P(τ < ∞) = E
α
[
e−α

∑τ
i=1

log |Xi|11(τ < ∞)
]
.(A.3)

The proof of (A.3) relies on the fact that (e α
∑n

i=1
log |Xi|) is a martingale un-

der P. First notice that it is a product of the independent random variables
|Xi|α given Z. Moreover, noticing that

P(Zn = Zn−1) = P
α(X > 0) = E[|X|α11(X > 0)] ,
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we have

E[e α log |Xn| | Z] =
E[|X|α11(X > 0)]

Pα(X > 0)
11(Zn = Zn−1) +

E[|X|α11(X < 0)]

Pα(X < 0)
11(Zn 6= Zn−1) = 1.

Then (e α
∑n

i=1
log |Xi|) constitutes a martingale. Write Fτ for the σ-field

generated by τ . Then we have for n > 1,

E
α
[
e−α

∑τ
i=1

log |Xi|11(τ 6 n)
]

= E
[
e α

∑n
i=1

log |Xi|e−α
∑τ

i=1
log |Xi|11(τ 6 n)]

]

= E
[
E
[
e α

∑n
i=1

log |Xi|e−α
∑τ

i=1
log |Xi|11(τ 6 n) | Z

]]

= E
[
E
[
E[e α

∑n
i=1

log |Xi| | Fτ ,Z] e
−α

∑τ
i=1

log |Xi|11(τ 6 n) | Z
]]

= E
[
E[e α

∑τ
i=1

log |Xi|e−α
∑τ

i=1
log |Xi|11(τ 6 n) | Z]

]

= P(τ 6 n).

Now (A.3) follows by letting n → ∞.
In view of (A.1)–(A.3) it suffices to study the asymptotic behavior of

xα P(τ < ∞). From (A.3) we conclude that

xα P(τ < ∞) = E
α[Eα[e−α(

∑τ
i=1

log |Xi|−logx)11(τ < ∞) | Z]].

We have the representation

τ∑

i=1

log |Xi| =
τ̃∑

i=1

Ni∑

j=Ni−1+1

log |Xi| =:
τ̃∑

i=1

Wi

where (Wi) is iid and has the common tilted distribution η given explicitly
in (9.11) of Goldie [8]. Here

τ̃ = inf{t > 1 :

t∑

i=1

Wi > log x} .

It is shown in equations (9.12) and (9.13) of [8] that Eα[W1] = 2m(α) > 0.

Assume now that the conditions of Theorem 1.1 are satisfied and that
the distribution of log |X| given X 6= 0 is non-arithmetic. Then η inherits
non-arithmeticity from log |X| and the overshoot B(∞) of the random walk
associated with η is well defined (positive drift) and

xα P(τ < ∞) = E
α
[
E
α[e−α(

∑τ̃
i=1

Wi−log x)11(τ̃ < ∞) | Z]
]

= E
α[e−α(

∑τ̃
i=1

Wi−log x)]

→ E
α[e−αB(∞)] =

1− h(0,∞)

2αm(α)
> 0 .
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Here H is the ladder height (defective) distribution of the random walk
associated with the distribution of W1 under P (negative drift) and the pos-
itivity of the constant on the right-hand side follows by calculations similar
to Theorem 5.3, Section XIII, in Asmussen [1]. This finishes the proof of
the first assertion.

Considering that the assumptions of Theorem 1.2 are satisfied then the
distribution of the overshoot B(∞) of the random walk associated with η is
well defined only on some lattice span only. Then xα P(τ < ∞) converges
when x → ∞ on this lattice span only (with a different limiting positive con-
stant), see Remark 5.3, Section XIII, in Asmussen [1]. The second assertion
follows by using the monotonicity of the tail probability. �

Remark A.2. The distribution of W1 = log X̃1 under P given in (3.4)
heavily depends on the quantities p and q. Therefore we are not convinced
that 1. H ever coincides with the ladder height distribution of the random
walk with step sizes (log |Xn|) and 2. the relation

2xα P
(
max
k>0

Π′
k > x

)
∼ xα P

(
max
k>0

|Π′
k| > x

)
, x → ∞,

holds. It is clearly not the case when p = 0 (N1 = 2) as shown by an
inspection of Spitzer’s formula; see [7], p. 416.
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