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Abstract 

 

Most of the approaches for diagnosis or prognosis of deteriorated reinforced concrete(RC) structures are based 

on two stages: acquiring data (concrete properties, quantitative degradation information), and then predicting 

the evolution of degradation by using appropriate models. Spatial variability of both properties and 

degradation processescannot be neglected in the lifecycle assessment and implies that (i) data should be 

acquired for a representative part of the concrete surface and (ii)models should be capable of dealing with this 

variability.However, the assessment and modeling of spatial variability is not a straightforward task particularly 

when uncertainties affect the measurementsorwhen the number of measurements is limited.The present 

paper aims at studying the capability of analytical carbonation models to deal with the spatial variability of 

model inputs in terms of spatial correlation of model outputs.Analytical models are considered herein because 

they provide practical and usual tools in engineering. This paper focuses on the case of a RC wallexposed to 

atmospheric carbonation where concrete properties and carbonation depths were measured by destructive 

techniques at several points over a linear portion of a wall within the framework of the French ANR EVADEOS 

project.Uncertainties due to experimental devices and procedures are estimated and propagated throughout 

random field models to account for spatial variability of spatial observations. Correspondence indexes are 

proposed to rank carbonation models with respect to their ability of reflecting the observed correlation profiles 

of carbonation depth. It was found that for the available database the proposed correspondence index that 

incorporates uncertainties was useful to assess the capabilities of models to deal with the spatial variability.  
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1. Introduction  

Reinforced concrete (RC) is a material widely used in the construction of infrastructure and buildings 

because of its relative low cost and large durability. However, there are some environmental 

conditions where physical, chemical and biological deterioration processes reduce significantly its 

durability and safety (Bastidas-Arteaga et al. 2009; de Larrard et al. 2014; Marquez-Peñaranda et al. 



2015).Among these deterioration processes, atmospheric carbonation of RCstructures is one of the 

major causes of depassivation and then corrosion of steel reinforcing rebars(Ann et al. 2010). 

Carbonation-induced corrosion damage could certainly increase in the future years by the rise of 

environmental CO2concentration inducing additional maintenance costs (IPCC 2013; de Larrard et al. 

2014; Peng and Stewart 2014a; Stewart et al. 2014). 

Maintenance strategies of corroding RC structures aim atpredicting corrosion and planning repair 

operations (coating, replacement of concrete cover, cathodic protection, etc.) in order to maintain 

acceptable serviceability and safety levels. For new or non-corroded structures, inspection and data 

collection are crucial to characterize parameters of carbonation models. Theinherent spatial 

variability of concrete properties and cover depth is of prime importance and must be properly 

characterized and modeled (Li 2004; Peng and Stewart 2014b; Stewart and Mullard 2007);it implies 

that models must be selected, on the one hand, for representing the carbonation process 

andpredicting corrosion initiation. On the other hand, models must be capable of integrating the 

spatial variability of input and propagating it onto the output. A convenient way to characterize the 

spatial variability of stationary random fields is to assess the spatial correlation of data(O’Connor and 

Kenshel 2013; Pasqualini et al. 2013; Schoefs et al. 2009, 2016). Knowing the spatial correlation 

before inspection helps to define an optimal inspection by reducinginspection cost and increasing 

thepredictions accuracy (Bastidas-Arteaga and Schoefs 2012; Gomez-Cardenas et al. 2015; O’Connor 

et al. 2013). Inspection or repair decision-making can be efficiently conducted in a probabilistic 

context especiallywhen statistical and spatial variability of data have been characterized 

(Papakonstantinou and Shinozuka 2013; Stewart 2004, 2006).Data collected from real structures can 

be perturbed by: spatial variability, measurement error, inaccuracy of experimental devices, 

complexity of experimental process, etc. Therefore, a dedicated treatment is often applied to data in 

order to discard gross outliers. In addition, it is not possible to generalize outcomes regarding spatial 

variabilitybetween structureseven for the same material property.For instance,concrete mix, 

execution and environmental conditionshave an important impact on the concrete porosity, and 

then, the spatial variability of porosity between two components supposedly casted with the same 

concrete is not necessarily the same. This issue was addressed within the framework of the ANR-

EVADEOS project (funded by the French National Research Agency) where a wide experimental 

investigation was undertaken on several RC structures. Destructive and non destructiveevaluations 

(NDE) were performed to estimate durability properties of concrete as well as carbonation 

depth.Only results of destructive tests are considered in this paper. Measurements were taken over a 

representative part of a concrete wall.  

The main objective of the present study is to the estimatethe ability ofanalytical carbonation models 

to propagate the spatial variability of measured inputs (porosity and saturation degree). The method 

relies on a comparison between simulated and measured outputs (carbonation depth). A peculiar 

attention is paid to the quality of data. The effect of gross outliers on the correlation profile of 

concrete properties is hence studied as well as the influence of unintended deviations in 

experimental measurements. Moreover,a statistical approach is proposed to study the capability of 

analytical models to deal with the spatial variability. Section 2 presents the studied structure and the 

data collected in one experimental investigation of the ANR-EVADEOS Project. Section 3 introduces 

the computational tools used to assess the correlation profiles and tosimulatestationary random 

fields. We evaluate in section 4 the uncertainties related to experimental measures. Finally, we 



propose in section 5 various metricsused to evaluate and compare the capability of analytical models 

to deal with spatial variability.  

2. Investigated structure 

The structure investigated is a concrete wall (Figure 1) built in 1979 enclosing a yard where inert 

wastes are stored. From carbonation point of view, the exposed surface of the wall represents 

perfectly a vertical surface of a bridge girder or a column and can be investigated with a lower cost. 

However, the wall is not cyclically loaded. If the structure was subjected to external mechanical 

loading, two cases may occur: (i) the loading causes significant mechanical degradation (excessive 

cracking on given zones for instance): the concrete is hence subjected to substantial supplementary 

heterogeneity and therefore the methodology could not be applied due to the non-stationarity of 

random fields; (ii) the loading causes negligible or uniform degradation: the results presented in the 

following would not be affected. The wall is 2.3 m high, several tens of meters long and 20 cm width. 

The portion of wall considered is east-west oriented and 3.5 m length. Non destructive and 

destructive measurements were carried out on the north face whilst only destructive measurements 

were carried out on the south face. The 21 successive measurements along asingle horizontal line 

situated at 1.5 m above the ground were located at center of the reinforcement meshes with a 

constant distance of 16 cm between measurements. These are common operational conditions: 

limited number of semi-destructive tests or small distance between tests to ensure the condition of 

similar exposure zone. It was shown that second order statistical properties of the random filed could 

be characterized from a single sample function (or trajectory) when using NDEs on similar exposure 

zones(Schoefs et al. 2016). Concrete saturation degree and porosity were estimated by both 

destructive and non destructive techniques. For the destructive tests, cores were extracted according 

to (EN-13791 2007), porosity and density were determined following the procedure described by (NF 

18-459 2010). The distance of the measurement line to the ground (1.5m) and to the top (0.8m) was 

selected to avoid edge effects both from environmental conditions and material variability due to 

concreting. Compressive strength was estimated by non destructive techniques (rebound hammer). 

After inspection, carbonation depth was estimated from extracted cores immediately placed into 

sealed plastic bags and measurements were conducted in lab. 

Non destructive evaluation of the same parameters results from a procedure combining different 

non destructive technics (ultrasonic waves, radar, impact echo, surface waves and capacitive sound) 

by data fusion. This technique was adapted because any of these NDEs can provide a direct 

measurement of the quantities of interest. Data fusion is based on possibility and fuzzy set 

theories(Dubois and Prade 2001). Nevertheless the assessment of uncertainties affecting the output 

of the NDEs cannot be easily directly determined from the observations (frequency, wave velocity …), 

and European standards do not address this topic yet. Since we want to analyze the capacity of 

models to propagate uncertainties and spatial variability, NDEs are therefore not considered in this 

paper. 

Exposure conditions after 35 years of each wall face are rather different and consequently their 

effect on measured quantities (carbonation depth or saturation degree) is not negligible: on the 

South side, the drying is faster and the carbonation is supposed to be accelerated. The results 

indicate (Tables 1 and 2) that the mean value of carbonation depth is 1.96 cm for North side (Side A) 

and 2.42 cm for South side (Side C). It was therefore decided to analyze separately the 

measurements obtained on each face. 



 

 

Figure 1: Investigated RC wall built in 1979 

3. Simulation of random fields 

This paper will focus on modeling spatial variability of three properties: concrete saturation degree, 

porosity and carbonation depth. Given that many studies have been devoted to numerical simulation 

of random fields– e.g., (Kenshel 2009; Schoefs et al. 2009), this work employs well-known numerical 

methods towards this aim.  

A random field X(x, ) is a set of random variablesX() (where  denotes hazard) indexed by a 

parameter x (continuous or discrete) whose values belong to Rn. In this case, x represents the space 

in the horizontal direction.For a given realization 0,X(x, 0)represents a sample function (or 

trajectory) of the random field. This study assumes that the field is ergodic(stationary) to be able to 

estimate allproperties of X(x, ) (mean, variance, correlation length, statistical moments) from a 

unique sample function X(x, i). We thus consider only one sample function for each field in the 

following and is not mentioned anymore. For each x0, X(x0) is a random variable whose probability 

density function is   hf
0xX . The n-order spatial moment n

Dm  and the global statistical moment 

n
x 0

m  are respectively defined as: 
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whereD describes the geometry of the field and  is the space of real numbers.In the case where
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Due to the fact that only one realization of each random field is available and for the sake of 

simplicity, we assume that the random fields are ergodic (P2) and Gaussian.However additional 

experimental observations are required to confirm this assumption. Moreover considering more 

complex type of random fields (non stationarity or piecewise stationarity)(Schoefs et al. 2009)is 

beyond the scope of this study and would complicate the comparison between models.That is the 

case for excessive cracking on given zones. For many practical cases in civil engineering, the amount 

of data is insufficient to justify or use P1 and we assume P3 (second order stationarity). 

The autocorrelation function of a stationary random field describes the decay of the correlation with 

respect to the distance between points. Many autocorrelation functions were proposed in the 

literature (see for instance (Kenshel 2009; Sudret and Der Kiureghian 2000)for an overview).These 

functions are characterized by the scale fluctuation θ.  

Two main procedures are reported in the literature for the estimation of θ. The Maximum Likelihood 

Estimate method consists in searching for the value of θthat maximizes the joint probability density 

of the data, supposed to be the realizations of the same distribution function(Li 2004). Initially 

correlated according to the ongoing value of θ, these realizations must be transformed into 

uncorrelated variables so as to compute the joint probability density as a simple product of 

independent standardized Gaussian variables.The fitting method aims at assessingθthat best fits the 

correlation profile  xD  obtained from the measured data(Vanmarcke 1983). For a one 

dimensional and stationary random field the correlation profile along the domain is determined as 

the successive values of the correlation coefficient with respect to the distance x between points: 
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wheremX and sX are respectively the mean and standard deviation of X estimated from independent 

values of data and m is the number of points at a distance x from each other.  

Among other possible techniques (Lévy 1965; Vanmarcke 1983)the Karhunen-Loève expansion 

(Karhunen 1947; Lévy 1965) was used in this study to simulate a Gaussian stationary random field: 
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wherenis number of terms in the truncated expansion, ξiis a standardized Gaussian random variable, 

λiand fiare respectively the eigenvalues and eigen-functions of the autocorrelation function ρD(Δx).  

Only few papers in the literature, recommend the use of a given autocorrelation function. We 

propose herein to use an exponential autocorrelation function, generally used for representing the 

auto-correlation of concrete property or durability indicators (Kenshel 2009; Schoefs et al. 2016). 

Figure 2b shows that it is well adapted in the present case also. In the case of an exponential 

autocorrelation function that depends on the correlation parameter b, the 

eigenvalues λiand eigen-functions fi are expressed under the assumption that the field is second 

order stationary(Sudret and Der Kiureghian 2000): 
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wherea0is half the length of the domain and iis the solution of the following transcendental 

equations: 
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4. Uncertainties from data and computation 

4.1. Uncertainties from measurements 

Four types of uncertainties are described in European standard(AFNOR X07-040-3 2014): 

(i) type A: for a large number of repeated measurements, a statistical treatment allows to 

express the uncertainty as a function of the standard deviation;  

(ii) type B: when only few measurements are available (even only one) other ways can be 

alternatively employed for assessing the uncertainty in relationship with previous similar 

measurements, specificity of the device used, error determination of the device, etc.; 

(iii) combined: a possible combination of the two previous types of uncertainty; and 

(iv) expandedstandard uncertainties: a combined uncertainty weighted by a coefficient. 

Within this study, the experimental parameters affected by uncertainties are those measured once at 

different locations of the wall from extracted cores: porosity, saturation degreeand carbonation 

depth. Porosity and saturation degree are estimated as a function  kmf of mn different mass 

measurements km of the core: as such, after complete drying and after complete saturation (mass 

measured in air or in water). The electronic balance has a known determination error m and 

consecutively uncertainty on the mass measurement is 3mum  . The uncertainty on the 

saturation degree or the porosity, uf, is then expressed as: 
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The carbonation depthwasmeasuredvisually with a determination error cx depending from the 

operator. The uncertainty affecting the carbonation depth is then 3xu cxc
 . 

4.2. Gross outliers 

A primary treatment for the collected data was carried outin order to discard the gross outliers 

related to particular measurement conditions:the value exceeds the quality requirement (for 

instance the discrepancy with other values is greater than 3 times the standard deviation(Boéro et al. 

2009; Pasqualini et al. 2013), or thevalue appears to have no physical meaning (for instance the 

magnitude of corrosion rate is negative).In case of spatial variability, the spatial evolution of 

measured values is not chaotic and consecutive values should stay in a given range.  

Figure 2adepictsthe sample function of measurements of saturation degree from destructive tests on 

the south face of the wall. It is noted that the value at the abscissa 336 cm is a gross outlier with 

respect to the values measured in other locations. Accounting for this value in the calculation of the 

correlation profile leads to significant and meaningless negative values of the correlation coefficient 

as it can be seen in Figure 2b. Once this value has been removed, the correlation profile seems more 

relevant although some oscillation remains with still negative values.These negative correlation 

coefficient values have been alsoreported when the evaluation is performed with limited 

data(Pasqualini et al. 2013).  

 

  

(a) (b) 

Figure 2: Sample function (a) and spatial correlation profiles (b) of measured saturation degree on the south 

face of the wall 

4.3. Uncertainty of assessment for correlation coefficient 

The correlation profile of data is estimated according to Eq. [3] and its accuracy depends on the 

number m of couples of measurements available for a distance Δx between points.A larger number 

of couples reducesthe statistical uncertainty.Since repeated values of measurements are used in this 

work to assess the correlation coefficient of each distance between points, it can be deemed that 

uncertainty on spatial correlation belongs to type A of uncertainties as described in European 

standard.Nevertheless, a direct statistical treatment of spatial correlation is not possible from only 

one sample function of data. A numerical investigation is hence carried out in order to compute the 



mean and standard deviation of the correlation coefficient when a large number of sample functions 

is available and in terms of m. 

Using Karhunen-Loeve expansion for an exponential autocorrelation function, nt=500 sample 

functions are simulated for each experimental parameter. n=100 points of measurements per sample 

function are generated (the number of points of measurement for each sample function is n=21 for 

the experimental data). For each sample function it is possible to compute a spatial correlation at 

each distance Δx;and therefore, to estimatentcorrelation coefficients bwith a standard deviation 

computed as: 
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The following procedure was applied to assess how the number m, or indirectly the number of 

npoints in the sample function, impactsthe standard deviation  xt  . For each sample function the 

correlation profile is computed considering that a set of nr points among n is removed from the 

sample function. All possible sets of nr points are accounted for, and an average correlation profile is 

determined for the same sample function. Eq. [9] and [10] are then used to compute the mean and 

standard deviation of  xD  with n-nrpoints for all the sample functions. Experimental data are 

sample functions of 21 points, therefore the corresponding standard deviations of  xD  were 

supplied by removing 79 points from an initial sample function of 100 points. The combined 

uncertainty on  xD  is then simply     mxu txD
 . 

5. Metrics for estimating the quality of the spatial variability predictions 

This section proposes quality indicators to analyze the ability of predictive models to represent the 

spatial correlation of degradation indicators (carbonation depth). The idea is to quantify how well the 

spatial correlation of the degradation estimated by the propagation of uncertain measured data 

through models fits the spatial correlation of the measured degradation. In the aforementioned on-

site investigation, each extracted core was divided into three zones namely A, B and C (Figure 1). 

Sides A and C comprised the edges of the concrete wall exposed to the atmospherewhile B was the 

inner part of the wall. As the carbonation depth is the matter of interest and was not detected on the 

portion B, only the destructive measurements on sides A and C are considered in this study. The 

mean values and their related uncertainties are reported inTables 1 and 2.  

Table 1:Mean values of the measurements and related uncertaintiesof the saturation degreeSr, porosityΦand 

carbonation depth xc for the side A 

Abscissa(cm) Sr,m (%) ΔSr (%) Φm (%) ΔΦ (%) xc,m (cm) Δxc (cm) 

0 56.79 0.27 17.97 0.11 1.67 0.1 

16 63.7 0.22 18.64 0.1 1.87 0.1 

32 59.76 0.24 18.15 0.1 1.87 0.1 

48 60.53 0.24 19.07 0.1 1.95 0.1 



64 56.87 0.24 18.67 0.1 2.22 0.1 

80 50.76 0.24 18.69 0.1 2.42 0.1 

96 58.39 0.26 18.27 0.11 2.25 0.1 

112 55.7 0.26 18.36 0.11 1.97 0.1 

128 61.59 0.25 17.49 0.11 1.72 0.1 

144 56.66 0.25 17.49 0.1 1.9 0.1 

160 59.93 0.27 16.89 0.12 1.7 0.1 

176 64.82 0.23 17.97 0.1 2.15 0.1 

192 62.81 0.24 17.95 0.11 2.02 0.1 

208 58.8 0.23 18.78 0.1 1.62 0.1 

224 58.53 0.24 18.15 0.1 2.05 0.1 

240 62.64 0.24 17.9 0.11 1.87 0.1 

256 60.08 0.23 18.61 0.1 1.65 0.1 

272 63.78 0.24 17.87 0.11 1.8 0.1 

288 51.77 0.27 18.74 0.11 1.67 0.1 

304 57.42 0.25 17.79 0.1 2.3 0.1 

320 56.21 0.26 18.32 0.11 2.52 0.1 

 

Table 2: Mean values of the measurements and related uncertainties of the saturation degree Sr, porosity Φ 

and carbonation depth xc for the side C 

Abscissa (cm) Sr,m (%) ΔSr (%) m (%) Δ (%) xc,m (cm) Δxc (cm) 

0 51.68 0.29 17.64 0.11 2.37 0.1 

16 56.83 0.27 16.73 0.11 2.12 0.1 

32 54.65 0.27 16.89 0.11 2.32 0.1 

48 56.63 0.28 16.4 0.12 2.12 0.1 

64 52.09 0.26 17.84 0.1 2.5 0.1 

80 45.88 0.26 18.12 0.11 3 0.1 

96 55.68 0.28 17.63 0.11 2.32 0.1 

112 52.32 0.3 16.83 0.12 2.32 0.1 

128 52.22 0.26 17.96 0.1 2.4 0.1 

144 52.33 0.28 16.83 0.11 2.35 0.1 

160 47.77 0.3 17.68 0.11 2.1 0.1 

176 49.92 0.28 17.82 0.11 2.47 0.1 

192 52.85 0.27 17.5 0.11 2.22 0.1 

208 54.09 0.26 17.62 0.11 2.45 0.1 

224 57.31 0.26 16.48 0.11 2.42 0.1 

240 58.3 0.27 18.03 0.11 2.27 0.1 

256 51.25 0.26 17.65 0.1 2.12 0.1 

272 48.92 0.29 17.47 0.11 2.52 0.1 

288 39.52 0.35 17.92 0.11 2.52 0.1 

304 50.65 0.27 17.62 0.1 3.3 0.1 

320 52.43 0.28 17.01 0.11 2.8 0.1 



 

 

5.1. Perfect measurements 

Under the assumption of perfect measurements(Schoefs et al. 2009), mean values of measurements 

reported in Tables 1 and 2 were used as input parameters of the four considered carbonation 

models:Hyvert(Hyvert et al. 2010), Miragliotta(Miragliotta 2000), Ying-Yu (Ying-Yu and Qui-Dong 

1987) and Papadakis(Papadakis et al. 1991). Only one sample function of the carbonation depth and 

subsequent correlation profile were hence computed from each carbonation model (at exposure 

time texp=35 yr) and compared to the correlation profile of the experimental data. Taking into 

account the lag ερ(Δxi) between points of the two correlation profiles at the same distance Δxi(see 

Figure 4for the Hyvert model) a normalized scalar metric is proposed as:  

 ICM =1-
1

4n
er Dxi( )éë ùû

2

i=1

n

å 0 £er Dxi( ) £ 2  [11] 

Sinceρ takes values between -1 and 1,ερ(Δxi)can vary from 0 (best situation) to 2 (worst situation), the 

so-called “correspondence index” varies from 0 to 1. 

Table 3 provides the ranking of modelsusing this metric. A slight difference appears between the 

ranking for the sides A and C forHyvert and Papadakis models. Nevertheless,these results indicate 

that this metric does not discriminate efficiently the models because all valuesare close to 0.99. 

Table 3:Correspondence index for perfect measurement 

Carbonation model SideA Rank SideC Rank 

Hyvert(Hyvert et al. 

2010) 

0.9911 3 0.9935 2 

Miragliotta(Miragliotta 

2000) 

0.9898 4 0.992 4 

Ying-Yu(Ying-Yu and 

Qui-Dong 1987) 

0.9928 1 0.9939 1 

Papadakis(Papadakis 

et al. 1991) 

0.9925 2 0.9929 3 

 

5.2. Uncertain measurements 

Measurements uncertainty was represented by uniform distributions centered at the measured 

(mean) values for each investigated point along the wall for the saturation degree and porosity: 

 rmrr SSS  , and   m .Karhunen-Loève expansion was used to simulate 1,000 sample 

functions of these input parameters that were then used to compute sample functions of 

carbonation depth at texp=35 yr.Similarly 1,000 sample functions of experimental carbonation depth 

were directly sampled according to a uniform distribution of xc,  cmcc xxx  , centered on 

experimental data. 

Simulated correlation profiles of xc, ρD(Δx),were estimated from these sample functions according to 

eq. [3].Figures 3 and 4 illustrate these correlation valuesfor two carbonation models. Uncertainty due 



to the numerical inaccuracy in the computation of the experimental correlation profiles (section 4.3) 

is also added to the global uncertainties represented by up and down doted lines.It is noted that 

values corresponding to experimental correlation profiles are more sprayed, for the same lag 

distance x, than those computed from model output. This is due to the fact that the coefficient of 

variation of the carbonation depth is lower when computed from the rather narrowrange of variation 

of input parameters, than when calculated from experimentalcarbonation depth. When comparing 

Figure 3 and Figure 4 it can be seen that this variation depends also on the considered model; for the 

considered models the propagation of the same uncertainties of input parameters leads to a wider 

dispersion forthe Papadakis model. 

 

(a) Side A     (b) Side C 

Figure 3: Experimental correlation profiles and profiles obtained by the Hyvert model 

 

 

(a) Side A     (b) Side C 

Figure 4: Experimental correlation profiles and profiles obtained by the Papadakis model 

 

From Figures 3 and 4, two correspondence indices can be defined based now on the overlapping of 

the correlation profiles obtained respectively by models and direct assessment. While the first one 

(ICM,mes) considers only measurement uncertainty, the second one (ICM,global) adds global uncertainties. 

Both indices are estimated according to the following procedure:  



1. for each distance Δxi let nmes,i and nglobal,i be the number of values of spatial correlations 

which satisfy to: 

 
 

[12] 

2. ifN is the total number of spatial correlation profiles, two correspondence marks could be 

defined for each distance Δxi: 

  [13] 

3. the correspondence indices can be expressed as follows, where n is the number of evaluation 

points: 

  [14] 

 

Table 4 summarizes the ranking of the models according toICM,mesandICM,global. Not surprisingly the values 

of ICM,global, encompassing the effect of numerical inaccuracy in the computation of the correlation 

coefficients, are larger than those of ICM,mes. Both indices provide the same ranking for the models for 

side A. Nevertheless for the side C most part of correlation profiles obtained by models are negative 

whereas those deduced from carbonation depth measurement remain largely positive (Figures 3 and 

4). Excepting Ying-Yu (Ying-Yu and Qui-Dong 1987) model, all the values of ICM,mesandICM,global were 

significantly reduced meaning that the models are less useful to represent the spatial variability of 

side C.In comparison with the ICM metric established without accounting for uncertainties (eq. [11]), it 

is forth noting that ICM,mesandICM,globalare more efficient metrics to discriminate models once uncertainties 

are accounted for. 

 

Table 4:Rank of the models according to ICM,mesand ICM,global 

Model 
Side A Side C 

ICM,mes Rank ICM,global Rank ICM,mes Rank ICM,global Rank 

Hyvert(Hyvert et al. 

2010) 
0.5 1 0.74 1 0.25 3 0.67 1 

Papadakis(Papadakis 

et al. 1991) 
0.36 3 0.69 3 0.26 2 0.49 4 

Ying-Yu(Ying-Yu and 

Qui-Dong 1987) 
0.25 4 0.6 4 0.3 1 0.62 2 

Miragliotta(Miragliott

a 2000) 
0.5 2 0.72 2 0.23 4 0.57 3 

 

According to Table 4,Hyvertmodel seems to be more appropriate to represent spatial variability, 

excepting for the side C when numerical inaccuracy for the computation is not considered. 

Miragliotta model appears also relevant in its capability to transfer the spatial variability for the side 

A, but it should be discarded for the side C.Due to their exposure to rain, sun and wind sides A and C 



of the wall experienced different behavior regarding carbonation, despite the fact that concrete 

properties should be the same (concrete pouring was naturally simultaneous for both sides). It seems 

that exposure effect, combined to the initial spatial variability of concrete properties, considerably 

modified spatial variability of deterioration processes. It can be deemed in addition that concrete 

aging is also altered by exposure conditions impacting the initial spatial variability. These 

considerations could partly explain the discrepancy of the model performance as function of the side 

considered.  

6. Conclusions 

The spatial variability of degradation processes (chlorination, carbonation, depassivation of steel 

reinforcing bars, etc.) has to be considered for structural inspection,diagnosis and maintenance. 

Indeed when the maintenance strategy is risk-based, which is a global trend nowadays, assessing the 

probability of depassivation over a global surface of a concrete wall or structure can help to define a 

portion of that surface presenting a substantial risk and then prescribe appropriate maintenance 

measures. The probabilistic assessment must be based on a more or less refined knowledge of the 

spatial correlation existing in concrete cover depth, concrete properties (for instance porosity) and 

state indicators (for instance saturation degree). Theoretical considerations where developed from 

decades to represent this spatial variabilitywithin the rational framework of the stochastic finite 

element method. The probabilistic assessment combines these stochastic methods with 

deterioration (carbonation) models to estimate failure risks. Carbonation models could take more or 

less complex analytical or numerical forms.  

 

This paper estimated the capability of one-dimension analytical carbonation models to deal with 

spatial variability based on in-field data. The databasecontains some input and output model 

parameters determined from destructive testing on cores extracted from an enclosurewall. The 

correlation profiles of the carbonation depth either obtained from the measurements or computed 

thanks to the experimental input used in the models were established. Two normalized so-called 

correspondence indices were proposed based on: (i) the “distance” between profiles for perfect 

measurements, or (ii) the “overlapping” of simulated and experimental data for uncertain 

measurements.The correspondence index determined without accounting for uncertainties is not 

relevant in practice because itdoes not allow the models to be properly discriminated. Contrarily the 

correspondence index incorporating uncertainties reveals clearly the various capabilities of models to 

transfer the spatial variability from input to output, compared to the experimental one.It was found 

that some models are more or less appropriate to propagate spatial variability depending on the 

exposure conditions. However, it was not possible to establish a unique ranking from the existing 

database because carbonation processes were influenced by environmental conditions that differ for 

each side of the wall. It can be therefore concluded that the proposed methodology allows 

determining the capability of carbonation models to deal with uncertainties and spatial variability as 

a function of the exposure zone. More experimental data is required for generalization purposes.  

7. Acknowledgement 

Partners of the ANR EVADEOS project are warmly thanked for the data that have been acquired and 

shared out (CEA Saclay, IFSTTAR Nantes, LMA Univ. Aix-en-Provence, I2M Univ. Bordeaux, EDF 

Chatou, LMDC Univ. Toulouse, GeM Univ. Nantes). 



8. References 

AFNOR X07-040-3. (2014). Uncertainly of measurement - Part 3 : guide to the expression of 
uncertainly in measurement (GUM : 1995). Standard. 

Ann, K. Y., Pack, S.-W., Hwang, J.-P., Song, H.-W., and Kim, S.-H. (2010). “Service life prediction of a 
concrete bridge structure subjected to carbonation.” Construction and Building Materials, 
24(8), 1494–1501. 

Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., and Sánchez-Silva, M. (2009). “Probabilistic 
lifetime assessment of RC structures under coupled corrosion-fatigue processes.” Structural 
Safety, 31(1), 84–96. 

Bastidas-Arteaga, E., and Schoefs, F. (2012). “Stochastic improvement of inspection and maintenance 
of corroding reinforced concrete structures placed in unsaturated environments.” Engineering 
Structures, 41, 50–62. 

Boéro, J., Schoefs, F., Melchers, R., and Capra, B. (2009). “Statistical analysis of corrosion process 
along French coast.” ICOSSAR’09. 

Dubois, D., and Prade, H. (2001). “Possibility Theory, Probability Theory and Multiple-Valued Logics: A 
Clarification.” Annals of Mathematics and Artificial Intelligence, Kluwer Academic Publishers, 
32(1/4), 35–66. 

EN-13791. (2007). Assessment of in-situ compressive strength in structures and pre-cast concrete 
components. 

Gomez-Cardenas, C., Sbartaï, Z. M., Balayssac, J. P., Garnier, V., and Breysse, D. (2015). “New 
optimization algorithm for optimal spatial sampling during non-destructive testing of concrete 
structures.” Engineering Structures, 88, 92–99. 

Hyvert, N., Sellier, A., Duprat, F., Rougeau, P., and Francisco, P. (2010). “Dependency of C–S–H 
carbonation rate on CO2 pressure to explain transition from accelerated tests to natural 
carbonation.” Cement and Concrete Research, 40(11), 1582–1589. 

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 
Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (T. F. Stocker, D. 
Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. 
Midgley, eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, 
USA. 

Karhunen. (1947). “Uber lineare methoden in der wahrscheinlichkeitsrechnung.” Amer. Acad. Sci, 
(73), 73–79. 

Kenshel, O. (2009). “Influence of spatial variability on whole life management of reinforced concrete 
bridges.” University of Dublin, Trinity College, Dublin, Ireland. 

de Larrard, T., Bastidas-Arteaga, E., Duprat, F., and Schoefs, F. (2014). “Effects of climate variations 
and global warming on the durability of RC structures subjected to carbonation.” Civil 
Engineering and Environmental Systems, Taylor & Francis, 31(2), 153–164. 

Lévy, P. (1965). Processus stochastic et mouvement brownien. Paris. 
Li, Y. (2004). “Effect of spatial variability on maintenance and repair decisions for concrete 

structures.” Delft University, Delft, Netherlands. 
Marquez-Peñaranda, J. F., Sanchez-Silva, M., Husserl, J., and Bastidas-Arteaga, E. (2015). “Effects of 

biodeterioration on the mechanical properties of concrete.” Materials and Structures. 
Miragliotta, R. (2000). “Modélisation des processus physico-chimiques de la carbonatation des 

bétons préfabriqués : prise en compte des effets de paroi.” La Rochelle. 
NF 18-459. (2010). Essai pour béton durci - Essai de porosité et de masse volumique (Tests for 

determining porosity and density for hard concrete). 
O’Connor, A. J., Sheils, E., Breysse, D., and Schoefs, F. (2013). “Markovian Bridge Maintenance 

Planning Incorporating Corrosion Initiation and Nonlinear Deterioration.” Journal of Bridge 
Engineering, American Society of Civil Engineers, 18(3), 189–199. 

O’Connor, A., and Kenshel, O. (2013). “Experimental Evaluation of the Scale of Fluctuation for Spatial 
Variability Modeling of Chloride-Induced Reinforced Concrete Corrosion.” Journal Of Bridge 



Engineering, 18(1), 3–14. 
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991). “Fundamental Modeling and Experimental 

Investigation of Concrete Carbonation.” Materials Journal, 88(4), 363–373. 
Papakonstantinou, K. G., and Shinozuka, M. (2013). “Probabilistic model for steel corrosion in 

reinforced concrete structures of large dimensions considering crack effects.” Engineering 
Structures, 57, 306–326. 

Pasqualini, O., Schoefs, F., Chevreuil, M., and Cazuguel, M. (2013). “Measurements and statistical 
analysis of fillet weld geometrical parameters for probabilistic modelling of the fatigue 
capacity.” Marine Structures, 34, 226–248. 

Peng, L., and Stewart, M. G. (2014a). “Climate change and corrosion damage risks for reinforced 
concrete infrastructure in China.” Structure and Infrastructure Engineering, In press, 1–18. 

Peng, L., and Stewart, M. G. (2014b). “Spatial time-dependent reliability analysis of corrosion damage 
to RC structures with climate change.” Magazine of Concrete Research, Thomas Telford, 66(22), 
1154–1169. 

Schoefs, F., Bastidas-Arteaga, E., Tran, T. V., Villain, G., and Derobert, X. (2016). “Characterization of 
random fields from NDT measurements: A two stages procedure.” Engineering Structures, 111, 
312–322. 

Schoefs, F., Clement, A., and Nouy, A. (2009). “Assessment of spatially dependent ROC curves for 
inspection of random fields of defects.” Structural Safety, 31, 409–419. 

Stewart, M. G. (2004). “Spatial variability of pitting corrosion and its influence on structural fragility 
and reliability of RC beams in flexure.” Structural Safety, 26, 453–470. 

Stewart, M. G. (2006). “Spatial Variability of Damage and Expected Maintenance Costs for 
Deteriorating RC Structures.” Structure and Infrastructure Engineering, 2(2), 79–96. 

Stewart, M. G., and Mullard, J. A. (2007). “Spatial time-dependent reliability analysis of corrosion 
damage and the timing of first repair for RC structures.” Engineering Structures, 29(7), 1457–
1464. 

Stewart, M. G., Val, D. V., Bastidas-Arteaga, E., O’Connor, A., and Wang, X. (2014). “Climate 
Adaptation Engineering and Risk-Based Design and Management of Infrastructure.” 
Maintenance and Safety of Aging Infrastructure, D. Frangopol and Y. Tsompanakis, eds., CRC 
Press, 641–684. 

Sudret, B., and Der Kiureghian, A. (2000). Stochastic Finite Elements and Reliability: A state-of-the-art 
report. 

Vanmarcke, E. (1983). Random fields: analysis and synthesis. MIT Press, Cambridge, Mass, London. 
Ying-Yu, L., and Qui-Dong, W. (1987). “The mechanism of carbonation of mortars and the 

dependence of carbonation on pore structure.” Concrete Durability ACI SP-100, 100, 1915–
1943. 

 
 

  


