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Abstract

We construct a solution for the Complex Ginzburg-Landau equation in some crit-
ical case, which blows up in finite time T only at one blow-up point. We also give a
sharp description of its profile. The proof relies on the reduction of the problem to
a finite dimensional one, and the use of index theory to conclude. The interpretation
of the parameters of the finite dimension problem in terms of the blow-up point and
time allows to prove the stability of the constructed solution.
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1 Introduction

We consider the following complex Ginzburg-Landau equation

ur = (1 +iB)Au+ (1 +i6) [ulP~tu + vu,

w(.0) = ug € L=(RN.C) (CGL)

where a, B, v € R.

(1)

This equation, most often considered with a cubic nonlinearity (p = 3), has a long
history in physics (see Aranson and Kramer [AKO02]). The Complex Ginzburg-Landau
equation is one of the most-studied equations in physics, it describes a lot of phenomena
including nonlinear waves, second-order phase transitions, and superconductivity. We note
that the Ginzburg-Landau equation can be used to describe the evolution of amplitudes
of unstable modes for any process exhibiting a Hopf bifurcation. The equation can be
considered as a general normal form for a large class of bifurcations and nonlinear wave
phenomena in continuous media systems. More generally, the Complex Ginzburg-Landau
equation is used to describe synchronization and collective oscillation in complex media.



The study of blow-up, collapse or chaotic solutions of equation (1) appears in many
works; in the description of an unstable plane Poiseuille flow, see Stewartson and Stuart
[SS71], Hocking, Stewartson, Stuart and Brown [HSSB72] or in the context of binary
mixtures Kolodner and al, [KBS88|, [KSAL95|, where the authors describe an extensive
series of experiments on traveling-wave convection in an ethanol/water mixture, and they
observe collapse solution that appear experimentally.

For our purpose, we consider CGL independently from any particular physical context
and investigate it as a mathematical model in partial differential equations with p > 1.

We note also that the interest on the study of singular solutions in CGL comes also
from the analogies with the three-dimensional Navier-Stokes. The two equations have the
same scaling properties and the same energy identity (for more details see the work of
Plecha¢ and Sverdk [PS01]; the authors in this work give some evidence for the existence
of a radial solution which blow up in a selfsimilar way). Their argument is based on
matching a numerical solution in an inner region with an analytical solution in an outer
region. In the same direction we can also cite the work of Rottschéfer [Rot08] and [Rot13].

The Cauchy problem for equation (1) can be solved in a variety of spaces using the
semi-group theory as in the case of the heat equation (see [Caz03, GV96, GV97]).
We say that wu(t) blows up or collapse in finite time 7' < oo, if u(t) exists for all ¢t € [0,T)
and limy_,7 ||u(t)]|p~ = +o0. In that case, T is called the blow-up time of the solution.
A point 79 € RY is said to be a blow-up point if there is a sequence {(z;,¢;)}, such that
xj = xg, t; = T and |u(xj,t;)] — oo as j — oo. The set of all blow-up points is called
the blow-up set.
Let us now introduce the following definition;

Definition 1.1 The exponents (3,9) are said to be critical (resp. subcritical, resp. super-
critical) if p — 6% — BS(p+1) = 0 (resp. >0, resp. <0).

Many works has been devoted to the blow-up profiles for CGL when f = 6 = 0 (it
become the nonlinear heat equation), see Veldzquez [Vel92, Vel93a, Vel93b] and Zaag
[Zaa02a, Zaa02b, Zaa02c| for partial results). In one space dimension, given a a blow-up
point, this is the situation:

e cither

sup

|z—a|<K+\/(T—t)log(T—t)

e or for some m € N, m > 2, and C,, > 0

(T_t)p_l“(x’”_f<¢<T—t>|1og<T—t>> "%O’ 2

sup
|z—a|< K (T—t)t/2m

(T — )7 u(,t) — fn (W) ‘ 0, (3)

ast — T, for any K > 0, where

fe)=@P-1+ 6022)_P%11where by = (pZ;)2,
fm(z) = (p -1+ |z|2m)_ﬁ .
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If (5,0) # (0,0), the situation is completely understood in the subcritical case by Zaag
[Zaa98] (5 = 0) and Masmoudi and Zaag [MZ08] (6 # 0). More precisely, if

p—02—pB5(p+1) >0,

then, the authors construct a solution of equation (1), which blows up in finite time 7" > 0
only at the origin such that for all ¢t € [0,T),

1446

148 . bsub‘$|2 );;1 Co
T —t)»1 |log(T —t “‘u:v,t—(p—l—i— <
( ) [log( )l (2,2) (T —t)| log(T —t)| 1o LA /[log(T 1)
(5)
where 9 b
-1 2
(p—1) >0and p = — sublo (1+06%). (6)

bsu =
" 4(p— 82— 85 — Bop) (p—1)?
Note that this result was previously obtained formally by Hocking and Stewartson [HS72]
(p = 3) and mentioned later in Popp and al [PSKK98|.

When p = 3, many works has been devoted to the blow-up profile for the Complex
Ginzburg equation in the subcritical case (see Definition 1.1). We cite the works of Hocking
and Stewartson [HS72] and Popp and al and the references cited therein [PSKK98].

In the critical and supercritical cases, few results are known about chaotic solutions for
the equation. We note that Hocking and Stewartson [HS72] and Popp and al [PSKK98]
proved, formally, the existence of at least two selfsimilar blow-up solutions, one of them
is the same solution constructed by Masmoudi and Zaag in the subcritical case (5). The
second kind of blow-up is formally described in [HS72] and [PSKK98] and approved by
numerical results.

Let us now give the formal result given by Popp and al [PSKK98] (equations (44) and
(64)) in the critical case (3 — 458 — 62 = 0): the authors obtained

1448

i . 2 T2
(T — ) T u(z, t) ~ O (24 byl . . (7)
(T —1)[log(T — t)|2

where

-1
by =2 <\/2352(52 1 5)(82 4+ 1)(15 — 52)) .

and v(t) is given by equation (40) in [PSKK98|. We can clearly see, that this profile exist
only for 6% < 15.

Remark 1.2 We will see later, in Section 2, that we obtain the same result with another
formal approach.

In this paper, we justify the formal result of Popp and al [PSKK98] and construct a
solution u(z,t) of (1) in the critical case (8 = 0 and 62 = p) that blows up in some finite
time 7', in the sense that

T [Ju(., Bl = +oc

More precisely, this is our result:



Theorem 1 (Blow-up profiles for equation (1)) Consider 3 = 0, 62 = p, then equa-
tion (1) has a solution u(x,t), which blows up in finite time T, only at the origin. More-
over: (i) for all t € [0,T),

Co

(T — )71 [log(T — )| #u(z, t) — g0 <

\/(T—t)llog(T—t)ll/“)

< T
Loo(RN) 1+|10g(T—t)|1

where _
1446

wo(z) = )10 (p -1+ sz)_ p—1 (9)
—7(]9_1)2 —ian k= (p— —5T
N TS A, dr=(p—1) »1. (10)

(ii) For all x # 0, u(x,t) — u*(x) € C2(RN\{0}) and

_ 1446
b\x!2 p—1

u(z) ~ |2log ]|
2| log |||

as x — 0. (11)

Remark 1.3 The derivation of the blow-up profile (9) can be understood through a formal
analysis, using the matching asymptotic expansions (see Section 2 below). This method was
used by Galaktionov, Herrero and Veldzquez [VGH91] to derive all the possible behaviors of
the blow-up solution given by (2,3) in the heat equation (8 =0 =0). This formal method
was used recently by Tayachi an Zaag [TZ15] in the case of a nonlinear heat equation with
a critical power nonlinear gradient term.

However, we would like to emphasize on the fact that our formal analysis is far from being
a simple adaptation of this work. We will see in Section 2 that we need much more effort
to obtain the profile, this is due to the criticality of the problem (p = §2).

Remark 1.4 The exhibited profile (9) is new in two respects:

e The scaling law in the critical case is \/(T —t)]log(T — t)|% instead of the laws of
subcritical case, \/(T —t)|log(T — t)].

e The profile function: f.(z) = (p—1+ b]z\Q)_;%{S is different from the profile of the
1+i6

subcritical case , namely f(z) = (p — 1 4 baw|2|?) 71, in the sense that b # by
(see (6) and (10)).

Remark 1.5 In the subcritical case p— 6% — B36(p+1) >0 (p— 62 >0, when B =0), the
final profile of the standard nonlinear heat equation is given by

b_|a?

2| log |||

) ~1
u*(x) ~ |21og |x||"™" { ] T oasz 0

with

b= (p— 1)2 and u = —7%[3
ip—02=pap+1) T -1y
In the critical case B = 0,62 = p, the final profile is given by (11).

(14 0%).



Remark 1.6 We strongly believe that our construction will not work for all 8 # 0. This
is due to the formal study given by Popp and al [PSKK98] in the cubic case.

As a consequence of our techniques, we show the stability of the constructed solution
with respect to perturbations in initial data. More precisely, we have the following result.

Theorem 2 (Stability of the solution constructed in Theorem 1 (5 =0)) Let us
denote by u(x,t) the solution constructed in Theorem 1 and by T its blow-up time. Then,
there ezists a neighborhood Vy of u(x,0) in L* such that for any ug € Vo, equation (1)
has a unique solution u(x,t) with initial data ug, and u(xz,t) blows up in finite time T (ug)
at one single blow-up point a(ug). Moreover estimate (8) is satisfied by u(x — a,t) and

T(up) = T, alug) — 0 as uyg — g in L°RY,C).

Remark 1.7 We will not give the proof of Theorem 2 because the stability result follows
from the reduction to a finite dimensional case as in [MZ97] (see Theorem 2 and its
proof in Section 4) and [MZ08] (see Theorem 2 and its proof in Section 6) with the same
argument. Hence, we only prove the existence result (Theorem 1) and kindly refer the
reader to [MZ97] and [MZ08] for the proof of the stability.

Let us give an idea of the method used to prove the results. We construct the blow-
up solution with the profile in Theorem 1, by following the method of [MZ97], [BK94],
though we are far from a simple adaptation, since we are studying the critical problem,
which make the technical details harder to elaborate. This kind of methods has been
applied for various nonlinear evolution equations. For hyperbolic equations, it has been
successfully used for the construction of multi-solitons for semilinear wave equation in
one space dimension (see [CZ13]). For parabolic equations, it has been used in [MZ08]
and [Zaa0l] for the Complex Ginzburg Landau equation with no gradient structure, the
critical harmonic heat flow in [RS13], the two dimensional Keller-Segel equation in [RS14]
and the nonlinear heat equation involving nonlinear gradient term in [EZ11] and [TZ15].
Recently, this method has been applied for a non variational parabolic system in [NZ15b]
for a logarithmically perturbed nonlinear equation in [NZ15a].

Unlike in subcritical case [MZ08| and [Zaa0l]. the criticality of the problem induces
substantial changes in the blow-up profile as pointed out in the comments following The-
orem 1. Accordingly, its control requires special arguments .So, working in the framework
of [MZ97] and [MZ08], some crucial modifications are needed. In particular, we have
overcome the following challenges:

e The prescribed profile is not known and not obvious to obtain. See Section 2 for a
formal approach to justify such a profile.

e The profile is different from the profile in [MZ97] and [MZ08], therefore new estimates
are needed.



e In order to handle the new scaling, we introduce a new shrinking set to trap the
solution. See Definition 4.3. Finding such set is not trivial, in particular in the
critical case, where we need much more details in the expansions of the rest term
see Appendix C.

Then, following [MZ97], the proof is divided in two steps. First, we reduce the problem
to a finite dimensional case. Second, we solve the finite time dimensional problem and
conclude by contradiction using index theory.

The organization of the rest of this paper is as follows. In Section 2, we explain formally
how we obtain the profile. In Section 3, we give a formulation of the problem in order to
justify the formal argument. Section 4 is divided in two subsections. In Subsection 4.1 we
give the proof of the existence of the profile assuming technical details. In particular, we
construct a shrinking set and give an example of initial data giving rise to prescribed blow-
up profile. Subsection 4.2 is devoted to the proof of technical results which are needed in
the proof of existence. Finally, in Section 5, we give the proof of Theorem 1.

2 Formal approach

The aim of this section is to explain formally how we derive the behavior given in Theorem
1. In particular, how to obtain the profile ¢ in (9), the parameter b in (10). consider an
arbitrary 7" and the self-similar transformation of (1)

1+i6 T

w(y,s) = (T —t)rTu(x,t), y= — s = —log(T —t). (12)

Let us introduce v(y, s)
w(y,s) = K+ v(y,s).
If u(x,t) satisfies (1) for all (z,t) € RY x [0,T), then w(y, s) satisfies for all (x,t) €
RN x [~1og T, +00) the following equation
gw
0s

— (1 +if)Aw - %y.Vw _ ;*_’fw + (14 i8) P w, (13)

for all (y,s) € RY x [~logT,+o0). Thus constructing a solution u(z,t) for the equation

1
(1) that blows up at T' < oo like (T"—t)” »=T reduces to constructing a global solution
w(y, s) for equation (13) such that

[

<1 oo < —.
0 << lim u(s)] =) < (14)

o

A first idea to construct a blow-up solution for (1), would be to find a stationary solution
of (13), yielding a self-similar solution for (1). It happens, that in the subcritical case, the
second author together with Masmoudi were able in [MZ08] to construct such a solution.
In the critical case, there is no selfsimilar solution apart from the trivial constant solution
w = k of (13).



2.1 Inner expansion.

Following the approach of Bricomont and Kupiainen [BK94] and Masmoudi and Zaag
[MZ08], we may look for a solution w such that w — k as s — co. writing

w(y, s) = €85 (u(y, s) + k). (15)
We see that v — 0 as s — oo and satisfies the equation
O _ fot Flo) —its — it (16)
ds s s
with ]
Lv=Av— §y.VU + (1 + id)v1, where v1 = Re (v), (17)
F(v) = (1+10) (\U + kPN + k) — KP — pi [ v1> : (18)

Let us recall some properties of L. The operator L is a R—linear operator defined on
L/Q)(]RN ) where

L2(RY) = {f e 2. @Y [ (Fw)Polw)dy < oo}

RN
and

_ N
The spectrum of £ is explicitly given by
1- 2 menN.
2
For N =1, the eigenfunctions are given by

{(L+i0)hm(y), ithm(y)Im € N},

where (=]
) = 3 i 19
n=0
{ g:((1 +i0)hy) = (1 - 5) (L4 i0)hum, (20)
L(ihm) = —Gihm.

we note also that each r € LI% can be uniquely used as

r(y) = (1 +i6)Ri(y) + iRa(y) = (1 +d) (Z R1m> +1 (Z R2m> ;
where
71(y) = Re (r(y)), 72(y) = Im )) 5Re (r(y)),

and for i = 1,2, Rin(y) / ||h HL ————p(y)dy. (21)



In compliance with the spectral properties of £, we may look for a solution expanded
as follows:

v(y, 5) = (1 + ’L(S) Z 'Dm(s)hm(y)'

meN

Since the eigenfunctions for m > 3 correspond to negative eigenvalues of £, we may
consider

v(y,s) = (1 +1d) (Voho + V2h2) + idoho(y). (22)
Then projecting equation (16), we derive the following ODE system

/ 0 1 +1 +1)§ 5. +1)_ +1)_ _
3 = v+ Ppt Pog+ Lz P 2)19_3_ (p 2) oo — 2 ' L ! ) 52
5 %y b+ 1)S , 64(p+ Dp " "
_7{}8 — 8P7U0U% pi + Ry,
92 2 12
/ 1 1 1)0
K2 K2 K
+1p_ _ +1)d
_<pﬁ2> UZU%_( + o, A LI,
/ 1 1 0 8(1 0
vy = —%—@vo uéA o+ +p’f}0170+( +r) TJS—i— ( :p) 17%
S(p+1)° 4 (219 —Dp+1) 5. 35(p+ Dogz @+1) s
o4 (p+2 ) 50@§+8( p— )2(p+ )170173—64 (p‘i; ) @B 1R,
{ K K K
(23)
where R = O(|to|? + 00| + |2]?) and Ry = O(|wo|* + |0o|* + |52|*).
We assume the following
Vg = %, Uy << U2 and vy << V2, (24)
for some o € R. Assuming in addition that
86 1
K = 7(]9%- )a2, (25)
K

then we find, after some computations, we obtain the following result
_ 1 01 0

1}2: =

8\/ p(p+1) xf 8p
C 1
@ngand’t_)(]:O(?)),
sS4 S2
for some constant C7,Cy € R. This is a simple but lengthy computation, that we omit here.

We can see that 0, U2 and 7y are compatible with the hypothesis (24) and (25)

w(y,s):ei“logs K — 8\/%(@\; 1+i5)(y2—2))+0<812>], (26)

in L2 (R™), and also uniformly on compact sets by standard parabolic regularity.



2.2 Outer expansion

From (26), we see that the variable
Y
s1/47
as given by (8), is perhaps the relevant variable for blow-up. Unfortunately, (26) provides
no shape, since it is valid only on compact sets (note that z — 0 as s — oo in this case).
In order to see some shape, we may need to go further in space, to the “outer region*,
namely when z # 0. In view of (26), we may try to find an expression of w of the form

) 1
w(y, s) = gitlogs wo(z) + j —)| with z = Y (27)

K 1
14+4i0)————+0 )
( 2 )4 /7p(p+1)\/§ (83 81/4

Plugging this ansatz in equation (16), keeping only the main order, we end-up with the
following equation on g:

1 1416 ) _
57 ol = S )+ (Dl o) =0, 2= L (9

Recalling that our aim is to find w a solution of (16) such that w — k as s — oo (in L2,
hence uniformly on every compact set), we derive from (27) ( with y = z = 0) the natural
condition

©o (0) = K.
Therefore, integrating equation (28), we see that

1+38

po(2) = (p—1+0b2%) 71,

for some b € R. Recalling also that we want a solution w € L>®(RY), we see that b > 0
and for a nontrivial solution, we should have

b> 0.

- Thus, we have just obtained from (27) that

. 1446 ) K 1 . Y
w(y, s) = eHloes —14b2%) T+ (1480 —— ——— + O(—)| with z=—-.
(y,5) (p ) ( ) G (8%) i
(29)

We shoulld understand this expansion to be valid at least on compact sets in z, that is for
ly| < Rs1, for any R > 0.

2.3 Matching asymptotics

Since (29) holds for |y| < Rst, for any R > 0, it holds also uniformly on compact sets,
leading to the following expansion for y bounded:

: by 1
w(y,s) = erloes K_(1+i5)(pi1)2y§+a§+0<i>]
s s s



Comparing with (26), we find the following values of a and b:

(p—1) K

b= ———, 4= —F———.
8v/p(p+1) 4y/p(p+1)
In conclusion, we see that we have just derived the following profile for w(y, s):
w(y, s) ~ e*15p(y, 5),

with

146

oo (L 5" =i (1) 5)-
e (w,3) =0 (7)) + (L+i0) 75 =+ <p 1+b31/2> +(1+i6)
1

—1)? _1
(p ) iand/@:(p—l) 1,

K
(R /M ——
8v/p(p+1) 4/p(p+1) 8p

3 Formulation of the problem

The preceding calculation is purely formal. However, the formal expansion provides us
with the profile of the function (fw(y7 3) — etnlogs (@0(51%) + ) ) Our idea is to linearize

equation (13) around that profile and prove that the linearized equation as well as the
nonlinear equation have a solution that goes to zero as s — 0o. Let us introduce ¢(y, )
and 6(s) such that

w(y, s) = W18 (o(y, ) +q(y, 5))

1+48

— oo (L 5)9 = o (p 1) 5)-0
wherego(y,s)—<p0<81/4>+(1+Z(5)81/2_/i (p 1+b81/2> —1—(1—1—@(5)81/2,

—1)2 ) 1
(p—1) n , p=—and k= (p—1) =

b= —F——=—, 4= —F———
8v/p(p+1) 4/p(p+1) 8p
In order to guarantee the uniqueness of the couple (g,0) an additional constraint is
needed, see (51) below; we will choose 6(s) such that we kill one the neutral modes of the
linearized operator.

Note that ¢o(z) = wp(z) has been exhibited in the formal approach and satisfies the
following equation
1 1+1i0

—§va0 — P

wo + (1 + 36)|wo|P~ wo = 0, (31)

which makes ¢(y, s) an approximate solution of (13). If w satisfies equation (13), then ¢
satisfies the following equation

9q _ 5 (1+id)

0s 1 p—1

q+L(q,0',y,s) + R*(¢,y,s) (32)

10



where

Lq = Ag—3y-Vqg+(1+id) Reg,

L(q79/7y78) = (1—’_7’6) {|§0+Q|p71(90+q) - ’90|p71§0_2(% +9/(8)) q} (33)
R'(#.y.5) = Rly,s)—i(E+0(s)e,

R(y,s) = 224+ Ap— Ly Vo U0 4 (14id)pl e

Our aim is to find a § € C'([~logT,00),R such that equation (36) has a solution
q(y, s) defined for all (y,s) € RY x [~log T, co) such that

llg(s)||Le — 0 as s — 0.

From (31), one sees that the variable z = 51% plays a fundamental role. Thus, we will
consider the dynamics for |z| > Kand |z| < 2K separately for some K > 0 to be fixed
large.

3.1 The outer region where |y| > Ks'/4

Let us consider a non-increasing cut-off function yo € C*°(R™, [0, 1]) such that xo(£) = 1
for £ <1 and xo(§) = 0 for £ > 2 and introduce

X(,5) =Xo <K|i/1|/4> , (34)

where K will be fixed large. Let us define

Ge(y,5) = e Tq(y, 5) (1 — x (v, 5)) (35)

g is the part of q(y,s) for |y| > Ks'/%. As we will explain in subsection (4.3.3), the
linear operator of the equation satisfied by ¢, is negative, which makes it easy to control
llge(s) || . This is not the case for the part of q(y,s) for |y| < 2Ks'/4, where the linear
operator has two positive eigenvalues, a zero eigenvalue in addition to infinitely many
negative ones. Therefore, we have to expand ¢ with respect to these eigenvalues in order to
control |[q(s)|| peo(y|<2xs1/4y- This requires more work than for ge. The following subsection
is dedicated to that purpose. From now on, K will be fixed constant which is chosen
such that ng(s’)HLoo(‘bes,l/Al) is small enough, namely ||900(Z)H]Z;ol(\z|>[<) < m (see

subsection (4.3.3) below, for more details).

3.2 The inner region where |y| < 2Ks'/4

If we linearize the term L(q,6',y, s) in equation (33), then we can write (33) as

0 3. _ *
of = Lq—i (% 40'(9)) a+ Vig+ Vaq + Blay.s) + R'(0,y,5), (36)

11



where

Ly = A¢-—1 5y-Vq+ (1+1id) Req

Vily,s) = (1+z5)1i1 (lw\p ! %) — (1+i6)25 (lep ’ 2—%),
B@w)z(HMWwﬂ“w+)m“ —lplP~ta — Bl 30(wd + a))
R*(0/7y78) = R(y78)_ (§+0/ )90

Rly,s) = —2+Ap—1y Vo— U0 4 (1 4i5)pP~'e

(37)
Note that the term B(q,y,s) is built to be quadratic in the inner region |y| < Ks'/*4,
Indeed, we have for all K > 1 and s > 1,

sup  |B(q,y, )| < C(K)|q? (38)
ly|<2Ks1/4

Note also that R(y, s) measures the defect of p(y, s) from being an exact solution of (13).
However, since ¢(y, s) is an approximate solution of (13), one easily derives the fact that

[R(s)|| e < \(/’; (39)

Therefore, if 6'(s) goes to zero as s — 0o, we expect the term R*(6',y, s) to be small, since
(33) and (39) yield

WWMﬂS%+W% (40)

Therefore, since we would like to make ¢ go to zero as s — 0o, the dynamics of equation
(37) are influenced by the asymptotic limit of its linear term,

L+ Vig+ Vg,
as s — oo. In the sense of distribution (see the definition of V; and V5 (33) and ¢ (30))

this limit is £.

3.3 Decomposition of ¢

For the sake of controlling ¢ in the region |y| < 2K si/4, by the spectral properties of L
(20),we will expand the unknown function ¢ with respect to the family %, and then, with
respect to the families h,, = (1 +id)h,, and h,, = ih,. We start by writing

= Z Qn(8)hn(y) +q-(y, ), (41)

n<M
where h,, is the eigenfunctions of £ defined in (19), Q. (s) € C, ¢_ satisfy

f qhnp

[hip

/Q—(:% $)hn(y)p(y)dy = 0 for all n < M,

Qn(s) =

12



and M is a fixed even integer satisfying

M24<\/1+52+1+2. max |V;(y,s)|>, (42)
1=1,2,yeR,s>1

with Vj— 2 defined in (33).

The function ¢_(y,s) can be seen as the projection of ¢(y,s) onto the spectrum of L,

which is smaller than (1 — M)/2. We will call it the infinite dimensional part of ¢ and we

will denote it g— = P_ p(g). We also introduce Py pr = Id — P_ ps. Notice that P_

and Py s are projections. In the sequel, we will denote P_ = P_ ); and Py = Py .

The complementary part ¢ = ¢ — ¢— will be called the finite dimensional part of q. We

will expand it as follows

0+(1,8) = D Qu(9)hn(y) = Y Gn()hn(y) + Gn(s)hn(y), (43)
n<M n<M

where Gy, ¢, € R. Finally, we notice that for all s, we have

/q—(y, $)a+(y, s)p(y)dy = 0.
Our purpose is to project (33) in order to write an equation for ¢, and §,. Note that

P.(q) = gn(s) = Re Qn(s), Pn(q) = Gn(s) = Im Qn(s) — I Re Qn(s). (44)

We conclude from (41) and (43), that

9(y,5) = | D @n()hn(y) + 4u(s)hn(y) | +a-(v,9), (45)
n<M

we should keep in mind that this decomposition is unique.

4 Existence

In this section, we prove the existence of a solution v(s),#(s) of problem (33)-(51) such

that
5

A
lim ||v|pe =0, and |0'(s)| < C—5 forall s € [~logT, +o0). (46)
S§—00 S /2

Hereafter, we denote by C' a generic positive constant, depending only on p and K intro-
duced in (34), itself depending on p. In particular, C' does not depend on A and sg, the
constants that will appear shortly and throughout the paper and need to be adjusted for
the proof.

We proceed in two subsections. In the first, we give the proof assuming the technicals
details. In the second subsection we give the proof of the technicals details.

13



4.1 Proof of the existence assuming technical results

Our construction is built on a careful choice of the initial data of v at a time sg. We will
choose it in the following form:

Definition 4.1 (Choice of initial data) Let us define, for A > 1, s = —logT > 1
and dg,dy € R, the function
A .
¢807d0,d1 (y) = 3/2( + Z5) (dOhO(y) + dlhl (y)) + Zd2 X(2y7 80) (47)
where sg = logT

where h;, i = 0,1,2 are defined by (19), x is defined by (34) and da = da(dp,d1) will be
fized later in (i) of Proposition 4.5.

Remark 4.2 Let us recall that we will modulate the parameter 6 to kill one of the neutral
modes, see equation (51) below. It is natural that this condition must be satisfied for the
initial data at s = so. Thus, it is necessary that we choose dy to satisfy condition (51),
see (50) below.

The solution of equation (36) will be denoted by v, 4,4, or v when there is no ambigu-
ity. We will show that if A is fixed large enough, then, sq is fixed large enough depending
on A, we can fix the parameters (do,d;) € [—2,2]2, so that the solution Vso,do,dy — 0 as
s — oo in L*°(R), that is (46) holds. Owing to the decomposition given in (45), it is
enough to control the solution in a shrinking set defined as follows

Definition 4.3 (A set shrinking to zero) For all K > 1, A>1 and s > e, we define
Va(s) as the set of all r € L>*(R) such that

M+2 M+1

[rell Loc () < AS;{ ; HWHLOO(R < A]\4+27
sl 7l < 4 for all 3< < M, [fol, 17| < 4
~ A° st o A4 (48)
72| < =, 71| < R
. 5 R
72| < 55, 7ol < 7,

s2 s2

Since A > 1, the sets V4(s) are increasing (for fixed s) with respect to A in the sense of
inclusions.

We also show the following property of elements of V4 (s):

For all A > 1, there exists sg1(A) > 1, such that for all s > s¢; and r € V(A), we have

M+2
Il (R) < C(K) 2

(49)

N

S

where C' is a positive constant (see Claim 4.8 below for the proof).
By (49), if a solution v stays in V(A) for s > sgi, then it converges to 0 in L>*(R).
Reasonably, our aim is then reduced to the following proposition:

14



Proposition 4.4 (Existence of a solution trapped in V4(s)) There exists Ay > 1
such that for A > Ag there exists sg2(A) such that for all sy > sg2(A), there exists
(do, d1) such that if v is the solution of (36), with initial data given by (47) and (50), then
v € Val(s), for all s > sg.

This proposition gives the stronger convergence to 0 in L*>°(R) thanks to (49).

Let us first be sure that we can choose the initial data such that it starts in V4(sp). In
other words, we will define a set where where will be selected the good parameters (dy, d;)
that will give the conclusion of Proposition 4.4. More precisely, we have the following
result:

Proposition 4.5 (Properties of initial data) For each A > 1, there exists sp3(A) > 1
such that for all sg > sp3:
(1) Po (ix(2y,s0)) # 0 and the parameter da(so,dp,d1) given by

A doPy (1 +i6)x(2y, 50)) + di P (1 +i6)yx(2y, 50))
32 Py (ix(2y, s0))

is well defined, where x defined in (34).
(i) If ¥ is given by (47) and (50) with do defined by (50). Then, there exists a quadrilateral
Ds, C [—2,2)? such that the mapping (do,d1) — (Yo, 1) (where ¥ stands for s, dy.d,) i

linear, one to one from Dy, onto [—%/2, %/2]2. Moreover it is of degree 1 on the boundary.
SO S

0

(i1i) For all (dy,dy) € Dsy, e =0, Yo = 0, |@/~JZ\+|1,EZ\ < CAe 7% for some~ > 0, for some
~ >0 and for all3<i< M and 1< j < M. Moreover , ||%HLWUR) < CS%%.
0

da(s0,do,d1) = — (50)

(iv) For all (do,d1) € Dsy, hsgdo.dy € Va(s0) with strict inequalities except for (g, 41).

The proof of previous proposition is postponed to subsection 4.2.

In the following, we find a local in time solution for equation (33) coupled with the
condition

Py(a(s)) = 0. (51)

Proposition 4.6 (Local in time solution and modulation for problem (36)-(51)
with initial data (47)-(50)) For all A > 1, there exists T3(A) € (0,1/e) such that for all
T < T3, the following holds:

For all (dy,d1) € Dr, there exists Spmaz > So = —logT such that problem (36)-(51) with
initial data at s = s,

(q(s0),0(s0)) = (¥s0,do,di»0),

where gy do.d, 15 given by (47) and (50), has a unique solution satisfying q(s) € Vaii(s)
for all s € [s0, Smaz)-

The proof of this proposition will be given later in page 19.

Let us now give the proof of Proposition 4.4.
Proof of Proposition 4.4: Let us consider A > 1, sg > so3, (do,d1) € Ds,, where so3 is given
by Proposition 4.5. From the existence theory (which follows from the Cauchy problem
for equation (1)), starting in V4 (sg) which is in V441(s0), the solution stays in V4(s) until

15



some maximal time s, = s.(dp, d;). Then, either:

e s.(do,d1) = oo for some (do,d1) € Ds,, then the proof is complete.

e s.(dp,d1) < oo, for any (do,d1) € Ds,, then we argue by contradiction. By continuity and
the definition of s, the solution on s, is in the boundary of V4(s«). Then, by definition
of V4(sx«), one at least of the inequalities in that definition is an equality. Owing to the
following proposition, this can happen only for the first two components ¢y, ¢1. Precisely
we have the following result

Proposition 4.7 (Control of v(s) by (vo(s),vi(s)) in Va(s)) . There exists Ay > 1
such that for each A > Ay, there exists sgs € R such that for all sg > sgs. The following
holds:

If v is a solution of (36) with initial data at s = so giwen by (47) and (50) with (do,d1) €
Ds,, and v(s) € V(A)(s) for all s € [sp, s1], with v(s1) € OVa(s1) for some s1 > so, then:
(i)(Smallness of the modulation parameter 0 defined in (15)) For all s € [sg, $1],

5

A
10/ (s)] < C@-

(ii) (Reduction to a finite dimensional problem) We have:

2

A
(Go(s1),q1(s1)) €0 | |——,
s

V2)
Hw\w‘ :B

(iii) (Transverse crossing) There exists m € {0,1} and w € {—1,1} such that

- A dgm
Wim(s1) = —5 and wdi(sl) > 0.
57 5

Assume the result of the previous proposition, for which the proof is given below in page
20, and continue the proof of Proposition 4.4. Let A > Ay and sp > sp4(A). It follows

2
from Proposition 4.7, part (ii) that (vo(s«),vi(s«)) € 0 ([—‘%, ‘ﬁ] >, and the following

2
function
¢ Dy — 0([=1,1]%)
3/2 .
(do,dl) — S*T (UO’Ul)(do,d1) (S*), with s, = S*(do,dl),

is well defined. Then, it follows from Proposition 4.7, part (iii) that ¢ is continuous. On
the other hand, using Proposition 4.5 (ii)-(iv) together with the fact that v(so) = ¥s,,dg.ds »
we see that when (dp, d1) is in the boundary of the rectangle Ds,, we have strict inequalities
for the other components.

Applying the transverse crossing property given by (iii) of Proposition 4.7, we see that
v(s) leaves V4(s) at s = sg, hence s.(do,d1) = so. Using Proposition 4.5, part (ii), we
see that the restriction of ¢ to the boundary is of degree 1. A contradiction, then follows
from the index theory. Thus there exists a value (do,d1) € Ds, such that for all s > s,
Usy.do,d1 (5) € Va(s). This concludes the proof of Proposition 4.4.

Using (i) of Proposition 4.7, we get the bound on #’(s). This concludes the proof of (46).
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4.2 Proof of the technical results result

This section is devoted to the proof of the existence result given by Theorem 1. We proceed
in 4 steps, each of them making a separate subsection.

e In the first subsection, we give some properties of the shrinking set V4(s) defined by
(48) and translate our goal of making ¢(s) go to 0 in L*(R) in terms of belonging
to Va(s). We also give the proof of Proposition 4.5.

e In second subsection, we solve the local in time Cauchy problem for equation (33)
coupled with some orthogonality condition.

e In the third subsection using the spectral properties of equation (33), we reduce our
goal from the control of ¢(s) (an infinite dimensional variable) in V4(s) to control
its two first components (§o,q1) a two variables in [—4-, 4%,

s2 37

e In the fourth subsection, we solve the finite dimensional problem using the index

theory and conclude the proof of Theorem 1 .

4.2.1 Properties of the shrinking set V4(s) and preparation of initial data

In this subsection, we give some properties of the shrinking set defined by (48). Let us
first introduce the following claim:

Claim 4.8 (Properties of the shrinking set defined by (48)) For all r € V4(s),

. A]\/I+1 AJ\I+2
() 17y ooty < CUOVAT and [l (R) < CUROAY™.

(ii) for all y € R, |r(y)| < CAT(1 4 [y[M+1).

Proof: Take 1 € V4(s) and y € R.

(i) If |y| > 2Ksi then we have from the definition of r. (35), |r(y)| = |r€( )| < AM+2

Now, if |y| < 2K s4, since we have for all 0 < J < M, |7+ |7 < 04 J+1 from (48) (use
the fact that M > 4), we write from (45)

()l < Z!%H%H!%Hﬁj\ +r-()l,

]<M
j AM+1 M+1
<O AP+ A () ()
I<M § 4 S
AM+1 L AMAL (K A)YMH
<CY “ur (L Kst)Y + pei=y (14 Ksi)MHl < o2
j<M S 4 s s

which gives (i).
(ii) Just use (52) together with the fact that for all 0 < j < M, |7;| + || < C
(48). This ends the proof of Claim 4.8. W

M+1
A from
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Let us now give the proof of Proposition 4.5.
Proof of Proposition 4.5 For simplicity, we write ¢ instead of ¥, 4,.4,- We note that, from
Claim 4.8, (iv) follows from (ii) and (iii) by taking sy = —logT large enough (that is T
is small enough). Thus, we only prove (i), (ii) and (iii). Consider K > 1, A > 1 and
T < 1/e. Note that so = —logT > 1.
The proof of (i) is a direct consequence of (iii) of the following claim

Claim 4.9 There exists v = 6—14 >0 and Ty < 1/e such that for all K > 1 and T' < Tb,
if g is given by (1 +i6)x(2y, s0), (1 +10)yx(2y,so), (1 +i0)ha(y)x(2y, s0) or ix(2y, so),
then H%HLW < %% and all g;, g; for 0 <i < M are less than Ce™ 750, expect:

S0
i) |go — 1] < Ce™7%0 when g = (14 i) x(2y, o).
i) |g1 — 1| < Ce™ 7% when g = (1 4 i0)yx(2y, so).
iii) |go — 1| < Ce™ 70 when g = ix(2y, so).

Proof: In all cases, we write

9(y) = p(y) + r(y) where p(y) = (1 +d) or (1+4d)y or i and r(y) = p(y)(x(2y, s0) — 1).
(53)

From the uniqueness of the decomposition (45), we see that p_ = 0 and al p;, p; are zero

except

po =1 (when p(y) = (1+14d)), pr = 1 (when p(y) = (1 +id)y) and po = 1 (when p(y) = 7).

Concerning the cases 2|y| < Kst and 2|y| > Ks1, we have the definition of x (34),

M—-1

2y
1_X(2y75) < | 1 )
Ks§

p(y)(1 = x(2y,5)) < Vp)/p <I;si) < Ce 5" P(Y)-

Therefore, from (45) and (53), we see that

(54)

2
Ksj S

M-1
M+1
r(y) < C1+[yl) <2y£> <o)
K2 S
|75] + |7;] < Ce= "7 2 for all j < M.

Hence, using (54) and (41) and the fact that |r;(y)| < C(1 + |y|)™, for all j < M, we get

also o
A+lyh)™
= .

T
S0

r-(<C

Using (53) and the estimates for p(y) stated below, we conclude the proof of Claim 4.9
and (i) of Proposition 4.5.
(ii) of Proposition 4.5: From (47) and (50), we see that

( zi’ > = G< 3(1) ) where G = (gi 5)o<i,j<1- (55)
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Using Claim 4.9, we see from (47) and (50) that
|da| < C(|do| + [da[)e 7 (56)

3
for T small enough. Using again Claim 4.9. We see that %G — Id and
as sop — oo (for fixed K and A), which concludes the proof of (ii) of Proposition 4.5.
1
(iii) of Proposition 4.5: Since supp(¢)) C B(0, Ks;) by (47) and (50), we see that 1, = 0
and that
do=Po() =4 (doPo((1+i0)x(2y, 50)) + drPo((1 +i8)yx (2, 50)) )

55
+d2 Po(ix(2y, s0)),
which is zero from the definition of dy (47) and (50). Using the fact that |d;i—0,1| < 2 and

the bound on dy by (56), we see that the estimates on 1; and 1[)]- and ¢_ in (iii) follows
from (47) and (50) and Claim 4.9. This concludes the proof of Proposition 4.5. B

In the following we give the proof of Local in time solution for problem (36)-(51). In
fact, we impose some orthogonality condition given by (51), killing the one of the zero
eigenfunctions of the linearized operator of equation (36).

Proof of Proposition 4.6: From solution of the local in time Cauchy problem for
equation (1) in L*°(R), there exists s; > so such that equation (13) with initial data
(at s = s0) ©(y,50) + Vsp,dod: (), Where ¢(y,s) is given by (30) has a unique solution
w(s) € C([so,s1), L°(R)). Now, we have to find a unique (¢(s),0(s)) such that

w(y, s) = B (o(y, 5) +q(y, s)) (57)
and (51) is satisfied. Using (44), we can write (51) as follows

Py(g) = Tm (/ Q(y,S)p(y)dy> —0 Re </ q(y,S)p(y)dy> = Im <(1 —i5)/Q(y, S)p(y)dy) =0,

or using (57)

Fes0)= 1w (1= 0) [ (7020 Ouly ) - ol ) s ) =o.

Note that OF
.0 ==t (= i0) [[etrees gy, op)ay )

From (iii) in Proposition 4.5, F'(s,0) = Py, v (¢sy,dg,d,) = 0 and

%?(8070) = —Re ((1 — id) /(sa(y,SO) + Vso,dods (y))p(y)dy> = —k+0 ((931/4> as sg — 00,

for fixed K and A.

Therefore, if T is small enough in terms of A, then %(80,0) # 0, and from the im-
plicit function Theorem, there exists sy € (sg,s1) and 6 € C*([so,s2),R) such that
F(s,0(s)) = 0 for all s € [sg,s2).Defining ¢(s) by (57) gives a unique solution of the
problem (33)-(51) for all s € [sp,s2). Now, since we have from (iv) of Proposition

4.5, q(s0) € Va(so) ; Vat1(so), there exists s3 € (sg,s2) such that for all s € [sg, s3),

q(s) € Vat1(s). This concludes the proof of Proposition 4.6. B
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4.2.2 Reduction to a finite dimensional problem

In the following we give the proof of Proposition 4.7:

The idea of the proof is to project equation (33) on the different components of the

decomposition (45). More precisely, we claim that Proposition 4.7 is a consequence of the
following

Proposition 4.10 There exists A5 > 1 such that for all A > As, there exists s5(A) such
that the following holds for all sy > s5:

Assuming that for all s € [, s1] for some s1 > T > so, q(s) € Va(s) and qo(s) = 0, then
the following holds for all s € 1, s1]:

(i) (Smallness of the modulation parameter):

A5
0'(s)] < C—

S2

(ii) (ODE satisfied by the expanding mode): For m =0 and 1, we have

o my . C

S2
(iii) (ODE satisfied by the null mode):
Bt ml<
a2 SQQ =2
(iv) (Control of null and negative modes):
R (=) cA3
[Gi(s)l < e = [a(r)| + —-,
S2
. (1) A C
ld2(5)] < ™o (m)] +
S2
((s=7) C A1
145(s)] < €72 1G ()| + =gz, forall 3<j < M,
s 4
gy (s=7) cAi-1
G5(s)| < e” VTG (7)| + = for all 3 < < M,
S 4
H q_(y, s) . = ) Lo AM
T fyMH | e ™ L [yMH | e 7 M52
_ (s—71) AM+1
lge(y, $)llzee < € 20T lge(T) e + —5— (1 +5—7)
T4

The idea of the proof of Proposition 4.10 is to project equations (36) and (33) according
to the decomposition (45). However because of the number of parameters and coordinates
in (45), the computation become too long. That is why Subsection 4.3 is devoted to the
proof of Proposition 4.10.
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Remark 4.11 The coefficient in front of %2 in (iii) of Proposition 4.10 is ‘2‘. In our
proof, see page 35 below, that coefficient is the sum of four contributions, which depend on
P in a non trivial way. Thus, it may appear miraculous to see the sum of such contributions
equal to ‘2. The same phenomena occur in the subcritical range of parameters, see [MZ08]
and also the heat equation, with a critical gradient term (see [TZ15]). In fact, adopting
the approach of Pierre Raphaél and co-authors, one may see that the coefficient ‘2° appears
in a natural way due to scaling considerations (see [Rap]).

Let us now derive Proposition 4.7 from