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ABSTRACT

In this paper, we propose and explain the use of anytime algorithms in graph matching (GM). GM
methods have been involved in many pattern recognition problems. In such a context, GM meth-
ods are part of a more complex retrieval system that imposes time and memory constraints on such
methods. Anytime algorithms are well suited for use in such an uncertain environment. An anytime
algorithm quickly provides the first solution to the problem, finds a list of improved solutions and
eventually converges to the optimal solution instead of providing one and only one solution (i.e., the
optimal solution). We describe how to convert an error-tolerant GM method into an anytime one. A
depth-first GM method has been recently proposed in the literature. This algorithm requires less mem-
ory and improves the upper bound while exploring the search tree. It finds the first suboptimal solution
quickly, and then keeps on searching for a list of improved solutions. The algorithm is well suited for
conversion into an anytime algorithm. By constraining the solver, it creates an anytime heuristic search
algorithm that allows a flexible trade-off between the search time and the solution quality. We analyze
the properties of the resulting anytime algorithm and consider its performance in terms of the deviation
of the provided solution from the optimal or the best one found by a state-of-the-art method. Exper-
iments were carried out on seven different types of graph datasets. Moreover, the adopted algorithm
was compared to four approximate error-tolerant GM methods. Results showed that the anytime GM
can outperform suboptimal methods by just waiting for a small amount of supplementary time. This
conclusion brings into question the usual evidence that claims that it is impossible to use optimal GM
methods in real-world applications.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Powerful data structures, such as attributed graphs, that are
used to represent complex entities always require more and
more computational resources. Thus, a trade-off between accu-
racy and computational cost (i.e., execution time and consumed
memory) has to be found. On this basis, converting algorithms
into anytime algorithms is of great benefit (Hansen and Zhou
(2007); Zilberstein (1996)). The main idea behind anytime al-
gorithms comes from the simple observation that there is no
reason to stop an algorithm after the first solution is found, es-
pecially when it is possible to find a better solution with plenty
of time available. By continuing the search, the algorithm can
find a sequence of improved solutions and eventually with ad-
ditional time, it can even converge them to an optimal solution.

∗∗Corresponding author:
e-mail: zeina.abu-aisheh@univ-tours.fr (Zeina Abu-Aisheh)

Speaking of powerful data structures, attributed graphs have
become more and more popular in many different fields, e.g.,
data-mining and pattern recognition. In this context, efficient
error-tolerant GM methods are of high interest. Error-tolerant
GM methods can provide precise correspondences between the
vertices and the edges of two graphs. In the literature, many dif-
ferent GM algorithms have been proposed (Conte et al. (2004);
Vento (2015)). However, the complexity of exact GM meth-
ods is NP-complete. Such a fact restricts their applicability to
graphs with a rather small size.

At present, two main families of error-tolerant GM methods
can be found in the literature: exact and approximate. Few ex-
act methods have been found in the literature (Justice and Hero
(2006); Riesen et al. (2007); Abu-Aisheh et al. (2015a)). On
the other hand, a number of approximate GM methods have
been proposed with reduced computational time and accuracy.
Some of these methods reduce the flexibility to work on graphs



2

with different structures and attributes. Among these methods,
we mention the spectral methods (Umeyama (1988)), and meth-
ods restricted to planar graphs (Hopcroft and Wong (1974)) and
trees (Torsello et al. (2005)), to name a few of them. Some ap-
proximate methods also work directly on the adjacency matrix
of the graphs relaxing the combinatory optimization to a con-
tinuous one e.g., path following in (Zaslavskiy et al. (2009)).
The graduated non-convexity and graduated concavity proce-
dure (GNCGCP) was proposed by (Liu and Qiao (2014)) as a
general optimization framework to suboptimally solve the com-
binatorial optimization problems such as error-tolerant GM.
Other approaches can also be found in the literature such as
tree-based methods (Neuhaus et al. (2006)) and linear sum as-
signment solver (e.g., bipartite GM (BP) in (Riesen (2009)) and
Square Fast BP in (Serratosa (2015))).

In this work, we would like to take advantage of these two
aforementioned types of GM methods by merging them to-
gether to propose a third type of GM methods that we call ”Any-
time GM”. On this basis, GM methods can be categorized dif-
ferently. The first, are methods that are fast (enough) but that
can only find one feasible solution (e.g., Riesen (2009); Ser-
ratosa (2015)). The second, are methods that are tree-search
based (e.g., Justice and Hero (2006); Abu-Aisheh et al. (2015a);
Neuhaus et al. (2006)) that can provide more than one solution
while traversing the search tree during the matching process.
Tree-based methods have become of great interest since com-
putational time and even the explored search space can be man-
ageable with the impact of the quality of the provided matching
solution. From here comes the primary motivation of the paper
which says that tree-based methods for GM computation can be
turned into anytime methods by varying the computational time
and studying the effect on the outputted answers. In this paper,
we define an anytime GM algorithm based on a depth-first GM
algorithm (Abu-Aisheh et al. (2015a)). This algorithm does not
consume so much memory. By managing time and memory
at the same time, the proposed method becomes as scalable as
possible. Another contribution of the paper is the experimental
protocol where information is provided about GM quality while
increasing time constraints.

The rest of the paper is organized as follows. In Section 1, we
introduce the problem statements of GM and anytime. In Sec-
tion 2, we review related work by describing the main works on
exact and approximate error-tolerant GM. We also discuss the
background of anytime methods. In Section 3, we present our
anytime version of GM computation. In Section 4, this method
is compared to approximate ones using adequate GM evalua-
tion metrics in (Abu-Aisheh et al. (2015b)) that evaluate both
precision and run time. Finally, Section 6 offers some conclu-
sions and suggestions for future work.

2. Problem statement

Let G1 = (V1,E1,µ1,ξ1) and G2 = (V2,E2,µ2,ξ2) be two
graphs with V1 = (u1, ...,un) and V2 = (v1, ...,vm) the sets of
vertices of G1 and G2, respectively. E1 and E2 represent the
edges of G1 and G2, successively, whereas the terms µ and ζ

refer to the attributes on vertices and edges, respectively. In

error-tolerant GM, a measurement of the strength of match-
ing vertices and/or edges of two graphs G1 and G2, referred
to as penalty cost, is applicable on both graph structures and
attributes. The basic idea is to assign a penalty cost to each
matching operation according to the amount of distortion that it
introduces in the transformation. A set of operations that trans-
forms G1 into G2 is called Edit Path in the literature (Riesen
(2015)). When (sub)graphs differ in their attributes or struc-
tures, a high penalty cost is added during the matching pro-
cess. Such a cost prevents dissimilar (sub)graphs from being
matched since they are different. Likewise, when (sub)graphs
are similar, a small penalty cost is added to the overall cost.
This cost includes matching two vertices and/or edges, insert-
ing a vertex/edge or deleting a vertex/edge. The question of
finding the minimum cost matching is a discrete optimization
problem. Error-tolerant GM is NP-hard and thus algorithms
that solve optimally error-tolerant GM suffer from both mem-
ory and time consumption. On this basis, researchers have shed
light on the approximate methods that can find suboptimal so-
lutions that are hopefully close to the optimal ones; however,
the quality of the solutions in function of the solving time has
not been deeply studied yet.

In this paper, we establish a compromise between exact and
approximate error-tolerant GM algorithms, referred to here as
anytime algorithms.

The concept of anytime algorithms was first reported in (Zil-
berstein and Russell (1995)). The desirable properties of any-
time algorithms are as follows:
• Interruptibility: After some small amount of setup time

1, a suboptimal solution can be provided by stopping the
algorithm at time t.
• Monotonicity: The quality of the result increases as a func-

tion of computational time.
• Measurable quality: We can always measure the quality of

a suboptimal result.
• Diminishing returns: At the beginning of anytime algo-

rithms, the improvement in the solutions can be remark-
ably observed. However, this improvement decreases over
time.
• Preemptability: Anytime algorithms can be suspended and

resumed with minimal overhead.
Anytime algorithms have a trade-off between quality and ex-

ecution time, see Figure 1. They can find the first best-so-far
solution after some setup time at the beginning of the execu-
tion. From Figure 1, one can see that the quality of the solu-
tion improves with increasing execution time. Users have the
choice of stopping the algorithm at anytime and thus getting
an answer that is satisfactory, or they can run their algorithm
until its completion when it is important to find the optimal so-
lution. It is hard to know when an anytime algorithm should be
interrupted (by the system or the user) to get the best-so-far an-
swer. Thus, algorithms should be equipped with the appropriate
stopping criteria based on the monitoring of the actual perfor-
mances when the time of an optimal interruption is not known
in advance.

1The time needed to output a first solution by an anytime method.
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Fig. 1: Characteristics of anytime algorithms

The setup time needed by anytime algorithms is a crucial
point for several reasons. First, to be able to quickly provide a
solution and then to be stopped by the user. Second, to be able
to provide a specified response time. For any kind of graphs,
users are sure that the matching will take no longer than the
specified time. Third, to not let users wait specially when hav-
ing a reactive system. A study of this specific point will be
proposed in the experiments.

3. Related work

This section is divided as follows. First, we shed light on the
state-of-the-art of GM methods. Second, the literature of any-
time methods is presented aiming at proposing a first anytime
GM method.

3.1. Graph matching algorithms

3.1.1. Exact error-tolerant graph matching approaches
The A∗-based algorithm is considered as a foundation work

for solving GM (Riesen et al. (2007)). The computations are
achieved by means of an ordered tree. Such a search tree is
constructed dynamically at run time by iteratively creating suc-
cessor vertices. Only leaf vertices correspond to feasible solu-
tions and, thus, complete matching operations. For a tree node
p representing a partial matching in the search tree, g(p) rep-
resents the cost of the partial matching operations accumulated
so far, and h(p) denotes the estimated costs from p to a leaf
node representing a complete solution. The sum g(p)+h(p) is
the total cost assigned to a tree node in the search tree. If h(p)
is lower or equal than the real costs then h(p) is said to be ad-
missible and A∗ is guaranteed to found an optimal path from the
root node to a leaf node. In the worst case, the space complex-
ity can be expressed as O(|γ|) (Cormen et al. (2009)) where |γ|
is the cardinality of the set of all possible edit paths. Since A∗

is exponential in the number of vertices involved in the graphs,
the memory usage is still an issue.

To overcome the memory problem of A∗, Abu-Aisheh et al.
(2015a) proposed a recent depth-first branch-and-bound GM al-
gorithm, called DF. This algorithm speeds up the computations
of GM thanks to its upper and lower bounds pruning strategy
and its preprocessing step. Moreover, this algorithm does not
exhaust memory as the number of pending partial solutions that
are stored in the set, called OPEN, is relatively small thanks

to the DFS algorithm where the number of pending nodes is
|V1|.|V2| in the worst case. In both A∗ and DF, the problem of
solving h(p) is of first interest. One can map the unprocessed
vertices and edges of graph G1 to the unprocessed vertices and
edges of graph G2 such that the resulting costs are minimal.
This mapping should be done in a faster way than the exact
computation and should return a good approximation of the true
future cost. In Section 4.4, h(p) will be detailed.

To the best of our knowledge, Almohamad and Duffuaa in
(Almohamad and Duffuaa (1993)) proposed the first linear pro-
gramming formulation of the weighted graph matching prob-
lem. It consists in determining the permutation matrix mini-
mizing the L1 norm of the difference between adjacency matrix
of the input graph and the permuted adjacency matrix of the
target one. More recently, Justice and Hero (Justice and Hero
(2006)) also proposed a binary linear programming formulation
of the graph edit distance problem. GM is treated as finding a
subgraph of a larger graph known as the edit grid. The edit grid
only needs to have as many vertices as the sum of the total num-
ber of vertices in the graphs being compared. One drawback of
this method is that it does not take into account attributes on
edges which limits the range of application.

3.1.2. Approximate error-tolerant graph matching approaches
The main reason that motivated researchers to solve approx-

imately the problem of error-tolerant GM comes from the com-
binatorial explosion of the exact error-tolerant approaches. Nu-
merous variants have been proposed for a faster but suboptimal
computation of GM. One of the most well-known modifications
of A∗, called beam-search (BS), has been proposed in (Neuhaus
et al. (2006)). The purpose of BS is to prune the search tree
while searching an optimal edit path. Instead of exploring all
edit paths in the search tree, the x most promising partial edit
paths are kept in the set of promising candidates OPEN.

In (Riesen (2009)), the GM problem is reduced to a linear
sum assignment problem which can be solved in O(n3) where
n is equal to |V1|+ |V2|. A cost matrix is involved in the process
to gather vertex-to-vertex costs 2. In the rest of the paper, this
algorithm is referred to as BP. Recently, a new version of BP
for computing GM, called fast bipartite method (FBP), has been
published in (Serratosa (2015)). Such an algorithm obtains the
same distance with lower computation time as it reduces the
size of the cost matrix. Since BP and thus FBP consider local
structures rather than global ones, the optimal GM is overesti-
mated. Recently, researchers have observed that BP’s overesti-
mation is very often due to a few incorrectly assigned vertices.
That is, only a few vertex substitutions from the next step are
responsible for the additional (unnecessary) edge operations in
the step after, thus resulting in the overestimation of the optimal
edit distance. In (Riesen and Bunke (2014)), BP was used as an
initial step. Then, pairwise swapping of vertices (local search)
was done aimed at improving the accuracy of the distance ob-
tained so far. In (Riesen et al. (2014)), a search procedure based
on a genetic algorithm was proposed to improve the accuracy
of BP. In (Ferrer et al. (2015)), a beam-search version of BP

2It also partially integrates edge costs
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was proposed. This work focuses on investigating the influence
of the order in which the assignments were explored. These
improvements increase run times. However, they improve the
accuracy of the BP’s solution.

3.1.3. Synthesis of Graph Matching methods
From the aforementioned sections, we can conclude that

only a few exact GM approaches have been proposed to post-
pone the graph size restriction (Justice and Hero (2006); Riesen
et al. (2007); Abu-Aisheh et al. (2015a)). Some approximate
GM methods (e.g., Riesen (2009); Serratosa (2015); Leordeanu
et al. (2009); Zaslavskiy et al. (2009)) have a polynomial run-
ning time in the size of the involved graphs and thus are much
faster than the optimal ones. In these types of algorithms,
increasing the time will not lead to the improvement in the
quality of the found solution. Moreover, the more complex
the graphs, the larger the error committed by these methods.
Graphs are generally more complex in cases where neighbor-
hoods and attributes do not allow to easily differentiate between
vertices. On the other hand, some other approximate algorithms
(e.g., Riesen and Bunke (2014); Riesen et al. (2014); Ferrer
et al. (2015)) find several solutions during the matching pro-
cess which resembles the behavior of anytime algorithms. In
this paper, we propose to define a third category for anytime
GM methods that will allow a trade-off between the valuable
properties of both the previously existing types of GM meth-
ods: speed for suboptimal methods and quality of the provided
solution for optimal ones. We believe that such GM methods
are of great interest as we shall demonstrate in the rest of the
paper.

3.2. Anytime tree-search based algorithms

Tree-search based GM algorithms are considered as anytime
algorithms since they can find several solutions while exploring
their search space. Thus, in this section, these algorithms will
be surveyed aiming at proposing an anytime GM method.

3.2.1. Time bottleneck and anytime algorithms
The most common approach to transform a search algorithm,

such as A∗, into an anytime algorithm consists of the following
three changes (Hansen and Zhou (2007)).

• A non-admissible evaluation function, lb0(p) = g(p) +
h0(p), where the heuristic h0(p) is not admissible, is used
to select the nodes for expansion in an order that al-
lows good, but possibly suboptimal, solutions to be found
quickly.

• The search continues after a solution is found, to find im-
proved solutions.

• An admissible evaluation function (i.e., a lower-bound
function), lb(p) = g(p) + h(p), where h(p) is admissible,
is used together with an upper bound (UB) on the optimal
solution cost given by the cost of the best solution found so
far (UB), to prune the search space and detect convergence
to an optimal solution.

On the basis of this idea, many researchers have explored the
effect of weighting the terms g(p) and h(p) in the node evalua-
tion function differently, to allow A∗ to find a bounded-optimal
solution with less computational effort. In the approach called
Weighted A∗ (WA∗) (Likhachev et al. (2008)), the node evalu-
ation function is defined as lb0(p) = g(p) + ω*h(p), where the
weight ω is a parameter set by the user. If ω is greater than 1.0,
the search will not be admissible and the first solution found
may not be optimal, although it is usually found much faster.
The weighted heuristic accelerates the search for a solution be-
cause it makes tree nodes closer to a goal seem more attractive,
giving the search a more depth-first aspect and implicitly adjust-
ing a trade-off between search effort and solution quality. The
weighted heuristic search is more effective for search problems
with close-to-optimal solutions, and can often find a close-to-
optimal solution in a small fraction of the time it takes to find
an optimal solution. Some variations of the weighted heuristic
search have been studied. For example, an approach called dy-
namic weighting adjusts the weight with the depth of the search
(Köll and Kaindl (1992)). Moreover, a learning real-time A∗

(LRTA∗) was proposed in (Shimbo and Ishida (2003)).

3.2.2. Memory bottleneck and anytime algorithms
The scalability of A∗ is limited by the memory required to

store the lists of open path inside the search tree. Such a fact
limits the scalability of anytime A∗. In the conception of our
new GM algorithms, we have to take care of this point and try
to create a linear-space anytime algorithm.

Considering the memory aspect, depth-first search (DFS) al-
gorithms are very effective for some tree-search problems since
they overcome the memory bottelneck from which A∗ methods
suffer. DFS algorithms are anytime by nature (Zhang (1998)),
as they systematically explore the leaf nodes of a state space.
They quickly find a solution that is suboptimal, and then con-
tinue to search for an improved solution until an optimal so-
lution is found. They can even use the cost of the best solu-
tion found so far as an upper bound to prune the search space.
Therefore, the DFS strategy seems to correspond to a sim-
ple and efficient approach for converting an optimal GM algo-
rithm into an anytime one that offers a trade-off between search
time, memory consumption and quality of the provided solution
when more time is available.

Several variants of A∗ have been developed that use less
memory, including algorithms that require only linear space in
the depth of the search space. One of the most known algo-
rithms is recursive best-first search (RBFS) in (Korf (1993)).
RBFS is a weighted heuristic search algorithm that expands
frontier nodes in best-first order. It saves memory by deter-
mining the next node to expand using stack-based backtracking
instead of selecting nodes from an open list that contains the
search tree nodes to be processed.

4. Proposed anytime graph matching algorithm

This section describes how we convert the arbitrary GM
problem into an anytime one. The algorithms that are dedicated
to solving the GM problem can produce an instant matching
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between two graphs. If they are given the luxury of additional
time, they can increase the precision of this matching. Any-
time algorithms find the first solution and continue the search
to improve it. Each time a new solution is found, it is saved
(or outputted). Our algorithm, referred to as anytime depth-
first (ADF), is an adapted version of the DF algorithm in (Abu-
Aisheh et al. (2015a)) in which important properties for anytime
algorithms are added and studied such as interruptibility, mono-
tonicity and measurable quality, see Section ??. The following
sections describe the main parts of this algorithm in detail.

4.1. Pre-processing

Before starting the branch-and-bound part, the algorithm ini-
tializes the important data structures to speed up the tree search
exploration. Preprocessing includes two steps: cost matrices
construction and vertex-sorting strategy.

4.1.1. Cost matrices
The vertex and edges cost matrices (Cv and Ce) are con-

structed, respectively. This step aims to speed up the branch-
and-bound part by getting rid of the re-calculations of the as-
signed costs when matching the vertices and edges of G1 and
G2.

A vertex cost matrix Cv, whose dimension is (n+2)× (m+
2), is constructed as follows:

Cv =

c1,1 ... ... c1,m c1←ε c1→ε

... ... ... ... ... ...

... ... ... ... ... ...
cn,1 ... ... cn,m cn←ε cn→ε

cε→1 ... ... cε→m ∞ ∞

cε←1 ... ... cε←m ∞ ∞

where n is the number of vertices of G1 and m is the number
of vertices of G2 .

Each element ci, j in the matrix Cv corresponds to the cost of
assigning the ith vertex of graph G1 to the jth vertex of graph
G2. The left upper corner of the matrix contains all possible
vertex substitutions, whereas the right upper corner represents
the cost of all possible insertions and deletions of the vertices
of G1, respectively. The left bottom corner contains all possible
vertices insertions and deletions of vertices of G2, respectively
whereas the bottom right corner elements cost is set to infinity
which concerns the substitution of ε− ε.

Similarly, Ce contains all the possible substitutions, deletions
and insertions of the edges of G1 and G2. Ce is constructed in
the very same way as Cv.

4.1.2. Vertex-sorting strategy
To speed up the exploration of the search tree while search-

ing for the optimal GM, it is important to sort V1 to start
with the most promising vertices. To sort V1, the algorithm
applies BP (Riesen (2009)) to obtain a suboptimal edit path
(EP= {ui→ vk, · · · ,un→ vl , · · ·} with u∈V1 and v∈V2). From
this edit path, vertex-to-vertex mapping costs are used to sort V1
in ascending order. BP (Riesen (2009)) outputs an initial edit
path EP and its distance dBP which can then be used as a first
UB. Then V1 is sorted according to the matching weight Ci j of

the cost matrix C. That is, each ui is given a weight that corre-
sponds to the matching cost of ui→ vik ∈ EP.

4.2. Branch-and-bound

4.2.1. Tree node structure
Each tree node p in the search tree contains information

about the matched vertices and edges of G1 and G2 in p. It also
contains, the estimated future cost, referred to as h(p) Riesen
et al. (2007), from node p which does not overestimate the cost
of the complete solution. This function is described in Section
3.1.1. It includes g(p) which the total cost of matched vertices
and edges is included. Both h and g depend on the attributes
as well as on the structure of the involved sub-trees. The cost
functions involved with each dataset permit to calculate the in-
sertions, deletions and substitutions of vertices and/or edges.

4.2.2. Branching and selection strategies
The solution space is organized as an ordered tree which is

explored in a depth-first way. In DFS, each node is visited just
before its children. In other words, when traversing the search
tree, one should travel as deep as possible from node i to node j
before backtracking. The exploration starts with the root node.
In order to generate the children of tree nodes, each tree node
p takes the next most promising vertex ui in sorted V1 and gen-
erates some edit paths by matching ui with all the non-matched
vertices of G2 in addition to deleting ui (i.e., ui → ε). After-
wards, the children of p are sorted in an ascending manner ac-
cording to lb(q). Then these children are added to OPEN. Since
the children are sorted in ascending order, the exploration is
achieved by choosing the first element in OPEN to be explored
and so on. Thus, each node is visited just before its children.

4.3. Reduction strategy

As in A∗, pruning, or bounding, is achieved thanks to h(p),
g(p) and a global UB obtained at the node leaves. Formally,
for a node p in the search tree, lb is taken into account and
compared with UB. That is, if g(p)+h(p) is less than UB then p
can be explored. Otherwise, the encountered p will be pruned
from OPEN and the next promising node is evaluated and so on
until the best UB is found that represents the optimal solution
of ADF or until the process is interrupted by the timer since it
is an anytime algorithm. This algorithms differs from A∗ since
at anytime t, in the worst case, OPEN contains at most |V1|.|V2|
elements and hence the memory consumption is not exhausted.

4.4. Upper and lower bounds

The estimation of h(p) should be done in a faster way than
the exact computation and should return a good approximation
of the true future cost. In our proposal, h(p) is calculated via
a bipartite heuristic Riesen et al. (2007). This is achieved by
mapping vertices the unprocessed vertices and edges of graph
G1 to the unprocessed vertices and edges of graph G2 such that
the resulting costs are minimal. On the basis of the cost ma-
trices Cv and Ce, Munkres’ algorithm (Munkres (1957)) can be
executed separately on vertices and edges. This algorithm finds
the optimal, i.e., the minimum cost, assignment of the elements
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(vertices or edges) represented by the rows to the elements rep-
resented by the columns of matrix Cv or Ce in polynomial time.
That is, in the worst case the maximum number of operations
needed is O((n+m)3), where (n+m) is the dimensionality of
the cost matrix. While traversing the search tree, UB is replaced
by the best UB found so far (i.e., a complete path whose cost
is less than the current UB). After finishing the traversal of the
search tree (i.e., when OPEN equals {φ}), the algorithm outputs
the best UB as an optimal solution of ADF. Encountering up-
per bounds when performing a depth-first traversal efficiently
prunes the search space and thus helps in finding the optimal
solution faster than A∗ does.

4.5. Anytime Properties

The time needed to find the first solution is called setup time.
One has to decide whether having a long setup time and thus
finding a satisfactory first solution for users or taking a shorter
setup time and thus finding a less satisfactory first solution.In
our algorithm, an initial solution can be computed using BP in
cubic time or it can remain unset until the first branch is ex-
plored in quadratic time and so a complete solution is exported.
This choice can be seen as a parameter. Other decisions can
also be done but they are out of the scope of this paper.

ADF guarantees to find the optimal solution of GM(G1,G2)
if no time limit is set. It also regularly provides better and better
solutions and exports all of them while exploring the search
tree.

One should also notice that having a sufficiently good first
solution can have an important impact on the time needed to
find the next better solutions. That is, the setup time and the
convergence slope are closely coupled.

4.6. Pseudo code

As depicted in Algorithm 1, ADF starts by the initialization
and pre-processing steps (lines 1 to 3). First, Cv and Ce are
generated (line 2). Second, UB is set to ∞ or calculated by BP
(line 3). Third, V1 is sorted according to the distances obtained
in the matrix of BP (line 3) resulting in a new list, referred to
as V̄1. Note that if BP is not used as an upper bound, V1 will
not be sorted. The traversal of the search tree starts by gener-
ating the root’s children (line 4). The most promising vertex
u1 is obtained from V̄1. Consequently, vertex u1 is substituted
with all the vertices in V2. In addition, the deletion of u1 is also
generated (i.e., u1→ ε). The children (i.e., mappings between
vertices) are sorted in ascending order of g+h and then inserted
in OPEN (line 4). Since the children inserted in OPEN are or-
dered, the most promising child pmin at the deepest level in the
search tree will be first selected (line 6). The children of pmin
are generated by substituting vertex ui ∈V1 with the unmatched
vertices in V2 in addition to its deletion (line 7). On the other
hand, if all the vertices of V1 are matched, all the unmatched
vertices of V2 will be inserted in pmin (line 9). UB and BestE-
ditPath are updated whenever a better solution is encountered
(lines 10 to 13). Note that the output is available at anytime
after the setup time. As long as the time is available and there
are nodes to explore in OPEN, the exploration step continues
(line 5). Note that edge operations are taken into account in the

matching process when substituting, deleting or inserting their
corresponding vertices.

Algorithm 1 Anytime depth-first GM algorithm (ADF)
Input: Non-empty attributed graphs G1 = (V1,E1,µ1,ζ1))
and G2 = (V2,E2,µ2,ζ2) where V1 = {u1, ...,u|V1|}, V2 =
{v1, ...,u|V 2|}, µ and ζ are the attributes associated with the ver-
tices and edges, respectively.
Output accessible at anytime: UB = the current minimum edit
path cost and BestEditPath = sequence of edit operations.

1: Initialization: OPEN← /0, BestEditPath← φ, UB← ∞

Pre-processing:

2: Generate Cv, Ce
3: Optional: {Steps below are optional}

(UB, BestEditPath)← BP(G1,G2)
Export(UB,BestEditPath)
V̄1← Sort(V1) {in ascending order of BP(G1,G2)}

Branch-and-Bound:

4: root← φ

Generate the children of root, sort them in ascending order
of g+h and insert them into OPEN

5: while OPEN != /0 do
6: Take the first element pmin and remove it from OPEN
7: Generate the children of pmin, sort them in ascending or-

der of g+h and insert them into OPEN
8: if pmin has no children then
9: Insert all non-matched vertices of V2 into pmin

10: if g(pmin)< UB then
11: UB← g(pmin), BestEditPath← pmin
12: Export(UB,BestEditPath)
13: end if
14: end if
15: end while

5. Experiments

5.1. Included methods
Table 1 summarizes the methods included in the experiments.

The state-of-the-art methods were not anytime methods. How-
ever, for the experimental evaluations, we added the time in-
terruption property to each of them. Several versions of ADF
and BS are tested where methods with LB refer to the versions
where h(p) is integrated. In addition, ADF-UB indicates that
the first upper bound (line 3 in Algorithm 1) is integrated. See
Section 4.4 for the description of the lower and upper bounds.

In all the aforementioned methods, memory consumption is
not exhausted. The memory complexity of ADF and ADF-
UB algorithms is relatively small thanks to the DFS algorithm
where the number of pending nodes is |V1|.|V2| in the worst
case. A∗ could have been added also to the experiments, how-
ever, its memory complexity is exponential and, thus, it will not
be able to keep exploring the search tree and thus outputting
feasible (i.e., complete) solutions before timing out. We also
implemented the algorithm of (Justice and Hero (2006)) which
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Table 1: Methods included in the experiments.

Acronym Reference Details
ADF This paper AnyTime GM

BS-1 and BS-100
Neuhaus et al.

(2006)
beam-search with OPEN size =

1 and 100, respectively
BP Riesen (2009) The bipartite GM

FBP Serratosa (2015) Fast BP

SBP-Beam
Ferrer et al.

(2015)

Sorted beam-search BP where
the sorting strategy is

deviation-inverse

JHBLP
Justice and Hero

(2006) A binary linear GM formulation

is then solved via the CPLEX-12 mathematical solver. For all
graph comparisons, it was unable to output feasible solutions
in 500 milliseconds (ms) or less. This is due to the setup time
needed by the mathematical solver, which takes more time to
solve the continuous relaxation before starting the tree search
exploration. This algorithm is used as a ground truth for PAH.

5.2. Databases

Seven datasets are integrated in the experiments: (GREC,
Mutagenicity, Protein, CMU, PAH and two synthetic datasets).
Three of them (i.e., GREC, Mutagenicity and Protein) were
taken from the IAM Graph Database Repository (Riesen and
Bunke (2008)). The CMU dataset can be found at the CMU
website (CMU. (2013)). These four datasets have been re-
cently included in a new repository, called GDR4GED (Abu-
Aisheh et al. (2015b)), that aims to evaluate the scalability of
GM methods. GDR4GED is annotated with GM ground truth.
For more information, visit IAPR-TC15’s website 3. Besides
these datasets, a chemical dataset, called PAH, was taken from
GREYC’s Chemistry dataset repository 4. Moreover, a new
synthetic dataset was generated for experimental evaluations.
This dataset was created using the Erdos-Renyi model (Erdős
and Rényi (1959)). The reason for having chosen such datasets
is to have a variety of graph attributes (i.e., numeric and/or
symbolic attributes on vertices and/or edges or non-attributed
vertices and/or edges) and densities (i.e., high and low density
graphs). In addition, the number of vertices in these datasets
starts from 20 vertices up to 200 vertices.

Table 2 summarizes the characteristics of all the selected
datasets.

Table 2: The characteristics of the datasets included in the experi-
ments.

Dataset GREC-
20

MUTA-
70

Protein-
40

CMU
houses PAH Synthetic

(0.1)
Synthetic

(0.4)

Vertex
labels

x,y coor-
dinates

Chemical
symbol

Type and
amino
acid

sequences

None None None None

Edge labels Line type Valence Type and
length

Distance
between
points

None None None

vertices 20 70 40 30 20.7 200 200
edges 21.6 73.8 78.3 79 24.4 2013 7941.8
Max

vertices 20 70 40 30 28 200 200

Max edges 22 75 95 79 34 2095 8089

3https://iapr-tc15.greyc.fr/links.html
4https://brunl01.users.greyc.fr/CHEMISTRY/index.html

Each dataset has specific edit cost functions. Two non-
negative meta parameters are associated to GM: (τvertex and
τedge) where τvertex denotes a vertex deletion or insertion costs
whereas τedge denotes an edge deletion or insertion costs. A
third meta parameter α is integrated to control whether the
edit operation cost on the vertices or on the edges is more im-
portant. Table 3 demonstrates the cost functions of each of
the included datasets as well as their meta parameters. Note
that the synthetic datasets, the parameters were taken from the
dataset Letter-Low in IAM (Riesen and Bunke (2008)). The
error-tolerant GM matching is more difficult when there are no
attributes on vertices and/or edges or when structures are re-
dundant. For instance, matching the graphs of PAH is difficult
since it has completely unattributed graphs. On the other hand,
matching the graphs of GREC is easier since it is rich with
attributes. Note that in our implemented version of FBP, the
three restrictions on the edit costs were not included (Serratosa
(2015))

Table 3: The cost functions and meta parameters of the datasets.

Dataset GREC-
20

MUTA-
70

Protein-
40

CMU
houses PAH Synthetic

(0.1)
Synthetic

(0.4)
τvertex 90 11 11 ∞ 3 0.3 0.3
τedge 15 1.1 1 - 3 0.5 0.5

α 0.5 0.25 0.75 0.5 0.5 0.75 0.75
Vertex

substitution
function

Extended
euclidean
distance

Dirac
function

Extended
string edit
distance

0 0 L2 norm L2 norm

Edge
substitution

function

Dirac
function

Dirac
function

Dirac
function

Dirac
function 0 Dirac

function
Dirac

function

Reference
of cost

functions

Riesen.
(2009)

Riesen.
(2009)

Riesen.
(2009)

Zhou and
la Torre
(2012)

Gauzere
et al.

(2012)
- -

In the experiments, we selected 10 graphs from each of
GREC, MUTA and Protein. These graphs represent the maxi-
mum number of vertices that was found on each of the datasets.
The graphs can be downloaded from the GDR4GED repository
(Abu-Aisheh et al. (2015b)). On this basis, 100 pairwise com-
parisons were carried out on these datasets. As for CMU, one
hundred eleven images in total are publicly available in (CMU.
(2013)). Six hundred sixty comparisons were carried out. On
PAH, 10 graphs whose size varies from 17 to 24 vertices were
also selected and, thus, it also results in 100 comparisons. Two
synthetic datasets each of which had 10 graphs of 200 vertices
were created using the Erdos-Renyi model (Erdős and Rényi
(1959)). Two density graph families can be found: low density
(i.e., 0.1) and high density (i.e., 0.4). These densities refer to the
probability of having an edge between two vertices. The pur-
pose of such a database was to see how GM methods behave
when having low, or high, density graphs. The meta parame-
ters of the synthetic datasets were taken from the Letter dataset
(Riesen and Bunke (2008)).

5.3. Environment
The evaluation were conducted on a computer with a 24-core

Intel i5 processor at 2.10GHz and 16 GB of memory. A mem-
ory constraint was set to 1GB. The time constraint was varied
from 5 ms to 500 ms on all databases.

5.4. Protocol
The objective of the experiments was to study the trade-off

between the quality and the time of all the methods so as to in-



8

vestigate the matching accuracy in function of the time. Each
comparison was tested under a given time and memory con-
straints.

To evaluate ADF, we chose a deviation metric to compare
all the included methods, see (Abu-Aisheh et al. (2015b)) for
more details about the GM evaluation metrics. We compute the
error committed by each method m over the reference distances.
For each pair of graphs matched by method m, we provide the
following deviation measure:

dev(Gi,G j)
m =
|d(Gi,G j)

m−RGi,G j |
RGi,G j

, ∀(i, j)∈ J1,GK2,∀m∈M

(1)
where G is the number of graphs. d(Gi,G j)

m is the distance
obtained when matching Gi and G j using method m and RGi,G j

corresponds to the best known solution. For the IAM datasets,
we used the ground truth of (Abu-Aisheh et al. (2015b)) as a
reference. The humans’ ground truth was used as a reference
for CMU. On the other hand, for PAH, optimal solutions were
provided by carrying out the computations using the algorithm
in (Justice and Hero (2006)).

In the experiments, the average deviation was calculated per
dataset where the x-axis represents the time limit t and the y-
axis shows the average deviation within t. If a method m did
not output a solution before timing out, the deviation was set to
100%.

We also measured the setup time needed by ADF to output
an initial solution (i.e., the first complete solution found when
exploring the search tree). Only ADF, ADF-UB, BS-100 and
SBP-Beam were able to find one or more solutions while ex-
ploring the search tree. This time was compared with the time
taken by BS-1, BP and FBP which outputted one and only one
complete solution. Hereafter, this measured time will be called
”setup time”.

6. Results and discussions

Figure 2 illustrates the deviation on GREC-20 when varying
the available time up to 20 ms and 500 ms (see Figure 2). One
can observe that ADF was the fastest method in outputting solu-
tions as it does that just after few milliseconds, followed by BP.
Under small time constraints, FBP was less precise than BP.
However, when we increased the time, the gap between them
shrunk and finally they got the same precision starting from
100 ms. Concerning BS-100, for most of the comparisons, it
was unable to output feasible solutions before violating the time
constraints.

On Protein-40, as illustrated in Figure 3, as on GREC-20,
ADF was the fastest method to output solutions, followed by
BS-1 and BS-100. FBP and BP solved the linear assignment
problem with the help of the Hungarian and Munkres’ methods,
respectively. This fact prevents them from outputting solutions
rapidly for relatively large graphs when time matters. Since
ADF-UB computes BP as a first UB, its first solution is highly
dependent on BP. When we added more time, BP and FBP out-
putted feasible solutions. Unlike the latter methods, ADF-UB,
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Fig. 2: GREC Deviation: Left (up to 20 ms), Right (up to 500 ms).

BS-100 and FBP-Beam could still improve their solutions until
the algorithm was suspended.
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Fig. 3: Protein deviation: left (up to 40 ms), right (up to 500 ms).

Figure 4 shows the results on CMU. The same remarks as
on Protein can be seen; however, the deviation of BP and FBP
was high (see Figure 4(right)). On the other hand, ADF-UB
succeeded in improving the deviation as the time constraint in-
creased. On Protein and CMU, BS-100’s deviation was quite
high, as it did not find complete solutions before timing out.
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Fig. 4: CMU deviation: left (up to 40 ms), right (up to 500 ms).

As for MUTA-70, Figure 5(a) shows that when time matters,
FBP was surprisingly faster in outputting solutions, followed by
BP, SBP-Beam and ADF-UB. We have argued that MUTA has
low density graphs than Protein where the average |V |/|E| ratio
is 30.3/30.8 on MUTA and 32.6/62.1 on Protein, where |V | and
|E| are the total numbers of vertices and edges, respectively. For
this reason, solving the edges assignment problem on MUTA is
faster than Protein and, thus, FBP and BP were able to output
their solutions faster than ADF. After 40 ms, both ADF and
ADF-UB beat BP. For instance, when CT was equal to 400 ms,
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the deviation of BP was 45.24% whereas the deviation of ADF
and ADF-UB was 35.12% and 33.02%, respectively.
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Fig. 5: MUTA deviation: left (up to 40 ms), right (up to 400 ms).

To study the effect of h(p), mentioned in Section 3.1.1, on
ADF and BS-1, we carried out an additional experiment on
MUTA-70 with plenty of time available. h(p) was calculated
using BP which is applied on the unprocessed vertices and
edges analogously. Thus, several versions of ADF and BS were
tested where methods with LB refer to the versions where the
lower bound was integrated. The results in Figure 6 demon-
strates that, after 4000 ms, BS-100-LB, ADF-LB and ADF-UB-
LB had the smallest deviation. Among these algorithms, ADF-
UB-LB was the most accurate. One can conclude that with more
time, h(p) is important since it helps in converging faster to the
optimal solution. BS-100 was also unable to output feasible so-
lutions owing to memory saturation.

●

0 1000 2000 3000 4000 5000 6000

0
20

40
60

80
10

0

Time (ms)

D
ev

ia
tio

n 
(%

)

●

● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

FBP
BP
BS−1
BS−100
BS−1−LB
BS−100−LB
ADF
ADF−UB
ADF−LB
ADF−UB−LB
SBP−Beam

Fig. 6: MUTA Deviation: (up to 6000 ms).

Figure 7 demonstrates the results on PAH. Since this database
contains unattributed graphs, BP-like algorithms had a very
high deviation as they failed in finding a satisfactory matching.
Thus, ADF and ADF-UB got the best deviations (i.e., 31.26%
and 30.44%, respectively). On this dataset, SBP-Beam was
more precise than BP, where the gap between them was 8%.

For a better understanding of the performance of anytime
GM algorithms, Table 4 directs the readers’ attention to the av-
erage setup time, (see Section 4.1). We studied the average
setup time on two databases on which anytime algorithms be-
haved differently. On Protein, ADF proved to be faster than the
approximate algorithms. On average, ADF only needed 12.88
ms to output a solution. However, this was not the case on
MUTA where FBP was the fastest (only 15.60 ms on average).

We have previously argued that FBP and BP are faster when
graphs have low density whereas ADF is faster when graphs
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Fig. 7: PAH deviation: up to 500 ms.

Table 4: Average setup time and deviation on Protein and MUTA

Protein
SFBP BP BS-1 ADF ADF-UB

Setup time (ms) 47.60 49.81 12.10 12.88 50.02
Deviation 4.344 1.789 31.597 31.490 1.789

MUTA
Setup time (ms) 15.60 17.55 20.02 24.70 18.35

Deviation 37.874 42.254 43.169 44.169 42.254

are have high density. To prove that, we carried out some ex-
periments on the synthetic database, (see Section 5.2). Table 5
shows that ADF was the fastest and the most precise algorithm
when increasing graph density.

7. Conclusion and perspectives

In the present paper, we have considered the problem of
error-tolerant GM computation under time and memory con-
straints. We presented a simple approach for converting an op-
timal algorithm of GM into an anytime one that offers a trade-
off between search time and solution quality. DFS algorithms
are anytime by nature. Thus, in this paper, we proposed an any-
time algorithm, referred to as ADF, that is based on a depth-first
GM algorithm (DF) in (Abu-Aisheh et al. (2015a)). DF does
not consume so much memory. It is also able to find an ini-
tial, possibly suboptimal, solution quickly and then continues
to search for improved solutions until it converges to the opti-
mal solution. In order to convert DF into an anytime one, DF
is equipped with the appropriate interruption criteria and the
output is made available at anytime t.

The simplicity of ADF makes it very easy to use. It can be
used not only when the optimal solution is desired, but also
when time is limited. In the experiments, we focused on both
the deviation when varying the timeout and the minimal time
needed by anytime algorithms to get the first solution on dif-
ferent graph datasets. Results showed that there is a trade-off
between time and quality. FBP and BP were faster when graphs

Table 5: The average setup time and deviation on the synthetic
database

Density=0.1 Density=0.4
FBP BP ADF FBP BP ADF

Setup Time (ms) 7169 7984 2146 383526 391391 5365
Deviation (%) 0 2.2 0 10.4 34.5 0
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had low density whereas ADF was faster when graphs were
denser. It is remarkable that anytime algorithms are also ef-
fective when we have some additional time, which guarantees
to find better solutions. Merging ADF and BP as in ADF-UB is
also beneficial since ADF can improve the solutions found by
BP. On the selected datasets, experiments showed that ADF and
ADF-UB outperformed all approximate methods by only wait-
ing for 100 ms per graph comparison. This conclusion brings
into question the usual evidences that claim that it is impossible
to use optimal methods in real-world applications when match-
ing large graphs. We conclude that ADF provides an attrac-
tive approach to challenging GM problems, especially when the
time and memory available are limited or uncertain and when
we are interested in improving the best solution found so far.

To the best of our knowledge, this work was the first attempt
to introduce anytime algorithms for GM. In future work, more
experiments will be conducted to understand better the effect
of graph’s structures on approximate and anytime algorithms.
Moreover, others heuristic search methods or anytime version
(like CBS (Zhang (1998))) can be adapted to solve the GM
problem and could be compared with the method proposed in
the paper. We will also propose solutions for anytime GM al-
gorithms that can be interrupted (stopped) automatically when
the quality of the actual solution is sufficient for the targeted
application or when, even with much more time, the quality of
the solution will not increase significantly.
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