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Abstract
We compute the rate of convergence of forward, backward and central finite difference #-schemes for
linear PDEs with an arbitrary odd order spatial derivative term. We prove convergence of the first or second
order for smooth and less smooth initial data.

1 Introduction

We study in this paper linear partial differential equations with an arbitrary odd order spatial derivative
term, which read

Bu+ 0Py =0, (1)

with p € N. The particular case p = 0 corresponds to the advection equation with a unit constant speed
Otu + Oyu = 0 and describes the passive advection of scalar field carried at constant speed. The case p = 1
leads to Airy equation dyu + d3u = 0 that models the propagation of long waves in shallow water [7] and
derives from a linearization of the Korteweg-de Vries equation [3]. We especially focus on the initial value
problem where (1) is considered with the initial condition u|,_, = uo. We deal with the numerical approach
of this Cauchy problem and study the convergence of several finite difference schemes. Our concern here is
to find a rate of convergence without assuming the smoothness of the initial data.

For this purpose, we use the finite difference method to discretize (1) in R x [0,7]. We choose to deal with
a uniform time and space discretization. Let At > 0 and Az > 0 be the time and space steps, we note

t" = nAt for all n € {0,..., N} where N = | Z;] and x; = jAz for all j € Z. We denote by (v?)(j ) the
discrete unknowns defined by
VT OAL (D) = 07 — (1 - 0)AL (DIT) T V(jn) € Z x {0, N},
0 1 Tjt1 ' (2)
U= AL ., uo(y)dy,Vj € Z,
with
2p+1 (2p+1)(_1)k
2p+1 M 2p+1, \ n
(D+ U)j = (D" u)j = Z W%,kﬂﬂ (forward scheme), (3a)
k=0
2p+1 (2p+1) (_1)k
or (szﬂrlv);‘ - (szJrlv);l = Z Wv;_kﬂ- (backward scheme), (3b)
k=0
or (Dfpﬂv): = (Dfpﬂv): = % (Do + Dipﬂv): (central scheme). (3c)

The parameter 6 belongs to [0, 1] and we recover the explicit scheme for § = 0 and the implicit scheme for
0=1.
Notations 1. We denote by H*(R) (with s > 0) the Sobolev space defined with the norm |[ul|y: &) =

1
(o M+ 1€17)7 1@ (&)]* d€) % , where @ is the Fourier transform of u. Moreover, we use the standard (> (0, N; €2 (Z))
space whose norm is ||'UHZ(,Q(O N2 (z) = SUP /> ez Az|v}|?. Lastly, we note A < B when A < CB

n ¥

ne{0,..,N
where C' is a constant independent of Az and At.
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2  Order of accuracy for an initial datum in H*"%(R)

We hereafter find some condition on 6, At and Az for the schemes to be consistent and stable, to conclude
the convergence study according to the Lax-Richtmyer theorem [6].

2.1 Consistency estimate

In Sect. 2, we suppose the initial datum regular enough to compute all the needed derivatives and the Taylor
expansions up to the desired order. Indeed, supposing ug regular is sufficient to ensure the same regularity
for u(t,.) for all ¢t € [0,T] because of the following result.

Remark 1. Let u be a solution of (1), then by linearity of the equation all the derivatives of u verify (1) too
and by Fourier transform, the L?—norm of all its derivatives are conserved : ||0Fu(t, Mzw) = |\8fuo||L2(R>,

for all k € N. Thus, uo € H*?*2(R) smplies u(t,.) € H***2(R), V¢ € [0,T].
Definition 1. For all (j,n) € Z x {0,.., N}, we note (ua)j = ~ [
of the Cauchy-problem (1) from wo. For all (j,n) € Z x {0, .., N}, the consistency error is defined as

o (@A)l = (ua)] n "
g = O )] (g (1) (D2 )
with D2P*" defined by (3a)—(3c).

Proposition 1. Assume uo € H”T*(R) (and uo € H**3(R) if @ = %) then, for the forward or backward
finite difference schemes (3a) and (3b), the following consistency inequality holds

It y)dy with u the exact solution
J

1
llelleoe (0,363, 27) S At ’5 - 9’ 192" P uolliz my + AllO" uolluae) + A% |02 ol g, -

For the central finite difference scheme (3c), the consistency inequality is as follows

1 Ap+2 2 2p+3 2 6p+3
lellomqo gy S 3t |5 = 0] 102 unlhce) + Aa%02* uolhace) + A (|08 |-

Before proving the previous result, we state a useful lemma.

Lemma 1. For all £ and p in N, there exists £ €] — p,p + 1 such that

0 if 0 <2p+1,
2p+1
2p+ 1 i if £=2p+1,
Z(pk )(—1)’“<p—k+1f= ; He=e
k=0 .

L > 2p 41,
@2 o=

Proof of Lemma 1. Let (xj—p,...,Tj4+p+1) be 2p + 2 points regularly spaced of h, we recall the divided
difference of order 2p + 2 of a smooth function f :

2;:‘—1 2p+1 -1 kf Lo .
(2p+ DI [Tjmpy ooy Tjppyr] = ZE=C 6 )}(LQH)I (@ rrisn), (4)

Moreover, we recall the existence of £ €lmin(x;_p, ..., Zj4p+1), max(zj_p, ..., Tj4p+1)[ such as

2P+ D f[zj—py oy Tjapr1] = FEPTV(E).

For more details, please refer to [4]. Lemma 1 is a consequence of the two previous equations with f : y — y°,
h=1,j=0and z; =i for i € Z.
O

Proof of Proposition 1. For ug € H*”*2 (R) and for the forward finite difference scheme, one has
N n 2p+1 (2p+1 (_1)k 1 Tj41
(D%pﬂua)j = (DipHuA)j = Z % / u(t",y+ (p—k+ 1)Az)dy | .

Ag2rtl Az
k=0

Tj



Using a Taylor expansion (in space) up to order 2p + 2 and exchanging the two sums inside leads to

g 20+l o0 m 2p+1 (2p+1 k LA
n 1 i+l obu(t™,y) O (B (=D (p — k+ 1) Azf)
2p+1 _ T ) k=0 k n
(DY ua); = M/ g £! Agerti dy + (Re); ®)
where
B /:r]+1 /y+(p—k+1)Az 83p+2u(tnjz) iz:(-)l (217:1) (71)k(y + (p —k+ 1)Aaj _ Z)2p+1 dod
Bi)i = a5 2p+ 1) Az2r+ v

For simplicity, we will only use HR’_f_Hzsz < Axl||92P 2 u(tm, llL2®)- Equation (5) is simplified thanks to
Lemma 1. Eventually, we obtain (DipHuA): = Aix f:;?“ 2Pyt y)dy + (R+)?. Similarly, by adapting
the previous computation, one has

n 1 zj41 i1
(D ua) ™ = Az (/ Tt g "7y)dy+/ A0 (", y)dy

gy

In order to compute the difference M that appears in Definition 1, we perform a Taylor expansion

(in time) up to order 3. Gathering all those results together yields

gntl

J

OO (s, y) (1" — s)dsdy) + (R4

gl n+1

_ 2
n At t - s) dsdy

Ti+1 P d Tji+1
€ 2A:c/ fu(t”,@)de + AtA / /
1

Tj41
+%A;/ i+ atazpﬂu( ", y) dy+ / i / 8,528§p+1u(s,y)(t”+1 — s)dsdy
T

+0(R4)] ™ 4+ (1-60) (R4)] -

8?U(s,y)(

The conclusion comes from the relation d,u(t, ) = —92P  u(t, ), the Cauchy-Schwarz inequality and the
conservation of the L%-norm (cf. Remark 1).

O

Remark 2. The regularity H'?**(R) (or H*"*(R) if 6 = 1) comes from the Taylor expansion in time and
is essential in this proof.

Remark 3. We follow exactly the same guidelines for the backward finite difference scheme. For the central

finite difference scheme, we need to perform a Taylor expansion in space up to order 2p + 3 to obtain
(DI rua) = 2 [0 0t y)dy + (Re)} , with ||R2 | S Az®[|07 uol |12 e) -

J Tj

2.2 Stability

We note, for all (U;‘l)jez and € € [0,1], V7 (€) = > ez vie? ™ in L2([0, 1]) with the equivalence of the norms
 Djen Aapff’ = Aa Jo

SEVn = e 2y,

Definition 2. A scheme is said to be stable in ¢a(Z), if there exists a constant C independent of At and
Ax such that, for ( )( ) verifying Equation (2),

2
5)’ d¢. Eventually, we define the shift operator S by Sv™ = (vite)jez thus,

I "“sz @ S (L+CAY |[v"]l3 (), Y €{0,... N}.

Proposition 2. For small At and Az, the stability under the Courant-Friedrich-Lewy condition (in short
CFL cond.) is explained in Table 1.

The following computation will simplify the proof of Proposition 2.
Lemma 2. One has, for all £ € [0,1],

ii-l(—jl (2p];|—1) (71)k6—2i7r(p—k+1)§ — e—iwf (*2'L’Si1’l(ﬂ'£))2p+1 )



p even

p#0

p odd

unconditionally unsta-
ble

stable under the CFL

cond.
At(l—20) <

Ag?Pt?
227

stable under the CFL
cond.

stable under the CFL

cond.
At(1—20) <

Ag2ptl
22p

unconditionally unsta-
ble

stable under the CFL
cond.

p=0
(Advection)
Forward stable under the CFL
cond.
scheme At(l —20) < —Ax
Backward stable under the CFL
cond.
scheme At(l —20) < Az
Central stable under the CFL
cond.
scheme At(1 —20) < 2CAz?

At(1-20) < 2082

24p

At(1-20) < 208277

24p

Table 1: Stability results for finite difference 6-schemes

Proof of Lemma 2. A proof may be found in Lemma 1.1 of [1].

Proof of Proposition 2. The forward finite difference scheme (3a) leads to

2p+1
— OAt 2p+1 i (p—
Urrie) <1+ (Az)2rt+t Z (pk )(_1)ke e k+1)£)
k

=0

2p+1
(1-0)at <2p+ 1) <—1>ke-2““°"““’£> forany & in [0,1]

= 671(5) (1 - (Az)2r+l k

The two sums are simplified thanks to Lemma 2. We finally obtain W({) = A (g)(ﬁ(g), with Ay the
amplification coefficient defined by, V¢ € [0, 1]

(1- 58 (i) (2sin(re) ")

A = . 6
O i e e i) .

We are looking for a condition ensuring |A4 (€)]* < (14 CAt)? for any £ in [0,1].

Case 1 : Assume that the parameter p of the spatial derivative is even. If p # 0, the stability condition leads to

ﬁ%(sin(w{))%(l —20) < —1, (cf. [1]) which is impossible for all £ € [0,1] : thus the forward finite

difference scheme is unconditionally unstable for p even and non zero. On the contrary, assuming p = 0
means that the forward finite difference scheme is stable under CFL condition : A#(1 — 20) < —Az
(which implies 6 > 1).

Case 2 : In this case, the parameter p of the spatial derivative is odd, then the sufficient condition becomes

(Aﬁﬁ(%in(wf))%(l —20) <1 (cf. [1]). Then the forward finite difference scheme is stable under

the CFL condition At(1 — 20) < 227 Table 1 is a straightforward consequence.

22p

O

Remark 4. For the backward finite difference scheme, the only difference in the amplification coefficient is
e'™ instead of e~ (in both the numerator and denominator). The parity needed for the stability changes
because of that difference. For the central finite difference scheme, e~ '™ is replaced with cos(m€) in the
numerator and the denominator of the amplifiaction coefficient.



2.3 Error estimates

We define the convergence error as follows.

Definition 3. For all j € Z and n € {0, ..., N}, for u the analytical solution of (1) from uo and (v}),n) the

numerical solution of (2), the convergence error is denoted by €} and defined by €} = < It y)dy—vy.
J

We are now able to state the main result of this section.
Theorem 1. For an initial datum uo € H****(R) (and uo € H?T3(R) if @ = 1), the error estimate of the

forward finite difference scheme (3a) (if p is odd) or of the backward finite difference scheme (3b) (if p is
even) satisfies

+ A0 |

1
||6HZOO(O,N;£2A(Z)) S At ‘5 - 9‘ HaﬁpﬁuoHU(R) + Az ‘ |8923p+2u0H]L2(R)

L2(R) ©
For the central finite difference scheme (3c), the convergence rate becomes
1 4p+2 2 || 92p+3 2 || 96p+3
||6He°°(o,N;é2A(z)) S At ’5 - 6’ ||z uOHLZ(R) +Aa” |07 “0HL2(R) + A |[05 u0HL2<R) :

All those results are gathered in Table /.

Proof. We suppose p odd, so we work with the forward finite difference scheme. The case p even, with the
backward scheme is similar. The definition of the convergence error implies

At 5 (¢).

enti(§) = A (e (§) + 1+ Ai?pt+1 e—im€ (—4)2p+1(2sin (€ )2+ €

1

T+ BB = i€ (—)2P L (25in(n€)) 2P T

One has < 1 and the stability condition gives ||A+HL00([O g <
Lee([0,1])

14 CAt. Thus, we obtain the following estimate, by discrete Grénwall lemma

el < (14 CAI s, + ALl iz < - < TPl + AT D[]
k=0

The initial condition v;), Eq. (2), together with the consistency error conclude the proof.

O

Remark 5. As expected, for the particular case 0 = % (the so-called Crank-Nicolson case), the rate of
convergence in time is better as illustrated in Table 4, provided uo € HPT3(R) (and not only in HPT2(R)).

3 Less smooth initial data

The previous order of accuracy is obtained for initial data uo at least in H***?(R) (or H**"?(R) if 6 = 1). In
this section, our aim is to relax this hypothesis to obtain rates of convergence for non-smooth initial data,
for example, up € H™(R) with m > 0. We detail only the case 6 # % but state the Crank-Nicolson results
in Table 4.

3.1 Initial datum in H™(R) with m > 2p + 2

As explained previously (Remark 2), the regularity of uo is determined by the Taylor expansion in time. A
first step is then to deal with the time term in error estimates. The following proposition provides that the
time error prevails until uo € H?? +2(]R)7 for which the spatial error becomes predominant.

Proposition 3. Assume ug € H™(R) with m > 2p + 2, and let us fix M = min(m, 4p + 2), then the error
estimate for the forward (respectively backward) finite difference scheme, if p is odd (respectively even), yields

M
lellgoe (0,362 2y) S AT H71185 w0 |z (x) + Azl uo L2 m)-

For the central difference scheme, we suppose m > 2p + 3, and one has (for the same M)

M
||e||goo(07N;g2A<Z)) S Atdet? Ha:iWUOHJL?(]R) + Am2\|8§”+3u0\|m2®.



Before proving this result, we introduce a regularization of ug thanks to mollifiers (@5)
C°°—function such that

e 0<x<1,

550" Let x be a

e x=1in[-1, 1] and supp(x) C [-1,1] (where supp is its support),

o x(=§) = x(&), v€ € [-1,1].
Let ¢ be such as 3 (€£) = x (¢) and for all § > 0, we define ¢° such that ;3 (&) = x(6¢), which implies
@ = %(,0 (3). Eventually,
e let u% be the solution of (1) with uj = uo * ¢° as initial data, where x stands for the convolution
product.

e We denote then ((v‘g)?)(n,j)e{opr}xz the numerical solution obtained by applying the numerical
scheme (2) from ug.

e The unknowns u and (v} )(n,j)e{0,...,N} xz are always the exact and numerical solutions starting from
the initial data wug.

Lemma 3. Assume uo € H"(R) with r > 0 then the following upper bound holds, for 0 < £ <r <s,

I T ey [ [l WO
oo b g, S0 Nuolliry and[ud]| S ol
Proof. Lemma 3 is proved in [2] and follows from very classical arguments (see also [5]). O

Proof of Proposition 3. We are now able to prove Proposition 3. The triangular inequality applied to the
convergence error gives ||e“\|ezA < F1 + E> + Es with

1
2

E, = ZA&U (Alx /:Hl u(t™,x) — ué(t",x)da:) , (7)

JEL J

1
2\ 2
B 1 [ o, sy
E, = j%Aa: <A$/zj u’(t", z)de — (v )]> , (8)

2

E; = ZAJJ ((v‘s)? - 1)?)2 . )

JEZ

Cauchy-Schwarz inequality together with the conservation of the L2-norm (Remark 1) yield E1 < ||uo —
ud||i2 ® S 6M||8£/Iuo\|ﬂ_z<R). The latest inequality comes from Lemma 3 with £ =0 and r = M.
For the E>—term, we use the previous section (Sect. 2). Indeed, E2 corresponds to the convergence error
for a smooth initial data ug. Hence, one has

Es S AtHaipHUoHL?(R) + AxHaierQuOH]l?(R) b 54p

w”ayw)ﬂw(m + Aﬂ?HaiHQUOHL?(R),

where the latest inequality comes from Lemma 3 with (s,7) = (d4p + 2, M) and (s,r) = (2p + 2,2p + 2).
Finally, the stability of the scheme gives the following estimate for E3 :

s 5
By =||(v°)" — 0|l < lug — uollr2)-

Thus, the convergence error is upper bounded by

At

M 2 2
sipraar|10x vollia) + Az[|0" ol ry-

n M| oM
"z S 671105 wollL2w) +
1
Proposition 3 comes from the optimal choice for ¢ : § = At%»+2.
O

Remark 6. The result for the central finite difference scheme is proved exactly in the same way, with the
same s, T, £ and .



3.2 Initial datum in H™(R) with m >0

The main result of this paper is summarized in the following theorem where the initial data uo has any
Sobolev regularity.

Theorem 2. Assume that ug € H™(R) with 0 < m, then, the forward (respectively backward) finite difference
scheme if p is odd (respectively even) has the following error-estimate

min(m,4p+2 min(m,2p+2

)\ i ) | omi
llellgme o, vie3 (z) S At 7 |02l 2y + Ax 2 || g |2 ).

The previous inequality becomes for the central finite difference scheme

min(m,4p+2 min(m,2p+3)

min(m,4p+2) . min(m,2p+3) )
el e (o,se5, 2y) S AT (OO | ) o AP i g .

The previous results are summarized in Table 4.

Proof. Here again, we suppose that p is odd, we thus detail the proof for the forward finite difference scheme.
We have already proved the case m > 4p + 2 in Sect. 2 and the case 2p + 2 < m < 4p + 2 in Subsect. 3.1.
Let us now focus on the case 0 < m < 2p + 2.

The proof of Theorem 2 follows the same guidelines as the proof of Proposition 3. Let uo € H™(R),
we regularize this initial data thanks to mollifiers (@5) 550 whose properties are listed in Subsect. 3.1. This
involves introducing the same new unknowns u’, u and ((v°)})(j,n)-

The convergence error (e}) is upper bounded by the same F1, E2 and F3, defined in (7)-(9). Lemma 3
with £ = 0 and r = m leads to By + E3 < 6™||07 uol|L2(r)-By definition ud € HF(R), Vk > 0, therefore
Proposition 3 applies with k = 2p + 2 for example and M = min(k, 2p + 2) = 2p + 2. It gives the following
estimate for Bz : Ez At;piillﬂagpﬁugﬂw(k) + Az||02P 2 ug ||z r) S (At?ppfﬁr11 + Am) 10272 uf || (). We

then apply Lemma 3 with s = 2p + 2 and r = m. Finally, it yields

(4,m)

ALFF 4 Ag

el S 6™ 102 ol ey + s

‘|8;nu”L2(R)-

1
+1 b=
The conclusion comes from the optimal choice § = (At 2T + A:E) e
O

Remark 7. The backward scheme, with p even, is very similar. The central finite difference scheme is
proved with the same method except for the variable k, which is taken k = 2p + 3 for that scheme.

4 Numerical results

In order to illustrate numerically the previous results, we perform two sets of examples : on the one hand,
we compute the numerical rate of convergence of various equations for a fix initial data and one the other
hand, the equation is fixed and we test different initial data.

In all examples, the computational domain is set to [0, 50] subdivided into J cells with

J € {800, 1600, 3200, 6400, 12800, 25600, 51200, 102400}

and the numerical simulation is performed up to time 7' = 0.1. Not to have a too restricted Courant-
Friedrich-Lewy condition, we implement the implicit scheme (6 = 1) and impose At = Az. The convergence
error is computed between the solution with J cells and a ’'reference’ solution with 2J cells in space.

Since the indicator function belongs to H*(R) for all s < %, we build test functions in H*(R) with s < 1 +k
by integrating k-times the indicator function. Such functions will be denoted in H%Jrk*(R).

The first test consists of fixing ug in H2~ or H3~ and compute the convergence rate for p = 0 (advection
equation), p = 1 (Airy equation) and p = 2. The numerical results are gathered in Tables 2 and 3 and
correctly match with the expected theoretical rates. For the second sample of examples, the equation is
fixed (p = 0 for Fig. 1-left and p = 1 for Fig. 1-right) whereas the Sobolev regularity of the initial data is
fluctuating. As shown in Fig. 1, the theoretical rates are represented by the line and the numerical rates
correspond to the dot. The exponent of the Sobolev regularity of ug is shown in the x-axis. Again, the
different rates match very well, which tends to indicate that the convergence orders we have proven are
optimal.



p=0 p=1 p=2

Az (Advection) (Airy) (Fifth-order derivative)
IL2-error order I2-error order IL2-error order

6.250.10~2 2.985.1073

3.125.102 2.757.107% 0.115

1.563.1072 2.441.107% 0.175

7.813.1073% 1.194.10~* 1.348.1073 2.176.10~2 0.166

3.906.107% 7.381.10~° 0.694 1.125.1073  0.261 1.961.1073 0.149

1.953.103 4.471.107° 0.723 9.670.10~* 0.219

9.766.10~* 2.664.107° 0.747 7.968.107* 0.279

4.883.107* 1.585.107° 0.749 6.572.107* 0.278

theoretical 0.750 0.250 0.150

Table 2: For a Sobolev regularity Hz~

p=0 p= p=2
Ax (Advection) (Airy) (Fifth-order derivative)
L2-error order L2-error order L2-error order
6.250.1072 3.388.1072
3.125.1072 3.639.1072 0.093
1.563.10~2 3.032.1072  0.263
7.813.107% 2.586.1073 1.011.102 2.528.1072 0.262
3.906.107% 1.347.1073 0.940 7.507.10—% 0.430 2.138.1072 0.242
1.953.10~%  6.873.10~* 0.971 6.267.1073  0.261
9.766.10~*  3.437.10~* 0.999 4.401.1073 0.510
4.883.107* 1.719.10~* 1.000 3.074.10~2 0.520
theoretical 1.000 0.417 0.250

Table 3: For a Sobolev regularity H3~

-
N
=
N
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@ @
T osf T o.sf
o o
S S
c L c
g 06 0.6
)] )]
9] 9]
204 Z 04
o o
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0.2 i b 0.2 i b
— theoretical — theoretical
® o numerical ® o numerical

00 i i i i I I 00 i i i i I I

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Sobolev regularity of u, Sobolev regularity of u,

Figure 1: Numerical versus theoretical orders— left : Advection equation (p = 0), right : Airy equation (p = 1)
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