Frank Vega

SEQUENCES OF LANGUAGES WHEN THE LIMIT GOES TO INFINITY

Keywords: 2000 Mathematics Subject Classification. Primary 68Q15, Secondary 11A07, 11A51 P, NP, UP, NP-complete, Quadratic Congruences, Subset Product. 1

This work is specifically about an interesting class of problems called the NP-complete problems, whose status is unknown. No polynomialtime algorithm has yet been discovered for some NP-complete problem. If any single NP-complete problem can be solved in polynomial-time, then every NP problem has a polynomial-time algorithm. We study two new complexity classes which have a close relation to the NP-complete problems. We call these classes as infinite-UP and infinite-P. Informally, the class infinite-UP contains those languages that are the limit of a sequence of languages in UP when this sequence goes to infinity. The class infinite-P is similar but the languages in the sequence are in P. In addition, in those sequences every previous language is a strict subset of the next one. We show two NP-complete problems which are infinite-UP and infinite-P respectively. In this way, we demonstrate some new properties of the NP-complete problems which can help us to understand better the P versus NP problem.

Introduction

P versus N P is a major unsolved problem in computer science [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. This problem was introduced in 1971 by Stephen Cook [START_REF] Arora | Computational complexity: A modern approach[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational Complexity[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Papadimitriou | Computational Complexity[END_REF].

Another huge advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Thomas | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Thomas | Introduction to Algorithms[END_REF].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF]. The class N P consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to N P ? In 2002, a poll of 100 researchers showed that 61 believed that the answer was not, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF] William | The P=?NP poll[END_REF]. All efforts to solve the P versus N P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF].

Another major complexity class is U P . The class U P has all the languages that are decided in polynomial time by a nondeterministic Turing machines with at most one accepting computation for each input [START_REF] Valiant | Relative Complexity of Checking and Evaluating[END_REF]. It is obvious that P ⊆ U P ⊆ N P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Whether P = U P is another fundamental question that it is as important as it is unresolved [START_REF] Papadimitriou | Computational Complexity[END_REF]. All efforts to solve the P versus U P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF].

We consider two new complexity classes that are called infinite-UP and infinite-P which have a close relation to the NP-complete problems. We define a problem that we call General Quadratic Congruences. We show General Quadratic Congruences is an NP-complete problem. Moreover, we prove General Quadratic Congruences is also in infinite-UP. In addition, we define another problem that we call Simple Subset Product. We show Simple Subset Product is an NP-complete problem. Furthermore, we prove Simple Subset Product is also in infinite-P.

Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is, M (w) = "yes" [START_REF] Arora | Computational complexity: A modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, or if the computation fails to terminate [START_REF] Arora | Computational complexity: A modern approach[END_REF].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M (w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF].

For n ∈ N we denote by T M (n) the worst case run time of M ; that is

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M runs in polynomial time if there exists k such that for all n, T M (n

) ≤ n k + k [1]. Definition 1.1. A language L is in class P if L = L(M)
for some deterministic Turing machine M which runs in polynomial time [START_REF] Arora | Computational complexity: A modern approach[END_REF].

We state the complexity class N P using the following definition. Definition 1.2. A verifier for a language L is a deterministic Turing machine M , where L = {w : M (w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can access in its time bound [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Definition 1.3. N P is the class of languages that have polynomial time verifiers [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

In addition, we can define another complexity class called U P . Definition 1.4. A language L is in U P if every instance of L with a given certificate can be verified by a polynomial time verifier, and this verifier machine only accepts at most one certificate for each problem instance [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. More formally, a language L belongs to U P if there exists a polynomial time verifier M and a constant c such that if x ∈ L, then there exists a unique certificate y with |y| = O(|x| c) such that M (x, y) = "yes", if x / ∈ L, there is no certificate y with |y| = O(|x| c) such that M (x, y) = "yes" [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF].

A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M , on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language

L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there exists a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * , x ∈ L 1 iff f (x) ∈ L 2
where iff means "if and only if". An important complexity class is NP-complete [START_REF] Goldreich | Np-Completeness[END_REF]. A language L ⊆ {0, 1} * is NP-complete if (1) L ∈ N P , and (2) L ≤ p L for every L ∈ N P . Furthermore, if L is a language such that L ≤ p L for some L ∈ NP-complete, then L is in NP-hard [START_REF] Thomas | Introduction to Algorithms[END_REF]. Moreover, if L ∈ N P , then L ∈ NP-complete [START_REF] Thomas | Introduction to Algorithms[END_REF]. If any single NP-complete problem can be solved in polynomial time, then every N P problem has a polynomial time algorithm [START_REF] Thomas | Introduction to Algorithms[END_REF]. No polynomial time algorithm has yet been discovered for any NP-complete problem [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF].

A principal NP-complete problem is SAT [START_REF] Goldreich | Np-Completeness[END_REF]. An instance of SAT is a Boolean formula φ which is composed of (1) Boolean variables: x 1 , x 2 , . . . , x n ;

(2) Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), ⇒(implication), ⇔(iff); (3) and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks whether a given Boolean formula is satisfiable [START_REF] Goldreich | Np-Completeness[END_REF].

Another NP-complete language is 3CN F satisfiability, or 3SAT [START_REF] Thomas | Introduction to Algorithms[END_REF]. We define 3CN F satisfiability using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [START_REF] Thomas | Introduction to Algorithms[END_REF]. A Boolean formula is in conjunctive normal form, or CN F , if it is expressed as an AND of clauses, each of which is the OR of one or more literals [START_REF] Thomas | Introduction to Algorithms[END_REF]. A Boolean formula is in 3-conjunctive normal form or 3CN F , if each clause has exactly three distinct literals [START_REF] Thomas | Introduction to Algorithms[END_REF].

For example, the Boolean formula

(x 1 ∨ x 1 ∨ x 2) ∧ (x 3 ∨ x 2 ∨ x 4) ∧ (x 1 ∨ x 3 ∨ x 4)
is in 3CN F . The first of its three clauses is (x 1 ∨ x 1 ∨ x 2), which contains the three literals x 1 ,

x 1 , and x 2 . In 3SAT , it is asked whether a given Boolean formula φ in 3CN F is satisfiable.

It can be demonstrated that many problems belong to NP-complete using a polynomial time reduction from 3SAT [START_REF] Goldreich | Np-Completeness[END_REF]. For example, the well-known problem 1-IN-3 3SAT which is defined as follows: Given a Boolean formula φ in 3CN F , is there a truth assignment such that each clause in φ has exactly one true literal? 2. Results

infinite-UP.

Definition 2.1. We say that a language L belongs to U P ∞ if there exist an infinite sequence of languages L 1 , L 2 , L 3 . . . where for each i ∈ N every language L i is in U P , has an infinite cardinality, the set L i+1 -L i has infinite elements and

L i ⊂ L i+1 such that lim i→∞ L i = L.
We call the complexity class U P ∞ as "infinite-UP". Since QC ∈ NP-complete then GQC ∈ NP-complete.

The distinct prime factors of a positive integer n >= 2 are defined as the ω(n) numbers p 1 , . . . , p ω(n) in the prime factorization

n = p a1 1 × p a2 2 × . . . × p a ω(n)
ω(n) . Lemma 2.6. There will exist a constant α, such that there are infinite positive integers n which complies with ω(n) ≤ α × ln ln n.

Proof. The average order of ω(n) is ω(n) ∼ ln ln n [START_REF] Hardy | Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work[END_REF]. Consequently, it will exist the constant α. If the congruence x 2 ≡ i 2 (mod b) has a solution, that solution is necessarily a solution to each of the prime power congruences x 2 ≡ i 2 (mod p ei i) when p ei i divides b [START_REF] Nagell | Introduction to Number Theory[END_REF]. For any prime p r , a necessary condition for x 2 ≡ i 2 (mod p er r) to have a solution is for x 2 ≡ i 2 (mod p r) to have a solution (to see this, note that if x 2 -i 2 is divisible by p er r then it is certainly divisible by p r). Now, suppose x 2 ≡ i 2 (mod p er r) where p er r is a prime power which divides b . Then x 2 -i 2 ≡ (x -i) × (x + i) ≡ 0(mod p er r). Thus p er r divides the product (x -i) × (x + i) and so p r divides the product as well. If p r = 2 and p r divides (x -i) × (x + i), then this is because x ≡ i(mod p r) since the sum and the subtraction of two integers is even when both are even or odd at the same time. If p r is an odd prime and divides both (x -i) and (x + i), then p r would divide both their sum and their difference, 2 × x and -2 × i. Since p r is an odd prime, p r does not divide 2 and so p r would divide both x and i which can be translated to x ≡ i(mod p r). It follows that p r either divides (x -i) or (x + i) but not both. Since p r divides (x -i) × (x + i), it only divides one of (x -i) and (x + i). Therefore, either x ≡ i(mod p r) or x ≡ -i(mod p r).

In this way, we prove for every prime p r that divides b we will have either x ≡ i(mod p r) or x ≡ -i(mod p r). Conversely, if we find all the possible solutions to each of the prime congruences, then we can use the Chinese Remainder Theorem to produce a solution to the original problem, that is to find the value of i [START_REF] Thomas | Introduction to Algorithms[END_REF]. Since the Chinese Remainder Theorem can be solved in polynomial time O(ln β b), then the remaining order will depend on the computation of all possible solutions. Since we only have two possible choices for each prime factor, then the order will depend on O(2 ω(b)). Since ω(b) ≤ ω(b) ≤ α × ln ln b, then the final order will be of O(ln QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?

β b × 2 α×ln ln b) = O(ln β b × ln α b) = O(ln k b) for a constant k = β + α.
We denote this problem as SQC.

Theorem 2.9. SQC ∈ U P .

Proof. We show a polynomial time verifier, and this verifier machine only accepts at most one certificate for each problem instance of SQC [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. Given five positive integers a, b, c, d and x, we define the verifier machine M for SQC as follows: M (a,b,c,d,x) = "yes" [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF].

M (a, b, c, d, x) = "yes"iff x is the minimum such that Q(a
The constant e exists because SQC ∈ N P . We denote this problem as CQC i .

Theorem 2.11. For every positive integer i we have that CQC i ∈ U P .

Proof. For i = 1, then CQC 1 = SQC and thus CQC 1 ∈ U P . Suppose for some i = k, then CQC k ∈ U P . Let's prove CQC k+1 ∈ U P . We will take an arbitrary instance (a, b, c, d) and some prime number p > 2 which does not divide b. The prime p can be taken in polynomial time in relation to log 2 b. Certainly, this can be done choosing a candidate from 3 to log 2 2 b because ω(b) ≤ log 2 b and the n th prime number is approximately equal to n × ln n < n 2 [START_REF] Nagell | Introduction to Number Theory[END_REF]. Let's take the number q = p ln 2 b . Since the congruence property

d × x 2 ≡ a(mod b) complies with q × d × x 2 ≡ q × a(mod q × b) then Q(a, b, c, d, x) = true if and only if Q(q × a, q × b, c, q × d, x) = true. However, if the instance (a, b, c, d) ∈ CQC k+1 , then the instance (q×a, q×b, c, q× d) ∈ CQC k because ω(q × b) = ω(b) + 1 ≤ (k + 1) × α × ln ln b + 1. Since p > 2 then q = p ln 2 b > b ln b . Therefore k × α × ln ln(q × b) > k × α × ln ln b ln b and this complies for k > 1 with k × α × ln ln b ln b = k × α × ln(ln b × ln b) = k × α × ln ln 2 b = 2 × k × α × ln ln b > (k + 1) × α × ln ln b + 1 ≥ ω(q × b).
In this way, we can reduce in polynomial time CQC k+1 to CQC k , since the calculation of q will be polynomial in relation to ln b if we use the exponentiating by squaring [START_REF] Thomas | Introduction to Algorithms[END_REF]. Since U P is closed under reductions and CQC k ∈ U P , it follows that CQC k+1 ∈ U P . Hence, by mathematical induction we have proved CQC i ∈ U P for every positive integer i [9]. Theorem 2.12. GQC ∈ U P ∞ .

Proof. For every positive integer i the set CQC i contains infinite elements. Indeed, for some positive integer b there are infinite numbers n such that ω(b) = ω(n), because there are infinite prime numbers [START_REF] Nagell | Introduction to Number Theory[END_REF]. Certainly, CQC i ⊂ CQC i+1 and the sets CQC i+1 -CQC i have infinite elements. Moreover, we can assure that

lim i→∞ CQC i = GQC.
Hence, we can affirm GQC ∈ U P ∞ .

infinite-P.

Definition 2.13. We say that a language L belongs to P ∞ if there exist an infinite sequence of languages L 1 , L 2 , L 3 . . . where for each i ∈ N every language L i is in P , has an infinite cardinality, the set L i+1 -L i has infinite elements and

L i ⊂ L i+1 such that lim i→∞ L i = L.
We call the complexity class P ∞ as "infinite-P".

Definition 2.14. SIMPLE SUBSET PRODUCT INSTANCE: A list of numbers L and a positive integer k with its prime factorization, such that the prime factorization of k does not contain any prime power with exponent greater than 1.

QUESTION: Is there a subset of numbers from L whose product is k?

We denote this problem as SSP .

Theorem 2.15. SSP ∈ NP-complete.

Proof. Since SSP is only a restriction of problem Subset P roduct, then SSP ∈ N P [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Certainly, we can check whether the product of a subset of numbers from L is indeed k in polynomial time. We present a polynomial time reduction from 1-IN-3 3SAT to SSP . For a 3CN F formula φ with m clauses and n variables, we consider the sets S 1,t , S 1,f . . . S n,t , S n,f ⊆ {1, . . . , m} such that S i,t (resp., S i,f) is the set of the indices of the clauses (of φ) that are satisfied by setting the i th variable to true (resp., false). That is, if the i th variable appears un-negated in the j th clause then j ∈ S i,t , whereas if the i th variable appears negated in the j th clause then j ∈ S i,f . Indeed, S i,t ∪ S i,f equals the set of clauses containing an occurrence of the i th variable, and the union of all these 2 × n sets equals {1, . . . , m}. Besides, we augment the universe with n additional elements and add the i th such element to both S i,t and S i,f . Thus, the reduction proceeds as follows:

(1) On input a 3CN F formula φ (with n variables and m clauses), the reduction computes the sets S 1,t , S 1,f . . . S n,t , S n,f such that S i,t (resp., S i,f) is the set of the indices of the clauses in which the i th variable appears un-negated (resp., negated). (2) The reduction creates the sets S 1 . . . S 2×n , where i = 1 . . . n it holds that S 2×i-1 = S i,t ∪ {m + i} and S 2×i = S i,f ∪ {m + i}. (3) Establish a bijective mapping between the numbers {1, . . . , m + n} and the first m + n prime numbers. Replace the members inside of S 1 . . . S 2×n with the mapped primes. (4) For each set in S 1 . . . S 2×n multiply its members together, the resulting list of products is L for the SSP instance. Because prime numbers are used for the mapping in the previous step, the products are guaranteed to be equivalent iff the sets are equivalent by the unique factorization theorem [START_REF] Nagell | Introduction to Number Theory[END_REF]. (5) Multiply the first m+n primes p 1 , . . . , p m+n together, the resulting product is the value k for the SSP instance. Note that (L, k) is a yes-instance of SSP iff φ is a yes-instance of 1-IN-3 3SAT. Assume, on the one hand, that φ has the certificate τ 1 , . . . , τ n . Then, for every j ∈ {1, . . . , m} there exists an i ∈ {1, . . . , n} such that setting the i th variable to τ i , satisfies the j th clause. Since, k does not contain prime powers with exponent greater than 1 then we guaranteed that exactly one literal is true per each clause.

The transformation steps involves operations that are polynomial to the size of the input φ. The first m + n primes can be generated in time O(m + n) using the sieve of Eratosthenes and are guaranteed to fit into O((m + n) 2 × ln(m + n)) space by the prime number theorem [START_REF] Nagell | Introduction to Number Theory[END_REF]. Definition 2.16. COMPLEX SUBSET PRODUCT ON I-TH PRIME INSTANCE: A list of numbers L and a positive integer k with its prime factorization, such that the prime factorization of k does not contain any prime power with exponent greater than 1 and no prime factor is greater than the i th prime number.

QUESTION: Is there a subset of numbers from L whose product is k?

We denote this problem as CSP i .

Theorem 2.17. For every positive integer i we have that CSP i ∈ P .

Proof. CSP 1 ∈ P , since the target k will necessarily be equal to 2. Indeed, we would only need to check whether the list L contains the number 2. Assume for some natural number i, we have CSP i ∈ P . Let's prove CSP i+1 ∈ P . Suppose we have an instance (L, k) of CSP i+1 . If the target k does not contain the (i + 1) th prime number, then (L, k) ∈ CSP i iff (L, k) ∈ CSP i+1 . If the target k is equal to the (i + 1) th prime number, then we remove the number 2 from the list L and later we replace the occurrence of the number p i+1 by the prime 2 inside the list L and target k. The resulting instance (L , k) complies with (L , k) ∈ CSP i iff (L, k) ∈ CSP i+1 . Now, suppose the target k contains the prime factor p i+1 and another p j where obviously p j < p i+1 . First, we remove those integers in L which have a power factor of p i+1 or p j with exponent greater than 1. Thus we multiply each pair of numbers inside of L such that those number contains either p i+1 or p j but not both. Next, we add these new integers within the list L. After that, we remove those previous numbers that contains only the prime factor p i+1 or p j but not both. Finally, we replace the product p i+1 × p j by the prime p j in the factorization of the elements in the resulting list. We do exactly the same with the target k which as well contains the product p i+1 × p j as a factor number of its factorization. The resulting instance (L , k) complies with (L , k) ∈ CSP i iff (L, k) ∈ CSP i+1 . Certainly, if (L, k) ∈ CSP i+1 then every possible certificate of (L, k) contains a pair of numbers which has the corresponding prime factor p i+1 or p j or just one single number that contains both. Besides, in every possible reduction the instance (L , k) is polynomially bounded by (L, k).

In this way, we can reduce in polynomial time CSP i+1 to CSP i . Since P is closed under reductions and CSP i ∈ P , it follows that CSP i+1 ∈ P . Hence, for every i ∈ N we have proved CSP i ∈ P by mathematical induction [START_REF] Nagell | Introduction to Number Theory[END_REF].

Definition 2 . 2 .

 22 Given five positive integers a, b ,c, d and x, the boolean function Q(a, b, c, d, x) is true if and only if x < c and d × x 2 ≡ a(mod b) [9]. Definition 2.3. QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b. QUESTION: Is there a positive integer x such that Q(a, b, c, 1, x) = true? We denote this problem as QC. QC ∈ NP-complete [4]. Let's define another problem. Definition 2.4. GENERAL QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b. QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true? We denote this problem as GQC. Theorem 2.5. GQC ∈ NP-complete. Proof. Since we can check Q(a, b, c, d, x) = true in polynomial time, then GQC ∈ N P . Indeed, the certificate x will be polynomially bounded by any instance (a, b, c, d) when Q(a, b, c, d, x) = true because x < c. In addition, we can reduce every instance (a, b, c) of QC into an instance (a, b, c, 1) of GQC in polynomial time where (a, b, c) ∈ QC iff (a, b, c, 1) ∈ GQC.

Theorem 2 . 7 .

 27 Given four positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ α × ln ln b, then we can check whether a positive integer x is the minimum that complies Q(a, b, c, d, x) = true in order O(ln k b) for a constant k. Proof. Suppose we have a positive integer i such that 0 < i < x and Q(a, b, c, d, i) = true. Hence, we will obtain d × x 2 ≡ d × i 2 (mod b). Moreover, by a property of congruences we have x 2 ≡ i 2 (mod b) where b = b (d,b) and (d, b) is the greatest common divisor of d and b [9]. We can find (d, b) in polynomial time in relation to ln b just multiplying into a single number each maximum prime power p ei i that divides b when also p ei i divides d. This is possible because we have the prime factorization of b. We are going to assume b = 1, because in case of (d, b) = b then x should be necessarily equal to 1.

Definition 2 . 8 .

 28 SIMPLE QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ α × ln ln b.

 , b, c, d, x) = true. SQC belongs to U P because the verifier M can run in polynomial time as we proved in Theorem 2.7 and there will be a constant e such that if (a, b, c, d) ∈ SQC, then there is a unique certificate x with |x| = O(|(a, b, c, d)| e) such that M (a, b, c, d, x) = "yes", if (a, b, c, d) / ∈ SQC, there is no certificate x with |x| = O(|(a, b, c, d)| e) such that

Definition 2 . 10 .

 210 COMPLEX QUADRATIC CONGRUENCES ON I INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ i × α × ln ln b for a positive integer i. QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?

Theorem 2.18. SSP ∈ P ∞ .

Proof. For every positive integer i the set CSP i contains infinite elements. Indeed, the list L could vary into an infinite ways even though the target could be the same. Certainly, CSP i ⊂ CSP i+1 and the sets CSP i+1 -CSP i have infinite elements. Since there are infinite prime numbers, we can assure that lim i→∞ CSP i = SSP.

Hence, we can affirm SSP ∈ P ∞ .