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Health monitoring is performed on CNES spacecraft using two complementary methods: 

an automatic Out-Of-Limits (OOL) checking executed on a set of critical parameters after 

each new telemetry reception, and a monthly monitoring of statistical features (daily 

minimum, mean and maximum) of another set of parameters. In this paper we present the 

limitations of this monitoring system and we introduce an innovative anomaly detection 

method based on machine-learning algorithms, developed during a collaborative R&D 

action between CNES and TESA (TElecommunications for Space and Aeronautics). This 

method has been prototyped and has shown encouraging results regarding its ability to 

detect actual anomalies that had slipped through the existing monitoring net. An 

operational-ready software implementing this method, NOSTRADAMUS, has been 

developed in order to further evaluate the interest of this new type of surveillance, and to 

consolidate the settings proposed after the R&D action. The lessons learned from the 

operational assessment of this system for the routine surveillance of CNES spacecraft are 

also presented in this paper. 
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I. Introduction 

Health monitoring currently performed on CNES spacecraft is based on two complementary surveillance 

methods applied to house-keeping telemetry (HKTM). 

The first one is based on an automatic monitoring of a set of parameters identified as critical during the 

spacecraft design phase, executed systematically after each reception of new telemetry. This surveillance is mainly 

based on the Out-Of-Limits (OOL) method which consists of defining a nominal range, with lower and upper 

thresholds, associated with each HKTM parameter and triggering an alarm if one or more of the parameter 

acquisitions go out of this nominal range. This method has been enhanced in various ways: 

· An anomaly level (“yellow” or “red”) can be added to each monitoring, with respect to the criticality of 

the anomaly and the response time required for the intervention of the spacecraft operation engineer 

(SOE) team. 

· The surveillance can be conditioned by an event such as the On/Off status of an equipment or its 

functioning mode. 

· A pre-processing can be applied to the data so that the surveillance does not monitor directly the HKTM 

parameters, but derived parameters computed on ground such as the power spectral density of an 

analogic parameter or the increments of a counter. 

· A filter can be applied so that the alarm is only triggered if several contiguous acquisitions happen to be 

out of the nominal range. 

Relying only on this monitoring method is not sufficient, as it is inherently ineffective to detect an abnormal 

behavior of a parameter that stays within its surveillance range (see Figure 1). More generally this method requires 

an a priori knowledge of each abnormal behavior expected, each monitoring being explicitly programmed to detect 

a particular anomaly signature. 

The second monitoring method is based on an aggregation of statistical features (including daily minimum, 

maximum and mean) of another set of parameters, generated and analyzed monthly. This latter follow-up is 

achieved not only by the SOE team but also by the spacecraft manufacturers’ maintenance team. It allows long-term 

evolutions due to ageing or seasonal effects to be visualized, as well as exceptional events if the daily statistical 

features of a parameter have been impacted. However, in addition to the loss of information induced by the 

supervision of daily statistical features instead of all the parameter recordings, its monthly frequency does not allow 

an immediate reaction of the SOE team. 

In order to address the shortcomings of the current telemetry monitoring system, several approaches based on 

machine-learning algorithms have been proposed in the literature. The main idea behind these methods is to use the 

telemetry stored since the spacecraft beginning of life to create a mathematical model of the nominal behavior of the 

spacecraft, with the underlying hypothesis that the anomalous events in this reference telemetry are rare. The newly 

acquired telemetry is then confronted with this model in order to determine if the current spacecraft behavior is 

nominal (or more precisely “as seen before”) or not. These monitoring methods are completely data-driven and, 

ideally, do not make any assumption on the parameters behavior during an anomaly or during the nominal 

functioning of the spacecraft. 

In 2013, CNES started an experiment with an ESA tool, named Novelty Detection
1
, based on a K-Nearest 

Neighbor outlier detection algorithm. Novelty Detection was able to detect some abnormal events in the telemetry 

used for its evaluation. However, the method was not directly applicable to symbolic parameters (i.e., parameters 

that represent a status or a functional mode of a spacecraft equipment instead of a physical quantity). 

In 2014, a research and development study was initiated by CNES, in collaboration with the French laboratory 

TeSA (TElecommunications for Space and Aeronautics), in order to study how other anomaly detection techniques 

could be applied to telemetry monitoring. The research focused on outlier detection methods, classification methods, 

and pre-processing techniques able to represent efficiently the behavior of a parameter. During this study, a 

prototype based on the One-Class Support Vector Machine (OC-SVM) method was developed and showed 

encouraging results regarding its ability to detect actual anomalies that had slipped through the existing monitoring 

net. This work has led to the development of a software called NOSTRADAMUS (New Operational SofTwaRe for 

Automatic Detection of Anomalies based on Machine-learning and Unsupervised feature Selection) that is able to 

process and monitor hundreds of HKTM parameters in order to test the proposed detection method on a significant 

amount of telemetry measures. 

This paper is organized as follows. Section II presents the detection algorithm developed during the R&D study 

with TeSA. Section III describes the validation and the adjustment of the proposed method. Section IV is dedicated 

to the description of NOSTRADAMUS. Finally Section V presents the lessons learned from the operational use of 

NOSTRADAMUS for the monitoring of spacecraft operated by CNES. 



II. A telemetry monitoring method based on a machine-learning algorithm 

The R&D study was applied to the analysis of HKTM (House Keeping TeleMetry) parameters recorded 

permanently by a spacecraft in order to monitor its health. We proposed a method performing anomaly detection on 

one parameter at a time, as opposed to analyzing the simultaneous behavior of a given set of parameters. 

First, a learning phase is required to construct the nominal behavior model of each HKTM parameter. In order to 

do so, a reference telemetry dataset (learning dataset) must be provided to the algorithm. The processing applied to 

the parameter acquisitions can be synthetized as follows: 

· First, a pre-processing transforms the time-series acquisitions of a parameter into a multidimensional 

scatter plot, each point being a vector of features. 

· Then, the dimension of the scatter plot is reduced by a Principal Component Analysis (PCA). 

· Finally, a decision frontier is fitted around the scatter plot by a One-Class Support Vector Machine 

(OC-SVM) algorithm. 

Once the nominal behavior models have been obtained, anomaly detection is performed on new telemetry by 

applying the same pre-processing and dimension reduction to the data, and determining whether the resulting data 

lie inside or outside the decision frontier. 

A. Pre-processing  

1. Data segmentation 

First, measurements are segmented in order to build windows with a fixed period of time (100 mn or 24 hours, 

for instance). Then, some features that will be described in Section II.A.3 are computed for each time window in 

order to obtain a multidimensional scatter plot, where each point represents a time window. One of the major 

interests of segmentation and feature computation is to synthetize the information contained in a segment of time, 

allowing the detection not only of singular points, but also of an atypical set of points even if each point taken 

individually seems normal. 

 

2. Time window management 

The recording frequency of HKTM parameters may vary for expertise purposes: for instance, an investigation on 

a particular equipment may require a zoom of a telemetry packet at a higher frequency during one hour. This may 

affect the features calculated on the parameters belonging to this packet over each time window covering the zoom 

(e.g. increasing the maximum or the minimum observation due a higher recording sampling).  

Moreover data may also be jammed because of telemetry “holes” that may happen when some telemetry packets 

are lost during the download of recorded HKTM over a ground station. Features computed for the time windows 

containing missing data may have abnormal values. 

Since both zooms and telemetry holes are quite rare, it was decided to simply remove the time windows that do 

not contain the expected number of recorded data.  

  



3. Feature computation 

Although feature computation is a standard data pre-processing before using anomaly detection methods, we 

took advantage of this study to implement and test the application of advanced features to spacecraft telemetry. 

Frequency features have been added to statistical features and extrema that are used conventionally for anomaly 

detection. For symbolic parameters, dedicated features have been introduced. The main features used in this study 

are the following: 

· Statistical parameters: mean, standard deviation, skewness, kurtosis 

· Minimum, maximum 

· Energy : 

 

 E = !
"# $%(&)"'*!  (1) 

 

where N is the number of acquisitions in a time window, and+$(&) denotes the n
th

 acquisition. 

 

· Spectral distribution of energy: 
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where+F,is the energy in the i
th

 frequency sub-band, 01 is the normalized frequency, X/012 is the Fourier transform  of 

the acquisitions obtained with the normalized frequency 013 and 6+is the number of energy sub-bands. 

 

· Average crossing: 

 

 P = !
"# 5<(')><?"'*!  (3) 

 

where+$@ is the mean of the acquisitions in a time window 

 

· Transition probability between states (for symbolic parameters only) 

· Frequency of occurrence of each state (for symbolic parameters only) 

 

Several combinations of features have been considered for each class of parameters which arouse from this 

study: analog, symbolic and quasi-symbolic (that are halfway between analog and symbolic parameters: see Section 

III.A.1 for an example). Table 1 gives examples of feature combinations that were considered for this R&D study. 

 

Table 1: Examples of feature combinations. 

Feature combinations for analog and quasi-symbolic parameters 

Minimum, Maximum 

Mean, Standard deviation 

Minimum, Maximum, Mean, Standard deviation, Skewness, Kurtosis 

Minimum, Maximum, Mean, Standard deviation 

Minimum, Maximum, Mean, Standard deviation, Energy 

Minimum, Maximum, Mean, Standard deviation, Energy, Average crossing 

Minimum, Maximum, Mean, Standard deviation, Spectral distribution of energy 

Spectral distribution of energy 

Average crossing , Spectral distribution of energy 

Minimum, Maximum, Mean, Standard deviation, Skewness, Kurtosis, Energy, Average crossing, Spectral distribution of energy 

Feature combinations for symbolic parameters 

Mean, Standard deviation, Average crossing, Spectral distribution of energy 
Mean, Standard deviation, Average crossing, Frequency of occurrence of each state, Transition probability between states 
Mean, Standard deviation, Average crossing, Frequency of occurrence of each state, Transition probability, Spectral distribution of energy 

Frequency of occurrence of each state, Transition probability between states 

 

 



4. Data normalization 

Since the recorded data provide HKTM parameters with different dynamic ranges, the features themselves do 

not have naturally homogeneous ranges. For instance, a parameter that has high values will inevitably be awarded a 

high value for its “maximum” feature.  

In order to guarantee good performances of the outlier detection methods, we chose to normalize beforehand the 

features with respect to their mean and standard deviation. This standard preprocessing guarantees that all the 

features contribute equally to the decision process independently of the parameter dynamics. 

B. Dimensionality reduction 

Dimensionality reduction consists of mapping the feature vectors belonging to a p-dimensional space to a lower 

dimensional subspace of dimension q < p. The interest of this operation is first to reduce the computational cost of 

the processing but also to face the curse of dimensionality. Indeed, it is well known that increasing the number of 

features does not necessarily improve the performance of an anomaly detection rule (see Ref. 2 for an interesting 

discussion related to this problem).  

The anomaly detection method proposed in this paper uses one of the most popular linear feature extraction 

methods, referred to as Principal Component Analysis (PCA). The PCA computes the eigenvectors of the covariance 

matrix of the original p-dimensional feature vectors. The original feature vectors are then projected onto the 

eigenvectors associated with the q largest eigenvalues [λ1,…,λq] of the covariance matrix in order to lose the least 

information possible. More precisely, the number of eigenvectors q is selected such that 95% of the information 

contained in the different features is preserved, according to Eq. (4) 
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The PCA determines the subspace such that the projected features are the closest (in terms of the mean square 

error) to the original features. 

C. Nominal behavior modelling with OC-SVM 

The fundamental anomaly detection problem is based on a one-class classifier, trained with a nominal dataset. 

An anomaly is detected when the corresponding data is classified as an element that does not belong to the nominal 

class. Several approaches exist to determine a nominal class from a training dataset. This may be accomplished by 

estimating the probability density function of the data
3
, by using neural networks

4
, or by using one-class support 

vector machines (OC-SVM)
5
 which is the algorithm considered in this work. 

The problem to solve in order to perform anomaly detection is to find a decision frontier around the training 

dataset, as illustrated in Figure 2. The strategy adopted by OC-SVM, represented in Figure 1, is to map the data in a 

higher-dimensional feature space H according to a transformation φ, and to find in this space a linear separator 

(defined by Eq. (5)) that separates the training data, considered as mostly nominal, from the origin with the 

maximum margin. The frontier separating the normal data points from the anomalies is defined as: 

 

 NO3 Q($)RS T +U+ = J (5) 

 



 
Figure 1. Illustration of the OC-SVM principle. The problem to solve is to find a linear separator in a high-

dimensional space that separates the training data from the origin with the maximum margin, while limiting 

the number of training data classified as abnormal. 

 

We shall now focus on the optimization problem that has to be solved in order to get the parameter vector w and 

the threshold ρ. On the one hand, the distance that separates the hyperplane from the origin must be maximized. On 

the other hand, the number of training data classified as abnormal data has to be minimized. Based on these 

principles, the separator is found by solving the following problem: 

 

 minV3W3Y7 +!%+ ZOZ% [
!
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subject to the constraints 

 

 NO3 Q($,)RS ^ U T ], +3+++], ^ J (7) 

 

where!ν is a relaxation factor that can be interpreted as the fraction of training data allowed to be outside of the 

nominal class. In engineering terms, ν is the a priori proportion of abnormal data in the training dataset.  

 

Explicitly mapping the input data $, into a high dimensional space _ with Q can make the problem intractable 

due to high computational cost. Instead of explicitly defining Q and computing+Q($,), an efficient solution known as 

the “kernel trick” consists of using a kernel function to replace the inner products in the problem to solve. The 

definition of a kernel function is sufficient to map the data from the original space to the high dimensional space+_. 

Practically speaking, the choice of the kernel function will define the shape of the frontier around the training data. 

For this application, we used the Gaussian kernel, one of the most popular kernels for OC-SVM:  

 

 `($3 $a) = exp+(TbZ$ T $cZ%)+++ (8) 

 

where!b is a control parameter that adjusts the regularity of the frontier around the training data.  

 

Finally, once the separator has been found, determining whether new data samples are nominal or abnormal is an 

easy task as it only consists of testing whether it falls inside or outside the frontier. The decision function is then: 

 

 0($) = +d4f&(`(O3 $) T +U)+ (9) 

 

Some examples of decision frontiers obtained with different values of γ and ν are displayed in Figure 2. 



 
Figure 2. Examples of decision frontiers computed with OC-SVM. Only two features were used so that the 

data scatter plot and the frontier can be represented in 2D. Red curve: decision frontier, white points: 

training data, blue points: nominal test data, red points: test data containing anomalies. Figures produced 

with Scikit-learn
6
 library for Python. 

III. Validation & adjustment of the proposed method 

A. Use-cases: two stealth anomalies 

In order to validate the proposed method, a dataset containing known anomalies was required. We chose to use 

the telemetry relative to two actual anomalies that occurred on a spacecraft operated by CNES. In both cases, the 

monitoring system (OOL and monthly report) failed to detect the abnormal behaviors and the SOE on duty did not 

have the opportunity to react in a timely manner. 

 

1. Erroneous temperature regulation 

The first use-case is relative to an anomaly that occurred on the thermal control system. The SOE team was only 

alerted of the anomaly after a spacecraft reconfiguration caused by a temperature falling below the on-board FDIR 

limit. The detailed analysis of the telemetry showed that a dozen of pre-anomaly events were visible up to 16 days 

before the spacecraft reconfiguration! As it can be seen in Figure 3, during the pre-anomaly events, the monitored 

temperature is even less likely to trigger a classic OOL detection than during nominal behavior. 

The dataset consists of two parameters: the temperature of the thermal line which is a typical analog parameter, 

and the electrical power injected in the associated heater which is a good example of a quasi-symbolic parameter: 

even if it is an analog parameter, it can only take values close to either 0W or 3.5W (corresponding respectively to 

the OFF/ON status of the heater). 

Three months of data were used for learning and two weeks (containing eight abnormal behaviors) for detection. 

 



 

 

 
Figure 3. Illustration of anomalies in the first dataset. During the nominal functioning, the temperature of the 

thermal line (green) is regulated between 16°C and 18°C. During the pre-anomaly event, this temperature 

starts to oscillate at a higher frequency, and never reaches its upper regulation value of 18°C. The pre-

anomaly event is also visible on the power injected in the associated heater (blue). 

 

2. Star tracker oscillations 

The second use-case deals with a star tracker (STR) which was jammed for several days before it was noticed on 

ground. No OOL alarm had triggered and the anomaly was simply detected by an SOE during an STR maintenance 

operation (see Figure 4). It is important to note that this anomaly had not been anticipated at all and that no 

particular OOL monitoring had been set. 

The dataset consists of two symbolic parameters: the validity status of the STR measurements and the current 

STR operating mode. Three months of data were used for learning and two months (containing two abnormal 

behaviors) for detection. 

 

 
Figure 4. Illustration of the anomaly in the second dataset. The anomaly was reflected by a constant restart 

of the STR (the current operating mode in green keeps moving back to POINTING_TRACK) and oscillations 

of the measurements validity (in blue) at a high frequency between TRUE and FALSE. 



 

B. Method adjustment 

The performance metrics we considered to tune the parameters of the detection algorithm include the number of: 

· Time windows (N) 

· Ground Truth (GT): time windows containing actual anomalies 

· True Positives (TP): time windows correctly identified as abnormal 

· False Alarms (FA): time windows incorrectly identified as abnormal 

· Non Detections at Window Level (ND-WL): time windows incorrectly identified as nominal  

· Non Detections at High Level (ND-HL): non-detection of an abnormal phenomenon spread over several 

time windows. 

Table 2 and Table 3 give some results obtained during one of the anomaly detection campaigns. 

 

Table 2: First example of anomaly detection results. Influence of the time window size on the performance 

metrics for an analog parameter and for a given set of detection parameters. 

Window size N GT TP FA ND-WL ND-HL 

4 mn 5630 118 56 222 0 62 

10 mn 2252 53 43 0 0 10 

50 mn 451 15 11 0 0 4 

100 mn 226 8 8 0 0 0 

1440 mn 16 3 2 2 2 1 

Table 3: Second example of anomaly detection results. A significant impact of the feature selection can be 

observed on the performance metrics for a quasi-symbolic parameter (QCC_P_RECH_HL05). The spectral 

distribution of energy seems to be a major feature for the outlier detection of quasi-symbolic parameters. 

Features GT TP FA ND-WL ND-HL 

Minimum, Maximum, Mean, Standard deviation 8 3 44 6 6 

Minimum, Maximum, Mean, Standard deviation, Spectral distribution of energy 8 8 51 0 0 

Spectral distribution of Energy 8 8 2 0 0 

These sets of tests were very informative and helped not only to choose the best features for each type of 

parameters, but also to tune the parameters of the OC-SVM algorithm such as the size of the time windows. Those 

results are preliminary and need to be consolidated with larger sets of HKTM data. 

C. Comparison with k-NN based detection method 

The R&D study ended with a comparison between the OC-SVM and the k-Nearest Neighbors (k-NN) 

classification methods. The k-NN method we considered is based on the Local Outlier Factor
7
 (LOF), which is an 

algorithm used for finding anomalous data points by measuring the local density at a given data point with respect to 

its neighbors. By comparing the local density at a data point to the local densities at its neighbors, one can identify 

regions of similar density, and points that have a substantially lower density than their neighbors. These are 

considered to be outliers. The local density is estimated by the typical distance at which a point can be "reached" 

from its neighbors. LOF results are quotient-values ranging from 0 to infinity. People usually prefer the Local 

Outlier Probability
8
 (LoOP), a method derived from LOF so that the resulting values are outlier probabilities ranging 

from 0 to 1, which is easier to interpret.  

The detection performance proved to be similar for both methods for the analog and quasi-symbolic data sets 

used for the study. However, for symbolic data we found that the k-NN method provides detection results less 

reliable than those obtained with the OC-SVM method, with a larger number of non-detected anomalies and false 

alarms. 

Nonetheless, the main advantage of the k-NN method is to offer the possibility to set the threshold of outlier 

probability very easily in order to reveal the most likely outliers and to “regulate” the number of alarms: an SOE 

does not need to study all the outliers and can only concentrate on the ones which have the highest outlier 

probability (larger than 90%, for instance). Conversely, the OC-SVM does not provide a way to identify the most 



likely outliers. Thus, all the outliers appear as equal as they are outside the decision frontier, so they will all need to 

be analyzed by an SOE. 

IV. From a prototype to an operational software: NOSTRADAMUS 

In order to consolidate the encouraging results obtained during the R&D action, we thought that further testing 

with a more significant amount of telemetry data was required. However, this could not be easily done with the 

prototype as any configuration modification (such as the monitored parameters or the choice of the feature sets) 

required a source code modification. 

We decided to develop an operational-ready telemetry surveillance software, NOSTRADAMUS, based on the 

R&D prototype. The objective of NOSTRADAMUS is dual: consolidate the proposed settings for the detection 

algorithm with more exhaustive testing on the telemetry of CNES spacecraft, and demonstrate the usefulness of this 

type of telemetry surveillance for the exploitation phase of a spacecraft. In order to obtain an “operational-ready” 

demonstrator, the main requirements were:  

· The telemetry surveillance must be automatic and compatible with the automation system of CNES 

CCC 

· The user must be able to easily adjust the configuration parameters, and perform the telemetry 

surveillance with different settings in parallel   

· The software must be able to process hundreds of HKTM parameters daily 

 

A. Functionalities 

1. Learning and Detection modes 

NOSTRADAMUS has two distinct functional modes: learning and detection.  

In the detection mode, the detection of atypical behaviors is performed by comparing recently acquired telemetry 

data to a nominal behavior model learned from the data stored in the telemetry database. The telemetry surveillance 

should be done promptly after each spacecraft pass, so that the SOE on duty can be alerted quickly if an atypical 

behavior is detected in the recorded telemetry dumped during the latest pass. In this mode, NOSTRADAMUS 

processes, in one execution, several hundreds of HKTM parameters acquired during a few hours. When the 

execution is completed, a result file containing the detections is produced by the program.  

The learning mode is used to create the nominal behavior model of each HKTM parameter. Ideally the models 

should not have to be modified once they have been created. However, our previous experience with the use of 

Novelty Detection showed that the update of these models with recent telemetry are necessary if we do not want to 

detect ageing or seasonal effects as atypical behaviors. The creation of new models with the learning mode of 

NOSTRADAMUS can be done typically on a monthly-basis. This phase requires a large amount of decommuted 

telemetry (typically 6 months of acquisitions for each parameter) that can raise data storage issues. Consequently, if 

needed, the creation of a model base can be done sequentially by an automation system: one can extract the 

telemetry relative to a given parameter from a database, start NOSTRADAMUS in learning mode to create the 

associated model, erase the telemetry, and continue this process with the next parameter until all models are created. 

 

2. Management of nominal behavior models 

The model adjustment parameters such as the nominal period or the set of descriptors to use are defined in a 

context file. For NOSTRADAMUS, a model is associated to the triplet context-spacecraft-parameter. This means 

that, for a given spacecraft and a given parameter, several models can be created with different settings and can be 

used in parallel. It allows us to quickly compare the detection results produced with different settings in order to find 

which ones lead to the best detection efficiency. 

 



3. Automation 

The routine exploitation of CNES spacecraft is highly automatized: an automation tool called AGENDA 

coordinates the execution of the CCC tools and the transfer of interface files between them. We wanted 

NOSTRADAMUS to be compatible with this automation system. Consequently, all the information required for its 

execution are stored into files or given as command-line arguments. It is then possible to define a sequence of 

operations that will be automatically executed by the AGENDA on a daily basis to perform the telemetry 

surveillance with NOSTRADAMUS. For instance, during the early hours of each day, the following sequence can 

be programmed: 

· Extract & decommute the telemetry relative to the preceding day 

· Perform the telemetry surveillance with NOSTRADAMUS with one or more specified settings 

· If atypical behaviors are detected, generate an alarm to alert the SOE on duty 

 

Consequently, no additional workload is required to perform the telemetry surveillance, and the SOE team can 

focus on analyzing the detection results. 

B. Data architecture 

All the data required for NOSTRADAMUS execution are stored into files whose content will be briefly 

described in this section. This data architecture is displayed in Figure 5. 

 
Figure 5. Data architecture of NOSTRADAMUS 

 

1. Input files – decommuted telemetry 

The telemetry is given to NOSTRADAMUS as .tsv (tabulation-separated values) files. Apart from the file 

header, each line represents the acquisition of one or several parameters at a given time. Each group of three 

columns represents the acquisitions of a given parameter: the first column is the raw value acquired on board, the 

second one is the physical value (after application of a transfer function to the raw value), while the third one is the 

significance of the acquisition. 



 

 
Figure 6. Example of a decommuted telemetry file (.tsv format). Depending on the producing application the 

information included in the header may vary, except for the first line that lists the parameters included in the 

file. 

 

These files can be quickly voluminous as the number of parameters requested or the extraction period increases. 

As an example, a .tsv file containing one week of acquisitions for 50 HKTM parameters acquired at a frequency of 

1/32Hz represents roughly 50Mbytes of data. One can easily imagine that it will not be possible to store one year of 

acquisitions for several hundreds of HKTM parameters in only one file. In order to cope with this limitation, 

NOSTRADAMUS is able to find, among all the telemetry files at its disposal, the ones that contain the parameters 

currently being processed and regroup all the acquisitions from these different files.  

 

2. Context files – method adjustment parameters 

All the information required to adjust the detection method is defined in context files. Because these files are 

created or modified by the users, we chose the .xml format as it can be easily compared to a .xsd scheme to detect an 

involuntary file corruption that could occur during a modification. 

The settings that must be defined in the context file include the HKTM parameters to monitor, the window size 

for segmenting the data, the reference period for the learning phase, and the features that must be computed 

according to the parameter type (symbolic, quasi-symbolic, analogic). 

 

3. Model files – nominal behavior models 

During the learning phase, a model file is created for each parameter to process. It contains particularly the OC-

SVM support vectors that define the nominal frontier around the learning data, but also other information required 

for the detection phase such as the projection vectors computed by the PCA. The settings that were used during the 

learning phase are also stored in the model so that we can ensure that they have not been changed involuntarily by 

the user between the learning phase and the detection phase.  

 

4. Result files – detections 

Once the detection is over, a result file is produced, containing the detection results and the features computed 

for each time window and each parameter. The detection results are binary: “OK” if a time window is nominal, 

“NOK” otherwise. 

The tabulated format chosen for this file is a standard format that can be directly imported into PROTON, a data 

processing tool available in the CNES CCC and sent to PrestoPlot, a fast and efficient time-series plotter. 

Figure 7 shows the contents of a result file, and Figure 8 illustrates how it has been processed with PROTON and 

PrestoPlot in order to superimpose the telemetry and the detection results. 

 



 

 

 
Figure 7. Example of a result file. The file starts with a header which states the parameters that have been 

analyzed, their type, and the features used. The result lines are organized as follows: window starting date, 

parameter ID, detection OK/NOK, features values after normalization in the same order as the one stated in 

the header. 
 

 
Figure 8. Post-processing of a result file in order to superimpose the telemetry and NOSTRADAMUS 

detection results. The anomalous event has clearly been identified by NOSTRADAMUS, along with an 

unwanted false alarm. 

  



V. Lessons learned from the first operational use of NOSTRADAMUS 

A. Operational use presentation  

The SOE team of one CNES mission has accepted to test this software in parallel with the already existing 

surveillance means in their CCC. The objective of this experiment is to make sure that most of the outliers 

correspond either to anomalies or atypical events such as spacecraft maintenance operations in order to evaluate the 

overall relevance of NOSTRADAMUS’ detection results. 

A few dozen of HKTM parameters have been selected for the initial use. They have been chosen by the SOE 

team in order to represent the heterogeneous nature of the multiple data acquired by a spacecraft (temperature, 

voltage, relay status, spacecraft attitude, etc.). Those candidates belong indifferently to the families of analog, quasi-

symbolic and symbolic parameters. 

Outlier detection is performed with NOSTRADAMUS on a weekly basis. Each time window corresponding to 

an outlier is displayed on top of the time evolution of the associated HKTM parameter (see Figure 8). This helps the 

SOE on duty to determine whether the outlier is a true positive or a false alarm. In case of a true positive, the SOE 

has to find out if the behavior is expected (e.g., as a result of a ground controlled sequence of operations) or not: if 

necessary, an anomaly sheet is written similarly to any ground monitoring triggering. 

B. Lessons learned & perspectives 

1. The requirement for an anomaly score 

The first observation made by the SOE team while using NOSTRADAMUS is that the detection is too sensitive. 

Depending on the temporal evolution of the processed parameter, the detection rate can reach one detection per 

week of telemetry and per parameter for the most “chaotic” ones. After analyzing the detections, they found out that 

many of them were false alarms. Needless to say that this surveillance could not be directly applied to thousands of 

HKTM parameters. 

The high sensitivity of NOSTRADAMUS can be easily explained by the core principle of the OC-SVM method: 

the detection frontier only depends on the support vectors that are part of the learning data points. Thus, this frontier 

cannot be wider than the learning scatter plot. Furthermore, the decision equation (Eq. (9)) only gives a binary result 

(inside or outside the frontier). Any feature vector that falls outside the decision frontier is considered as atypical, 

regardless of the distance between the frontier and the vector to be tested. 

We are currently modifying the implementation of the OC-SVM method in NOSTRADAMUS in order to 

compute an anomaly score along with the binary detection results. This anomaly score can be seen as the distance 

between the vector to be tested and the decision frontier. This modification will provide two advantages for the user: 

· It will be possible to easily control the overall detection sensibility 

· Among all the detections, the SOE team will be able to focus on the most abnormal ones (i.e., the ones 

with the highest anomaly score) 

 

2. The “black-box” effect 

The simplicity of the “classic” rule-based OOL telemetry surveillance allows the SOE on duty to know 

immediately why an alarm has triggered by looking at the definition of the given surveillance. When machine-

learning algorithms are used, this is no longer the case. A detection means that the evolution of a given parameter 

during a given time window is more or less different from what has been learned from the reference telemetry. This 

“black box” effect induces an enormous change in the SOE habits, and can be prejudicial regarding the acceptance 

of this new surveillance method. 

We believe that a post-processing of the detection results is mandatory so that a detection result can be translated 

into information understandable by the user. Such a post-processing could be for instance a representation of the 

position of each feature of the test vector compared to the distribution of the learning data features, via a histogram 

plot. 

 

3.  The interest of a semi-supervised learning 

The proposed detection method is based on an unsupervised learning phase, which means that the learning data 

has not been analyzed by the SOE in order to flag each time-period as nominal or anomalous (unlabeled data). This 

is a strong requirement as it would be impossible for the SOE team to analyze thoroughly all the telemetry produced 

by a spacecraft. 

However, each time window detected as atypical by NOSTRADAMUS will be analyzed by the SOE, as for a 

classic OOL alarm. The conclusion of this analysis (actual abnormal event or false alarm) should be injected into the 



 

detection method so that the algorithm becomes increasingly reliable. The decision frontier would then depend both 

on the unlabeled learning dataset and on the user’s feedback: this is called semi-supervised learning. 

A simple way to take into account the user’s feedback is to include time windows identified as false alarms in 

the learning data for the next model update, and to exclude time windows containing abnormal events. However, we 

found that doing so was not sufficient as some “recurrent-but-not-so-frequent” operations were always detected as 

atypical by NOSTRADAMUS, even if they had been included in the learning dataset. 

A real implementation of semi-supervised learning for NOSTRADAMUS would be to locally modify the 

decision frontier computed by the OC-SVM algorithm with respect to each user feedback regarding a detection. This 

represents mathematical challenges that have not been addressed in our work.   

 

4. Multivariate anomaly detection 

For simplicity reasons, the proposed method performs anomaly detection parameter per parameter. Thus, the 

physical correlations that exist between the different HKTM parameters are not taken into account. Our experience 

shows that most of our actual in-orbit anomalies have an impact on several quantities acquired by the spacecraft. For 

instance, a friction increase inside a reaction wheel would also cause its temperature to rise. By grouping parameters 

according to their sub-systems and analyzing them collectively, we believe that we can make the detection more 

efficient. An anomaly could then be detected as an atypical behavior for several parameters at the same time, or as a 

significant change in the correlations between parameters. 

This multivariate approach could be tested in a basic way with NOSTRADAMUS by considering that a time 

window is abnormal for a sub-system only if it was detected as atypical for several parameters of the sub-system.  

VI. Conclusion 

Based on the observation that classical spacecraft health monitoring systems sometimes failed to alert the SOE 

teams when early signs of equipment failure showed up on its spacecraft, CNES decided to study in collaboration 

with TESA the interest of machine-learning based surveillance methods. The principle of these methods is to use the 

HKTM recorded by the spacecraft to construct mathematical models of its nominal functioning. With this type of 

surveillance, any evolution of parameters that differs from what has been recorded before should theoretically be 

detected. 

CNES has implemented such a monitoring method within a software called NOSTRADAMUS in order to 

evaluate its pros and cons thanks to an extensive testing on a large scale of telemetry data. The first results showed 

NOSTRADAMUS effectiveness to detect abnormal behaviors that were not immediately detected by our current 

monitoring system. However, we have to face a substantial number of false alarms along with the correct detection 

of anomalies. In addition, the operational assessment of NOSTRADAMUS for the routine surveillance of CNES 

spacecraft allowed us to identify key functionalities that are required before this type of surveillance can be fully 

accepted and trusted by the operational teams. 

This new kind of surveillance can be a good complement to standard spacecraft monitoring systems, enabling the 

SOE team to detect early signs of anomalies on a spacecraft. With earlier detection, the operational teams will have 

more time to take appropriate actions before a definitive failure occurs. This is particularly interesting for critical 

missions, where a high level of availability is required. 

Our short-term work will be dedicated firstly to the adjustment of NOSTRADAMUS settings with the goal of 

reducing the false alarms rate, and then to the implementation of data post-processing so that an SOE can understand 

why the evolution of a parameter in a given time window has been detected as abnormal. In addition, we plan to 

support a PhD thesis in order to propose other anomaly detection methods that can be applied to spacecraft health 

monitoring, with a focus on multivariate anomaly detection and semi-supervised learning so that the algorithm 

becomes smarter thanks to user’s feedback about the detection results. 
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