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Abstract— Localization is a key problem for autonomous
vehicle navigation. The use of high-definition maps and per-
ception algorithms allows now to have lane-level accurate pose
estimation in terms of cross-track and heading error. In this
paper, we focus on the along-track localization of cooperative
vehicles. We introduce a one-dimensional formulation of the lo-
calization problem by considering curvilinear coordinates. The
covariance intersection filter is derived in one dimension leading
to a minimum variable filter which allows multiple vehicles
to cooperate while keeping consistent localization estimates.
We show that the along-track localization error is directly
dependent on the relative orientation between the trajectories
followed by the cooperating vehicles. Experiments with two
autonomous electric vehicles were conducted to evaluate the
proposed approach.

I. INTRODUCTION

Vehicle localization is a well-known problem and has been
studied for decades [9]. Nevertheless, computing lane-level
accurate and consistent estimates of the vehicle pose, i.e.,
position and heading, is still an open issue and remains a
key feature to reach fully autonomous driving. In the past
few years, the availability of high-definition maps [1], [3],
which gather lane-level information such as lane markings,
has led to new map-aided localization algorithms [8]. At
the same time, the development of vehicle-to-vehicle (V2V)
wireless communication devices allows a vehicle to have
more sources of information through the exchange of mes-
sages.

When high-definition maps are available, it is possible
to use exteroceptive sensors such as cameras to estimate
the vehicle pose with respect to the map, e.g., by doing
map-matching with lane markings [15]. Using lane markings
information is especially useful to reduce cross-track and
heading errors. However, in terms of along-track localization,
lane markings can be invariant, for example on straight roads,
therefore making the localization more challenging along the
vehicle longitudinal direction [8]. Through out this paper,
we assume that the vehicle has the capability to properly
estimate its cross-track location and heading with respect to
a given lane. We focus the work on along-track localization
by neglecting cross-track and heading estimation errors.

Cooperative localization using V2V communications en-
ables a vehicle to use information coming from the sensors
of its surrounding vehicles to refine its own state estimation
[6], [11], [13]. In the context of decentralized localization,
i.e., each vehicle has its own estimates of the state of world,
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Fig. 1. Curvilinear pose [s n ψ]T of the mobile frame along curve C from
origin p1. H is the orthogonal projection of point M on C.

one main issue is to handle the data incest problem where the
exchanged pieces of information may be highly correlated.
The covariance intersection filter [10] is one of the most
popular approach to tackle the fusion of non-independent
pieces of information. While being a pessimistic combination
rule, it is guaranteed to provide consistent estimates [5], [14],
which is in particular critical for autonomous driving.

In this paper, we introduce a novel formalization of vehicle
localization by focusing only on along-track localization. We
assume that a vehicle is capable of estimating its cross-
track location and its heading as well as estimating the
relative pose of the vehicles in its surrounding. The main
idea resulting from such assumptions is to be able to handle
the localization uncertainty in a one-dimensional space, more
precisely, in the curvilinear space attached to the road [4],
[7]. In a one-dimensional formulation, we show that the
covariance intersection algorithm is very easy to use and is
equivalent to a minimum variance operator.

In Sec. II, we first introduce the problem of map-aided
along-track localization and the one-dimensional covariance
intersection filter in the context of cooperative vehicles. In
Sec. III, we provide a detailed derivation of the geometrical
transformations to compute curvilinear coordinates. Then,
in Sec. IV, we present the fusion strategy for cooperative
localization. Finally, in Sec. V, some experimental results
are provided and discussed.

II. ALONG-TRACK COOPERATIVE LOCALIZATION

A. Along-track localization
In the context of autonomous vehicles, the pose estimation

of the vehicle is often computed with respect to a planned
trajectory. This trajectory is itself geometrically attached to



a map, where the center of the current lane can be seen as
the ideal path. In this paper, localizing a vehicle with respect
to the map is equivalent to localizing it w.r.t. its planned
trajectory. The pose estimation error of a vehicle with respect
to the map can therefore be decomposed in three terms:
along-track, cross-track and heading errors. These three error
terms are easily represented in curvilinear coordinates.

Let C be a curve in a two-dimensional Euclidean space
and 0qc =

[
0x 0y 0θ

]T
a pose in the global Cartesian frame

R0. We define point H as the orthogonal projection of
point

[
0x 0y

]T
on C, i.e., the point on the curve C minimizing

its distance to 0M . We define the curvilinear pose 0qs =
[s n ψ]T where s is the length of the curve from its origin
point up to point H , n is the signed Euclidean distance
between the two points 0M and H and ψ is the relative
angle between 0θ and the tangent line of the curve at point
H as illustrated in Fig. 1.

The along-track localization problem is then formulated
as estimating the curvilinear abscissa s of a pose while
assuming that both n and ψ are known. The estimation
problem is therefore only considered in one dimension.

B. Covariance intersection filter

Let X1 and X2 be two multivariate random variables rep-
resenting estimates of the system true state with associated
covariance matrices Σ1 and Σ2. In a classical Kalman filter
approach, the two estimates are combined as follows:

Σ−1 = Σ1
−1 + Σ2

−1, (1)
X = Σ(Σ1

−1X1 + Σ2
−1X2). (2)

The above equations are based on the assumption that X1

and X2 are independent. In the case where this assumption
is not verified, Julier and Uhlmann [5] proposed to use the
covariance intersection fusion which leads to the following
estimates:

Σ−1 = ωΣ1
−1 + (1− ω)Σ2

−1, (3)
X = Σ(ωΣ1

−1X1 + (1− ω)Σ2
−1X2), (4)

where ω ∈ [0, 1] is chosen so as to minimize the determinant
or the trace of Σ.

In the one-dimensional case with estimates x1 and x2 and
variances σ2

1 and σ2
2 , the covariance intersection algorithm

can be rewritten as

σ2 = (ω/σ2
1 + (1− ω)/σ2

2)−1, (5)
x = σ2(ωx1/σ

2
1 + (1− ω)x2/σ

2
2). (6)

Minimizing the variance σ2 in (5) is equivalent to maximiz-
ing:

ω(1/σ2
1 − 1/σ2

2) + 1/σ2
2 , (7)

which is the equation of a line. If σ2
1 < σ2

2 , then the
maximum is reached for ω = 1 which leads to σ2 = σ2

1 and
x = x1. On the contrary, if σ2

1 > σ2
2 , then we have σ2 = σ2

2

and x = x2. One can see that the covariance intersection
filter in one dimension is equivalent to keeping the estimate
with the smallest variance.

III. CURVILINEAR COORDINATES

A. Polyline map

We define a map as a set of geolocalized points M ={
pi = [xi yi]

T
, i ∈ {1, . . . , n}

}
defining a curve repre-

sented as a polyline, i.e., a sequence of adjacent line seg-
ments. In practice, this curve corresponds to the center of
the road.

In order to make the coordinate transformation less com-
putationally demanding, a Frenet frame for each origin point
pi can be computed offline as a transformation matrix iT0
defined as follows:

iT0 =


cosαi sinαi 0 −xi cosαi − yi sinαi
− sinαi cosαi 0 xi sinαi − yi cosαi

0 0 1 −αi
0 0 0 1

 , (8)

where αi = atan2(yi+1−yi, xi+1−xi) for i = 1, . . . , n−1.
The transformation matrix iT0 is based on a homogeneous
matrix, the third column and the third row are added to take
the heading of the vehicle into account in the transformation.
An enhanced map M∗ =

{
(pi,

iT0), i ∈ {1, . . . , n− 1}
}

can then been defined.
Therefore, with this formalism, one can compute directly

the pose in the i-th Frenet frame Ri:[
iqc 1

]T
=i T0 ·

[
0qc 1

]T
. (9)

The inverse transformation matrix is defined as:

0Ti = iT−10 =


cosαi − sinαi 0 xi
sinαi cosαi 0 yi

0 0 1 αi
0 0 0 1

 . (10)

B. Curvilinear coordinates transformation

The first step to compute the curvilinear coordinates of
a pose 0qc with respect to a polyline is to find the line
segment closest to this point. To do so, the pose is first
transformed into all the Frenet frames iqc attached to each
line segment using the transformation matrices iT0. The
closest line segment can be chosen as the one for which
the norm

√
ix2 + iy2 is the smallest for instance, if there is

little ambiguity in the map-matching process. In this work,
the polyline is considered as the reference path to follow
which is actually a sub-part of the global map but with no
junctions.

Once the closest line segment has been computed, two
cases can occur. In the nominal case, the Frenet abscissa ix
is greater than zero and it is kept as it is (see Fig. 2-a).
Conversely, if ix < 0 then the Frenet abscissa is set to zero,
point M in Fig. 2-b is projected on point H . The complete
procedure is detailed in Algorithm 1 in which the function
distPointSegment returns the distance MH as displayed in
Fig. 2. In the first case (Fig. 2-a), iqs is equal to a Cartesian
pose in the i-th Frenet frame iqc. Otherwise (Fig. 2-b),

iqs =
[

0 sign
(
iy
)
‖MH‖ iψ

]
. (11)
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Fig. 2. Distances from points to segments. In case (a), point M is projected
orthogonaly onto the point H . In case (b), all the points between the two
dotted lines, such as point M , are projected onto the same point H .

Algorithm 1 Transformation of a Cartesian pose into a
curvilinear pose.

1: 0qs = global2Curv
(
0qc,M∗

)
2: i = argmin

i∈{0,...,n−1}

(
distPointSegment

(
0qc, [pipi+1]

))
3: 0qs = iqs +

[ ∑i−1
j=0 ‖pj+1 − pj‖ 0 0

]T

Once iqs as been computed, the global curvilinear abscissa
of the pose 0qs accumulates the length of all the preceding
segments.

The inverse transformation from curvilinear coordinates
to global coordinates is detailed in Algorithm 2. The prin-
ciple consists to find the index of the segment that is one
step ahead and to subtract the cumulative length of every
segments.

Algorithm 2 Transformation of a curvilinear pose into a
Cartesian pose.

1: 0qc = curv2Global
(
0qs,M∗

)
2: for i = 2, . . . , n− 1
3: if s <

∑i−1
j=1

∥∥pj+1 − pj
∥∥

4:

[
0qc
1

]
= 0Ti


s−

∑i−2
j=1

∥∥pj+1 − pj
∥∥

n
ψ
1


5: break
6: end if
7: end for
8: end

C. Uncertainty propagation

In this article, the error of a curvilinear pose estimate
0qs =

[
s n ψ

]T
is only considered along the curvilinear

abscissa direction. Therefore the covariance matrix associ-
ated to 0qs can be written as

Σs =

σ2
s 0 0

0 0 0
0 0 0

 . (12)

In order to transform the curvilinear pose to the global Carte-
sian frame 0qc by using the function curv2Global

(
0qs,M∗

)
,

we first need to remove the cumulative segment lengths in
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Fig. 3. The relative pose of vehicle N w.r.t. vehicle M is represented as
M∆TN = [∆x ∆y ∆θ]T .

the curvilinear abscissa which does not change the variance,
then use the transformation matrix iT0 where i is the index
of the line segment to which 0qs is matched. This linear
transformation leads to the following covariance matrix

Σc = σ2
s

 cos2 αi cosαi sinαi 0
cosαi sinαi sin2 αi 0

0 0 0

 , (13)

Using the same reasoning, a pose in the global frame 0qc =[
x y θ

]T
with covariance matrix

Σc =

 σ2
x σx,y σx,θ

σx,y σ2
y σy,θ

σx,θ σy,θ σ2
θ

 , (14)

can be transformed into a curvilinear pose 0qs =
global2Curv

(
0qc,M∗

)
with covariance matrix

Σs =

σ2
s 0 0

0 0 0
0 0 0

 , (15)

where σ2
s = 0σ2

x cos2 αi + 0σ2
y sin2 αi + 20σx,y cosαi sinαi.

A vehicle M can use V2V communication to receive the
global pose estimate of another vehicle N . If vehicle M
can also detect the other vehicle, it can compute the relative
pose of vehicle N in its local frame. With these two pieces of
information, vehicle M can have another estimate of its own
global pose. The relative pose M∆TN =

[
∆x ∆y ∆θ

]T
is illustrated in Fig. 3. In the global frame, the pose estimate
0qNc =

[
xN yN θN

]T
of a vehicle N can be transformed

into a pose estimate 0qMc =
[
xM yM θM

]T
of a vehicle

M as follows:

0qMc = 0qNc −

cos(θM ) −sin(θM ) 0
sin(θM ) cos(θM ) 0

0 0 1

M∆TN

=

xN −∆x cos(θM ) + ∆y sin(θM )
yN −∆x sin(θM )−∆y cos(θM )

θN −∆θ

 (16)

In this paper, it is assumed that the values of ∆x, ∆y, ∆θ and
θN are known with certainty, i.e., we have a perfect sensor
for relative pose estimation (e.g., LiDAR or camera) then
the pose estimates 0qMc and 0qNc share the same covariance
matrix.
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Fig. 4. Discontinuity near an apex. The zone between the two orthogonal
lines H1 and H2 introduces a discontinuity in the curvilinear frame.

Finally, by propagating the covariance matrix of the curvi-
linear pose estimate 0qNs to 0qMs , using (13) and (15), we
show that

σMs
2

= σNs
2

cos2 ∆α, (17)

where ∆α = αj − αi is the relative angle between the
two line segments i and j to which the vehicles M and
N are matched to respectively. We can see that when the
two vehicles are driving along two parallel trajectories,
the curvilinear position uncertainty is not reduced. On the
contrary, if the two vehicles are on perpendicular trajectories,
then they are both perfectly localized. In the rest of the
paper, we assume that vehicle M represents the host vehicle,
exponent M will be omitted for clarity.

D. Discontinuity issues

The use of a polyline is simple because the data of
the map present it self as points. However, the polyline is
not spatially differentiable. It introduces some problems of
continuity in terms of heading and along-track localization
near the apexes. Indeed, when the position of the vehicle is
between the two orthogonal lines H1 and H2 (see Fig. 4)
the orientation jumps from an orientation relative to the first
segment of P to an orientation relative to the second segment
of P .

The second problem is on the curvilinear abscissa compu-
tation. When the vehicle is between the orthogonal lines H1

andH2 on the left side of the polyline (in the case depicted in
Fig. 4), the curvilinear abscissa remains the same, it is the
curvilinear distance between the beginning of the polyline
and the point I . When the vehicle is between the orthogonal
lines but at the right side of the polyline, the curvilinear
abscissa jumps from one point of one segment of P to a
point of the other segment. This discontinuity happens when
the vehicle cross the bisecting line B. Therefore, the change
from the global frame to the curvilinear frame is not bijective.

In our practical case, this problem of discontinuity is not
severe, due to the discretized position localization and the
small angle between adjacent segments, it is quite unlikely
to have several consecutive position estimates falling near
the apexes of the polyline.

One way to overcome this issue is to generate a differen-
tiable curve going through the points of the map [12], [16]
or to use a non-Euclidean projection space using lanelets

Algorithm 3 One-dimensional cooperative Kalman filter.
1: Prediction
2: ŝk|k−1 = ŝk−1|k−1 + Teuk cos(ψk−1)
3: σ̂2

s,k|k−1 = σ̂2
s,k−1|k−1 +Qk−1

4: GNSS update
5: Kk = σ̂2

s,k|k−1/(σ̂
2
s,k|k−1 + σ2

zs,k
)

6: ŝk|k = ŝk|k−1 +Kk(zs,k − ŝk|k−1)
7: σ̂2

s,k|k = σ̂2
s,k|k−1(1−Kk)2 + σ2

zs,k
K2
k

8: Covariance intersection
9: if σ̂2

s,k|k > σ2
zNs ,k

cos2 ∆α

10: ŝk|k = zNs,k
11: σ̂2

s,k|k = σ2
zNs ,k

cos2 ∆α
12: end if

as presented in [1]. The drawback of these two approaches
is that the curvilinear transformations become highly non
linear, therefore making the propagation of uncertainty much
more challenging.

IV. COOPERATIVE ALONG-TRACK KALMAN FILTER

In this paper, we implemented a one-dimensional Kalman
filter using the curvilinear abscissa as state vector. In Algo-
rithm 3, we provide the different steps of the Kalman filter.
At the prediction stage, the previous estimate ŝk−1|k−1 is
used with the current control input uk (longitudinal velocity)
with a time sampling Te to predict the current state. Then
at the update stage, the curvilinear abscissa estimate coming
from GNSS measurements zs,k is used to update the current
estimate. Finally, the covariance intersection filter is used to
add another update step using the curvilinear abscissa com-
puted from another vehicle zNs,k. Fig. 5 provides a detailed
flow chart of the whole system including the geometrical
transformation.

V. EXPERIMENTAL RESULTS

Experiments were conducted using two autonomous elec-
tric cars (see Fig. 6) following each other on the Seville
experimental road (see Fig. 7). The road is composed of two
roundabouts linked by a straight road. The vehicles were
equipped with an INS/IMU Novatel’s SpanCPT with RTK
corrections in order to compute the ground truth poses. Low
cost Ublox 8T GNSS receivers were used to provide local-
ization data. The wheel speed from the vehicle CAN bus was
also recorded. The relative pose was computed by using the
true poses from the SpanCPTs. The same one-dimensional
cooperative localization algorithm was implemented in both
vehicles.

We compare the covariance intersection approach with a
naive Kalman filter in which the covariance intersection step
is replaced by another Kalman update which assumes that the
pose estimate received from the other vehicle is independent
of its own estimate.

We first considered a simulated scenario where the global
poses of both vehicles were generated by adding a white
noise with a standard deviation of 1m to the ground truth
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Fig. 5. Data fusion flow chart.

Fig. 6. ApAChe autonomous electric cars. The white vehicle is leading
the way while the gray one is platooning.

Zone B

Zone C
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Fig. 7. Seville experimental road (Google Maps). The road is composed
of two roundabouts (zones A and C) linked by a straight road (zone B).

poses. One can see from Tab. I that the Kalman filter using
communication is not consistent. Indeed, the percentage
of out-of-bound estimates τ reaches 10%. The covariance
intersection remains consistent although being quite pes-
simistic (τ < 5%). The mean squared errors e for the three
methods indicate that the accuracy is increased when using
communication. In a second scenario, the white noise added
to the leading vehicle was reduced to 0.01m. Because the
covariance intersection filter is equivalent to a minimum

TABLE I
OUT-OF-BOUND RATE AND MEAN SQUARE ERROR FROM SIMULATION.

Follower Leader
τ (%) ē (m) τ (%) ē (m)

σ = 1m σ = 1m
KF without communication 5 0.41 5 0.31

KF with communication 9.71 0.20 10.29 0.20
CI with communication 3.82 0.25 2.35 0.25

σ = 1m σ = 0.01m
KF without communication 5 0.41 5 0.077

KF with communication 5.88 0.071 6.18 0.071
CI with communication 5.88 0.074 5 0.077
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Fig. 8. Box plot of the |error| w.r.t. relative angle between the segments
matched by the two vehicles (CI with communication).

variance filter, we can see that the high localization accuracy
of the leader is transmitted to the following vehicle.

Fig. 8 displays the error distribution w.r.t. to different
relative angle between the two line segments to which
the two vehicles are matched. One can verify that when
the vehicles are sharing information the localization error
decreases with the angle between the segments matched by
the two vehicles, as expected by Eq. (17).

In Tab. II, we show the results using real localization data
from Ublox 8T GNSS receivers. One can see that the over-
confidence of the Kalman filter is even more significant in



TABLE II
OUT-OF-BOUND RATE AND MEAN SQUARE ERROR USING LOCALIZATION

DATA FROM UBLOX 8T GNSS RECEIVERS.

Follower Leader
τ (%) ē (m) τ (%) ē (m)

KF without communication 5.17 0.55 5.90 0.96
KF with communication 61.62 0.44 69.00 0.43
CI with communication 4.80 0.46 4.43 0.45
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Fig. 9. Along-track errors with 95% confidence intervals (red dashed).
(a) and (b) represent the localization errors of the leading and following
vehicles, respectively, using a Kalman filter without any communication. (c)
shows the errors of the leader using a Kalman filter with communication.
(d) shows the errors of the leader using the covariance intersection filter.

this situation, leading to an out-of-bound rate of more than
60%. This is explained by the fact that the errors of the state
estimates of the two vehicles are already non independent
even before exchanging information. Fig. 9 (a) and Fig. 9 (b)
represent the localization errors of the leading and following
vehicles, respectively, using a Kalman filter without any
communication. One can see that the localization errors of
the two vehicles are correlated. Fig. 9 (c) shows the errors
of the leader using a Kalman filter with communication. One
can clearly see the non-consistency of the Kalman filter. By
using the covariance intersection filter, one can see from Fig.
9 (d) that the estimates remain consistent.

In Fig. 9, one can also see that the confidence intervals
are narrower around 40-60s (zone C) and around 120-140s
(zone A). This is exactly in line with the theory as it was
when the two vehicles where in the roundabouts that is when
the difference between the two orientations was large.

VI. CONCLUSION

This paper has formalized a one-dimensional localization
problem for cooperative localization of autonomous vehicles
by introducing curvilinear abscissa along a given reference
path extracted from a map. We showed that multiple vehicles
can cooperate to reduce their along-track localization error
while remaining consistent by using the covariance intersec-
tion filter which is equivalent to a minimum variance filter

in one dimension. It has been shown that classical Kalman
filter data fusion is sensitive to the data incest problem. It was
also shown that the error reduction is directly linked to the
relative orientation of one vehicle with respect to the other.
This makes our algorithm particularly efficient for curved
roads and intersections, since the confidence interval can be
significantly reduced in this case. The results show also that,
in a context of a platoon of vehicles, a single well localized
vehicle is sufficient to localize the whole platoon.
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