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The Stern Sequence and Moments of Minkowski’s

Question Mark Function

Roland Bacher

March 15, 2017

Abstract1: We use properties of the Stern Sequence for numerical com-

putations of moments
∫ 1
0 tnd?(t) associated to Minkowski’s Question Mark

function.

1 Introduction

Minkowski’s question mark function x 7−→?(x) and its inverse function, Con-
way’s box function x 7−→ 2(x), are related to continued fraction expansions,
transcendence properties and probabilistic distributions of rationals in the
Calkin-Wilf tree. Denjoy proved apparently that ?(x) is monotonic contin-
uous and singular (derivable on a set of full measure with zero derivative on
this set), see [4]. Using a functional equation satisfied by ?(x), Alkauskas
investigated the sequence m0,m1, . . . ,mn =

∫ 1
0 xnd?(s) of moments of the

probability density d? in a series of articles. Denoting by 2(y) the recip-
rocal function, known as Conway’s Box function, of the increasing homeo-
morphism ? : [0, 1] −→ [0, 1], the substitution t =?(x) (with d?(x) = dt and
x = 2(t)) yields

mn =

∫ 1

0
(2(t))ndt . (1)

In the present paper we link these moments to the Stern sequence (which
underlies the Calkin-Wilf tree) s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n+ 1) =
s(n)+ s(n+1), n ≥ 1. This gives new proofs for many results of Alkauskas,
see for example [1], [2], [3]. It also leads to the discovery of some new
properties.

The sequel of the paper is organized as follows:
Section 2 links the Stern sequence with Conway’s Box function 2 ap-

pearing in (1).

1Keywords: Minkowski’s Question Mark Function, Conway’s Box Function, Stern se-

quence, Farey Sequence, Continued Fraction. Math. class: Primary: 11A55, Secondary:

11B57.
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Section 3 recalls properties of Minkowski’s question mark function.
Section 4 lists a few well-known identities among binomial coefficients

and elements of the Stern sequence for later use.
Section 5 presents a set of linear relations obtained by considering Rie-

mann sums for
∫ 1
0 2(x)ndx. These relations differ from the relations found

by Alkauskas: they are perhaps slightly simpler but more interestingly, a
crude spectral analysis of the underlying linear operator T is easy. T has a
unique eigenvector (m0,m1,m2, . . . ) of eigenvalue 1. All other eigenvalues
belong to the closed complex disc of radius 1/2. The maximal error of the
associated algorithm is thus roughly halved at each iteration.

Section 6 discusses a different set of Riemann sums which leads to linear
relations used by Alkauskas.

We extend in Section 7 the moment-function n 7−→ mn to an entire
function z 7−→ mz for z ∈ C.

A computation of the derivative of this function at 0 to high accuracy
suggests the conjectural identities

log 2 =
∞
∑

n=1

mn

2n

(

1 +
1

2n−1

)

=
∞
∑

n=1

mn

n

(

1

2n
− (−1)n

)

given in Section 8.
Section 9 introduces a third type of Riemann sums, particularly well

suited for asymptotic computations. The resulting asymptotic formula

mn ∼
∞
∑

j=0

(log 2)j

j!
mj

∞
∑

h=2

1

2h

(

1− 1

h

)n

(2)

is the object of Section 10. It is more complicated but experimentally more
accurate than Alkauskas’s asymptotic formula given in [3]. Alkauskas’s for-
mula can however be deduced from (2) by a simple application of Laplace’s
method.

Section 10.2 derives a second asymptotic formula related to (2) by a
finer subdivision in the underlying Riemann sum. Since this should lead to
slightly more accurate results, we consider (admittedly in a not completely
rigorous way) in Section 10.3 the difference between the two formulae as a
measure of accuracy for (2).

Section 11 is devoted to values m−n of moments at negative integers.
This leads to a sequence of identities among m0,m1,m2, . . . . The two initial
identities are

∞
∑

j=0

mj =
5

2
and

∞
∑

j=1

j mj = m2 +
11

2
.

Finally, Section 12 discusses the starting point of this work: asymptotics

for
∏2n+1

j=2n sj allowing to compute some geometric means for values of the
Stern sequence.
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2 Conway’s box function

We denote by D = Z[1/2] ∩ [0, 1] the subset of all rational dyadic numbers
in [0, 1]. The restriction to D of Conway’s Box function 2 is recursively
defined as follows: 2(0) = 0,2(1) = 1 and

2

(

2m+ 1

2n+1

)

=
a+ c

b+ d

if 2
(

m
2n

)

= a
b and 2

(

m+1
2n

)

= c
d where a, b, respectively c, d, are coprime

natural numbers. The values 2(m/16) for m = 0, . . . , 16 are:

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

(

m
16

)

0
1

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

1
1

Values of 2 for arguments in D are easy to compute as follows: We define
the Stern-sequence s(0), s(1), s(2), . . . recursively by s(0) = 0, s(1) = 1,
s(2n) = s(n) and s(2n+1) = s(n) + s(n+1). Its first coefficients are given
by

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(n) 0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s(n) 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5

The main tool used in this paper is the following simple observation which
defines 2 on D in terms of the Stern-sequence:

Proposition 2.1. We have

2

(m

2n

)

=
s(m)

s(2n +m)

for all natural integers m,n such that 0 ≤ m ≤ 2n.

We leave the easy proof to the reader. 2

Since a
b < c

d with bd > 0 implies a
b < a+c

b+d < c
d , the function 2 is strictly

increasing. Induction on k shows

2

(

m

2n
± 1

2n+k

)

=
ka+ c

kb+ d
, k ≥ 1 (3)

if 2
(

m
2n

)

= a
b and 2

(

m
2n ± 1

2n

)

= c
d (with a, b and c, d pairs of coprime nat-

ural numbers). In particular, 2 extends to a strictly increasing continuous
function (still denoted) 2 : [0, 1] −→ [0, 1]. Since

lim
k→∞

2

(

m
2n ± 1

2n+k

)

−2

(

m
2n

)

±2−n−k
=

2n+k

b(kb+ d)
= ∞,

the function 2 has a vertical tangent at dyadic arguments.
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Proposition 2.2. We have

2(x) = 1−2(1− x) . (4)

Proof. Continuity of Conway’s Box function implies that it is enough to
prove Proposition 2.2 for all dyadic rationals of the form m

2n . This is done

by induction using the trivial identity a+c
b+d = 1− b−a+d−c

b+d .

Corollary 2.3. The function x 7−→ 22
(

x− 1
2

)

− 1 is symmetric.

Thus we have

0 =

∫ 1

0
(2(x) − 1/2)2n+1dx =

2n+1
∑

k=0

(

2n + 1

k

)

(−2)k−2n−1mk (5)

for every odd natural number 2n+ 1. This can be restated as:

Corollary 2.4. For all n ≥ 0 we have the identity

m2n+1 =
1

22n+1

2n
∑

k=0

(−2)k
(

2n+ 1

k

)

mk . (6)

In particular, m2n+1 is a Z
[

1
2

]

−linear combination of m0,m2,m4, . . . ,m2n.

3 Minkowski’s question mark function

Given an irrational real number x in (0, 1) with continued fraction expansion
given by

x = [0; a1, a2, a3, . . . ] =
1

a1 +
1

a2+...

,

Minkowski’s question mark function is defined by

?(x) = −2

∞
∑

k=1

(−1)k

2a1+···+ak
. (7)

Proposition 3.1. Minkowski’s question mark function is an increasing
homeomorphism of [0, 1] such that 2◦?(x) =? ◦2(x) = x.

Proof (given for the sake of self-containedness). Since 2 is an increasing home-
omorphism of [0, 1], it is enough to prove that 2◦?(x) = x for every rational
number x in [0, 1]. We show this by induction on the length n of the contin-
ued fraction expansion x = [0; a1, a2, . . . , an] of x. The result clearly holds
for n = 0 (corresponding to x = 0) and for n = 1 (corresponding to the
inverse of a non-zero natural integer). Writing pk

qk
= [0; a1, . . . , ak] we have

?

(

pn−1

qn−1

)

= −2

n−1
∑

j=1

(−1)j

2a1+···+aj
=

m

2a1+···+an−1−1

4



for a suitable natural number m. We also have

?

(

pn−2

qn−2

)

=?

(

pn−1

qn−1

)

− (−1)n

2a1+···+an−1−1
.

Using the induction hypothesis pk
qk

= 2◦?
(

pk
qk

)

for k < n and applying (3)

to

?

(

pn
qn

)

=
m

2a1+···+an−1−1
− (−1)n

2an2a1+···+an−1−1

we get

2◦?
(

pn
qn

)

=
anpn−1 + pn−2

anqn−1 + qn−2
=

pn
qn

.

The graph of ? is well-known to behave in a self-similar way as shown
by the following well-known result:

Proposition 3.2. We have

?(1− x) = 1−?(x) (8)

and

?

(

x

1 + x

)

=
1

2
?(x) (9)

for all x ∈ [0, 1].

Proof. Identity (8) follows from Proposition 2.2 and Proposition 3.1. Iden-
tity 9 follows from the Definition (7) applied to x

1+x = 1
1+1/x = [0; 1 +

a1, a2, a3, . . . ].

The aim of this paper is to study the moments

mz =

∫ 1

0
2(t)zdt =

∫ 1

0
xzd?(x)

of the probability measure d? associated to the distribution function ?(x) =
∫ x
0 d?(t). The inequalities

∞
∑

n=1

1

2n

(

1− 1

n

)j

≤ mj ≤ 2
∞
∑

n=1

1

2n

(

1− 1

n

)j

coming from the evaluation 2(1 − 2−m) = 1 − 1
m+1 , and the trivial upper

bound
∣

∣

∣

(−z−j+1
j

)

∣

∣

∣ ≤
(|z|+j−1

j

)

≤ (|z| + j)|z| show that z 7→ mz is an entire

function of C.
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The function mz is also given by the expression

mz =

∞
∑

k=0

(

z + k − 1

k

)

γ(k + z)mk

(see (24)) where γ(z) is the entire function defined by

γ(z) =
∞
∑

n=1

1

2n
1

(1 + n)z
.

We give the series expansion of the entire function z 7→ mz at z = 0 and
study the asymptotics of mz for real z −→ ±∞.

Proposition 3.3. We have the identities

mz =
∞
∑

j=0

(

z

j

)

(−1)jmj =
∞
∑

j=0

(−z + j − 1

j

)

mj

where
(z
j

)

= z(z−1)(z−2)···(z−j+1)
j! .

The main contribution to m−k given by Proposition 3.3 corresponds to

indices j such that k+j
j e−

√
(log 2)/j ∼ 1 yielding j ∼ k2

log 2 .
Thus we have for example

m−1 =
∞
∑

n=0

mn

m−2 =

∞
∑

n=0

(n+ 1)mn

m−3 =
1

2

∞
∑

n=0

(n+ 1)(n+ 2)mn

and more generally

m−n =

∞
∑

k=0

(

k + n− 1

n− 1

)

mk .

Proof of Proposition 3.3. Proposition 2.2 implies the equalities

mz =

∫ 1

0
2(t)zdt =

∫ 1

0
(1−2(t))zdt =

∞
∑

j=0

(

z

j

)

(−1)jmj =

∞
∑

j=0

(−z + j − 1

j

)

mj

which hold for all z ∈ C since 2(t) ∈ (0, 1) for t ∈ (0, 1).
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4 A few useful identities

Almost all results of this paper are based on a few trivial identities, recorded
in this Section for later use.

4.1 Binomial coefficients

Lemma 4.1. We have the series expansion

1

(1− x)n
=

∞
∑

k=0

(

n+ k − 1

k

)

xk =

∞
∑

k=0

(

n+ k − 1

n− 1

)

xk (10)

for x in the open complex unit-disc.

Proof. Apply the equality
(−n

k

)

= (−1)k
(n+k−1

k

)

(where
(x
k

)

= x(x−1)···(x−k+1)
k! )

to Newton’s identity (1 + (−x))−n =
∑∞

k=0

(−n
k

)

(−x)k or use induction on
n.

Remark 4.2. Lemma 4.1 has the following nice combinatorial proof: 1
(1−x)n

is the generating series for colouring Easter eggs with n different colours (or,
equivalently, for the number of monomials in n commuting variables). The
k-th coefficient is thus given by

(k+n−1
n−1

)

.

Lemma 4.3. We have

j
∑

l=k

(

j

l

)(

l

k

)

xl =

(

j

k

)

xk(x+ 1)j−k

In particular, for x = −1
2 we get

j
∑

l=k

(

j

l

)(

l

k

)

1

(−2)l
=

(

j

k

)

(−1)k

2j

Proof. Compare the coefficients
(j
l

)( l
k

)

and
(j
k

)(j−k
l−k

)

of xl of both sides.

4.2 Identities for the Stern sequence

We recall that the Stern sequence s : N −→ N is recursively defined by
s(0) = 0, s(1) = 1, s(2n) = s(n) and s(2n+ 1) = s(n) + s(n+ 1) for n ≥ 1.

Proposition 4.4. For all n ≥ 0 and for all r such that 0 ≤ r ≤ 2n, the
Stern sequence satisfies the identities

s(2n + r) = s(2n − r) + s(r), (11)

s(2n + r) = s(2n+1 − r), (12)

s(r) = 2s(2n + r)− s(3 · 2n + r). (13)
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Proof. The identities hold for n = 0 and r ∈ {0, 1}. Since s(2m) = s(m)
they hold for r even by induction. For odd r = 2t + 1 < 2n+1, we sum
the identities corresponding to (n − 1, t) and (n − 1, t + 1) which hold by
induction. The definition s(2m+1) = s(m)+s(m+1) and induction implies
the identities for odd r.

The main idea of this paper is to apply Lemma 4.1 to the trivial identities

αs + βS

γs + δS
=

α

δ

s

S

1
(

1 + γ
δ
s
S

) +
β

δ

1
(

1 + γ
δ
s
S

) , (14)

αs+ βS

γs+ δS
=

α

γ
+

(

β

δ
− α

γ

)

1
(

1 + γ
δ
s
S

) , (15)

αs+ βS

γs+ δS
, =

β

δ
+

(

α

δ
− βγ

δ2

)

s

S

1
(

1 + γ
δ
s
S

) . (16)

5 A simple set of linear equations for mN

Theorem 5.1. The sequence m0 = 1,m1 = 1
2 ,m2, . . . of moments defined

by mn =
∫ 1
0 2(t)ndt (see (1)) satisfies the equalities

mn =
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

)

φ2k (17)

where

φn =

∞
∑

k=0

(

n+ k − 1

k

)

mn+k

2n+k
. (18)

Remark 5.2. Since the increasing function

k 7−→
(n+k−1

k

)

2n+k

2n+k+1

(

n+k
k+1

) = 2
k + 1

n+ k

(for k > 0 and n a fixed natural integer) equals 1 for k = n − 2 and since
the moments mn are slowly decreasing, the main contribution to φn comes
asymptotically from summands with indices k roughly equal to n.

The main contribution to φn is thus given by moments of the form m2n+l

with l an element of Z of small absolute value.
Similarly, the main contribution to mn in Formula (17) corresponds

asymptotically to indices k ∼ n/4. and involves thus mainly moments of
the form mn+l for l a small integer.
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Theorem 5.1 is an immediate consequence of the following result.

Proposition 5.3. For all n ∈ N we have the identities

∫ 1/2

0
2(t)ndt =

1

2n+1

n
∑

k=0

(

n

k

)

(−1)kφk

and
∫ 1

1/2
2(t)ndt =

1

2n+1

n
∑

k=0

(

n

k

)

φk

with φk defined by Formula (18).

Lemma 5.4. We have

φn = 2

∫ 1

1/2
(22(t) − 1)ndt . (19)

for φn defined by Formula (18).

Corollary 2.3 shows that Lemma 5.4 can be restated as φn =
∫ 1
0 |22(t)− 1|n dt.

Proof of Lemma 5.4. Proposition 2.1 and the definition of Riemann sums
show that we have

2

∫ 1

1/2
(22(t) − 1)ndt = 2 lim

l→∞
1

2l+1

2l
∑

r=0

(

2
s(2l + r)

s(2l+1 + 2l + r)
− 1

)n

= lim
l→∞

1

2l

2l
∑

r=0

(

2s(2l + r)− s(3 · 2l + r)

s(3 · 2l + r)

)n

.

Using (13) we get

2

∫ 1

1/2
(22(t) − 1)ndt = lim

l→∞
1

2l

2l
∑

r=0

(

s(r)

2s(2l + r)− s(r)

)n

(20)

or equivalently

2

∫ 1

1/2
(22(t)− 1)ndt = lim

l→∞
1

2l

2l
∑

r=0

(

s(r)

2s(2l + r)

)n




1

1− s(r)
2s(2l+r)





n

.

Applying (10) we have

2

∫ 1

1/2
(22(t) − 1)ndt =

∞
∑

j=0

(

n+ k − 1

k

)

mn+k

2n+k

which ends the proof.
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Proof of Proposition 5.3. Using Lemma 5.4 we have

1

2n+1

n
∑

k=0

(

n

k

)

(−1)kφk =
1

2n

∫ 1

1/2

n
∑

k=0

(

n

k

)

(1− 22(t))kdt

=

∫ 1

1/2
(1−2(t))ndt

which equals
∫ 1/2
0 2(t)ndt by (4). This proves the first equality.

The proof of the second equality is similar and left to the reader.

5.1 Spectral properties

Theorem 5.1 expresses the moment-vector (m0,m1,m2, . . . ) as a fixed point
of a continuous linear operator T acting on the vector space l∞(R) of real
bounded sequences. We study here a few spectral properties of T . They
imply in particular uniqueness of the fixed point (m0,m1, . . . ) satisfying
m0 = 1.

We denote by l∞ = l∞(R) the real Banach space of bounded sequences
with norm ‖ v ‖∞= supn∈N |vn| for v = (v0, v1, . . . ) in l∞. We set

‖ U ‖= sup
v∈l∞, ‖v‖∞=1

‖ U(v) ‖

for the norm ‖ U ‖ of an endomorphism U ∈ End(l∞). Similarly, we consider
the norm

‖ L ‖= sup
v∈l∞, ‖v‖∞=1

|L(v)|

of a continuous linear form L : l∞ −→ R.
Formulae (17) and (18) suggest to consider the sequence of operators

v = (v0, v1, . . . ) 7−→ Tn(v) =
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

) ∞
∑

l=0

(

2k + l − 1

l

)

v2k+l

22k+l
. (21)

Proposition 5.5. Formula (21) defines continuous linear forms T0, T1, T2, . . .
of norm ‖ T0 ‖= 1 and ‖ Tn ‖= 1

2 for n ≥ 1.

We define an endomorphism T : l∞ −→ l∞ of the vector-space l∞ by
setting T = (T0, T1, T2, . . . ). Proposition 5.5 and T0(v0, v1, . . . ) = v0 imply
the following result:

Corollary 5.6. The restriction of the linear operator T = (T0, T1, T2, . . . )
to the subspace l∞0 formed by all bounded sequences (v0, v1, v2, . . . ) starting
with v0 = 0 yields an endomorphism of l∞0 whose spectrum is contained in
{z ∈ C | |z| ≤ 1

2}.

10



In particular, the linear map

v 7−→ T (v) = (T0(v), T1(v), . . . )

defines a bounded linear operator of l∞ which has a unique eigenvector of
eigenvalue 1 of the form

(

1, 12 , . . .
)

.

The coordinates (m0,m1, . . . ) =
(

1, 12 , . . .
)

of the unique eigenvector of

eigenvalue 1 of T are of course the moments mn =
∫ 1
0 xnd?x of the density

function associated to Minkowski’s question-mark function ?.

Proof of Proposition 5.5. For v ∈ l∞ such that ‖ v ‖∞≤ 1, we have

|Tn(v)| ≤
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

)

1

22k

∞
∑

j=0

(

2k − 1 + j

j

)

1

2j

with equality if and only if v is (up to a sign) the vector 1 = (1, 1, 1, . . . )
with all coefficients equal to 1.

Applying (10) we have thus

‖ Tn ‖ = |Tn(1)|

=
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

)

1

22k

(

1

1− 1
2

)2k

=
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

)

=
1

2n

(

(1 + 1)n + (1− 1)n

2

)

=

{

1 if n = 0
1
2 if n ≥ 1

which completes the proof.

Remark 5.7. Laplace’s method shows that the coefficient

1

2n

⌊n/2⌋
∑

k=1

(

n

2k

)(

m− 1

2k − 1

)

1

2m

of vm in Tn given by Formula (21) is asymptotically equal to

1

2

1
√

2πnµ(1 + µ)

(

((1 + µ)/2)1+µ

µµ

)n

11



for µ = m
n having a bounded logarithm. This coefficient is asymptotically

maximal for µ = 1 and decays exponentially fast otherwise. We have

lim
n→∞

n

∫ ∞

0

1

2

1
√

2πnµ(1 + µ)

(

((1 + µ)/2)1+µ

µµ

)n

dµ =
1

2

in agreement with Proposition 5.5.

Remark 5.8. The linear operator T has an unbounded eigenvector of eigen-
value 1

2 given by w = (0, 0, 2, 3, 4, 5, 6, 7, . . . ) as can be seen as follows: We
have T0(w) = T1(w) = 0. For n ≥ 2, Formula (21) with w = (0, 0, 2, 3, 4, 5, 6, . . . )
boils down to

Tn(w) =
1

2n

⌊n/2⌋
∑

k=1

(

n

2k

) ∞
∑

l=0

(

2k + l − 1

l

)

2k + l

22k+l
.

Computing the derivative 2k x2k−1

(1−x)2k+1 of
(

x
1−x

)2k
at x = 1

2 either directly

or using the series expansion (10) given by Lemma 4.1 we get the identity

4k =

∞
∑

l=0

(

2k + l − 1

l

)

2k + l

22k+l
.

For n ≥ 2 we have thus

Tn(w) =
1

2n

⌊n/2⌋
∑

k=0

(

n

2k

)

4k

=
1

2n
((1 + x)n + (1− x)n)′

∣

∣

x=1

=
n

2
.

5.2 Computational aspects

Theorem 5.1 is useful for computing numerical approximations of the first
moments m0,m1, . . . ,mN of Minkowski’s question mark function.

This can be done by computing an approximation (m̃0, m̃1, . . . , m̃N ) of
the unique attracting fixed point (m̃0, m̃1, . . . ) of the form (1, . . . ) of the
linear operator T ◦ πN where πN : l∞ −→ l∞ is the projection defined by

πN (x0, x1, . . . , xN , xN+1, . . . ) = (x0, x1, . . . , xN , 0, 0, 0, . . . ).

The error |m̃i − mi| is of order O(mN+1) = O
(

N1/4e−2
√
N log 2

)

, see

Formula (42).
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Since the distance to the fixed point is essentially divided by 2 under
each iteration of T ◦πN , the complexity of the resulting algorithm is roughly

of order O
(

√

N/ log 2N2
)

if aiming at maximal accuracy.

More precisely, the algorithm can be implemented as follows:
010 m̃0 := 1,
020 For n = 1, 2, 3, . . . , N do:
030 m̃n := 0,
040 End of loop over n,
050 Iterate the following loop:
060 For n = 0, 2, 4, . . . , 2⌊N/2⌋ do:
070 b := 1

2n ,

080 φ̃n := 0,
090 For k = 0, 1, 2, . . . , N − n do:
100 φ̃n := φ̃n + bm̃n+k,
110 b := n+k

2(k+1)b,
120 End of loop over k,
130 End of loop over n,
140 For n = 1, 2, 3, . . . , N do:
150 b := 1

2n ,
160 m̃n := 0,
170 For k = 0, 1, 2, . . . , ⌊N/2⌋ do:
180 m̃n := m̃n + bφ̃2k,
190 b := (n−2k−1)(n−2k)

(2k+1)(2k+2) b,
200 End of loop over k,
210 End of loop over n,
220 End of outer loop (starting at 050).

Comments:

1. Computations should be done over the real numbers with sufficient ac-
curacy (maximal achievable accuracy is of order O(mN+1), see Section
10 for estimations).

2. The range and increment of the loop-variable n in line 060 is due to the
fact that m1, . . . ,mN depend only on φ0, φ2, φ4, . . . , φ2⌊N/2⌋ in Formula
(17).

3. Instructions 070 and 150 need a loop in many programming languages.

4. The variable b in line 070, 100, 110 corresponds to the factor
(n+k−1

k

)

1
2n+k

in Formula (18).

5. The variable b in line 150, 180,190 corresponds to the factor 1
2n

( n
2k

)

in
Formula (17).

6. Maximal possible accuracy is achieved by iterating the outer loop (in-
structions 060-210) roughly 2

√

N/ log 2 times, see Corollary 10.2.

13



7. Using a known sequence of good approximations for m1, . . . ,mN in-
stead of 0 when initializing m̃1, . . . , m̃N (instruction 030) decreases
the number of useful (i.e. leading to significantly better precision)
iterations for the outer loop.

8. A progressive increase of N (starting from some small initial value)
during the iteration of the outer loop yields a small speedup.

6 Formulae of Alkauskas

Theorem 5.1 is based on Riemann sums for the integral

A = 2

∫ 1

1/2
(22(t)− 1)ndt

obtained by subdividing the interval
[

1
2 , 1
]

into 2l sub-intervals of equal
length 1

2l+1 .
In this section we give a new proof of some formulae obtained by Alka-

uskas by considering the infinite subdivision

[0, 1] = {0} ∪ . . .

[

1

2h
,

1

2h−1

]

∪
[

1

2h−1
,

1

2h−2

]

∪ · · · ∪
[

1

4
,
1

2

]

∪
[

1

2
,
1

1

]

suggested by the easy evaluations 2
(

1
2h

)

= 1
h+1 .

Theorem 6.1. We have

mn =

∞
∑

h=1

1

2h
1

(h+ 1)n

∞
∑

k=0

(

k + n− 1

n− 1

)

mk

(h+ 1)k
(22)

and

mn =

∞
∑

h=1

1

2h
1

hn

∞
∑

k=0

(

k + n− 1

n− 1

)

mk

(−h)k
. (23)

Remark 6.2. From a computational point of view it is perhaps useful to
rewrite the formulae of Theorem 6.1 as

mn =

∞
∑

k=0

(

k + n− 1

n− 1

)

γk+nmk (24)

and

mn =

∞
∑

k=0

(

k + n− 1

n− 1

)

(−1)kck+nmk (25)
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where

γn =

∞
∑

k=1

1

2k(k + 1)n
= 2Lin

(

1

2

)

− 1

and

cn =

∞
∑

k=1

1

2kkn
= Lin

(

1

2

)

where Lin(x) =
∑∞

k=1
xk

kn for x in the open complex unit-disc.
Formula (22) (or (24)) should be preferred over (23) (or (25)). It con-

verges faster (under iteration) and positivity of all coefficients ensures nu-
merical stability.

Precomputing (and storing) the constants γk and using (24) needs only
twice as much memory but provides a significant speed-up.

Formula (25) has been used by Alkauskas for numerical computations of
the first values of mn, see Appendix A3 of [1] or Proposition 5 of [2].

Since γn ∼ 1
2n+1 for large n, the arguments of Remark 5.2 show that

the main contribution to mn in Formula (24) corresponds asymptotically to
summands k ∼ n involving mn−a, . . . ,mn+a.

Proposition 6.3. Setting

Ih(n) =

∫ 2−h+1

2−h

2(t)ndt . (26)

we have

Ih(n) =
1

2h

∞
∑

k=0

(

k + n− 1

n− 1

)

mk

(h+ 1)k+n
(27)

and

Ih(n) =
1

2h

∞
∑

k=0

(

k + n− 1

n− 1

)

(−1)k
mk

hk+n
. (28)

Lemma 6.4. We have

2

(

1

2h
+

r

2h+l

)

=
s(2l + r)

(h+ 1)s(2l + r)− s(r)
(29)

and

2

(

1

2h
+

r

2h+l

)

=
s(2l + r)

hs(2l + r) + s(2l − r)
(30)

for 0 ≤ r ≤ 2l.
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Remark 6.5. More generally, if

2

( q

2h

)

=
a

b
and 2

(

q + 1

2h

)

=
c

d

with (a, b) ∈ N
2 and (c, d) ∈ N

2 pairs of relatively prime natural numbers,
then

2

( q

2h
+

r

2h+l

)

=
as(2l + r) + (c− a)s(r)

bs(2l + r) + (d− b)s(r)

=
cs(2l + r) + (a− c)s(2l − r)

ds(2l + r) + (b− d)s(2l − r)

for l ∈ N and for r such that 0 ≤ r ≤ 2l. One can then apply (14), (15), (16)
(or a similar identity) with S = (2l + r), s = s(r) in order to get Riemann

sums for
∫ c/d
a/b

2(t)ndt.

Proof of Lemma 6.4. An induction on h establishes the formula for l = 0
(and r ∈ {0, 1}).

An induction on l (for constant h) ends the proof.

Proof of Proposition 6.3. We have

Ih(n) =
1

2h
lim
l→∞

1

2l

2l
∑

r=0

2

(

1

2h
+

r

2h+l

)n

.

By (29) we have

Ih(n) =
1

2h
lim
l→∞

1

2l

2l
∑

r=0

(

s(2l + r)

(h+ 1)s(2l + r)− s(r)

)n

= lim
l→∞

1

2l+h

2l
∑

r=0

1

(h+ 1)n





1

1− s(r)
(h+1)s(2l+r)





n

and (10) implies now

Ih(n) = lim
l→∞

1

2l+h

2l
∑

r=0

1

(h+ 1)n

∞
∑

k=0

(

k + n− 1

n− 1

)(

s(r)

(h+ 1)s(2l + r)

)k

=
1

2h

∞
∑

k=0

(

k + n− 1

n− 1

)

mk

(h+ 1)k+n
.

This proves the first equality.
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The second equality follows from (12) applied to (30) yielding the iden-
tities

Ih(n) =
1

2h
lim
l→∞

1

2l

2l
∑

r=0

(

s(2l + r)

hs(2l + r) + s(r)

)n

= lim
l→∞

1

2l+h

2l
∑

r=0

1

hn





1

1 + s(r)
hs(2l+r)





n

=
1

2h

∞
∑

k=0

(

k + n− 1

n− 1

)

(−1)k
mk

hk+n
.

Proof of Theorem 6.1. Follows from mn =
∑∞

h=1 Ih(n) where Ih(n) is eval-
uated using Proposition 6.3.

7 Holomorphicity of mx

Theorem 7.1. (i) The map n 7−→ mn extends to an entire function x 7−→
mx.

(ii) The series expansion of x 7−→ mx at x = 0 is given by

∞
∑

n=0

xn

n!

∞
∑

k=n

cn,kmk (31)

where
∞
∑

k=n

cn,kx
k = (log(1− x))n . (32)

Equivalently, the numbers cn,k are given by the equality

cn,k = (−1)k
n!

k!
s(k, n) (33)

where the numbers s(k,m) defined by
∑k

m=0 s(k,m)xm = x(x − 1)(x −
2) · · · (x− k + 1) are Stirling numbers of the first kind.

Remark 7.2. The rational numbers cn,k defined by (32) are given by the
recursive formulae c0,0 = 1, c0,k = 0 if k > 0 and

cn+1,k = −
k−1
∑

j=1

cn,k−j

j
, n > 0 .

They are also defined by the equality

cn,k = (−1)n
∑

a1,...,an≥1, a1+···+an=k

1

a1 · a2 · · · an
.
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Proof of Theorem 7.1. Extending formula (26) by considering

Ih(x) =

∫ 2−h+1

2−h

ex log(2(t))dt

for arbitrary x ∈ C (where log(2(t)) ∈ R denotes the usual logarithm of the
strictly positive real number 2(t)), the inequalities

1

h+ 1
= 2(2−h) ≤ 2(t) ≤ 2(2−h+1) =

1

h
, t ∈ [2−h, 2−h+1]

show

|Ih(x)| ≤
1

2h
max

t∈[ 1
1+h

, 1
h ]
|tx| ≤ (1 + h)|x|

2h
.

This implies
∣

∣

∣

∣

∣

∞
∑

h=1

Ih(x)

∣

∣

∣

∣

∣

≤
∞
∑

h=1

(1 + h)|x|

2h
< ∞ .

The map x 7−→ mx =
∑∞

h=1 Ih(x) defines thus an entire function which
coincides with mx for x ∈ N.

Using the symmetry 2(x) = 1−2(x) we have

mx = lim
l→∞

1

2l

2l
∑

k=1

(

s(k)

s(2l + k)

)x

= lim
l→∞

1

2l

2l−1
∑

k=0

(

1− s(k)

s(2l + k)

)x

.

The n−th derivative of mx at x = 0 evaluates thus to

lim
l→∞

1

2l

2l−1
∑

k=0

(

log

(

1− s(k)

s(2l + k)

))n

= lim
l→∞

1

2l

2l−1
∑

k=0



−
∞
∑

j=1

1

j

(

s(k)

s(2l + k)

)j




n

which proves formula (31).

Remark 7.3. Holomorphicity of x 7−→ mx can also be proved using Propo-
sition 3.3.

8 Two conjectural relations

The derivative of the holomorphic function x 7−→ mx (see Theorem 7.1) is
given by

−
∞
∑

n=1

mn

n
∼ −0.7924251285954891181912115152998913988894127820438
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at the origin x = 0. It coincides experimentally with the number

−2

(

log 2−
∞
∑

n=1

mn

n2n

)

leading to the following conjectural identity.

Conjecture 8.1. We have

log 2 =
∞
∑

n=1

mn

2n

(

1 +
1

2n−1

)

. (34)

A variation is given by

Conjecture 8.2.

log 2 =
∞
∑

n=1

mn

n

(

1

2n
− (−1)n

)

. (35)

9 A third set of formulae

In this section we consider the partition

[0, 1] \ {1} =

[

0,
1

2

]

∪
[

1

2
,
3

4

]

∪
[

3

4
,
7

8

]

∪
[

7

8
,
15

16

]

∪ . . . .

The resulting identities, well suited for computing asymptotics, are given by
the following result:

Theorem 9.1.

mn =
1

2

∞
∑

j=0

(

n+ j − 1

j

)

(−1)jmn+j

+

∞
∑

h=2

1

2h

(

h− 1

h

)n n
∑

k=0

(

n

k

)(

1

h(h− 1)

)k ∞
∑

j=0

(

k − 1 + j

j

)

(−1)j
mk+j

hj

and

mn =

∞
∑

h=1

1

2h

(

h

h+ 1

)n n
∑

k=0

(

n

k

)( −1

h(h + 1)

)k ∞
∑

j=0

(

k − 1 + j

j

)

mk+j

(h+ 1)j
.

Remark 9.2. Only terms of order h ∼
√

n/ log 2 + O
(

n1/4
)

yield large
contributions to the first sum of the formulae in Theorem 9.1. Corresponding
terms of the second sum (over k) for such contributions decay exponentially
fast. Terms of the third sum (over j) decay also exponentially fast for fixed
h > 1 and for k small.
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We set

Jh(n) =

∫ 1−2−h

1−2−h+1

2(t)ndt . (36)

Proposition 9.3. We have for all h ∈ N, h ≥ 1 the identities

Jh(n) =
1

2h

(

h− 1

h

)n n
∑

k=0

(

n

k

)(

1

h(h − 1)

)k ∞
∑

j=0

(

k − 1 + j

j

)

(−1)j
mk+j

hj

(37)

and

Jh(n) =
1

2h

(

h

h+ 1

)n n
∑

k=0

(

n

k

)( −1

h(h+ 1)

)k ∞
∑

j=0

(

k − 1 + j

j

)

mk+j

(h+ 1)j
.

(38)

Observe that (37) boils down to

J1(n) =
1

2

∞
∑

j=0

(

n+ j − 1

j

)

(−1)jmn+j (39)

for h = 1.

Proof of Proposition 9.3. Identity (11) of Proposition 4.4 implies

Jh(n) =

∫ 2−h+1

2−h

(1−2(t))n dt .

Using Formula (30) of Lemma 6.4 we get

Jh(n) =
1

2h
lim
l→∞

1

2l

2l
∑

r=0

(

1− s(2l + r)

hs(2l + r) + s(2l − r)

)n

=
1

2h
lim
l→∞

1

2l

2l
∑

r=0

(

1− s(2l + r)

hs(2l + r) + s(r)

)n

= lim
l→∞

1

2h+l

2l
∑

r=0

(

h− 1

h
+

1

h2

(

s(r)

s(2l + r) + s(r)
h

))n

= lim
l→∞

1

2h+l

(

h− 1

h

)n 2l
∑

r=0

n
∑

k=0

(

n

k

)

1

hk(h− 1)k

(

s(r)

s(2l + r) + 1
hs(r)

)k

.
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Using the identity

(

s(r)

s(2l + r) + s(r)
h

)k

=

(

s(r)

s(2l + r)

)k




1

1 + 1
h

s(r)
s(2l+r)





k

=
∞
∑

j=0

(

k − 1 + j

j

)

(−1)j

hj

(

s(r)

s(2l + r)

)k+j

obtained by applying formula (10), we get the first equation.
Starting with

Jh(n) =
1

2h
lim
l→∞

1

2l

2l
∑

r=0

(

1− s(2l + r)

(h+ 1)s(2l + r)− s(r)

)n

= lim
l→∞

1

2h+l

2l
∑

r=0

(

h

h+ 1
− 1

(h+ 1)2

(

s(r)

s(2l + r)− s(r)
h+1

))n

= lim
l→∞

1

2h+l

(

h

h+ 1

)n 2l
∑

r=0

n
∑

k=0

(

n

k

)

(−1)k

hk(h+ 1)k

(

s(r)

s(2l + r)− s(r)
h+1

)k

.

and finishing as above yields the second identity.

Proof of Theorem 9.1. Follows from Proposition 9.3 applied to the obvious
identity mn =

∑∞
h=1 Jh(n).

10 Asymptotics

We set

λ =
∞
∑

n=0

(log 2)n

n!
mn . (40)

Numerically, λ is approximately equal to

1.42815984554560290424313465212729430726822547802532544939052972 .

Theorem 10.1. For every strictly positive ǫ there exists a natural integer
N such that

∣

∣

∣

∣

∣

mn − λ

∞
∑

h=2

1

2h

(

h− 1

h

)n
∣

∣

∣

∣

∣

≤ ǫ mn

if n ≥ N .
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The error given by the asymptotic approximation

mn ∼ λ

∞
∑

h=2

1

2h

(

1− 1

h

)n

(41)

in Theorem 10.1 is surprisingly small, see Section 10.3.

Corollary 10.2. We have

mn ∼ λ
n1/4

(log 2)3/4

√

π

2
e−2

√
n log 2 (42)

for n → ∞.

Corollary 10.2 is of course equivalent to Theorem 1 in [3]. The constant
λ defined by (40) is related to the constant

c0 =

∫ 1

0
2t
(

1− 1

2
?(t)

)

dt =
1

log 2
− 1

2

∫ 1

0
2t?(t)dt

in Theorem 1 of [3] by
λ = c02 log 2

and satisfies the following additional identities:

Proposition 10.3. We have

λ = 2

∞
∑

n=0

(− log 2)n

n!
mn =

4

3

∞
∑

n=0

(log 2)2n

(2n)!
m2n = 4

∞
∑

n=0

(log 2)2n+1

(2n + 1)!
m2n+1 .

Observe that the constant λ appears also in the asymptotic expression
λ n!
(log 2)n+1 for m−n, see [2] or Proposition 11.8.

Remark 10.4. A computation of λ with high precision needs only relatively
few initial values of m0,m1,m2, . . . . I ignore however a direct approach for
accurately computing only the first few values of m2,m3,m4, . . . .

Proposition 10.5. We have

lim
n→∞

(

n1/4

(log 2)3/4

√

π

2
e−2

√
n log 2

)−1( ∞
∑

h=2

1

2h

(

1− 1

h

)n
)

= 1 .

Proof of Proposition 10.5. We apply Laplace’s method to
∑∞

h=2
1
2h

(

1− 1
h

)n
.

The derivative

f ′
n(x) =

1

2x

(

1− 1

x

)n (n+ x(1− x) log 2)

x(x− 1)

of the function fn(x) = 1
2x

(

1− 1
x

)n
has roots given by the solutions of

x2 − x = n
log 2 .
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Assuming x real and positive, the positive root of f ′
n is given by

ρ =
1 +

√

1 + 4n/ log 2

2
=

√

n

log 2
+

1

2
+

1

8

√

log 2

n
+O

(

1
√
n
3

)

and we have

fn(ρ) =
1√
2
e−2

√
n log 2

(

1 +O

(

1√
n

))

.

A straightforward computation shows

f ′′
n(ρ) =

1√
2
e−2

√
n log 2

(

−2

√
log 2

3

√
n

+O

(

1

n

)

)

. (43)

Applying Laplace’s method

∫ ∞

2
fn(h)dh ∼ fn(ρ)

∫ ∞

−∞
e
− f ′′n (ρ)

fn(ρ)
t2/2

dt

=

√

2πfn(ρ)3

−f ′′
n(ρ)

to the integral approximation
∫∞
2 fn(h)dh of

∑∞
h=2 fn(h) we get the result.

Proposition 10.6. For every ǫ > 0 there exists a natural integer A such
that

0 ≤ mn −
⌊
√

n/ log 2+An1/4⌋
∑

h∈⌊
√

n/ log 2−An1/4⌋

Jh(n) < ǫmn

for all n large enough with Jh(n) =
∫ 1−2−h

1−2−h+1 2(t)
ndt given by (36).

Proof. The easy evaluation 2

(

1− 1
2h

)

= 1− 1
h+1 for h ∈ N shows

1− 1

h
≤ 2(t) ≤ 1− 1

h+ 1

for t ∈
[

1− 1
2h−1 , 1− 1

2h

]

and we have

1

2h

(

1− 1

h

)x

≤ Jh(x) ≤
1

2h

(

1− 1

h+ 1

)x

for real positive x. Since the unique positive root of the logarithmic deriva-
tive

df/dh

f
= − log 2 +

x

h(h− 1)
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with respect to h of f = 1
2h

(

1− 1
h

)x
is given by h ∼

√

x/ log 2 for large x,
the decay of the function

s −→ 1

2
√

x/ log 2+sx1/4

(

1− 1
√

x/ log 2 + sx1/4

)x

is exponentially fast in |s| for large x. This implies the result.

Proof of Theorem 10.1. Setting

J̃h(n) = 2h
(

h

h− 1

)n

Jh(n)

formula (37) of Proposition 9.3 shows the identities

J̃h(n) =
n
∑

k=0

(

n

k

)

1

hk(h− 1)k

∞
∑

j=0

(

k − 1 + j

j

)

(−1)j
mk+j

hj

=

n
∑

k=0

(log 2)k

k!

∏k−1
j=1

(

1− j
n

)

(

h(h−1)
n log 2

)k

∞
∑

j=0

(

k − 1 + j

j

)

(−1)j
mk+j

hj
.

For k fixed and for h =
√

n/2 log 2 +O(n1/4) we have

lim
n→∞

∏k−1
j=1

(

1− j
n

)

(

h(h−1)
n log 2

)k
= 1

and we get the asymptotics

J̃h(n) ∼
∞
∑

k=0

(log 2)k

k!
mk = λ

for h =
√

n/ log 2 +O
(

n1/4
)

.
Proposition 10.6 shows now

mn ∼ǫ

⌊
√

n/ log 2+An1/4⌋
∑

h=⌊
√

n/ log 2−An1/4⌋

Jh(n)

∼ǫ

⌊
√

n/ log 2+An1/4⌋
∑

h=⌊
√

n/ log 2−An1/4⌋

1

2h

(

h− 1

h

)n

J̃h(n)

∼ǫ λ

∞
∑

h=2

1

2h

(

h− 1

h

)n

for n → ∞ and fixed A (depending on ǫ) with a ∼ǫ b denoting |a− b| < ǫa
for arbitrary small ǫ if n is large enough.
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Proof of Proposition 10.3. Working with formula (38) we get the asymp-
totics

mn ∼
∞
∑

h=1

1

2h

(

h

h+ 1

)n ∞
∑

k=0

(− log 2)k

k!
mk

= 2

∞
∑

k=2

1

2h

(

h− 1

h

)n ∞
∑

k=0

(− log 2)k

k!
mk

which imply the first equality by comparing with Theorem 10.1. The two
other identities are easy consequences.

Proof of Corollary 10.2. Follows from Theorem 10.1 and Proposition 10.5.

10.1 Asymptotic formula for φn

Using similar techniques, we get the asymptotic approximation

φn ∼ 2λ

∞
∑

h=3

1

2h

(

1− 2

h

)n

(44)

(where λ is given by (40)) for φn = 2
∫ 1
1/2 (22(t)− 1)n dt, see Formula (19) in

Lemma 5.4. The relative error seems again to be of order O
(

φ
5/4
n

)

and has

again (suitably normalized) a more or less periodic behaviour as a function
of

√
n.
Using Laplace’s method for the right side of (44) we get the simpler and

less accurate expression

φn ∼ λ
(2n)1/4

√
π

log(2)3/4
e−2

√
2n log 2 . (45)

10.2 A second asymptotic formula

The motivation for this section is the estimation of the order of the error in
the asymptotic approximation (41).

A refinement of the Riemann sum underlying Formula (41) should yield
a slightly more accurate approximation for mn. The order of the difference
between the two formulae should be a measure for the accuracy of (41).

We subdivide the interval underlying the integral Jh(n) defined by (36)
into two intervals of equal lengths. We have Jh(n) = Ah(n) +Bh(n) where

Ah(n) =

∫ 1−3·2−h−1

1−2−h+1

2(t)ndt and Bh(n) =

∫ 1−2−h

1−3·2−h−1

2(t)ndt .

25



We have

Ah(n) =
1

2h+1
lim
l→∞

1

2l

2l
∑

r=0

(

1− s(2l + r) + s(r)

hs(2l + r) + (h+ 1)s(r)

)n

=
1

2h+1
lim
l→∞

1

2l

2l
∑

r=0

(

2h− 1

2h+ 1
− s(r)

(2h + 1)2(s(2l + r)− h+1
2h+1s(r))

)n

=
1

2h+1

(

2h− 1

2h+ 1

)n n
∑

k=0

(

n

k

)

(−1)k

(4h2 − 1)k
lim
l→∞

2k

2l

2l
∑

r=0

(

s(r)

2s(2l + r)− 2h+2
2h+1s(r)

)k

which yields

lim
h→∞

Ah(n) =
1

2h+1

(

2h− 1

2h+ 1

)n n
∑

k=0

(

n

k

)

(−1)k

(4h2 − 1)k
2kφk

by Identity (20).
For h =

√

n/ log 2 +O(n1/4) we have thus

Ah(n) ∼
1

2h+1

(

2h− 1

2h+ 1

)n ∞
∑

k=0

(− log 2)k

2k k!
φk .

A similar calculation shows

Bh(n) ∼
1

2h+1

(

2h− 1

2h+ 1

)n ∞
∑

k=0

(log 2)k

2k k!
φk

for h =
√

n/ log 2 +O(n1/4).
We get thus for large n and h =

√

n/ log 2 +O(n1/4) the approximation

Jh(n) ∼
1

2h

∞
∑

k=0

(log 2)2k

22k (2k)!
φ2k .

Setting

ρ =

∞
∑

k=0

(log 2)2k

22k (2k)!
φ2k (46)

we have asymptotically

mn ∼ ρ

∞
∑

h=1

1

2h

(

1− 2

2h+ 1

)n

.

Using Laplace’s method we get the asymptotic approximation

∞
∑

h=1

1

2h

(

1− 2

2h+ 1

)n

∼ n1/4√π

(log 2)3/4
e−2

√
n log 2.
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This shows

mn ∼ ρ
n1/4√π

(log 2)3/4
e−2

√
n log 2 (47)

and implies the identity

ρ =
λ√
2

(48)

as can be seen by comparing the two asymptotic approximations (42) and
(47) of mn.

The asymptotic formula

mn ∼ λ
∞
∑

h=1

1

2h+1/2

(

1− 1

h+ 1/2

)n

(49)

should thus be slightly better than (41), see Figure 1 in Section 10.3.

10.3 An estimation for the error of the asymptotic formulae

Setting

x 7−→ Sx(n) =
∞
∑

h=1

1

2h+x

(

1− 1

h+ x

)n

, (50)

the asymptotic formulae (41) and (49) can be rewritten as mn ∼ λS0(n) and
mn ∼ λS1/2(n). Since x 7−→ Sx(n) is almost 1-periodic (for small positive
x and huge fixed n) and oscillates experimentally around the exact value of
the integral

S∫ (n) =

∫ ∞

1

1

2t

(

1− 1

t

)n

dt, (51)

it is tempting to rescale the errors mn − Sx(n) by the inverse of the factor

κ(n) =

√

(

S0(n)− S∫ (n)
)2

+
(

S1/4(n)− S∫ (n)
)2

(52)

given by the “amplitude” of the almost 1-periodic function x 7−→ Sx(n) −
S∫ (n).

The sequence S∫ (n) of integrals is easy to compute recursively: We have
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the initial values

S∫ (0) =

∫ ∞

1

dt

2t
=

1

2 log 2

S∫ (1) =

∫ ∞

1

1

2t

(

1− 1

t

)

dt

=
1

2 log 2
+

∫ − log 2

−∞

et

t
dt?

=
1

2 log 2
−
∫ ∞

log 2

e−t

t
dt?

=
1

2 log 2
+ Ei(− log 2)

(where Ei(x) =
∫ x
−∞

et

t dt = −
∫∞
−x

e−t

t dt is the exponential integral) and
integration by parts yields the recursion relation

S∫ (n) =

(

2 +
log 2

n− 1

)

S∫ (n− 1)− S∫ (n− 2). (53)

The normalized errors

E0(n) = =
1

κ(n)

(

mn − λ

∞
∑

h=2

1

2h

(

1− 1

h

)n
)

, (54)

E1/2(n) =
1

κ(n)

(

mn − λ
∞
∑

h=1

1

2h+1/2

(

1− 1

h+ 1/2

)n
)

, (55)

E∫ (n) =
1

κ(n)

(

mn − λ

∫ ∞

1

1

2t

(

1− 1

t

)n

dt

)

(56)

are depicted in Figure 1 representing the points (
√
n,E0(n)) ,

(√
n,E1/2(n)

)

and
(√

n,E∫ (n)
)

for n in {100, . . . , 400}. Points on the smallest sinusoidal

curve are associated to E∫ , points on the sinusoidal curve of intermediate
size to E1/2 and points on the largest curve to E0. In all three cases the error
seems to be close to a damped periodic function of

√
n of local amplitude

O(κ(n)).

Remark 10.7. The existence of the linear recurrence relation (53) implies
the existence of asymptotic recurrence relations (given by the same formula)
for the sequences mn and Sx(n).

The asymptotic linear recurrence formula for mn can be improved into
an affine asymptotic formula using ideas of the next Section.

Remark 10.8. It would be interesting to understand the asymptotic be-
haviour of the amplitude κ(n) given by Formula (52). (The number κ(n) is
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Figure 1: Error of asymptotical formulae

essentially the error term in Euler-MacLaurin’s summation formula.) For
moderate values of n it seems to be comparable to

√
n

log n log log n
e−9/2

√
n log 2

which implies κ(n) < m
9/4
n . The accuracy of the asymptotic formulae mn ∼

λS∗(n) (for ∗ = 0, 1/2 and
∫

) is thus surprisingly high.

10.4 Increasing accuracy

The behaviour of the error-terms E∗(n) occurring in the previous Section
suggests to try an asymptotic formula of the form

mn ∼ λS∫ (n) + a
(

S0(n)− S∫ (n)
)

+ b
(

S1/4(n)− S∫ (n)
)

(57)

with λ defined by (40) and S∗(n) as in the previous Section. Experimentally,
such a formula seems to exist with

a ∼ −.521901056340432536774725873446,

b ∼ −.148755851763595338634628933193.

The term λS∫ (n) is of course the principal contribution and plays the role

of Formula (41) or (49). The two remaining terms a
(

S0(n)− S∫ (n)
)

and
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b
(

S1/4(n)− S∫ (n)
)

sum up to a fairly regular (damped) oscillatory con-

tribution of much lesser size. More precisely, its local amplitude should be

asymptotically equal to λ
√
a2+b2

κ(n) with κ(n) given by Formula (52).

10.5 An improved algorithm

Accurate asymptotic approximations can be used for improving the algo-
rithm given in Section 5.2. Indeed, the cutoff at N induces large relative er-
rors for the last values of φ̃n. It is thus natural to compute φ̃0, φ̃2, . . . , φ̃2⌊N/2⌋
using the first N + 1 values m̃0, . . . , m̃N and M − N additional values
m̃N+1, . . . , m̃M given by asymptotic approximations of mN+1, . . . ,mM (for
M > N a suitable integer depending on N and on the accuracy of the chosen
approximation).

We illustrate this by modifying the algorithm of Section 5.2 using high-
level instructions in order to involve the asymptotic approximation (41) (the
approximation (42) is of much lesser interest):

Add the lines
005 Precompute (and store) sufficiently accurate values S̃(n) of S0(n) (or,
slightly better, of S∫ (n)) for n = N + 1, . . . ,M .

051 Compute λ̃ :=
∑M

n=0
(log 2)n

n! m̃n,

052 Set m̃n = λS̃(n) for n = N + 1, . . . ,M .
at the obvious locations.
Replace 090 by

090 For k = 0, 1, 2, . . . ,M − n do:
The resulting algorithm can easily be modified in order to work with

other asymptotic approximations. The author used mainly (57) (this needs
precomputations of approximations for S∫ (n), S0(n), S1/4(n) with n in {N+
1, . . . ,M}).

Concerns using an algorithm based on a conjectural formula can be
avoided by checking the final data using a single iteration of (the main
loop in) the original algorithm (described in Section 5.2) with a sufficiently
high value N ′ > N (with missing values replaced by their (conjecturally very
accurate) approximations). The obtained data are exact up to an absolute
error bounded by max(|ǫ|,mN ′+1) with ǫ denoting the maximal modification
of m̃1, . . . , m̃N ′ during the final checking-run.

The improved version has smaller memory requirement and a much bet-
ter running time : The (conjectural) accuracy of the used approximation
should more than double the number of achievable correct digits for a given
value of N . In order to achieve the same accuracy, the original algorithm has
to be run with N multiplied by more than 4 which multiplies the running
time of the main loop by more than 16 = 42.
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11 Values of m at negative integers

Proposition 11.1. The equality

m−n = mn +
n−1
∑

k=0

(

n

k

)

(m−k +mk) (58)

holds for n ∈ N a natural integer.

Remark 11.2. The generalization

mz =
1

2

∞
∑

k=0

(−z

k

)

(m−k +mk)

of Proposition 11.1 fails for arbitrary complex values of z. Indeed, Proposi-
tion 11.1 is based on the identity (1+x)z =

∑∞
k=0

(

z
k

)

xk for arbitrary x ∈ R

which breaks down if −z is not in N.

Proof of Proposition 11.1. We have for n ∈ N

m−n = lim
l→∞

1

2l

2l
∑

r=1

(

s(2l + r)

s(r)

)n

Using (11) we have

m−n = lim
l→∞

1

2l

2l
∑

r=1

(

s(r) + s(2l − r)

s(r)

)n

= lim
l→∞

1

2l

2l
∑

r=1

(

1 +
s(2l − r)

s(r)

)n

= lim
l→∞

1

2l





2l−1
∑

r=1

(

1 +
s(2l − r)

s(r)

)n

+

2l
∑

r=2l−1+1

(

1 +
s(2l − r)

s(r)

)n




= lim
l→∞

1

2l





2l−1
∑

r=1

(

1 +
s(2l − r)

s(r)

)n

+

2l−1−1
∑

r=0

(

1 +
s(r)

s(2l − r)

)n




Using (12) we have thus

m−n = lim
l→∞

1

2l





2l−1
∑

r=1

(

1 +
s(2l−1 + r)

s(r)

)n

+

2l−1
∑

r=1

(

1 +
s(r)

s(2l−1 + r)

)n




= lim
l→∞

1

2l

n
∑

k=0

(

n

k

) 2l−1
∑

r=1

(

(

s(2l−1 + r)

s(r)

)k

+

(

s(r)

s(2l−1 + r)

)k
)

=
1

2

n
∑

k=0

(

n

k

)

(m−k +mk)
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which implies the result.

11.1 Matrices relating m−N and mN

Identity (58) of Proposition 11.1 implies the existence of infinite lower di-
agonal triangular unipotent matrices A,B = A−1 with integral coefficients
such that











m0

m−1

m−2
...











= A











m0

m1

m2
...











and











m0

m1

m2
...











= B











m0

m−1

m−2
...











.

The first few rows and columns of the matrices A,B = A−1 are












1
2 1
6 4 1

26 18 6 1
150 104 36 8 1













,













1
−2 1
2 −4 1

−2 6 −6 1
2 −8 12 −8 1













and their coefficients are described by the following result.

Proposition 11.3. Let σn, n ∈ Z be a sequence (with values in a commu-
tative ring containing 1) indexed by the set Z of all integers such that

σ−n − σn =
n−1
∑

k=0

(

n

k

)

(σ−k + σk) .

Then

σ−i =

i
∑

j=0

αi,jσj

σi =

i
∑

j=0

βi,jσ−j

for all i ∈ N where αi,j, βi,j , 0 ≤ i, j are integers given by the formulae

αi,j =

(

i

j

) ∞
∑

h=1

hi−j

2h
(59)

and

βi,j =

{

1 if i = j

2(−1)i+j
(i
j

)

otherwise.

In particular, the matrices A and B with coefficients αi,j , βi,j , 0 ≤ i, j are
mutually inverse lower triangular unipotent integral matrices.
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Proof. We have αi,i = 1 as required and the matrix A is clearly lower trian-
gular. The proof is now by induction on the row-index i of the coefficients
αi,j for A. Equation (58) of Proposition 11.1 shows that we have

αi+1,j =

i
∑

l=0

(

i+ 1

l

)

(αl,j + δl,j)

for i+ 1 ≥ j, where δl,j = 1 if l = j and δl,j = 0 otherwise.
We get

αi+1,j =

(

i+ 1

j

)

−
(

i+ 1

i+ 1

)(

i+ 1

j

) ∞
∑

h=1

hi+1−j

2h

+
∞
∑

h=1

i+1
∑

k=0

(

i+ 1

k

)(

k

j

)

hk−j

2h

=

(

i+ 1

j

)

−
(

i+ 1

j

) ∞
∑

h=1

hi+1−j

2h
+

∞
∑

h=1

(i+1
j

)

2h

i+1
∑

k=0

(

i+ 1− j

k − j

)

hk−j

=

(

i+ 1

j

)

(

1−
∞
∑

h=1

hi+1−j

2h
+

∞
∑

h=1

(h+ 1)i+1−j

2h

)

=

(

i+ 1

j

) ∞
∑

h=1

hi+1−j

2h
.

This implies the formula for the coefficients of A.
We prove the formula for the coefficients of the inverse matrix B = A−1

by computing the product AB. We have

i
∑

k=j

αi,kβk,j = 2

i
∑

k=j

αi,k(−1)k+j

(

k

j

)

− αi,j

= 2

∞
∑

h=1

i
∑

k=j

hi−k

2h

(

i

k

)(

k

j

)

(−1)k+j − αi,j

=

∞
∑

h=1

(−1)jhi

2h−1

i
∑

k=j

(

i

k

)(

k

j

)

1

(−h)k
− αi,j .

Identity 4.3 of Lemma 4.3 shows that this simplifies to

∞
∑

h=1

(h− 1)i−j

2h−1

(

i

j

)

− αi,j .

This equals 1 if i = j and 0 for i > j by definition of αi,j.

The sum appearing in (59) defines natural integers having a recursive
definition:
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Proposition 11.4. The natural integers

γn =

∞
∑

h=1

hn

2h

(appearing in (59)) have the recursive definition γ0 = 1 and

γn = 1 +

n−1
∑

j=0

(

n

j

)

γj

for n ≥ 1.

The sequence of integers γ0, γ1, . . . starts as

1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, . . . ,

see sequence A629 of [5].

Proof of Proposition 11.4. We have

γn =
1

2
+

1

2

∞
∑

h=1

(h+ 1)n

2h

=
1

2
+

1

2

n
∑

j=0

(

n

j

) ∞
∑

h=1

hn

2h

=
1

2
+

1

2

n
∑

j=0

(

n

j

)

γj

which implies the result.

Remark 11.5. Lower triangular matrices with lower triangular coefficients
γi,j of the form

(i
j

)

ci−j for some sequence c0, c1, . . . form a commutative al-

gebra. Indeed, the map associating to such a matrix with coefficients
(i
j

)

ci−j

the formal exponential power series
∑∞

n=0 cn
xn

n! defines an isomorphism of
algebras onto the algebra of formal exponential power series (with product

given by the obvious “bilinear”extension of xi

i!
xj

j! =
(

i+j
i

)

xi+j

(i+j)!). The easy

equality
∑∞

n=0 βn,0
xn

n! = 1 + 2
∑∞

n=1(−1)n xn

n! = 2e−x − 1 shows thus the
identity

∞
∑

n=0

γn
xn

n!
=

∞
∑

n=0

an,0
xn

n!
=

1

2e−x − 1
.

Proposition 11.1 and Proposition 11.3 imply the following result:
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Corollary 11.6. We have

m−n =

n
∑

k=0

(

n

k

)

γn−kmk (60)

(with γn defined by Proposition 11.4) and

mn = m−n + 2
n−1
∑

k=0

(−1)n+k

(

n

k

)

m−k (61)

for all n in N.

Corollary 11.6 is better suited than Proposition 3.3 for computing values
m−N using mN. It involves only finitely many terms of mN with coefficients
which are decreasing. (The main contribution to m−n given by the formula
of Proposition 3.3 corresponds to summands indexed by integers close to
n2

log 2 .)
Combining Formula (60) of Corollary 11.6 with Proposition 3.3 we get:

Corollary 11.7. We have for all n in N the identity
n
∑

k=0

(

n

k

)

γn−kmk =

∞
∑

j=0

(

n+ j − 1

j

)

mj . (62)

Corollary 11.7 yields

2m0 +m1 =
∞
∑

j=0

mj,

6m0 + 4m1 +m2 =

∞
∑

j=0

(j + 1)mj ,

26m0 + 18m1 + 6m2 +m3 =

∞
∑

j=0

(

j + 2

2

)

mj,

150m0 + 104m1 + 36m2 + 8m3 +m4 =
∞
∑

j=0

(

j + 3

3

)

mj.

Using the easy evaluation m0 = 1,m1 = 1
2 , the case n = 1 yields the nice

evaluation
∞
∑

j=0

mj =
5

2
(63)

which can be used as an accuracy-check for numerical computations.
Similarly, using n = 2, we get the identity m2 + 8 =

∑∞
j=0(j + 1)mn.

Subtraction of (63) yields

∞
∑

j=1

j mj = m2 +
11

2
. (64)
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11.2 Asymptotics for m−n

Proposition 11.8. We have

lim
n→∞

m−n
(log 2)n−1

n!
= λ

for λ =
∑∞

k=0
(log 2)k

k! mk given by (40).

The following easy result is probably well-known:

Lemma 11.9. We have

lim
n→∞

(log 2)n+1

n!

∞
∑

k=1

kn

2k
= 1 .

Proof of Lemma 11.9. We apply Laplace’s method to
∫∞
1 xn2−xdx ∼

∑∞
k=1 k

n2−k.
The derivative

d

dx

(

xne−x log 2
)

=
(n

x
− log 2

)

xne−x log 2

of xn2−x has a unique strictly positive root at n
log 2 and second derivative

− (log 2)2

n

(

n
log 2

)n
e−n at the critical point x = n

log 2 corresponding to the

maximum
(

n
log 2

)n
e−n of the function x 7−→ xn2−x.

Laplace’s method yields thus the asymptotics
∞
∑

k=1

kn

2k
∼
(

n

log 2

)n

e−n

∫ ∞

−∞
e−

(log 2)2

2n
x2
dx

=

√

2πn

(log 2)2

(

n

log 2

)n

e−n

=
1

(log 2)n+1

√
2πn

nn

en

∼ n!

(log 2)n+1

where the last asymptotic equivalence follows from Stirling’s formula n! ∼√
2πnnn

en .

Proof of Proposition 11.8. Using Corollary 11.6 and the asymptotics
∑∞

k=1
kn

2k
∼

n!
(log 2)n+1 given by Lemma 11.9, we get the asymptotics

m−n =

n
∑

k=0

αn,kmk ∼
n
∑

k=0

(

n

k

)

(n− k)!

(log 2)n−k+1
mk

=
n!

(log 2)n+1

n
∑

k=0

(log 2)k

k!
mk ∼ λ

n!

(log 2)n+1

with λ given by (40).
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12 Geometric means for the Stern sequence

It is an easy exercise to compute the arithmetic mean 1
2n
∑2n+1

j=2n s(j).
The following result gives asymptotics for the geometric mean:

Theorem 12.1. There exists a real constant β such that

lim
n→∞

e−(nα+β)2n
2n+1
∏

j=2n

s(j) = 1

where

α = log 2−
∞
∑

j=1

mj

j2j

∼ .39621256429774455909560575764994569944470639102190 .

Remark 12.2. The constant α is involved in the Hausdorff dimension of
growth points for ?(x), see Kinney or Alkauskas. See also Conjecture 8.1
for a conjectural manifestation of α.

I am not aware of the existence of an efficient method for computing the
value of β ∼ −.0851895 with high precision.

Lemma 12.3. Given an increasing function ϕ : [0, 1] −→ [0, 1] and a strictly
positive natural integer N we have

∣

∣

∣

∣

∣

∫ 1

0
ϕ(t)dt− 1

N

N−1
∑

k=0

ϕ
(

k
N

)

+ ϕ
(

k+1
N

)

2

∣

∣

∣

∣

∣

≤ 1

2N
.

Proof. The error of the trapezoidal rule

∫ b

a
ϕ(t)dt ∼ (b− a)

ϕ(a) + ϕ(b)

2

is bounded by
∣

∣

∣

(b−a)(ϕ(b)−ϕ(a))
2

∣

∣

∣ if ϕ is monotonous.

Proof of Theorem 12.1. We consider

S(n) =
1

2n

2n+1
∑

k=2n

log(s(k))

=
1

2n

2n
∑

k=1

log(s(2n + k − 1)) + log(s(2n + k))

2
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where the second identity follows from the evaluations s(2n) = s(2n+1) = 1.
Using (12) we get

S(n+ 1) =
1

2n+1

2n+1
∑

k=1

log(s(2n+1 + k − 1)) + log(s(2n+1 + k))

2

=
1

2n+1

2n
∑

k=1

log(s(2n+1 + k − 1)) + log(s(2n+1 + k))

2

+
1

2n+1

2n+1
∑

k=1+2n

log(s(2n+1 + k − 1)) + log(s(2n+1 + k))

2

=
2

2n+1

2n
∑

k=1

log(s(3 · 2n + k − 1)) + log(s(3 · 2n + k))

2

and (13) yields

S(n+ 1) =
1

2n

2n
∑

k=1

log(2s(2n + k − 1)− s(k − 1)) + log(2s(2n + k)− s(k))

2

= log(2) +
1

2n

2n
∑

k=1

log(s(2n + k − 1)− 1
2s(k − 1)) + log(s(2n + k)− 1

2s(k))

2

Using dk

dxk log(u− vx) = −(k − 1)! vk

(u−vx)k
for k ≥ 1, we get

S(n+ 1) = log(2) + S(n)−
∞
∑

j=1

1

j2j
1

2n

2n
∑

k=1

1

2

(

(

s(k − 1)

s(2n + k − 1)

)j

+

(

s(k)

s(2n + k)

)j
)

which implies

lim
n→∞

(S(n + 1)− S(n)) = log 2−
∞
∑

j=1

mj

j2j
= α

by Proposition 2.1.
Lemma 12.3 shows
∣

∣

∣

∣

∣

∣

∞
∑

n=0

∞
∑

j=1

1

j2j

(

mj −
1

2n

2n
∑

k=1

1

2

(

(

s(k − 1)

s(2n + k − 1)

)j

+

(

s(k)

s(2n + k)

)j
))

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=0

∞
∑

j=1

1

2j
1

2n
≤

∞
∑

n=0

∞
∑

j=1

1

2n+j
= 2 .

This proves the existence of β.
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