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Abstract

Playing the game of heads or tails in zero gravity demonstrates that there exists a contextual "measure-
ment" in classical mechanics. When the coin is flipped, its orientation is a continuous variable. However,
the "measurement" that occurs when the coin is caught by clapping two hands together gives a discrete
value (heads or tails) that depends on the context (orientation of the hands). It is then shown that there
is a strong analogy with the spin measurement of the Stern-Gerlach experiment, and in particular with
Stern and Gerlach’s sequential measurements. Finally, we clarify the analogy by recalling how the de
Broglie-Bohm interpretation simply explains the spin "measurement".

1 Introduction

Understanding measurement in quantum mechanics has always been a major problem. This is especially the
case of the "measurement" of the spin in the Stern-Gerlach experiment, which is considered the archetype
of a so-called contextual measurement. In Modern Quantum Mechanics [1], Jun John Sakurai calls attention
to this point in his opening remarks: "This experiment illustrates in a dramatic manner the necessity for a
radical departure from the concepts of classical mechanics. [...] A solid understanding of problems involving
two-state systems will turn out be rewarding to any serious student of quantum mechanics." Many physicists
(primarily those related to the Copenhagen school) have interpreted this experiment as if "the measurement
creates reality" or more explicitly, as Albert Einstein famously put it, as if "the moon doesn’t exist when no
one looks at it". The purpose of this article is to show that contextual measurements also exist in classical
mechanics and that they are not mysterious. Section 2 defines the specific case of heads or tails in zero
gravity, which presents a certain analogy with the measurement of spin in the Stern-Gerlach experiment. This
"measurement" corresponds in fact to the orientation of a continuous variable to a discrete two-state value.
This analogy continues with Stern and Gerlach’s sequential measurements in section 3. Finally, section 4
clarifies the analogy by recalling how the de Broglie-Bohm interpretation [2, 3] simply explains the spin
"measurement" and we conclude in section 5.

2 Heads or tails in zero gravity

Have you ever tossed a coin in space? You’ll run into a small problem once the coin has been tossed into
the air: it won’t drop into your palm but will remain twirling in the air. The absence of gravity adds a
complication to coin tossing. New rules are required when playing heads or tails in space: the tosser has
to clap his hands together so that the coin is caught between his right and left palms. Then he will ask his
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opponent to choose heads or tails. The coin tosser then withdraws his hands. The coin still does not fall,
it remains motionless in weightlessness. The side of the coin that was on the tosser-clapper’s right palm
designates the winner. It is understood in this experiment that the heads/tails orientation of the coin is not
determined before the measurement (the clapping together of hands). The orientation of the coin is a variable
with non-predetermined values (before measurement), unlike the mass, color, value or size of the coin which
are variables with predetermined values. This is what is described as a contextual measurement, i.e. the
measurement of a variable with a continuous value (orientation of the coin) that only gives discrete values
(heads or tails) depending on the context (the orientation of the hands).

Analogy with Stern-Gerlach spin measurement In quantum mechanics, the orientation of the spin of a
particle is also a variable whose values are non-predetermined before measurement. When measuring the spin;
let us consider the example of a 1/2 spin particle passing through a Stern-Gerlach type measuring device, that
is to say a very powerful magnetic field (cf. figure 1), there can only be two possible results: either spin up (i.e.
a deviation of the particle upwards with respect to the Stern-Gerlach device) or spin down (i.e. a deviation of
the particle downwards).

This is the analog of the measurement of heads or tails by clapping hands in space. In both cases, it is
possible to say that the orientation of the coin (or the spin) before the measurement is in a superposition of the
state of heads and the state of tails (respectively state of up and state of down); mathematically a superposition
of states is simply a state that is linear combination of several states. These are variables with continuous
values (all superpositions are possible) but whose measurement produces only discrete values.

Figure 1: Schematic configuration of the historic Stern-Gerlach experiment: a beam of silver atoms [4],
from the source (oven E , collimator hole T) passes through an inhomogeneous magnetic field (magnet A1),
then separates into two distinct beams before condensing on the screen P1 on two distinct spots of identical
intensity N+ et N−.

3 Sequential measurements of heads or tails

It is interesting to do measurements in space because it is possible to extend the spin up/down analogy of
a particle with the heads/tails orientation of a coin. Indeed, to measure spin, it is possible to orient the
measuring instrument (the air gap of the Stern-Gerlach device) in any direction in space; the direction ẑ
classically denotes the vertical direction and x̂ and ŷ the other two horizontal directions.

In the coin toss game on Earth, the heads or tails orientation is only measured on the vertical axis because
of gravity. In zero gravity, there is no longer any specific direction and it is possible to orient the measuring
device (i.e. the clapping hands) in all possible directions, and therefore also the measurement of the spin.
This could be described as a game of heads or tails in three dimensions. The experiment is schematically
represented in Figure 2, where it is shown that there is a 50/100 chance of obtaining the heads orientation and
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Figure 2: Measuring the orientation of a coin by clapping hands.

a 50/100 chance of obtaining the tails orientation, regardless of the orientation of the measuring device. There
is therefore a 50/50 superposition of the states of heads and tails.

If, after measuring the coin in the heads state on the ẑ axis, a second measurement is made in the same di-
rection, as shown in Figure 3 , and the hands are again clapped on the ẑ axis, it is obvious that the measurement
of the orientation once again results in heads.

Figure 3: Two successive measurements of the orientation of the coin with measuring devices oriented in the
same direction.

A second measurement is now made, but on the ŷ axis. The first measurement was a vertical clapping of
the hands: the coin was forced to orient itself vertically in relation to heads and tails (it is assumed that heads
was found, for example); after this measurement, it no longer spins but remains oriented vertically. Now a
second measurement is made by clapping hands horizontally this time (see Figure 4). The coin is once again
forced to orient itself but horizontally this time. Since it is on its side, due to the horizontal orientation, it has
a 50 % chance of being measured heads and a 50% chance of being measured tails. One final experiment is
conducted to understand the behavior of a variable with non-predetermined values.

Figure 4: Two successive measurements of the orientation of the coin with measuring devices oriented in
perpendicular directions.

As shown in Figure 5, after the first two measurements in relation to ẑ and ŷ, a third measurement is
carried out, again in relation to ẑ. After the second measurement, the coin floats horizontally in the air and the
third hand clap straightens it again. The first measurement in this same direction resulted in heads, but now
there is a 50 % chance that its will be heads again and 50 % it will be tails.

Figure 5: Three successive measurements of the orientation of the coin with measuring devices oriented
respectively in relation to ẑ then ŷ then again ẑ.
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The latter experiment shows that a variable with non-predetermined values of a given object can be mea-
sured in the same direction and not result in the same value. The four experiments (Figures 2, 3, 4 and 5) are
characteristic of variables with non-predetermined values before measurement. The spin of a particle (or the
polarization of a photon) follows these same patterns.

Difference between zero gravity heads and tails and quantum heads and tails (Stern and Gerlach) The
main difference relates to experiments 3 and 4 (Figures 4 et 5) where at least one second measurement is
carried out in an orientation perpendicular to the first one. For these experiments, the result of the second
measurement (Figure 4) gives a 50% chance of obtaining heads and a 50% chance of obtaining tails, because
the second measurement is perpendicular to the first. If it were not perpendicular, that is to say oriented by
90◦ in relation to the first hand clap, but merely oriented by 45◦, for example, then the second measurement
would in all cases yield the same result as the first. In fact, the hand clap cannot flip over the coin but simply
straighten it in the axis of the hands. This results in a 50/50 chance of heads or tails because the orientation
of the two measuring devices is 90◦ and therefore the coin is on its side during the second measurement.
In quantum heads or tails, each orientation between the two measuring devices corresponds to a different
up/down frequency of occurrence. All up/down frequencies of occurrence are possible. The frequency 50/50
is found when the orientation between the two measurement devices is perpendicular.

Although the question of the non-contextuality of the measurement of the game of heads or tails in space
does not pose any problem of interpretation, the question of the non-contextuality of the spin measurement is
the source of the divergences that exist among the main interpretations of quantum mechanics.

• The Copenhagen interpretation (orthodox interpretation) refutes the existence of the spin orientation
before its measurement by an observer; it is the measurement that creates the spin orientation; before
measurement, the spin orientation is indeterminate. This assumption is extended to other properties
such as a particle’s position or velocity, which are assumed to be non-existent until they are measured.

• Everett’s multiple worlds interpretation explains non-contextuality by splitting the world in two; each
new world has a different context that gives a different result.

• In the de Broglie-Bohm interpretation, the non-contextuality of the spin measurement is explained in
the same way as the non-contextuality of the measurement in the game of heads or tails in space: the
measuring device guides the spin (resp. the coin orientation) to a discrete value, but the spin orientation
(resp. the coin orientation) exists throughout the experiment.

Let us recall that these three approaches share the same equations (those of quantum mechanics) and therefore
have the same physical predictions. All that distinguishes them is the interpretation of the equations.

In the following section, we present the dBB interpretation, which extends the analogy of the interpretation
of the measurement of heads or tails in zero gravity to "the quantum world".

4 Spin "measurement" in Broglie-Bohm interpretation

Finally, we recall how the de Broglie-Bohm interpretation provides a simple explanation for the spin "mea-
surement" according to the different axes. The measurement of the spin of a silver atom is carried out by a
Stern-Gerlach apparatus: an electromagnet A1, where there is a strongly inhomogeneous magnetic field B,
followed by a screen P1 (Fig.1). The magnetic field B is directed along the Oz axis and the atomic beam is
directed along the Oy axis.

4.1 Point source or spatial extension: spinor

The state of a spin 1/2 particle is given by the wave function Ψ(x, t), called a Pauli spinor, which has two
complex components Ψ+(x, t) and Ψ−(x, t). At the moment of entering the magnetic field (t = 0), we
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Figure 6: Orientation of the spin of a pure state. θ0 and ϕ0 are the polar angles characterizing the spinor. They
correspond to the angles of the Bloch sphere.

can associate to each silver atom a spinor corresponding to a pure state, as in many textbooks of quantum
mechanics [5, 6, 1] :

Ψ0 = Ψ(t = 0) =

(
cos θ02 e

i
ϕ0
2

sin θ0
2 e
−iϕ0

2

)
(1)

where θ0 and ϕ0 are the polar angles characterizing the pure state (cf. figure 6). The angles θ0 and ϕ0 are
unknown and each atom of the beam has angles (θ0, ϕ0) which a priori are different; we only suppose that
θ0 is uniformly distributed on [0; π] and ϕ0 on [0; 2π[. The beam passing through the magnetic field is a
statistical mixture of pure states, that is, a random mixture of atoms in different spinors.

To analyze the evolution of the spinor during the experiment and to understand how the spin is measured,
it is absolutely necessary to represent an individual particle with spin by a spinor with a spatial extension as
follows:

Ψ0(x, z) = (2πσ2
0)−

1
2 e
−x

2+z2

4σ2
0

(
cos θ02 e

i
ϕ0
2

sin θ0
2 e
−iϕ0

2

)
(2)

We consider the beam of silver atoms as a Gaussian beam along the Oz and Ox axes of standard deviation
σ0 = 10−4m. The atomic propagation axis Oy is treated classically, knowing that the velocity of the atoms
in this direction is approximately vy = 500m/s.

4.2 Pauli equation

The evolution of the spinor Ψ(x, t) =
(Ψ+(x,t)

Ψ−(x,t)

)
, for a neutral spin-1/2 particle (silver atom) is given by the

Pauli equation:

i~
∂Ψ

∂t
(x, t) =

(
− ~2

2m
∇2 + µBBσ

)
Ψ(x, t) (3)

where m = 1.8× 10−25kg is the the mass of the silver atom, B is the magnetic field, µB = e~
2me

is the Bohr
magneton and σ = (σx, σy, σz) corresponds to the three Pauli matrices.

Without the initial spatial extension of the spinor (equation 1), the spatial resolution of the Pauli equation is
impossible and we lose the possibility of taking into account the evolution of the spin during the measurement
process as shown by Takabayasi, [7] Bohm et al. [8] and Dedwey et al. [9] Indeed, the differing evolutions of
the two components of the spinor play a key role in understanding the measurement process.

4.3 Solution without Pauli’s equation and with measurement postulates

Using measurement postulates, it is very easy to infer the result of the measurement without using the Pauli
equation. We rewrite the initial spinor (equation 1) with no spatial extension Ψ0 (the reasoning is similar
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whether or not spatial extension is considered) in the form:

Ψ0 = cos
θ0

2
ei
ϕ0
2 |+〉+ sin

θ0

2
e−i

ϕ0
2 |−〉, (4)

where |+〉 =
(

1
0

)
and |−〉 =

(
0
1

)
are the eigenvectors of the operator σz .

From the measurement postulates, | cos θ02 e
i
ϕ0
2 |2 = cos2 θ0

2 is the probability of measuring the spin +~/2
(the eigenvalue of the projection operator Sz = ~

2σz) and sin2 θ0
2 of measuring the spin −~/2. The θ0 is

unknown at the output of the source and the probability of measuring the spin 1/2 when we do not know the
initial spinor of the incident atom is equal to:

∫ π
0 cos2 θ0

2 dθ0 = 0.5. The probability of measuring the spin
−1/2 is equal to:

∫ π
0 sin2 θ0

2 dθ0 = 0.5. We thus find the two distinct spots of identical intensity N+ and N−.
It is easy to understand the practical relevance of the postulates of the measurement: they allow the exper-

imental results to be retrieved simply and quickly. However, they do not provide an accurate understanding of
the measurement phenomenon.

4.4 The de Broglie-Bohm theory

In the de Broglie-Bohm (dBB) theory, the wave function does not completely represent the state of a quantum
particle and it is necessary to add to its description the position of the particle X(t). The evolution of the
spinor is always given by the Pauli equation (3) and the evolution of the position is given by the following
equation [8, 7]:

dX(t)

dt
=

~
2mρ

Im(Ψ†∇Ψ)|x=X(t) (5)

where Ψ† = (Ψ+∗,Ψ−∗) and ρ = Ψ†Ψ. The atom is both a wave and a particle. Wave and particle coexist, the
first guiding the second by the equation (5), hence the name of "pilot wave" given by de Broglie in 1927 [2].
Bohm et al.[8] also define s a spin vector field as:

s(x, t) =
~
2ρ

Ψ†(x, t)σΨ(x, t) =
~
2

(sinθ sinϕ, sinθ cosϕ, cosθ). (6)

The spin vector of an individual particle is evaluated along its trajectory as s = s(X(t), t). This spin vector
is totally defined by the spinor and the position of the particle.

4.5 Pure state

We solve the Pauli equation for a single atom corresponding to a pure state with (θ0, ϕ0). In the free space,
at the end of the field, at the time t + ∆t (t ≥ 0 and ∆t = ∆l/vy being the crossing time of the field), one
obtains [10] :

Ψ(x, z, t+ ∆t) ' (2πσ2
0)−

1
2 e
− x2

2σ2
0

 cos θ02 e
− (z−z∆−ut)

2

2σ2
z ei

muz+~ϕ+
~

i sin θ0
2 e
− (z+z∆+ut)2

2σ2
z ei

−muz+~ϕ−
~

 (7)

where

z∆ =
µBB

′
0(∆t)2

2m
= 10−5m, u =

µBB
′
0(∆t)

m
= 1m/s, B =

 B′0x
0

B0 −B′0z

 , (8)

and where ϕ− et ϕ+ are constants.
Figures 7 and 8 represent the evolution of ρ(z, t) =

∫
Ψ†(x, z, t)Ψ(x, z, t)dx, the probability density of

the presence of the silver atom in a pure state for the values θ0 = π/3 and φ0 = 0. The axis Oy, along which
the beam is propagated, is on the abscissa (y = vyt) and the axis Oz is on the ordinate (the variable x is not
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Figure 7: Orthodox quantum mechanics: Pauli equation + reduction of the wave packet (final position). The
notion of trajectory does not exist; only the position at the time of the measurement is defined using the
postulate of reduction of the wave packet. The atom is either a wave (during all the experiment) or a particle
(at the moment of impact).

represented because the wave remains Gaussian according to this axis). The magnet A1 is represented in the
figure by the two white rectangles, its length is ∆l = 1cm and there isD = 20cm of free path before the atom
is measured on the detection screen P1. The numerical data comes from the textbook by Cohen-Tannoudji et
al. [6]. For the electromagnetic field B, we have: B0 = 5 Tesla, B′0 =

∣∣∂B
∂z

∣∣ = −
∣∣∂B
∂x

∣∣ = 103 Tesla/m.
The dBB theory provides a more detailed explanation than the usual quantum mechanics explanation

because, as seen in figure 8, it shows how the initial position of the particle explains in a causal way the
final position usually justified by the reduction of the wave packet (figure 7). In this framework, there is no
measurement problem because the continuation of quantum mechanics towards classical mechanics is done
in a natural way by the position of the particle.

Figure 9 represents the evolution of the density ρ(z, t) for the pure state θ0 = π/2 as well as six trajectories
of atoms whose initial position z0 was drawn at random.

The Pauli equation only provides the probability ρ of the impact of the atom.
Experimentally, one does not directly measure the spin of an atom, but (x̃, z̃) the position of the impact of

the atom on P1.
If z̃ ∈ N+, the term ψ− of (7) is numerically zero and the spinor Ψ is proportional to

(
1
0

)
, one of the

eigenvectors of σz . If z̃ ∈ N−, the term ψ+ of (7) is numerically zero and the spinor Ψ is proportional to
(

0
1

)
,

the other eingenvector of σz . Therefore, the spin measure corresponds to an eigenvalue of the spin operator
Sz = ~

2σz . It is a demonstration of the postulate of quantification by the dBB theory.
Equation (7) gives the probabilities cos2 θ0

2 (resp. sin2 θ0
2 ) to measure the particle in the spin state +~

2
(resp. −~

2 ). It is a demonstration of the postulate of spatial decomposition by the dBB theory. The "measured"
value is not a pre-existing value. It is contextual and conforms to the Kochen and Specker theorem [11].

4.6 Statistical mixture of pure states

Since the beam of silver atoms is a mixture of pure states, the atomic density ρ(z, t + ∆t) is determined by
integrating ρ(x, z, t+ ∆t) on x and on (θ0, ϕ0); we find:

ρ(z, t+ ∆t) = (2πσ2
0)−

1
2

1
2

(
e
− (z−z∆−ut)

2

2σ2
0 + e

− (z+z∆+ut)2

2σ2
0

)
. (9)
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Figure 8: dBB theory (quantum mechanics taken one step further): Pauli equation + initial position. The
arrows indicate the θ orientation of the spin vector s (initially θ0 = π/3). The position of the particle exists
before the measurement; the particle follows a deterministic trajectory and the impact on the screen only
reveals its position. The atom is both a wave and a particle during all the experiment.

Figure 9: Six trajectories of silver atoms from the same pure state θ0 = π/2. The arrows indicate the evolution
of θ, initially all θ = π/2.
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Figure 10: Six trajectories of silver atoms resulting from a statistical mixture of pure states. The initial arrows
indicate the θ0 of the pure state (i.e. of the spinor) of each particle.

Figure 10 represents this density ρ(z, t) as well as six trajectories of atoms whose initial position z0 and the
orientation of the initial spinor θ0 are drawn at random. We note the difference with the results of figure 9 for
the pure state θ0 = π/2 which gives statistically the same results. For a statistical mixture of pure states, the
trajectories of the atoms of a beam can cross.

5 Conclusion

By introducing the game of heads or tails in weightlessness, we have shown that there is a contextual measure
in classical mechanics and that there are no mysteries. The "measured" value is not a pre-existing value. It is
discretized by the measuring device (the clapping of hands). We find the same property for the "measurement"
of the spin in de Broglie-Bohm’s interpretation of the Stern and Gerlach experiment.

The "measurement" of the spin along the Oz axis corresponds to the rectification of the orientation of the
spin either in the direction of the gradient of the magnetic field or in the opposite direction. The result depends
on the position of the particle in the wave function. The duration of the measurement is the time required for
the particle to straighten its spin in the final direction. The "measured" value (the spin) is not a pre-existing
value such as the mass and the charge of the particle but a contextual value conforming to the Kochen and
Specker theorem.

We have also shown [12] that, for the two entangled particles of the EPR-B experiment, it is possible
to replace the singlet spinor in configuration space by two single-particle spinors in physical space. The
"measurement" of the two spins is contextual and verifies Bell’s inequalities. The wave function of the singlet
state alone introduces a non-local influence on the the spin orientation, but not on the motion of the particles
themselves. This is a key point in the search for a physical understanding of this non-local influence.
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