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Explicit formula and meromorphic extension of the resolvent for the massive Dirac operator in the Schwarzschild-Anti-de Sitter spacetime

We study the resolvent of the massive Dirac operator in the Schwarzschild-Anti-de Sitter space-time. After separation of variables, we use standard one dimensional techniques to obtain an explicit formula. We then make use of this formula to extend the resolvent meromorphically accross the real axis.

Introduction

The study of the resolvent is an active subject of research thanks to its close link to the dynamics of the fields we wish to look at. More precisely, one way to look at the dynamics of fields is to express the propagator in terms of a contour integral in the complex plane using the resolvent. The poles of this resolvent, also called resonances or quasinormal modes, should then give the rate of decay of the fields and the frequencies at which this decay happens. The study of resonances in mathematical general relativity is then an important tool in order to understand the behaviour of the various fields that can be considered on a spacetime. This study can be traced back to the work of A. Bachelot and A. Motet-Bachelot [START_REF] Bachelot | Motet-Bachelot : Les résonances d'un trou noir de schwarzschild[END_REF] and was pursued by A. Sà Barreto and M. Zworski [START_REF] Barreto | Distribution of resonances for spherical black holes[END_REF] for spherically symmetric black holes. Using this result, J-F. Bony and D. Häfner [START_REF] Bony | Decay and Non-Decay of the Local Energy for the Wave Equation[END_REF] were able to obtain a result concerning the local energy decay. This was then extended to more general manifolds by R. Melrose, A. Sà Barreto and A. Vasy [START_REF] Melrose | Asymptotics of solutions of the wave equation on de Sitter-Schwarzschild space[END_REF]. Resonances have also been employed by S. Dyatlov [START_REF] Dyatlov | Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole[END_REF], [START_REF] Dyatlov | Exponential energy decay for kerr-de sitter black holes beyond event horizons[END_REF], [START_REF] Dyatlov | Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes[END_REF] to obtain the local energy decay of linear waves in the Kerr-de Sitter family of space-times. This was then extended to space-times close to the Kerr-de Sitter family by A. Vasy [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces[END_REF]. These techniques were also adapted by A. Iantchenko to the study of resonances for Dirac fields in the Kerr-Newman-de Sitter spacetime [START_REF] Iantchenko | Quasi-normal modes for Dirac fields in Kerr-Newman-de Sitter black holes[END_REF]. This work follows some other works by the same author concerning resonances for the Dirac fields in the de Sitter-Reissner-Nordström black holes where an expansion in terms of resonances was obtained [START_REF] Iantchenko | Resonance expansions of massless Dirac fields propagating in the exterior of a de Sitter-Reissner-Nordström black hole[END_REF]. For Anti-de Sitter black holes, O. Gannot gave a global definition of resonances for Klein-Gordon fields in the Kerr-Anti-de Sitter family of space-times [START_REF] Gannot | A global definition of quasinormal modes for Kerr-AdS black holes[END_REF] and localized a resonance exponentially close to the real axis [START_REF] Gannot | Existence of quasinormal modes for Kerr-AdS black holes[END_REF] adapting a method of S. Tang and M. Zworski [START_REF] Tang | From quasimodes to resonances[END_REF]. A similar result was proven earlier by the same author for the Schwarzschild-Anti-de Sitter spacetime [START_REF] Gannot | Quasinormal modes for Schwarzschild-ADS black holes: exponential convergence to the real axis[END_REF]. C. Warnick [START_REF] Warnick | On quasinormal modes of asymptotically anti-de sitter black holes[END_REF] also defined resonances for various equations in asymptotically Anti-de Sitter black hole using physical space methods. Concerning the stability problem for black holes in general relativity, a precise study of the resonances was also a key point in the recent proof of the full non-linear stability of the Kerrde Sitter family of spacetimes by P. Hintz and A. Vasy [START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF]. The resolvent was also used by F. Finster and J. Smoller [START_REF] Finster | Linear stability of the non-extreme Kerr black hole[END_REF] to show linear stability of the Kerr family of black holes. By means of the vector field method, M. Dafermos, G. Holzegel and I. Rodnianski obtained the linear stability of the Schwarzschild solution to gravitational perturbations including precise decay estimates [START_REF] Dafermos | The linear stability of the Schwarzschild solution to gravitational perturbations[END_REF]. G. Holzegel and J. Smulevici proved the stability of the Schwarzschild-Anti-de Sitter black hole for spherically symmetric perturbations [START_REF] Holzegel | Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system[END_REF]. Nevertheless, the Kerr-Anti-de Sitter family seems to be unstable for reflecting boundary conditions as indicated by the logarithmic energy decay obtained by G.Holzegel and J. Smulevici in [START_REF] Holzegel | Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes[END_REF] which is optimal (see [START_REF] Holzegel | Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes[END_REF]). The Dirac equation in the Anti-de Sitter spacetime was studied by A. Bachelot in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. Whereas the spectrum of the elliptic part is discrete in the Anti-de Sitter case, it becomes continuous when looking at the Schwarzschild-Anti-de Sitter black hole. Asymptotic completeness for the massive Dirac equation on this last spacetime was shown by the author in [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF]. Quasimodes for this same equation were constructed in [START_REF] Idelon-Riton | Quasimodes and a lower bound for the local energy decay of the dirac equation in schwarzschild-anti-de sitter spacetime[END_REF].

In this paper, we give an explicit formula for the resolvent of the Dirac operator in the Schwarzschild-Anti-de Sitter spacetime and show that the weighted resolvent extends meromorphically through the real axis, see section 3. Since this space-time is spherically symmetric, after separation of variables, we are let with an operator on the half-line. We are then able to use one dimensional techniques similar to the ones employed by A. Iantchenko and E. Korotyaev for their study of the Dirac operator on the line [START_REF] Iantchenko | Resonances for 1d massless Dirac operators[END_REF] and on the half-line [START_REF] Iantchenko | Resonances for Dirac operators on the half line[END_REF].

The Schwarzschild Anti-de Sitter space-time

Let Λ < 0. We define l2 = -3 Λ . We denote by M the black hole mass. In Boyer-Lindquist coordinates, the Schwarzschild-Anti-de Sitter metric is given by:

g ab = 1 - 2M r + r 2 l 2 dt 2 -1 - 2M r + r 2 l 2 -1 dr 2 -r 2 dθ 2 + sin 2 θdϕ 2 (2.1)
We define F (r) = 1 -2M r + r 2 l 2 . We can see that F admits two complex conjugate roots and one real root r = r SAdS . We deduce that the singularities of the metric are at r = 0 and r = r SAdS = p+ +p-where p± = M l 2 ± M 2 l 4 + l 6 (see [START_REF] Holzegel | Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system[END_REF]). The exterior of the black hole will be the region r > r SAdS and our spacetime is then seen as Rt×]r SAdS , +∞[×S 2 . It is well-known that the metric can be extended for r r SAdS by a coordinate change which gives the maximally extended Schwarschild-Anti-de Sitter spacetime. In this paper, we are only interested in the exterior region.

In order to have a better understanding of this geometry, we study the outgoing (respectively ingoing) radial null geodesics (that is to say for which dr dt > 0 (respectively dr dt < 0)). Using the form of the metric we can see that along such geodesics, we have:

dt dr = ±F (r) -1 . (2.2)
We thus introduce a new coordinate x such that tx (respectively t + x) is constant along outgoing (respectively ingoing) radial null geodesics. In other words:

dx dr = F (r) -1 . (2.
3)

The coordinate system (t, x, θ, ϕ) is called Regge-Wheeler coordinate system. We have:

lim r→r SAdS x (r) = -∞ (2.4) lim r→∞ x (r) = 0. (2.5)
This limit proves that, along radial null geodesic, a particle goes to timelike infinity in finite Boyer-Lindquist time (recall that along these geodesic, tx and t + x are constants). As a consequence, we have to put boundary conditions at x = 0 for massless fields. For massive fields, there appears in addition a confining potential at x = 0. For these fields there is a competition between this confining potential and the null geodesics going very fast to x = 0.

There appears a bound on the mass (related to the Breitenlohner-Freedman bound). For masses smaller than this bound, a boundary condition has to be added. For masses larger than this bound, no boundary condition is needed.

The Dirac equation

Using the 4-component spinor ψ =     ψ1 ψ2 ψ3 ψ4     , the Dirac equation in the Schwarzschild-Anti-de
Sitter spacetime takes the form:

∂t + γ 0 γ 1 F (r)∂r + F (r) r + F ′ (r) 4 + F (r) 1 2 r D S 2 + imγ 0 F (r) 1 2 ψ = 0. (2.6) 
where m is the mass of the field and D S 2 is the Dirac operator on the sphere. In the coordinate system given by (θ, ϕ) ∈ [0; 2π] × [0; π], we obtain:

D S 2 = γ 0 γ 2 ∂ θ + 1 2 cot θ + γ 0 γ 3 1
sin θ ∂ϕ. We will now work with these coordinates. For more details about how to obtain this form of the equation, we refer to a previous work [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF]. Recall that the Dirac matrices γ µ , 0 µ 3, unique up to unitary transform, are given by the following relations:

γ 0 * = γ 0 ; γ j * = -γ j , 1 j 3; γ µ γ ν + γ ν γ µ = 2g µν M ink 1, 0 µ, ν 3 (2.7)
where g µν M ink is the Minkowski metric. In our representation, the matrices take the form:

γ 0 = i 0 σ 0 -σ 0 0 , γ k = i 0 σ k σ k 0 , k = 1, 2, 3 (2.8) 
where the Pauli matrices are given by:

σ 0 = 1 0 0 1 , σ 1 = 1 0 0 -1 , σ 2 = 0 1 1 0 , σ 3 = 0 -i i 0 .
(2.9)

We thus obtain:

γ 0 γ 1 = -σ 1 0 0 σ 1 ; γ 0 γ 2 = -σ 2 0 0 σ 2 ; γ 0 γ 3 = -σ 3 0 0 σ 3 . (2.10)
We make the change of spinor φ(t, x, θ, ϕ) = rF (r) 1 4 ψ(t, r, θ, ϕ) and obtain the following equation:

∂tφ = i iγ 0 γ 1 ∂x + i F (r) 1 2 r D S 2 -mγ 0 F (r) 1 2
φ.

(2.11)

We set:

Hm = iγ 0 γ 1 ∂x + i F (r) 1 2 r D S 2 -mγ 0 F (r) 1 2 .
(2.12)

We introduce the Hilbert space:

H := L 2 ]-∞, 0[ x × S 2 ω , dxdω 4 (2.13)
Recall that r is now a function of x. Using spinoidal spherical harmonics (see [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] for details), we are able to diagonalize the Dirac operator on the sphere and we obtain the following operator:

H s,n m = iγ 0 γ 1 ∂x + i F (r) 1 2 r γ 0 γ 2 s + 1 2 -mγ 0 F (r) 1 2 .
In the sequel, we will write A (x) = F (r(x))

1 2 r(x)
and B (x) = F (r (x))

1 2
. The behavior of these potentials is given by:

A (x) = 1 l + x 2 + o x 2 , x ∼ 0, CAe κx + o (e κx ) , x ∼ -∞, B (x) = -l x + x + o (x) , x ∼ 0, CBe κx + o (e κx ) , x ∼ -∞,
where κ is the surface gravity, CA and CB are two positive constants. The corresponding Hilbert space is now:

Hs,n := L 2 ]-∞, 0[ x 4 ⊗ Ys,n (2.14) 
where Ys,n span the corresponding spinoidal spherical harmonic for harmonics s and n fixed. It was proven in [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF], that this operator is self-adjoint for all positive masses when equipped with the appropriate domain.

Main result

Let ψ a solution of H s,n m ψ = λψ such that:

ψ (x) =     0 e -iλx 0 0     + χ (x)
where χ (x) = o e Im(λ)x as x goes to -∞. We call ψ a Jost solution. Let ϕ a solution of the same equation satisfying the boundary conditions:

γ 1 + i ϕ = o (-x) .
These solutions are constructed in 4 and 5. We introduce ψ = (-i) γ 0 γ 1 γ 2 ψ and φ = (-i) γ 0 γ 1 γ 2 ϕ where γ 0 , γ 1 , γ 2 are the Dirac matrices (2.8).

Théorème 3.1.

i) Consider the function defined by: R s,n m (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y)

M -1 α,β iΓ 1 1 ]-∞,x[ (y) + ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 1 ]x,0[ (y) .
where α = ϕ1ψ2 -ψ1ϕ2 + ϕ3ψ4 -ψ3ϕ4, β = ϕ1ψ3 -ψ1ϕ3 + ϕ2ψ4 -ψ2ϕ4 and:

M α,β =     0 α β 0 -α 0 0 β -β 0 0 α 0 -β -α 0     .
Here, ϕi and ψi are the components of ϕ and ψ. Let:

R s,n m (λ) f (x) = 0 -∞ R s,n m (x, y, λ) f (y) dy.
Then, for all λ ∈ C such that Im (λ) > 0, we have:

(H s,n m -λ) -1 = R s,n m (λ) .
ii) Now, let fǫ (x) = e ǫx . Then the operator fǫ (H s,n mλ) -1 fǫ defined for Im (λ) > 0 extend meromorphically to {λ ∈ C | Im (λ) > -ǫ} for all 0 < ǫ < κ 2 where κ is the surface gravity. The poles of this meromorphic extension are called resonances.

Jost solutions

In this section, we are interested in the construction of the Jost solution presented in the last section. We have: Proposition 4.1. For all λ ∈ C such that Im (λ) > -κ 2 , there exist solutions ϕ2, ϕ3 to the equation:

H s,n m ϕ = λϕ such that:

ϕ2 (x) =     0 e -iλx 0 0     + φ2 (x) ; ϕ3 =     0 0 e -iλx 0     + φ3 (x)
with φ2 (x) = o e Im(λ)x and φ3 (x) = o e Im(λ)x as x goes to -∞. Moreover, we have:

ϕ2 (x) e Im(λ)x e x -∞ e max(0,2 Im(λ)t) Vm (t) dt , ϕ3 (x) e Im(λ)x e x -∞ e max(0,2 Im(λ)t) Vm (t) dt for Im (λ) > -κ 2 
Proof. We prove the proposition for ϕ2, the case of ϕ3 can be treated in the same way. We write:

Vm (x) = H s,n m -Hc = s + 1 2 γ 0 γ 2 A (x) -mγ 0 B (x) .
The equation can be put under the form:

∂xϕ = iλΓ 1 ϕ (x) -iΓ 1 Vm (x) ϕ (x) .
We introduce the fundamental matrix of solutions:

Mc (x) = diag e iλx , e -iλx , e -iλx , e iλx ,
which satisfies:

∂x (Mc) (x) = iλΓ 1 Mc (x)
, and the relations

Mc (x) Mc (t) = Mc (x + t) , Mc (-x) = Mc (x) -1 , Γ 1 Mc (x) = Mc (x) Γ 1 .
Using these relations, we obtain:

∂x (Mc (-x) ϕ (x)) = -iMc (-x) Γ 1 Vm (x) ϕ (x) .
We consider the associated integral equation:

Mc (-x) ϕ2 (x) =     0 1 0 0     -i x -∞ Mc (-t) Γ 1 Vm (t) ϕ2 (t) dt
which gives:

ϕ2 (x) =     0 e -iλx 0 0     -i x -∞ Mc (x -t) Γ 1 Vm (t) ϕ2 (t) dt.
We look for a solution expressed as a series:

ϕ2 (x) = n 0 ϕ2,n (x) .
We obtain the following equations:

ϕ2,0 (x) =     0 e -iλx 0 0     ϕ2,n+1 (x) = -i x -∞ Mc (x -t) Γ 1 Vm (t) ϕ2,n (t) dt.
Since Vm is behaving like e κx at -∞ and Im (λ) > -κ 2 , these integrals are well defined. Moreover, we have:

Mc (x -t) e |Im(λ)|(x-t)
where the norm is the supremum of the modulus of the coefficients and t

x. We now investigate the two cases Im (λ) 0 and 0 > Im (λ) > -κ 2 . 1) We suppose here that Im (λ) 0. We will show, by induction, that ϕ2,n (x)

e Im(λ)x 1 n! x -∞ Vm (t) dt n for all n ∈ N. Indeed, this is true for ϕ2,0. We then suppose that ϕ2,n (x) e Im(λ)x 1 n! x -∞ Vm (t) dt n for some n ∈ N. Then: ϕ2,n+1 (x) x -∞ e Im(λ)(x-t) Vm (t) e Im(λ)t 1 n! t -∞ Vm t ′ dt ′ n dt = e Im(λ)x x -∞ 1 (n + 1)! ∂ ∂t t -∞ Vm t ′ dt ′ n+1 dt = e Im(λ)x 1 (n + 1)! x -∞ Vm (t) dt n+1 .
The serie ϕ2 (x) = n 0 ϕ2,n (x) is then converging uniformly on every compact set and gives a solution to our equation. Furthermore, we obtain the estimate:

ϕ2 (x)
e Im(λ)x e

x -∞ Vm(t) dt .

2) We now suppose that 0 > Im (λ) > -κ 2 . In this case, we show that ϕ2,n (x) e -Im(λ)x 1 n! x -∞ e 2 Im(λ)t Vm (t) dt n for all n > 0. Indeed, we have:

ϕ2,1 (x) = -i x -∞ Mc (x -t) Γ 1 Vm (t) ϕ2,0 (t) dt, and Mc (x -t)
e Im(λ)(t-x) so that:

ϕ2,1 e -Im(λ)x x -∞ e 2 Im(λ)t Vm (t) dt.
This last integral is well-defined using that Vm is decaying like e κx at -∞. Supposing that we have ϕ2,n (x)

e -Im(λ)x 1 n! x -∞ e 2 Im(λ)t Vm (t) dt n
for some n > 0, a similar argument as for Im (λ) 0 gives that:

ϕ2,n+1 (x) e -Im(λ)x 1 (n + 1)! x -∞ e 2 Im(λ)t Vm (t) dt n+1 .
This proves the convergence of the serie and the estimate we wanted.

In any case, since every ϕ2,n is analytic (because of the exponential term in λ) and the sum is uniformly convergent on every compact set, we conclude that the solution obtained is also analytic for Im (λ) > -κ 2 .

Q.E.D

Solutions satisfying boundary conditions

In this section, we are interested in finding solutions to the equation:

H s,n m ϕ = λϕ
satisfying the boundary conditions:

γ 1 + i ϕ = o (-x) .
Recall, from [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF], that, for 2ml < 1, H s,n m is self-adjoint with domain:

D (H s,n m ) = {ϕ ∈ H|H s,n m ϕ ∈ H, γ 1 + i ϕ = o (-x) },
where 4 . These boundary conditions can be rewritten as:

H = L 2 (] -∞, 0[)
|(ϕ1 + ϕ3) (x)| = o (-x) , |(ϕ2 -ϕ4) (x)| = o (-x) .
We will prove the: Proposition 5.1. We suppose that 2ml < 1 and that λ ∈ C satisfies Im (λ) > -κ 2 . We can find a solution ϕ, analytic for Im (λ) > -κ 2 , to the equation:

H s,n m ϕ = λϕ such that γ 1 + i ϕ (x) = o (-x)
. Moreover, we have the following estimate:

ϕ (x) 4N (-x) -ml e - 6C λ,m( s+ 1 2 ) 1-2ml x for all x ∈] -∞, 0[, with N = 2 max (|c| , |d|), where c = lim x→0 1 2 (-x) ml (ϕ1 -ϕ3), d = lim x→0 1 2 (-x) ml (ϕ2 + ϕ4), and C λ,m = max x∈]-∞,0[ |λ| , m B (x) + l x , |A (x)| . When
x → -∞, we have the estimate:

ϕ (x) Ce -|Im(λ)|x .
Proof. First, we write the equation under the form:

H s,n m ϕ = λϕ ⇔ ∂xϕ + i s + 1 2 γ 1 γ 2 A (x) ϕ -imγ 1 B (x) ϕ = iλΓ 1 ϕ ⇔ ∂xϕ + i ml x γ 1 ϕ = iλΓ 1 ϕ -i s + 1 2 γ 1 γ 2 A (x) ϕ + imγ 1 B (x) + l x ϕ.
We write:

V λ,m (x) = iλΓ 1 -i s + 1 2 γ 1 γ 2 A (x) + imγ 1 B (x) + l x .
Since

A (x) = 1 l + x 2 + o x 2 , x ∼ 0, B (x) = - l x + x + o (x) , x ∼ 0,
V λ,m is bounded near 0. We are now studying the equation:

∂xϕ + i ml x γ 1 ϕ = V λ,m (x) ϕ, (5.1) 
where

γ 1 = i     0 0 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0     .
We first study the equation:

∂xψ + i ml x γ 1 ψ = 0.
We introduce the matrices:

P = 1 √ 2     1 0 1 0 0 1 0 1 1 0 -1 0 0 -1 0 1     ; P -1 = 1 √ 2     1 0 1 0 0 1 0 -1 1 0 -1 0 0 1 0 1     ,
such that:

γ 1 = P iI2 0 0 -iI2 P -1 .
We obtain:

ψ (x) = P     (-x) ml 0 0 0 0 (-x) ml 0 0 0 0 (-x) -ml 0 0 0 0 (-x) -ml     P -1 ψ-1
where ψ-1 is a condition given on the value of ψ at -1. We write:

M0 (x) = P     (-x) ml 0 0 0 0 (-x) ml 0 0 0 0 (-x) -ml 0 0 0 0 (-x) -ml     P -1 ,
which satisfies the conditions

M0 (x) -1 = M0 1 x ; M0 (-1) = I4; M0 (x) γ 1 = γ 1 M0 (x) .
Moreover, we have:

∂x M0 1 x = i ml x γ 1 M0 1 x .
Thus, if ϕ is a solution of (5.1), then:

∂x M0 1 x ϕ (x) = M0 1 x V λ,m (x) ϕ (x) .
Some elementary calculations give:

M0 1 x ϕ = 1 2     (-x) -ml (ϕ1 + ϕ3) + (-x) ml (ϕ1 -ϕ3) (-x) -ml (ϕ2 -ϕ4) + (-x) ml (ϕ2 + ϕ4) (-x) -ml (ϕ1 + ϕ3) + (-x) ml (ϕ3 -ϕ1) (-x) -ml (ϕ4 -ϕ2) + (-x) ml (ϕ2 + ϕ4)    
Using the boundary conditions, the functions (-x) -ml (ϕ1 + ϕ3) and (-x) -ml (ϕ2 -ϕ4) go to 0 at 0. Using the asymptotic behavior at 0 of the elements of the domain D (H s,n m ) given in [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF], we see that 1 2 (-x) ml (ϕ1 -ϕ3) and 1 2 (-x) ml (ϕ2 + ϕ4) admit finite limits that we denote by c and d respectively. Since V λ,m is bounded at 0, we can deduce the integral equation:

M0 1 x ϕ (x) =     c d -c d     + x 0 M0 1 t V λ,m (t) ϕ (t) dt,
which gives:

ϕ (x) = M0 (x)     c d -c d     + x 0 M0 (x) M0 1 t V λ,m (t) ϕ (t) dt.
Remark that:

M0 (x) M0 1 t = M0 - x t .
We look for a solution ϕ under the form:

ϕ (x) = n 0 ϕn (x) , with ϕ0 (x) = M0 (x)     c d -c d     .
We obtain the relations:

ϕn+1 (x) = x 0 M0 - x t V λ,m (t) ϕn (t) dt.
We thus have to calculate M0 -x t V λ,m (t) where:

M0 - x t = 1 2       x t ml + x t -ml 0 x t ml -x t -ml 0 0 x t ml + x t -ml 0 -x t ml -x t -ml x t ml -x t -ml 0 x t ml + x t -ml 0 0 -x t ml -x t -ml 0 x t ml + x t -ml      
and:

V λ,m (t) =     iλ i s + 1 2 A (t) -m B (t) + l t 0 -i s + 1 2 A (t) -iλ 0 m B (t) + l t -m B (t) + l t 0 -iλ i s + 1 2 A (t) 0 m B (t) + l t -i s + 1 2 A (t) iλ    
We introduce the matrix:

W λ,m (x, t) =     -m B (t) + l t 0 -iλ i s + 1 2 A (t) 0 -m B (t) + l t i s + 1 2 A (t) -iλ iλ i s + 1 2 A (t) -m B (t) + l t 0 i s + 1 2 A (t) iλ 0 -m B (t) + l t    
Then, tedious calculations lead to:

M0 - x t V λ,m (t) = 1 2 x t ml + x t -ml V λ,m (x, t) + x t ml - x t -ml W λ,m (x, t) Write N = 2 max (|c| , |d|) and C λ,m = max x∈]-∞,0[ |λ| , m B (x) + l x , |A (x) 
| . We will show by induction that for x ∈] -∞, 0[, we have:

|ϕn,j (x)| N (-x) -ml 1 n! 6C λ,m s + 1 2 1 -2ml (-x) n for all j = 1, • • • , 4, with ϕn =     ϕn,1 ϕn,2 ϕn,3 ϕn,4     .
This is true for the components of ϕ0 since:

ϕ0 (x) =     2 (-x) -ml c 2 (-x) -ml d -2 (-x) -ml c 2 (-x) -ml d     .
Suppose that it is true for the components of ϕn for some n ∈ N, then: .

ϕn+1,1 (x) = 1 2 x 0 iλ x t ml + x t -ml -m B (t) + l t x t ml - x t -ml ϕn,1 (t) +i s + 1 2 A (t) x t ml + x t -ml ϕn,2 (t) 
We obtain:

|ϕn+1,1 (x)| 3C λ,m s + 1 2 0 x x t ml + x t -ml N n! 6C λ,m s + 1 2 1 -2ml n (-t) n-ml dt N 2n! 6C λ,m s + 1 2 n+1 (1 -2ml) n 0 x (-x) ml (-t) n-2ml + (-x) -ml (-t) n dt
This last integral is equal to:

0 x (-x) ml (-t) n-2ml + (-x) -ml (-t) n dt = (-x) n+1-ml (n + 1) 1 -2ml n+1 + (-x) n+1-ml n + 1 .
Since 2ml n+1 2ml, we have

1 1-2ml n+1 1 1-2ml . Since 0 < 1 -2ml < 1, 1 1-2ml > 1 and we obtain: 0 x (-x) ml (-t) n-2ml + (-x) -ml (-t) n dt 2 (n + 1) (1 -2ml) (-x) n+1-ml
Consequently:

|ϕn+1,1 (x)| N (-x) -ml (n + 1)! 6C λ,m s + 1 2 1 -2ml n+1 (-x) n+1
We can do the same with the other coefficients. We deduce that the series n 0 ϕn (x) converges and that:

n 0 ϕn (x) 4N (-x) -ml e - 6C λ,m (s+ 1 2 ) 1-2ml
x .

Moreover, the boundary conditions are satisfied. Indeed, looking at the expression of ϕ0 we see that ϕ0,1 + ϕ0,3 = 0 and ϕ0,2 -ϕ0,4 = 0. By the preceding induction, we know that the norm of ϕj for all j 1 is bounded by a constant times (-x) j-ml . Since ml < 1 2 , we deduce that (-x) j-ml (-x)

1 2 = (-x) j-1 2 -ml → x→0
0 and the boundary conditions are satisfied.

We also notice that, at each step, we have a polynomial in λ and the convergence of the series is uniform on every compact set so that we obtained a solution which is analytic for Im (λ) > -κ 2 . Finally, we wish to obtain an estimate on the growth of ϕ at -∞. We write Hc = Γ 1 Dx and Vm (x) = H s,n m -Hc. We have just shown the existence of a solution to:

∂xϕ (x) = iλΓ 1 ϕ -iΓ 1 Vm (x) ϕ (x) .
Denote the value of this solution at -1 by ϕ-1. Then this solution can be written as:

ϕ (x) = ϕ-1e iλΓ 1 (x+1)-iΓ 1 x -1 Vm (t)dt .
For all x < -1, we have:

ϕ (x) ϕ-1e -|Im(λ)|(x+1)+ -1 x Vm (t) dt .
Since Vm is integrable on ] -∞, -1[, we have:

ϕ (x) ϕ-1e -|Im(λ)|+ -1 -∞ Vm(t) dt e -|Im(λ)|x . Let C = ϕ-1e -|Im(λ)|+ -1 -∞ Vm (t) dt .
Then we obtain the desired estimate. Q.E.D

We are now interested in the case 2ml 1. The domain of our operator is then D (H s,n m ) = {ϕ ∈ H|H s,n m ϕ ∈ H}. We have the: Proposition 5.2. Suppose that 2ml 1 and that λ ∈ C with Im (λ) > -κ

2 . There exists a solution, analytic for Im (λ) > -κ 2 , to the equation:

H s,n m ϕ = λϕ
going to 0 as x goes to 0. Moreover, we have the estimate:

ϕ (x) 4N (-x) ml e -6C λ,m( s+ 1 2 )x ,
where N is a positive constant and

C λ,m = max x∈]-∞,0[ |λ| , m B (x) + l x , |A (x)| .
Furthermore, we have the same estimate as in the preceding proposition:

ϕ (x)
Ce -|Im(λ)|x , as x goes to -∞.

Proof. We can do the same argument as in the last proof. We obtain a new equation:

∂x M0 1 x ϕ (x) = M0 1 x V λ,m (x) ϕ (x) .
The corresponding integral equation is:

ϕ (x) = M0 (x)     a b a -b     + x 0 M0 - x t V λ,m (t) ϕ (t) dt,
where a, b are two real constants. We look for ϕ under the form:

ϕ (x) = n 0 ϕn (x) ,
with:

ϕ0 (x) = M0 (x)     a b a -b     =     2a (-x) ml 2b (-x) ml 2a (-x) ml 2b (-x) ml     ,
and the recursive equations: 

ϕn+1 (x) = x 0 M0 - x t V λ,m ( 
|ϕn,j (x)| N (-x) ml 1 n! 6C λ,m s + 1 2 (-x) n ,
for all j = 1, • • • , 4. Indeed, this is true for the components of ϕ0. Suppose that the components of ϕn satisfy this estimate. Then, as in the preceding proof, we have:

|ϕn+1,1 (x)| N 2n! 6C λ,m s + 1 2 n+1 0 x (-x) ml (-t) n + (-x) -ml (-t) n+2ml dt
This integral is equal to:

0 x (-x) ml (-t) n + (-x) -ml (-t) n+2ml dt = (-x) n+1+ml n + 1 + (-x) n+1+ml n + 1 + 2ml .
Since n + 1 + 2ml n + 1, we deduce that:

|ϕn+1,1 (x)| N (-x) ml 1 (n + 1)! 6C λ,m s + 1 2 (-x) n+1 .
As before, at each step, we have a polynomial in λ so that we obtained an analytic function.

The last estimate follows from the same argument as in the preceding proof. Q.E.D

Resolvent formula

In this section, we denote by ψ a Jost solution corresponding to ϕ3 and ϕ a solution satisfying the boundary conditions. We look for a solution u of:

(H s,n m -λ) u = f with f ∈ L 2 (] -∞, 0[) for Im (λ) > 0.
We introduce ψ = (-i) γ 0 γ 1 γ 2 ψ and φ = (-i) γ 0 γ 1 γ 2 ϕ where γ 0 , γ 1 , γ 2 are the Dirac matrices (2.8). We also write α = ϕ1ψ2-ψ1ϕ2+ϕ3ψ4-ψ3ϕ4, β = ϕ1ψ3-ψ1ϕ3+ϕ2ψ4-ψ2ϕ4 and:

M α,β =     0 α β 0 -α 0 0 β -β 0 0 α 0 -β -α 0     . (6.1)
We begin by a lemma about this matrix:

Lemme 6.1. The functions α and β are independant of x. the matrix M α,β is invertible.

Proof. We first use the fact that ϕ, ψ, φ and

ψ satisfy H s,n m ϕ = λϕ, H s,n m ψ = λψ, H s,n m φ = λ φ and H s,n m ψ = λ ψ. For the coordinates of ϕ =     ϕ1 ϕ2 ϕ3 ϕ4    
, we obtain the equations:

∂xϕ1 (x) = iλϕ1 (x) + i s + 1 2 A (x) ϕ2 (x) -mB (x) ϕ3 (x) , ∂xϕ2 (x) = -iλϕ2 (x) -i s + 1 2 A (x) ϕ1 (x) + mB (x) ϕ4 (x) , ∂xϕ3 (x) = -iλϕ3 (x) + i s + 1 2 A (x) ϕ4 (x) -mB (x) ϕ1 (x) , ∂xϕ4 (x) = iλϕ4 (x) -i s + 1 2 A (x) ϕ3 (x) + mB (x) ϕ2 (x) .
The same equations are satisfied for the other solutions. Then we can calculate:

∂xα = ∂x (ϕ1) ψ2 + ϕ1∂x (ψ2) -∂x (ψ1) ϕ2 -ψ1∂x (ϕ2) + ∂x (ϕ3) ψ4 + ϕ3∂x (ψ4) -∂x (ψ3) ϕ4 -ψ3∂xϕ4 = iλϕ1 + i s + 1 2 Aϕ2 -mBϕ3 ψ2 + ϕ1 -iλψ2 -i s + 1 2 Aψ1 + mBψ4 -iλψ1 + i s + 1 2 Aψ2 -mBψ3 ϕ2 -ψ1 -iλϕ2 -i s + 1 2 Aϕ1 + mBϕ4 + -iλϕ3 + i s + 1 2 Aϕ4 -mBϕ1 ψ4 + ϕ3 iλψ4 -i s + 1 2 Aψ3 + mBψ2 --iλψ3 + i s + 1 2 Aψ4 -mBψ1 ϕ4 -ψ3 iλϕ4 -i s + 1 2 Aϕ3 + mBϕ2 = (ϕ1ψ2 -ϕ1ψ2 -ψ1ϕ2 + ψ1ϕ2 -ϕ3ψ4 + ϕ3ψ4 + ψ3ϕ4 -ψ3ϕ4) iλ + (ϕ2ψ2 -ϕ1ψ1 -ψ2ϕ2 + ψ1ϕ1 + ϕ4ψ4 -ϕ3ψ3 -ψ4ϕ4 + ψ3ϕ3) i s + 1 2 A + (-ϕ3ψ2 + ϕ1ψ4 + ψ3ϕ2 -ψ1ϕ4 -ϕ1ψ4 + ϕ3ψ2 + ψ1ϕ4 -ψ3ϕ2) mB = 0
which shows that α is independant of x. A similar calculation holds for β.

Concerning the invertibility of M α,β , its determinant is given by:

det (M α,β ) = ((α -β) (α + β)) 2 .
This matrix is thus not invertible if α = β or α = -β. Suppose, for example, that α = β. We write:

Tm (λ) f (x) = x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) f (y) dy + 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) f (y) dy.
Tm (λ) is an operator with kernel:

Tm (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y) 1 ]-∞,x[ (y)+ ψ (x) ϕ t (y) + ψ (x) φt (y) 1 ]x,0[ (y) .
Using again that ϕ, ψ, φ and ψ are generalized eigenvector of H s,n m for the eigenvalue λ, we get:

H s,n m (Tm (λ) f ) (x) = λTm (λ) f (x) -iΓ 1 Mα,αf (x) .
We can choose a function v

∈ L 2 (] -∞, 0[) and take f = v     0 1 -1 0     such that: Mα,αf =     0 α α 0 -α 0 0 α -α 0 0 α 0 -α -α 0     f = 0.
We thus would have an eigenvector for the eigenvalue λ which is impossible since there's no eigenvalue for our operator (by proposition 3.11 in [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF]). We can do the same when α = -β.

Thus M α,β is invertible. Q.E.D
Now, consider the function defined by:

R s,n m (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 1 ]-∞,x[ (y) + ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 1 ]x,0[ (y)
for Im (λ) > 0. We define the corresponding integral operator:

R s,n m (λ) f (x) = 0 -∞ R s,n m (x, y, λ) f (y) dy.
We first show the boundedness of this operator: Lemme 6.2. The operator R s,n m (λ) is bounded from Hs,n into itself for any m > 0 and λ such that Im (λ) > 0.

Proof. We have seen in 4.1 that, for all x ∈] -∞, 0[, we have the estimate:

ψ (x)
e Im(λ)x e

x -∞ Vm (t) dt .

Let ǫ > 0. We deduce that, for all x ∈] -∞, -ǫ[, we have:

ψ (x) Cm,ǫe Im(λ)x .
Moreover, for all x ∈]ǫ, 0[, we have:

ψ (x) e Im(λ)x e -ǫ -∞ Vm (t) dt+ x -ǫ Vm(t) dt Cǫ,me x -ǫ | ml t |dt . Since: x -ǫ ml t dt = -ml x -ǫ 1 t dt = -ml [ln (-t)] x -ǫ = ln ǫ -x ml ,
we deduce that:

ψ (x) Cǫ,m (-x) -ml on ] -ǫ, 0[. Thus ψ is in L 2 (] -∞, 0 
[) for 2ml < 1 (but does not satisfy the boundary conditions, otherwise, it would be an eigenvector). Recall that, for 2ml < 1, we have the following estimates:

ϕ (x) 4N (-x) -ml e -6C λ,m( s+ 1 2 )x , ϕ (x) Ce -Im(λ)x ,
where the first inequality is taken near 0 and the second one at -∞. In the case 2ml 1, we have the estimates:

ϕ (x) 4N (-x) ml e -6C λ,m( s+ 1 2 )x , ϕ (x) Ce -Im(λ)x .
Recall that:

R s,n m (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 1 ]-∞,x[ (y) + ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 1 ]x,0[ (y) .
We are first interested in the case 2ml 1.

We remark that, in this formula, x and y have a symmetrical role. Indeed,

1 ]-∞,x[ (y) = 1 ]y,0[ (x) and 1 ]x,0[ (y) = 1 ]-∞,y[ (x). We thus concentrate on 0 -∞ R s,n m (x, y, λ) dy: 0 -∞ R s,n m (x, y, λ) dy = x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 dy + 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 dy.
Since ψ is integrable on ] -∞, x[ and ϕ is integrable on ]x, 0[, this integral is well-defined and bounded for all x in a compact subset of ] -∞, 0[. We study the limits as x goes to -∞ and 0 of the two preceding integrals. We have:

x

-∞ ψ t (y) dy x -∞ 2e Im(λ)y dy = 2 Im (λ) e Im(λ)x . Indeed, x -∞ Vm (t) dt tends to 0 at -∞. Consequently, e x -∞ Vm (t) dt
2 for x going to -∞. Using the estimates on ϕ, we deduce that

x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 dy is bounded at -∞. Let A > 0 such that ϕ (x)
Ce -Im(λ)x for x < A. Then, for all x < A, we have:

0 x ϕ t (y) dy A x Ce -Im(λ)y dy + 0 A ϕ t (y) dy = C Im (λ) e -Im(λ)x -e -Im(λ)A + 0 A ϕ t (y) dy.
Since ψ (x) e Im(λ)x at -∞, we obtain

0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 dy is bounded at -∞.
We now look at 0. We consider x ∈] -∞, 0[ sufficiently close to 0. We have:

0 x ϕ t (y) M -1 α,β iΓ 1 dy 0 x C (-y) ml dy = C - (-y) 1+ml 1 + ml 0 x = C (-x) 1+ml .
Since ψ (x) C (-x) -ml , we obtain:

0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 dy 2C (-x) ,
which is bounded at 0. Now, let ǫ > 0 sufficiently small. We have:

x

-∞ ψ t (y) M -1 α,β iΓ 1 dy -ǫ -∞ ψ (y) dy + x -ǫ ψ (y) dy -ǫ -∞ ψ (y) dy + x -ǫ C (-y) -ml dy = -ǫ -∞ ψ (y) dy + C (ǫ) 1-ml 1-ml -(-x) 1-ml 1-ml , if ml = 1 -ǫ -∞ ψ (y) dy + C (ln (ǫ) -ln (-x)) , if ml = 1
Since ϕ (x) C (-x) ml , we deduce that:

x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 dy    2 (-x) ml -ǫ -∞ ψ (y) dy + C (ǫ) 1-ml 1-ml -(-x) 1-ml 1-ml , if ml = 1 2 (-x) ml -ǫ -∞ ψ (y) dy + C (ln (ǫ) -ln (-x)) , if ml = 1.

This proves that

x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 dy is bounded at 0. We can now apply the Schur's lemma which proves that R s,n m (λ) is bounded from L 2 (] -∞, 0[) into itself. We now study the case 2ml < 1. In this case, ϕ is integrable at 0 but is not bounded. The preceding argument does not work at 0. Recall that:

R s,n m (λ) f (x) = x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 f (y) dy + 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 f (y) dy,
and that ψ is a L 2 function which does not satisfies the boundary conditions. Let ǫ > 0.

We calculate:

1 ]-ǫ,0[ R s,n m (λ) f 2 H s,n m = 0 -ǫ x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 f (y) dy + 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 f (y) dy 2 dx 4 0 -ǫ x -∞ ϕ (x) ψ t (y) f (y) dy 2 + 0 x ψ (x) ϕ t (y) f (y) dy 2 dx 8 ϕ 2 [L 2 (]-ǫ,0[)] 4 ψ 2 H s,n m f 2 H s,n m
using the Cauchy-Schwarz inequality. Moreover, we have:

1 ]-∞,-ǫ[ R s,n m (λ) f 2 L 2 (]-∞,0[) 4 -ǫ -∞ x -∞ ϕ (x) ψ t (y) f (y) dy 2 + 0 x ψ (x) ϕ t (y) f (y) dy 2 dx .
We study the first term of the last sum:

-ǫ -∞ x -∞ ϕ (x) ψ t (y) f (y) dy 2 dx -ǫ -∞ x -∞ ϕ (x) ψ (y) dy x -∞ ϕ (x) ψ (y) f (y) 2 dy dx
As in the case 2ml 1, we can show that

x -∞ ϕ (x) ψ (y) dy is bounded on ] -∞, -ǫ[. Furthermore: -ǫ -∞ x -∞ ϕ (x) ψ (y) f (y) 2 dydx = 0 -∞ 1 ]-∞,-ǫ[ (y) f (y) 2 ψ (y) 0 y ϕ (x) dx dy
Since ϕ is integrable at 0, ψ (y) 0 y ϕ (x) dx is bounded at -ǫ. Thanks to the decay of ψ at -∞, we can show, as in the case 2ml 1, that this term is bounded at -∞. We obtain:

-ǫ -∞ x -∞ ϕ (x) ψ t (y) f (y) dy 2 Cǫ f 2 L 2 (]-∞,0[) .
We are now interested in the second term and we have:

-ǫ -∞ 0 x ψ (x) ϕ t (y) f (y) dy 2 2 -ǫ -∞ -ǫ x ψ (x) ϕ (y) f (y) dy 2 + 0 -ǫ ψ (x) ϕ (y) f (y) dy 2 dx .
The second term is bounded by:

-ǫ -∞ 0 -ǫ ψ (x) ϕ (y) f (y) dy 2 ψ 2 H s,n m ϕ 2 [L 2 (]-ǫ,0[)] 4 f 2 H s,n m .
We also have:

-ǫ -∞ -ǫ x ψ (x) ϕ (y) f (y) dy 2 -ǫ -∞ -ǫ x ψ (x) ϕ (y) dy -ǫ x ψ (x) ϕ (y) f (y) 2 dy dx.
On ] -∞, -ǫ[, -ǫ x ψ (x) ϕ (y) dy is bounded. We have to find a bound on:

-ǫ -∞ -ǫ x ψ (x) ϕ (y) f (y) 2 dydx = -ǫ -∞ f (y) 2 ϕ (y) y -∞ ψ (x) dx dy.
As before, ϕ (y)

y -∞ ψ (x) dx is bounded on ] -∞, -ǫ[. We obtain: -ǫ -∞ 0 x ψ (x) ϕ t (y) f (y) dy 2 Cǫ f 2 H s,n m . Consequently: 1 ]-∞,-ǫ[ R s,n m (λ) f 2 H s,n m Cǫ f 2 H s,n m . We deduce that R s,n m (λ) is a bounded operator on L 2 (] -∞, 0[). Q.E.D
Moreover, we can show that the boundary conditions are satisfied: Lemme 6.3. For all f ∈ L 2 (] -∞, 0[), all λ ∈ C such that Im (λ) > 0, we have:

-If 2ml 1, then R s,n m (λ) f (x) tends to 0 at 0. -If 2ml < 1 2 , then γ 1 + i R s,n m (λ) f (x) = O √ -x at 0.
Proof. Recall that:

R s,n m (λ) f (x) = x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 f (y) dy + 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 f (y) dy.
In the case 2ml 1, when x goes to 0, we have:

0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 f (y) dy 2 ψ (x) ϕ [L 2 (]x,0[)] 4 f H s,n m C (-x) -ml (-x) 1 2 +ml f H s,n m . Indeed: 0 x ϕ (y) 2 dy C - (-x) 1+2ml 1 + 2ml .
We deduce that the second term in the expression of R s,n m (λ) f goes to 0. Moreover, let ǫ > 0, we have:

x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 f (y) dy 2 ϕ (x) -ǫ -∞ ψ (y) f (y) dy + x -ǫ ψ (y) f (y) dy 2C (-x) ml ψ [L 2 (]-∞,-ǫ[)] 4 f H s,n m + - (-y) 1-2ml 1 -2ml x -ǫ 1 2 f H s,n m   when 2ml = 1.
The term on the right hand side goes to 0. In the case 2ml = 1, we replace

(-y) 1-2ml 1-2ml
by ln (-y) and we have the same result. In the case 2ml < 1, by the Cauchy-Schwarz inequality, we have:

x -∞ ψ t (y) f (y) dy ψ L 2 (]-∞,x[) f L 2 (]-∞,0[) .
Using the behavior at 0 of ψ, we have:

ψ L 2 (]-∞,x[) ψ L 2 (]-∞,-ǫ[) + 1 (1 -2ml) 1 2 (-x) 1 2 -ml + (-ǫ) 1 2 -ml .
Since ϕ satisfies the boundary conditions

γ 1 + i ϕ (x) = O (-x) 1 
2 , and 1 2ml > 0, we deduce that:

γ 1 + i ϕ (x) x -∞ ψ t (y) f (y) dy = O (-x) 1 2
.

For the second term, ψ is in H s,n m and satisfies:

H s,n m ψ = λψ. Hence, ψ ∈ Dnat (H s,n m ) = {φ ∈ H s,n m | H s,n m ϕ ∈ H s,n m }.
Using the development of ψ near zero obtained in theorem 3.1 of [START_REF] Idelon-Riton | Scattering theory for the Dirac equation on the Schwarzschildanti-de Sitter spacetime[END_REF], we can calculate γ 1 + i ψ and we obtain γ 1 + i ψ = O (-x) ml . This gives:

γ 1 + i ψ (x) 0 x ϕ t (y) f (y) dy C (-x) 1 2 f L 2 (]x,0[) . Thus γ 1 + i R s,n m (λ) f (x) = O (-x) 1 2
and the boundary conditions are satisfied. Q.E.D

We can now prove the first part of theorem 3.1 in the: Proposition 6.4. For all λ ∈ C such that Im (λ) > 0, we have:

(H s,n m -λ) -1 = R s,n m (λ) .
Proof. Recall the relations satisfied by the Dirac matrices:

γ 0 * = γ 0 ; γ j * = j , 1 j 3; γ µ γ ν + γ ν γ µ = 2g µν 1, 0 µ, ν 3.
We remark that (-i) γ 0 γ 1 γ 2 commute with Γ 1 , γ 0 γ 2 and γ 0 where:

(-i) γ 0 γ 1 γ 2 =     0 0 0 -1 0 0 1 0 0 1 0 0 -1 0 0 0     Consequently, if χ is such that H s,n m χ = λχ, then H s,n m (-i) γ 0 γ 1 γ 2 χ = λ (-i) γ 0 γ 1 γ 2 χ. Moreover, (-i) γ 0 γ 1 γ 2 χ satisfies the boundary conditions if χ does. Let ψ =     ψ1 ψ2 ψ3 ψ4     and ϕ =     ϕ1 ϕ2 ϕ3 ϕ4     .
Then we have:

ϕψ t =     ϕ1 ϕ2 ϕ3 ϕ4     ψ1 ψ2 ψ3 ψ4 =     ϕ1ψ1 ϕ1ψ2 ϕ1ψ3 ϕ1ψ4 ϕ2ψ1 ϕ2ψ2 ϕ2ψ3 ϕ2ψ4 ϕ3ψ1 ϕ3ψ2 ϕ3ψ3 ϕ3ψ4 ϕ4ψ1 ϕ4ψ2 ϕ4ψ3 ϕ4ψ4    
and similar expressions for φ ψt , ψϕ t and ψ φt . We obtain:

ϕψ t -ψϕ t + φ ψt -ψ φt = M α,β .
We can now express the kernel of our resolvent:

R s,n m (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 1 ]-∞,x[ (y) + ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 1 ]x,0[ (y) .
The corresponding operator is given by the following formula:

R s,n m (λ) f (x) = 0 -∞ R s,n m (x, y, λ) f (y) dy
which is well-defined since ψ, ψ are exponentially decreasing at -∞ and ϕ, φ are square integrable near 0 for any positive value of the mass m. Using that ϕ, ψ, φ and ψ satisfy H s,n m ϕ = λϕ, H s,n m ψ = λψ, H s,n m φ = λ φ and H s,n m ψ = λ ψ, we can calculate:

H s,n m (R s,n m (λ) f ) (x) = λR s,n m (λ) f (x) + f (x) .
for f ∈ L 2 (] -∞, 0[) 4 . Indeed, the first term on the right comes from applying H s,n m to the function φ, φ, ψ and ψ while the second term comes from the differentiation of the integrals. Finally, we have:

(H s,n m -λ) (R s,n m (λ) f ) (x) = f (x) .
Thanks to an adjoint type argument, we also obtain a left inverse which shows the proposition.

Q.E.D

Meromorphic extension of the resolvent

Let fǫ (x) = e ǫx . In this section, we want to prove the second part of theorem 3.1: where M α,β is given in (6.1). Since our operator H s,n m is self-adjoint on his domain, we know that this formula is well defined and analytic for Im (λ) > 0. We will use this formula to extend fǫ (H s,n mλ) -1 fǫ meromorphically accross the real axis for Im (λ) > -ǫ. Indeed, we can write: fǫ (x) (H s,n mλ) -1 fǫg (x) = fǫ (x)

x -∞ ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 fǫ (y) g (y) dy + fǫ (x) 0 x ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 fǫ (y) g (y) dy.

We will first see that we obtain this way a well-defined operator from Hs,n to Hs,n for Im (λ) > -ǫ. To this end, we recall that ψ corresponds to the Jost solution while ϕ corresponds to the solution satisfying the boundary condition. The behaviour of ϕ is given by: ϕ (x) 4N (-x) -ml e - Ce -|Im(λ)|x using the same argument as in the proof of proposition 5.1. For the Jost solution, using a similar argument as in lemma 6.2, we see that, near 0, ψ has the following behaviour:

ψ (x) C (-x) -ml
which is not singular with respect to λ. The behaviour of this solution at -∞ is:

ψ (x) =     0 0 e -iλx 0     + o e iλx
for 0 > Im (λ) > -ǫ. Since fǫ is bounded near 0, fǫϕ and fǫψ behave the same way as ϕ and ψ near 0. At -∞, fǫϕ then decay like e (ǫ-|Im(λ)|)x and while fǫψ decay like e (ǫ+Im(λ))x which ensures the integrability at -∞. This is of course the same for fǫ φ and fǫ ψ. In the proof of lemma 6.2, the essential part is the behavior at -∞ and 0 of ϕ and ψ for Im (λ) > 0.

Since the behavior of fǫϕ and fǫψ for Im (λ) > -ǫ is similar to the behaviour of ϕ and ψ for Im (λ) > 0, we can use a similar argument as in the proof of lemma 6.2 to obtain the boundedness of fǫ (H s,n mλ) -1 fǫ. Now that our operator fǫ (H s,n mλ) -1 fǫ has been extended to the set of λ such that Im (λ) > -ǫ, we wish to analyze the analyticity property of this extension. For that, we first remark that, by our construction of ϕ and ψ, we know that these functions (and then φ and ψ) are analytic for Im (λ) > -ǫ. Thus the integral term is analytic. Unfortunately, the matrix M -1 α,β may have some singularities. These singularities will come from the inverse of the determinant det (M α,β ) = ((αβ) (α + β)) 2 which is the inverse of an holomorphic function in Im (λ) > -ǫ. Hence, we have obtained a meromorphic extension of fǫ (H s,n mλ) -1 fǫ for Im (λ) > -ǫ.

Q.E.D

Proposition 7 . 1 .

 71 The operator fǫ (H s,n mλ) -1 fǫ defined for Im (λ) > 0 extends meromorphically to {λ ∈ C | Im (λ) > -ǫ} for all 0 < ǫ < κ 2 where κ is the surface gravity. The poles of this meromorphic extension are called resonances.Proof. Let 0 < ǫ < κ 2 . Recall the formula for the resolvent:R s,n m (λ) g (x) = 0 -∞ R s,n m (x, y, λ) g (y) dy.for g ∈ Hs,n withR s,n m (x, y, λ) = ϕ (x) ψ t (y) + φ (x) ψt (y) M -1 α,β iΓ 1 1 ]-∞,x[(y)+ ψ (x) ϕ t (y) + ψ (x) φt (y) M -1 α,β iΓ 1 1 ]x,0[ (y)

x 1 2 1 2

 11 for all x ∈] -∞, 0[, with N = 2 max (|c| , |d|), where c = lim x→0 (-x) ml (ϕ1 -ϕ3), d = lim x→0 (-x) ml (ϕ2 + ϕ4), and C λ,m = max x∈]-∞,0[ |λ| , m B (x) + l x , |A (x)| . Whenx → -∞, we have the estimate:ϕ (x)

  t) ϕn (t) dt.

			ϕn,1	
	We write ϕn =	  	ϕn,2 ϕn,3	   , N = 2 max (|a| , |b|) and C λ,m as in the proposition. We want to
			ϕn,4	
	show that:			

The Dirac equation on the Schwarzschild Anti-de Sitter spacetimeIn this section, we present the Schwarzschild Anti-de Sitter space-time and give the coordinate system that we will work with in the rest of the paper. We quickly study the radial null geodesics and then formulate the Dirac equation as a system of partial differential equations.
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