Ranking with Unlabeled Data: A First Study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Ranking with Unlabeled Data: A First Study

Résumé

In this paper, we present a general learning framework which treats the ranking problem for various Information Retrieval tasks. We extend the training set generalization error bound proposed by Matti Kaariannan to the ranking case and show that the use of unlabeled data can be beneficial for learning a ranking function. We finally discuss open issues regarding the use of the unlabeled data during training a ranking function.
Fichier non déposé

Dates et versions

hal-01490506 , version 1 (15-03-2017)

Identifiants

  • HAL Id : hal-01490506 , version 1

Citer

Nicolas Usunier, Tuong Vinh Truong, Massih-Reza Amini, Patrick Gallinari. Ranking with Unlabeled Data: A First Study. NIPS'05 Workshop on Learning to Rank (NIPS'05-LR), Dec 2005, Whistler, BC, Canada. pp.24-28. ⟨hal-01490506⟩
79 Consultations
0 Téléchargements

Partager

More