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Abstract

The neutron cross-sections are inputs for nuclear reactor core simulations, they de-
pend on various physical parameters. Because of industrial constraint (e.g. calculation
time), the cross-sections can not be calculated on the fly due to the huge number of
them. Hence, a reconstruction (or interpolation) process is used in order to evaluate
the cross-sections at every point required, from (as few as possible) pre-calculated
points. With most classical methods (for example: multilinear interpolation which
is used in the core code COCAGNE of EDF (Electricité De France)), high accuracy
for the reconstruction often requires a lot of pre-calculated points. We propose to
use the Tucker decomposition, a low-rank tensor approximation method, to deal with
this problem. The Tucker decomposition allows us to capture the most important
information (one parameter at a time) to reconstruct the cross-sections. This infor-
mation is stored as basis functions (called tensor directional basis functions) and the
coefficients of the decomposition instead of pre-calculated points. Full reconstruction
is done at the core code level using these decompositions. In this paper, a simplified
multivariate analysis technique (based on statistical analysis) is also proposed in order
to demonstrate that we can improve the quality of the acquired information as well as
the accuracy of our approach. Using the Tucker decomposition, we will show in pro-
posed use cases that we can reduce significantly the number of pre-calculated points
and the storage size (compared to the multilinear interpolations) while achieving high
accuracy for the reconstruction, even on a larger domain of parameters.
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1. Introduction

Like most companies working in nuclear electricity production, Electricité
De France in its research and development (EDF R&D) departments develops
highly accurate nuclear reactor core simulator system. Two main classes of
approach are employed for simulations : deterministic and probabilistic. Our
work relates to the deterministic one.

The purpose of a core simulator system is to be able to simulate any kind of
physical quantity for the proper operation and the safety of the power plant. In
order to do that, one has to solve Boltzmann’s equations (or an approximation
of these) for neutrons. These equations need, at every (physical-)cell of the 3D
space, some physical inputs, the cross-sections, denoted by the letter X, that
model the interactions between fission-induced neutrons and nuclei from either
the fuel or the moderator (water in the case of PWR).

These cross-sections vary from one (physical-)point of the core to another

- hence ¥ = E(?) with P = (z,y,2) - and depend on d local parameters
(so called feedback parameters), such as: burnup (bu), fuel temperature (ty),
moderator density (pm ), boron concentration (b.), xenon level (ze), etc. Each
feedback parameter can be seen as one axis of a d-dimensional space called
parameter-phase space and a set of parameter values as a point in this parameter-
phase space. Therefore, for each cell in a 3D space, there is a d-tuple parameter’s
value in the d-dimensional parameter-phase space. The actual value of d is model
dependent.

In order to do that, core simulator systems classically involve two solvers
used in chain : a lattice code and a core code. At the EDF in the department
SINETICS (SImulation NEutronique, Technologie de I'Information, Calcul Sci-
entifique), we use, in a first step, the lattice code APOLLO2 [1], [2] developed
at CEA, that generates cross-sections in the parameter-phase space and store
them inside a file. This file acts like a database; we call it a “ nuclear library”.
Then, in a second step, the core code COCAGNE [3] reads this library and, for
every cell in the 3D space, computes the values of the d parameters (using for
instance thermal-hydraulic code, depletion loop and so on) and evaluates the
values of the cross-sections using the database and a reconstruction model. The
reconstruction allows from values in the nuclear library (the smaller in size the
better) to get an approximate value at any point in the parameter-phase space
(the more accurate the better).

For the simulation of nuclear reactor core, one generally defines a particular
point in the parameter-phase space at which the reactor core operates normally.
This point is called nominal point/condition. Actually, the burnup direction is
not involved in the definition of the nominal point since it is related to time.
The domain near the nominal point (which thus lives in R4~1) is referred to
as the standard domain. It is composed of values of the parameters in the
parameter-phase space that are encountered under standard working conditions
of the power plant. On the contrary, it is called the extended domain when
the parameters get out of these running situations and are encountered in some
special operations for the reactor or incidental situations. There is no much



precise definition of these domains that may represent different objects through
various publications.

In our proposed use cases, the standard domain and the extended domains
are hypercube in R®. Here, the standard domain is a subset of extended do-
mains as is precisely presented in subsection [5.3| and approximately presented
in subsection 5.4l

In general, high accuracy for the reconstruction requires a lot of pre-calculated
points, i.e., a lot of lattice calculations. The total number of pre-calculations
performed by the lattice code is usually so large (~ thousands) that it takes
a lot of calculation time (while a calculation takes about 30 seconds). This
becomes more cumbersome for an extended domain with a model such as multi-
linear interpolation. The reduction of the number of these calculations as much
as possible has been the motivation for introducing in [4] a new reconstruc-
tion based on a low-rank tensor approximation method, that is referred to as
the Tucker decomposition. The purpose of the current paper is to present and
test on various assemblies (UOX, UOX-Gd, MOX, on standard and extended
domains) this new reconstruction and compare it to the currently used multi-
linear interpolator in COCAGNE.

In this paper, we also propose to use some new techniques, such as: the
Empirical Interpolation Method (EIM) and the pre/post-analysis in order to
achieve better accuracy for our method, compared to results presented in the
paper [5]. Moreover, results of new use cases (performed on extended domains)
will be shown.

The paper is organized in the following manner:

e Section 2 gives an overview of different methods for the reconstruction of
cross-sections used by different utility companies.

e In section 3, we present the Tucker decomposition applied to a set of
multivariate functions.

e Section 4 illustrates how we can efficiently use the Tucker decomposition
for the cross-section reconstruction problem and how we can deduce cross-
section properties in high dimension. In this section, we will show the
advantages of our model, which allow us to pre-analyze and post-analyze
our approach.

e Section 5 is reserved to our proposed use cases, applied to different fuel as-
semblies (UOX, UOX-Gd, MOX). The results obtained demonstrate that
we can reduce the pre-calculated data while achieving high accuracy in
both cases: the standard domain and the extended domain. We also
present some problems that we encountered in this section.

e Section 6 is dedicated to conclusion and perspective.



2. Overview of different methods for the reconstruction of neutron
cross-sections

There are many core simulator systems for nuclear reactor simulations, for
example: the pair of softwares ARCADIA(HERMES)-ARTEMIS [6] used by
AREVA, DRAGON-DONJON [7] used by Canadian Nuclear Society, NEXUS-
ANC [8] used by Westinghouse, etc. Each such system employs a model in
order to reconstruct the cross-sections. These models can be classified in two
main categories:

e The cross-section values are approximated by adding some perturbation
or correction terms to values calculated at or around the nominal point,
see e.g. [9], [10], [8], [I]. In general, the correction terms are based
on physical knowledge or some expansion techniques, such as the Taylor
expansion.

e The cross-section values are interpolated from the pre-calculated values
on a grid (for instance, Cartesian grid constructed with a tensor product
of the discretized points on each axis [12] , sparse grid [I3], quasi-random
grid [14], etc.). The interpolation techniques in these models are different
by the choice of basis functions: piece-wise linear functions, B-spline, La-
grange polynomials, etc. COCAGNE belongs to this category where the
Cartesian grid and the piece-wise linear functions are used in the multi-
linear interpolation model.

The first category’s methods have been proven suitable for the simulation
on a “standard” domain where the parameter-values are rather close to the
nominal condition. Of course, when they are far away from this condition, their
accuracy is lost since the heuristics used around nominal values may not be valid
anymore. The second ones are more general but high accuracy requires a lot of
pre-calculated data. For instance, the multilinear approach that is used at EDF,
relies on the acquisition of the values of the various cross sections on a Cartesian
grid of the (standard or extended) domain in the parameter-phase space, i.e. in
RS from the lattice code. This nuclear library has a cardinal equal to N¢, where
N stands for the number of discretized points in each phase direction. Then
the reconstruction allows us to build an approximation of each cross section at
any point by: i) locating this point to one of the cells of the Cartesian grid (to
which this point belongs), here each cell is seen as a d dimensional object and
its vertices are the points on which the value of each cross section is available, ii)
averaging the previous values in a convex way to provide a linear approximation
in each dimension. This is a very simple methods, and its accuracy (second oder
in L2 or L norms scaling like O(N ~2)) in terms of size of the cell that implies
to have a quite large library on standard domains and very - even too much -
large nuclear library on extended domains.

Therefore, either we have a high efficiency reconstruction method (meaning
high accuracy with few points) but on a specific domain only, or we have an ex-
pensive reconstruction method (meaning high accuracy at a lot of pre-calculated
points) but suitable for any domain.



We present in the next section a new approach in this field [4], based on
the Tucker decomposition [I5], [16], [5].

3. Reconstruction model based on the Tucker decomposition

Let f(x) = f (21,...,24) be a multivariate (say continuous) function defined
on Q=0 x...x Qg C R Let, for any direction j in R%, be a given basis

{(pgf £y say in L*(9;), then {HJ 19017 }ZJ_1 is a basis of L?(€2) and there

exist coefficients a;, ...i, such that:
00 d
F(x) Z 2 Ay [ o (z5) (1)
1=1 ig=1 j=1 ~——
coeﬂﬁment

tensor directional basis function

In order to be interesting for our purpose, we would like that a truncated
approximation

r1 T4 d
FO) = flannaa) =D Y A D () (2)
' " 1'12:1 mZ:l 31;[1 SDJV

coefficient tensor directional basis function

be accurate enough with very few terms providing a low-rank tensor approxi-
mation of f, i.e., an approximation by a small combination of tensor products
of one-variate functions.

This is precisely the frame for Tucker decomposition where the focus is on
determining;:

1. The proper basis set, called “tensor directional basis functions” {(pZJ )}
for each direction j, 1 < j <d.
2. The total of R = H?Zl r; coeflicients a; = a;, .

ij=1

K

In our previous article [4], we have proposed to define the tensor direc-
tional basis functions by an extension of the Karhunen-Loéve decomposition,
known as Higher-Order Singular Value Decomposition (HOSVD) technique (see
[17] and section 8.3, page 230 of the book [16]). From the property of the
Karhunen-Loeve decomposition, this allows us to provide a condensed approxi-
mation, where the number r; of tensor directional basis functions used in each
direction is small. Note that, in order to get a proper condensed approxima-
tion, these tensor directional basis functions are not chosen a priori, but deeply
depend on f in order to achieve the second item above, they are thus not well
suited to approximate another multivariate function than f. We recall the con-
struction of the tensor directional basis functions in the next subsection.

Next, the coefficients are obtained by solving a system of linear equations.
This system requires inputs as the values of the function f on a set of points
selected by using the Empirical Interpolation Method (EIM) (see [I8], [19]).

Let us recall briefly the methodology.



8.1. Determination of tensor directional basis functions

The tensor directional basis functions are constructed, direction by direction,
by extracting the important information (principal component) in the studied
direction. The technique used to extract information is based on the Karhunen-
Loeve decomposition and the HOSVD technique.

We present briefly here the Karhunen-Loeve decomposition (KL). This de-
composition is also known as: Principal Component Analysis (PCA) , Proper
Orthogonal Decomposition (POD), which depends on the science community.
With this decomposition, we can decompose a two-variate function f(z,y) €
L*(Q, x Q,) in a infinite separate terms:

y) = Z \/E‘Pn(x)wn(y)

where (A, ¢,) is the n'" couple of solution: eigenvalue - eigenfunction of the
problem:

Finding (), ) € R x L*(2,) of the Hilbert-Schmidt operator K ;* () such that:

Ky = / / ) f( g )da'dy = Ap(x), Vo € 2,

(3)
)

The couple (\,,%,) is the n*® solution of a similar operator K (y K](;”) and

K](py) have the same eigenvalues A and they are all positive by the theory of
Hilbert-Schmidt operators. If we rank these eigenvalues in the decreasing order,
they decrease quickly in general: \y > Ao > ... 2 x> ... > X\, > ... > 0.
Moreover, for a given r € N, if we search to approximate a function f(z,y) €
L2(2; x Q) by a combination of r separate variable functions:

flz,y) = fr = Z anUn (T)vn(y), V(x,y) € Qg x Ly

then the Karhunen-Loeéve decomposition provides the best approximation ff“t
in the sense that minimizes the root mean square error (RMSE):

(RMSE _ \/Ilf(iv,y) _ fr(xay)H%?(Q) — \//Q /Q (f(z,y) = fr(z,y))2dedy

Here,

fbest fKL‘T Z /)\nwn(x)wn(y)y ei%MSE,best: Z A
n=1

n=r+1

The Karhunen-Loéve decomposition has no direct extension for d-variate func-
tions, where d > 3. Therefore, we propose to use the condensation technique



in the HOSVD in order to exploit the Karhunen-Loeve decomposition for the
construction of tensor directional basis functions in our Tucker decomposition.
In our case, we consider f = f(x1,...,xq) as a d-variate function defined on
Q=0 x...xQy CR%and f € L?(R). Under such condition, K}I) (or K](cy))
is an operator bounded in L2. We apply now the idea described above to the
Tucker decomposition of f.
Concretely, the tensor directional basis functions for each direction j (1 <

j < d) are chosen among the eigenfunctions of a directional Hilbert-Schmidt

)

operator K}j , where:

KV o0 (a)) = /Q /Q Flag, ) f(@h,y)pD (@) dalidy = AP (a), Ya; € Q5| (4)

Here, K ](cj ) corresponds to the K J(f) in the Karhunen-Loeve decomposition with
Ti=1x; € Qj and y = ($17...,$j_17$j+1,...,.Z‘d) € Qy =0 X ... X Qj—l X
Qj+1 X ... X Qd.

We thus keep the first r; eigenfunctions - being the tensor directional basis
functions in the j-th direction, and the eigenvalues - indicating the degree of
approximation.

In practice, we keep only the eigenfunctions associated with the eigenvalues
A; satisfying: % > €, with Ay > Ao > ... > 0. Here, € is a parameter that can

1
be chosen by the user.

Problem has to be solved numerically by discretizing the domain £2; x Q,,
of f into Oy, x Qy,, where #Qx, = N;, #Qn, = Ny. The values of f on the
discretized points (x,, yq) are denoted by:

fpg = f(xp,yq), with (xp,yq) € Qn; x Q. (5)

The integrals appearing in the Hilbert-Schmidt operator are approximated
by numerical integration. The integral weight at (z,,y,) is denoted by A,,.
When such a discretization is performed, equation cannot be satisfied Vx; €
;. The discrete version of problem can be written as the following discrete
equations:

N; N,
DD fraoaog(BD)p = MBD) (6)
p=0 ¢=0
On the left hand side of the equations @, the values fp,q of f at discretized
points are required. In our case where f are cross-sections X, these values are
computed by lattice code APOLLO2.
In order to reduce the number of required values f,, while capturing infor-
mation efficiently for each direction, we have proposed to consider the following
numerical integration based on:

o A fine discretization in the direction j with N; quadrature points.



e A coarse discretization in the other directions k (k # j) with only 2 points,
providing 24~ points.

Such a discretization corresponds to a grid, referred to as x;-grid in order
to mention which parameter is concerned by this grid.

In order to get high accuracy approximation with the quadrature rules for
the integral equations , we chose the Clenshaw-Curtis points [20], [21] for
the fine discretizations.

The procedure to construct tensor directional basis functions per direction
results in having as many x;-grids as the number of parameters. This procedure
is illustrated by figure [I}

l

Karhunen-Loeve Karhunen-Loeve Karhunen-Loeve

| l |

(W) 77 (P ()} {9 (xa)}

l

Z1

Zj

Tq

Figure 1: Construction of the tensor directional basis functions using the x;-grids and the
Karhunen-Loéve decomposition, direction by direction.

After the discretization of the problem what is obtained by solving the

linear system @, for each direction j, the vectors {3? )}4 are thus naturally
interpreted as approximated values for the plain eigenfunctions in .

?(i) — (<p(j)(xp))waQNj c RN

Note that we use the Clenshaw-Curtis points for the numerical rule is in
connection with a polynomial approximation of the functions in the direction j.
Hence, in order to reconstruct the tensor directional basis function from these
values, we choose the Lagrange interpolation (see illustration in figure .

8.2. Determination of coefficients

After determining the tensor directional basis functions in the Tucker de-
composition li we explain how to determine the R = H?:1 r; associated co-
efficients a;, where r; is the number of the tensor directional basis functions in



Eigenvector: Basis function:
Lagrange interpolation

BO(ay) mmmmmmmm s > 3U)(x) used as o) () q
Clenshaw-Curtis points ! Vo € £ !
(fine discretization) (for the Tucker decomposition)

Figure 2: Lagrange interpolation in order to reconstruct the tensor directional basis functions
from the eigenvectors for a direction j.

the direction j. We propose to choose these coefficients as the solution of the
following system:

Zf;l a; H;—lzl @Ej)(xy) = f(x1)
SR a T, o (a,) = () (7)

SE AT, ¢ (wr,) = f(xR)

where x¢ = (z4,,..., @, ..., 2¢,) € Q2 C R

It means that the approximation by the Tucker decomposition is exact at R
points of the set {x;}; (the Tucker decomposition becomes an interpolation
of f on these R points).

At this stage, new values of the function f (values of cross-sections performed
by the lattice code APOLLO2 in our application) are required on the right hand
side of the system . Indeed, the points: x1,...,xg do not belong to any of
the previous x;-grids because they are constructed as a tensor product of points
extracted from the fine discretizations of the x;-grids (see later).

The choice of the set {x;}Z is not trivial because we can take any point
x € () to constitute such a set. But the accuracy of the Tucker decomposition
depends on the choice of the set {x;}*, when @ is imposed. To deal with
this problem, we propose to constitute the set {x;}{*, as a tensor product of

1D-sets {mg) :;:1:

{x iy = =9 (o, 8)

where {xg) }:jzl are selected among the N; (N; > r;) points of the fine Clenshaw-
Curtis discretization of the direction j. For each axis, the EIM [Ig] is applied
to the set of tensor directional basis functions {@55 )}:;:1 and the corresponding
fine discretization in the direction j in order to find the r; points of the set
{e) ¥

We present generally and briefly the EIM used in our application. This is
an iterative method, each time we enrich the set X of interpolation points and
improve the quality of interpolation for a set of functions G:

e letwCR"(1<neN),G={p:w—oRlpelL®w} #G=K,PeN.



e Forp=1:
up = argmaz,cg|||| Lo (w),
T = a,’rgmaxxewml(x”

— Set Xl = {1‘1}
— Establish the interpolation operator Zi:

Vo e G Tilp] = 20 ()

e Forp>1:
Upr1 = argmaz,eglle — Lplel|l Lo (w)»
Tpy1 = argmargey|up+1(z) — Lplupa](z)]

— Set X1 = A U{apsa}
— Establish the interpolation operator Z, 1, that satisfies:

Vo € G : T,11[p] = Lagrange interpolation via the p + 1 points of X},11

le.:

(¢ — Zp(p)) (@p+1)
Upt1 — Lp(upt1))(Tp1

Tpsalel = Lple] + ( )(up-H = Iy(up+1))

e Continue until the imposed value, i.e. p = P.

In our work, we are interested in the construction of the set Xp with a given
P but we do not care about the interpolation operators Z,.

If we have to reconstruct not only one function f but a set of functions { fi }
(as in our application we need to reconstruct many cross-sections), the set of
points {x;}f*; needs to be constituted such that it is suitable for the use of all
functions fi. In this case, the EIM is recursively employed for the determination
of the set {xg )}Zzl on each axis (see [4] for more details).

At this stage and in our application, we need to compute the values of all
cross-sections { fi }x by APOLLO2 code on a new grid. The values obtained will
be used on the right hand side of each system . This new grid is referred to as
the Tucker grid which is related to the coefficients a of the Tucker decomposition.
Therefore, in our work, we use a total of d + 1 grids where the d first grids are
used to determine the tensor directional basis functions and the last one is used
to determine the coefficients of the Tucker decomposition.

4. Application of the Tucker decomposition to the reconstruction of
cross-sections

4.1. Cross-section notions

In neutron physics, the cross-sections are denoted by ¢ where r desig-
nates the reaction kind and g designates the energy group. For our appli-
cations to the COCAGNE software, we refer to some cross-sections like the

10



macro totale - XY, the macro absorption - ¥¢, macro fission - Z?- and the
macro nu*fission - VZ?. A particular case, the macro scattering also de-
pends on anisotropy lorder o, departure energy group g and arrival energy group
g , denoted by 3979 .

In our work, there are two energy groups considered: fast group (¢ = 1) and
thermal group (g = 2). The cross-sections depend on 5 parameters: burnup,
boron concentration, moderator density, fuel temperature and zenon level. Here
xenon level is the ratio of the xenon concentration computed at the core level
(using a xenon depletion model chosen by the user) and the xenon concentra-
tion computed by APOLLO2 at the assemble level and stored in the library.
Therefore, in the Tucker decomposition, we have 5 grids in the determination
of the tensor directional basis functions, each one corresponds to a direction
(parameter) and 1 grid corresponding to the resolution of the coefficients.

4.2. Reference grid

In order to measure the accuracy of our reconstruction method, we use a
Cartesian grid, referred to as reference grid. This grid is very fine (with around
10,000 points for a standard domain and with around 14,000 points for an
extended domain). The discretized values on each axis of the reference grid are
chosen such that they are different from the fine discretization of the 5 first
grids and relatively randomized. The cross-section values performed by the
APOLLO2 code [I], [2] on the reference grid are exact values (X9).

The values of the cross-sections evaluated by the Tucker decomposition on
the reference grid are approzimated values (¥9).

From the exact and approximated values on the reference grid, we can eval-
uate the error of our approach and test the quality of the reconstruction. We
illustrate the use of the reference grid in the diagram presented in figure [3]

A?oﬂ)o‘z exact value: LI(x)
x = (21,...,%a) = evaluated error
TuCker

€ Reference Grid approzimated value: $9 ()

Figure 3: Reference grid in order to measure the accuracy of our approach.

In order to compute the relative error for cross-sections according to a for-

%9 — 59

mula similar to: ST we remark that this error is very small, percent is

not appropriate. As is classical in the neutron community, we chose to use pcm
(0.001 %) instead that is more suited for this kind of study.

As we saw in figure [3] each point x of the reference grid can be associated
with an evaluated error. In our work and for cross-sections, this evaluated error

11



is a relative one which is defined by:

9 (x) — 29
€59 Relative(X) = M % 10°, x € reference grid

maxy |27 (x)]

Relative Error (pcm)

The “max” is employed in the denominator of the relative error in order
to correctly deal with small cross-sections over the region of the reference grid.
This normalization allows us to compare the accuracy between reconstructed
cross-sections.

In order to have an estimate for the accuracy of our approach, a final error
is defined as follows:

€xg (pem) = max |€E§,Rc1ativc(x)| (9)
x€Ereference grid
On the other hand, we want to get a better understanding of our approx-
imation with the small cross-sections in the region of the reference grid, we
therefore propose another measure based on root mean square (RMS) of local
relative errors:

$9(x;) — 24 (xi)
ST 5
egvg{ws(pcm) = ?VT (xi) *10° (10)

where x; € reference grid, N = #(reference grid).

4.8. Analyses used in order to achieve high accuracy for the reconstruction prob-
lem

As we saw, the Tucker decomposition depends on the chosen tensor direc-
tional basis functions and these bases are constructed axis by axis from the
eigenvectors of the extended Karhunen-Loeve decomposition. Therefore, in-
formation represented in the tensor directional basis functions as well as the
number of eigenvectors taken for each axis impact directly the accuracy of the
Tucker method. These two characters are exploited in our analyses (pre-analysis
and post-analysis) in order to propose adaptive solutions to achieve the [desired
accuracy|/[storage] ratio for the reconstruction problem.

4.3.1. Pre-analysis of cross-sections as functions of each parameter

In our work, as we explained in the previous section, the approximation of
the functions is done by polynomials, this approximation is global and of high
order, this is true at least if the regularity is coherent over the whole domain
;. Therefore, if the cross-sections vary much in some zones, the approximation
must be adjusted in order to capture the variation, either by increasing the
degree of polynomials or by splitting up the domain €2; in sub-domains (like in
the spectral element method). At some points however, increasing the degree

12



may lead to instabilities, hence we limit the order of the Lagrange polynomials
in our approach to 8, thus using a maximum of 9 Clenshaw-Curtis points.

In order to analyze cross-section variation and adjust our approach, the idea
is thus to analyze each cross-section as a function of one parameter at a time,
which allows us to see a priori the variation of cross-sections.

In practice, we study the variation of cross-sections for each parameter by
varying only this parameter while the others are fixed at nominal values. We
show in figure an example with the cross-section v32%, where the UOX assembly
is studied on the standard domain.

9 C-C Points|

0.14

0.11)

) 1000‘0 20000 30000 40600 50000 60000 7:)000 .SEOE
Burnup

(a) VE? as a function of burnup. The discretization with 9 Clenshaw-

Curtis (C-C) points (represented in small circles) is not enough at low

burnup values.

0.142 —_ sz2

5 C-C points,

0.141)

vz

0.138

0.137

0.136

0.135

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
Moderator Density

(b) vX} as a function of moderator density. Clenshaw-Curtis (C-C)
points (represented in small circles) are suitable in this case. (The
triangle symbols represent the values of I/ch at the Clenshaw-Curtis
points, in which, the nominal point (~ 0.72) is automatically added by
the simulator system).

Figure 4: Variation of the cross-section I/E? as a function of one parameter (case of the UOX

assembly on the standard domain).

In the figure 4| we see that the curve of VE?C as a function of burnup varies
a lot (see figure [4al) while for the other parameters, it is quite linear, e.g., figure
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for the parameter moderator density. Hence, we need more discretized points
on the burnup axis than on any other axes.

If we use a polynomial approximation of degree 8, hence using 9 Clenshaw-
Curtis points on the burnup axis (these points are represented by small circles
on the burnup axis in figure , the first two discretized values obtained are:
0.0(MWd/t) and 3044.81 (MWd/t). We can see that this discretization can
not capture the information about cross-section variations due to strong vari-
ations at the low burnup values, that is caused by the zenon effect before its
concentration reaches equilibrium. Since the low burnup is around the inter-
val [0,150] while 3044.81 > 150, we therefore propose to sub-divide the whole
interval [0,80000] into 3 sub-intervals: [0, 150], [150,10000] and [10000,80000].
For the case studied here (UOX assembly on the standard domain), we choose
9 Clenshaw-Curtis points for each sub-interval (there are thus two common
points: 150 and 10000). The new discretization with 25 points in total is now
well suited to the variation of the cross-section 1/2?0, as presented in ﬁgure

This technique, interval subdivision, can be used each time when the fine
discretization can not capture cross-section variations.

0.1525

Zoom on interval [0,150]
0.15 0.152

0.14 0.1515
~ [N
W W
A 013 A 0.151

012 0.1505

0 10000 20000 30000 40000 50000 60000 70000 80000 0 20 20 60 80 100 120 140
Burnup Burnup

(a) 25 Clenshaw-Curtis points on [0,80000]. (b) 9 Clenshaw-Curtis points on [0,150].

Zoom on interval [150,10000] Zoom on interval [10000,800000]

0.158|
0.156] 0.14
0154 G 018
> >
0.152

0.15,
0.1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 10000 20000 30000 40000 50000 60000 70000 80000
Burnup Burnup

(c) 9 Clenshaw-Curtis points on [150,10000]. (d) 9 Clenshaw-Curtis points on [10000,80000].

Figure 5: Subdivision of the burnup axis (with 9 Clenshaw-Curtis points on each sub-interval)
in order to capture the cross-section variation (case of the UOX assembly on the standard
domain).
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4.8.2. Post-analysis of evaluated errors

Histogram of evaluated errors. In our work, each point x of the reference grid
(in the parameter-phase space) has 5 coordinates: x1,...,x5. In practice, we
store successively these coordinates and the evaluated errors associated with the
point x into files. This allows us to present and analyze the evaluated errors as
a function of each parameter.

From such stored files, we present the evaluated errors as histograms. A
histogram contains some bins used to divide the entire evaluated errors into
adjacent intervals. The height of a bin represents the number of values (evalu-
ated errors in our case) that fall into this bin. In our test, we want to present
percentages in order to maintain the scale (in %) when we change the number
of entries; we thus normalize the bins by dividing the height of each bin by the
total number of entries (the number of points in the reference grid). The rep-
resentation of evaluated errors by histogram allows us to see how the evaluated
errors distribute and which the error zones need to be analyzed.

In general, the centered histogram with small standard deviations is an ideal
result, which means that most of the evaluated errors are around 0. Note how-
ever that an analysis of the deviated distributions can be exploited in order to
determine where they come from and which parameters are responsible for this
behavior. These analyses allow us to improve the accuracy and error distribu-
tions as we will show in the following section.

Post-analysis via histogram of evaluated errors. The accuracy of the Tucker de-
composition depends on the number of eigenvectors (or tensor directional basis
functions) taken for each direction. It also depends on the fine discretization
realized on each axis because tensor directional basis functions are constructed
from these discretizations. Improving one of these two factors may improve the
accuracy of our approach. Therefore, they are the solutions to the problems
revealed by our analyses, as we will show here.

In order to illustrate our analysis techniques, we present an example in the
case of the UOX-Gd assembly on the extended domain with the cross-section
Y1 (fast group). The distribution of relative errors is shown in figure @ This
distribution varies in the interval [-55 pem, 35 pcem] and looks like a Gaussian
distribution with a trailing part (~ [—55pem. —15 peml).
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g 12—
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T 10—
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e r
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e [
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z Zf
ok L, 1 | L T
-60 -40 20 0 20 40 60

Relative Error (pcm)

Figure 6: Relative errors of £} (deviation distribution) before being improved.
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In order to improve the accuracy as well as the distribution of relative errors
of the cross-section X}, we will analyze the trailing part (—55pcm < error <
—15 pem) to see if its behavior depends on a particular parameter. Analysis per
parameter is one of methods which helps us to see how the errors depend on
each parameter and which specific values are involved.

Applying this idea, we obtained the distribution of the trailing part as a
function of respectively each parameter: burnup, boron concentration, moderator
density, fuel temperature and zenon level. In figure [7] these error distributions
are presented as the 2D-histograms, in the following manner:

Relative Error (pcm)
| BEn B |

-
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(a) Trailing part (< —15pcm) as a function of fuel temperature.
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: E | 35
B E | I
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% i 0 E I - | | 20
g E i
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20 S0E = R
s i °
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(b) Trailing part (< —15pcem) as a func- (c) Trailing part (< —15pcm) as a func-
tion of burnup. tion of moderator density.

Figure 7: Trailing part (< —15pem) of £} (fast group) as a function of one parameter.

e The error distributions are represented by the variations of colors in each
column inside a figure. These columns are placed above each discretized
value (used for the fine discretization of the analyzed parameter) to de-
scribe how an error value depends on this fixed discretized value while
varying the values of other parameters.

e Each color corresponds to a number of points occurred (or density of
points) as described in the column on the right of each figure.

From the error distributions shown in figure [7, we can see that:

16



e For each of the following parameters: fuel temperature, boron concentra-
tion and zenon level, its discretized values are all presented, see figure
[7a] for an example about the parameter fuel temperature. In this figure,
the error distributions are presented by 5 columns corresponding to all
5 discretized values of the parameter fuel temperature. We can see that
these 5 columns are similar to each other in length and density distribu-
tion of occurred points (i.e. color pattern). Therefore, we can say that
the error distributions are quite homogeneous and do not depend on a
particular discretized value of the fuel temperature parameter. (The same
conclusion for boron concentration and xenon level parameter from their
corresponding distributions not shown here).

e For each of the following parameters: burnup and moderator density, the
error distributions are quite different and vary as a function of only some
particular values, for example, around 0 for the case of burnup (figure ,
and around 0.8 for the case of moderator density (figure .

Using this analysis, we can conclude that burnup and moderator density are
major factors which are the cause of the trailing part. Hence, we propose to add
more tensor directional basis functions on these two directions. Concretely, we
can improve the accuracy with 7 tensor directional basis functions for burnup
(instead of 4) and 4 tensor directional basis functions for moderator density
(instead of 3). The new result is shown in figure

35

After the improvement
30

Before the improvement
25

20

15

10

Number of Points in Bin/ Total Entries (%)

— | PTT RTR T—
-40 -20 0 20 40 60
Relative Error (pcm)

(o2}
o

Figure 8: Relative errors of 3} before (in red) and after (in blue) being improved (number of
tensor directional basis functions for burnup axis and moderator density axis are increased).

We see that the relative errors are improved, they vary in the interval [-15
pem, 30 pem] and become more centered. For this improvement, we did not
increase the number of discretized points on the z;-grids in the direction of
burnup nor moderator density axis, but we added more tensor directional basis
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functions for these axes. The reason we did not try to increase discretized points
on these axes is that this technique requires more APOLLO2 calculations. If
we want to improve the accuracy by changing the fine discretization, then the
zones of the burnup around 0 and the moderator density around 0.8 need to be
better discretized.

We summarize here the main steps in the post-analysis of evaluated errors:

e Finding the major parameters which are the cause of analyzed error zones:

— Analyzing the distribution of evaluated errors as a function of each
parameter.

— Determining the parameters and the particular discretized values on
which the accuracy does not satisfy our requirement.

e Once the major parameters are identified, accuracy can be improved by
either of the following methods:

— Adding more tensor directional basis functions in these directions.
This can require new APOLLO2 calculations if the points used in
the system for coefficients are changed due to the new tensor
directional basis functions.

— Changing the axial discretization in order to take into account the pa-
rameter values that are responsible for large error. The new APOLLO2
calculations will be required on new x;-grids which corresponds to
new discretizations and on a new Tucker grid which is used in the
systems for the coefficients of the Tucker decomposition .

In general, these improvements need more APOLLO?2 calculations but the
first solution (adding more tensor directional basis functions) often requires less
calculations than the second one.

4.4. Cost of the Tucker decomposition compared to the multilinear interpolation
4.4.1. Number of APOLLO2 calculations

In the Tucker decomposition, the APOLLO2 calculations are performed in
two stages:

e First, the APOLLO2 calculations are used for the d x;-grids in order
to solve numerically the integral equation which provides the tensor
directional basis functions.

e Then, the APOLLO?2 calculations are used for the cross-section values on
the right hand side of the system @ in order to determine the coefficients
of the Tucker decomposition.

Therefore, the number of APOLLO2 calculations is:

d d
dONjx2t 4 115 (11)
j=1 j=1

———
for d z;-grids for points on the right hand side of
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where INV; is the number of points of the fine discretization in direction j and
r*** is the maximal number of tensor directional basis functions in direction j,
over all cross-sections.

In the multilinear interpolation, we compute cross-section values on a Carte-
sian grid. Therefore, if each axis has N; points, the number of APOLLO2
calculations for the multilinear interpolation is:

d
11~ (12)

4.4.2. Storage size in the neutron libraries

In the Tucker decomposition, the stored data for one cross-section includes
eigenvector values for all directions (r; eigenvectors for a direction j) and R =
H?Zl r; coefficients. Therefore, the storage size is cross-section dependent. Note
that r; depends on the criterion used to select the number of tensor directional
basis functions (see the section and the decreasing speed to zero of eigen-
values in the problems , i.e. depending on the complexity of each considered
cross-section. The number of stored floating points for each cross-section is:

d d
er * N + Hrj (13)
j=1 j=1

——

for tensor directional basis functions for coefficients

On the contrary, the storage sizes for the multilinear interpolation are the
same for all cross-sections because we store all cross-section values performed
on the Cartesian grid. Therefore, the number of stored floating points for the
multilinear interpolation is:

d
11 (14)
j=1

4.4.8. Number of floating point operations for the reconstruction
We recall here the Tucker decomposition formula:

1 Td d
f(x)zf(xl,...,xd): E E Qjy...ig | I @Ej)(xj)
=1 ia=1 — =1 ——
coeflicient

tensor directional basis function
(4)
ij
the number of points in the fine discretization of x;-grids). Hence, in order

to calculate each term a;, . ;, H;l:l cpfj )(xj), we need the following number of

floating point operations:

where in our application, each ;7 is a N; degree polynomial (If N; + 1 is

d d
O Nj+d+1)+ Y N;
j=1 j=1

N——

multiplications additions
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The total number of floating point operations for the Tucker decomposition is
equal to:

d d d
IO N +d+1)+ > N;]
Jj=1 Jj=1 j=1

——
multiplications additions

If r; =rand N; = N, 1 <j <d, the number of floating point operations is of
the order of O(dr?N). In the case of the multilinear interpolation, this number
is of the order of O(2¢+1).

4.4.4. Summary
We summarize the comparison of the two methods in the table

Multilinear Tucker
Interpolation Decomposition
Number of APOLLO2 calculations O(N9) O(dN2TT+17)
Storage O(NY) O(dNr +r7)
(the same for all cross-sections) (depending on each cross-section)
Number of floating point operations 027 O(dNrT)
(the same for all cross-sections) (depending on each cross-section)
(time-consuming process (can be reduced
for finding 2¢ neighbors of interpolation point) | by sparse technique (see perspective))
Remark r<N,r~5

Table 1: Comparison of the two methods: multilinear interpolation and Tucker decomposition

5. Proposed use cases

5.1. Reactivity

About the reconstruction of cross-sections, the following points must be
noted:

e Cross-sections are not the ones used in the core code because they need to
be corrected in order to take into account leakage, equivalence, historical
correction, ...before entering the flux solver.

e Cross-sections are merely inputs for the flux solver.

We are therefore interested in outputs of the flux solver, such as: k.sy or
reactivity. For an infinite medium, the neutron flux and the cross-sections are
constant on the parameter-phase space. Therefore, with this simplified hypoth-
esis and with two energy groups, we do not need a flux solver, k.ss becomes
now ko and the following analytic formula are applied (see page 1172, 1173,
1221 of the book [22]):

vEj* (37 — 22072 + v « B2

1
activity = 1 — ——, with kerr = koo = 15
reachviy kepg e S v wreazt (1)
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A final indicator for the accuracy of the reactivity is expressed as follows:

€Reactivity (pcm) = xETeftE%%L)c(e grid |€Reactivity, Absolute (X)l (16)
where:
1 1 s
eReactivity, Absolute (X) - ) * 10 (17)

e (x)

Absolute Error (pcm)

As for the measure of reconstructed cross-section errors, we also propose another
indicator based on the root mean square of relative errors:

1 1
R Ry
Ezj\il[ kOO(l z) - koo(xz) ]2
Ehtenctivity (PCm) = Nk“ (i) £10°  (18)

where x; € reference grid, N = #(reference grid).

5.2. Grids used in use cases

In the following use cases, the cross-sections depend on 5 parameters: bur-
nup, boron concentration, moderator density, fuel temperature and xenon level.
Therefore, we have 5 x;-grids in the determination of tensor directional basis
functions, each one corresponds to one direction in the Tucker decomposition.

For each use case, we use a reference grid (see section in order to measure
the accuracy of the Tucker decomposition.

5.8. Use case on the standard domain with UOX assembly

In this case, we consider an UOX assembly, 3.7% enrichment for a 900M We-
PWR (Pressurized Water Reactor). The cross-sections depend on 5 parameters
which vary in the intervals given in table

Parameter name min value | max value
Burnup, MWd/t 0.0 80000.0
Fuel temperature,C 286.0 1100.0
Moderator density, g/cm? 0.602 0.753
Boron concentration, ppm 0.0 1800.0
Xenon level, % 0.0 1.0

Table 2: Parameters and their intervals.

In the 5 z;-grids, only the grid for the burnup axis is sub-divided into 3 inter-
vals: [0,150], [150,10000] and [10000, 80000]. Each sub-interval has 9 Clenshaw-
Curtis points, we therefore have 25 points in this direction (two common points
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for three intervals). The 4 other grids have 5 Clenshaw-Curtis points for the fine
discretization without using subdivision. With these 5 grids, we have a total of
25 % 2% + 4 % (5 % 2%) = 720 points. The reference grid described in section
contains 9,300 points.

The accuracy (in pcm) of the Tucker decomposition is shown in table (3] We
see that the relative errors of cross-sections are smaller than 100 pcm in general.
These accuracies are better than ones of the multilinear interpolation employed
in COCAGNE with the currently used number of points (shown in table [4]).

Cross €Tucker (PCM) e%ﬁker pem)

Section formula @ for cross-sections | formula 1 for cross-sections
formula for reactivity formula for reactivity

I 28 ) 0.07

7 40 0.09

! 38 0.11

EZ 49 0.25

UE} 61 0.24

VE? 79 0.40

SIT 27 0.07

El(? 2 19 0.06

Eg(? T 100 0.56

¥%2 15 0.04

=t 66 0.26

E?- 74 0.41

Reactivity | 387 0.9

Table 3: Accuracy of the Tucker decomposition over 9,300 points of the reference grid for the
UOX assembly on the standard domain.

We observed that the accuracy of the cross-section X2;! is the worst result

obtained by the Tucker decomposition. It is also the worst case for the multi-
linear interpolation. As we will see, these observations are valid for all use cases
presented in this paper.

In order to achieve the accuracy in the table [3] we employed the number of
APOLLO2 calculations and the storage size respectively presented in table
and table 5] They are compared to those of the multilinear interpolation.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation
720 + 378 =1098 1782
~—~ ~—~
for the 5 xj-grids for the Tucker grids related to the systems

Table 4: Comparison of the number of APOLLO2 calculations between the Tucker decompo-
sition and the multilinear interpolation for the UOX assembly on the standard domain.

We note that the number of APOLLO2 calculations (1782) in the table
for the multilinear interpolation comes from an optimized industrial process in
COCAGNE whereas with the Tucker decomposition, this is not so much the
case since this is a preliminary work. Even though, these results show that the
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Cross | Storage (number of floats)
section | Tucker Multilinear
P 204 1782
2 192 idem
! 416 idem
2 355 idem
1/2} 388 idem
VE?« 290 idem
»it 204 idem
B2 529 idem
N 371 idem
n272 192 idem
E} 388 idem
Efc 290 idem

Table 5: Comparison of the storage for each cross-section, between the Tucker decomposition
and the multilinear interpolation for the UOX assembly on the standard domain.

Tucker decomposition reduced by 38% of the number of APOLLO2 calculations
and by a factor of 3.4 to 8.7 of the storage size (depending on the studied
cross-section).

5.4. Use cases for the extended domain

The extended domain is tricky for many reconstruction models, especially
those involved with corrections from values computed around the nominal values
(Taylor expansions, heuristics, etc.). The multilinear interpolation does not suf-
fer from this problem. However, to have high quality cross-sections, it requires
a lot of points.

These following use cases are performed on an extended domain where the
values of four parameters: boron concentration (~ [0ppm, 2200 ppm]), moder-
ator density (~ [0.3g/cm3, 1g/em?)]), fuel temperature (~ [10C, 2000C]) and
zenon level (~ [0, 3]) are larger than those of the standard domain (the interval
of burnup does not change). Again, precise values issued from the industrial
scheme can not be shown here.

For all the following test cases on the extended domain, the Tucker decompo-
sition employees the same 5 x;-grids. By chance, the number of total points on
these 5 grids is the same as in the standard domain case (720 points) but the dis-
cretizations are completely different. We summarize here the fine discretization
(using the Clenshaw-Curtis points) for each z;-grid:

e Burnup grid: sub-divided into 3 intervals: [0,150] with 3 points, [150,10000]
with 9 points and [10000, 80000] with 9 points.

e Moderator density grid: sub-divided into 2 intervals, each sub-interval has
5 points.

o Fuel temperature grid: 5 points.
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e Boron concentration grid: 7 points.
e Xenon level: 5 points.

Therefore, in our use cases on the extended domain, we have a total of 19% 2%+
9% 214 5%2 + 7% 2% +5 %2 = 720 points for the 5 z;-grids.

In these 5 x;-grids, subdivisions are applied to both the burnup axis and the
moderator density axis. This comes from the method discussed in section [£.3.1]
in order to capture the variation of cross-sections. The great variations (for the
UOX and the MOX assemblies) as a function of burnup (presented in figure @
or moderator density (presented in figure explain why subdivisions on these
two axes are needed.
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(a) Variation of X15°2 as a function of burnup (b) Variation of vX} as a function
(case of UOX assembly on extended domain). of moderator density (case of MOX

assembly on extended domain).

Figure 9: Variations of some cross-sections lead to subdivisions on the extended domain for
the burnup axis and the moderator density axis.

5.4.1. UOX assembly on the extended domain

Once again, the UOX assembly, 3.7% enrichment is considered but on the
extended domain. In this case, the reference grid contains 14,700 points.

Evaluated errors for some cross-sections and for the reactivity is shown in
table @ We see that the relative errors are about 100 pcm, except for %25
(464 pcm). These accuracies are better than those of the multilinear method
for all cases shown in the table [6l

The comparisons of the Tucker decomposition with the multilinear inter-
polation on the number of APOLLO2 calculations and on the storage size are
respectively shown in table [7] and table [§] The number of APOLLO2 calcula-
tions (3060) used for the multilinear interpolation is already optimized in the
code COCAGNE. We see that the number of APOLLO2 calculations is reduced
by 14.7% and the storage size is reduced by a factor of 1.65 to 11.16 by using
the Tucker decomposition.
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Cross €Tucker (PCM) efTS (pem)

Section formula l for cross-sections | formula l for cross-sections
formula (16) for reactivity formula (18) for reactivity

b 9 ) 001

2 86 0.36

I} 64 0.82

] 97 0.39

vyl a7 0.05

VE? 104 0.38

ST 8 0.01

xi7? 23 0.06

n2T 464 2.6

52,72 84 0.35

%y 43 0.07

o 102 0.38

Reactivity | 179 0.37

Table 6: Accuracy of the Tucker decomposition over 14,700 points of the reference grid for
the UOX assembly on the extended domain.

Number of APOLLO2 calculations
Tucker decomposition

Multilinear Interpolation
3060

720
~~

for the 5 xj-grids

+ 1890 =2610

for the Tucker grids related to the systems (7)

Table 7: Comparison of the number of APOLLO2 calculations between the Tucker decompo-
sition and the multilinear interpolation for the UOX assembly on the extended domain.

Cross | Storage (number of floats)
section | Tucker Multilinear
¥l 343 3060
2 343 idem
! 527 idem
2 866 idem
vE} 537 idem
UZ? 636 idem
»ist 343 idem
»152 854 idem
»2t 1849 idem
%2572 274 idem
E} 537 idem
Z? 636 idem

Table 8: Comparison of the storage for each cross-section, between the Tucker decomposition
and the multilinear interpolation for the UOX assembly on the extended domain.
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5.4.2. UOX-Gd assembly on the extended domain

This use case studies an UOX-Gd assembly for a 1300MWe-PWR. The ref-
erence grid contains 13,000 points.

The accuracy of the Tucker decomposition is shown in table [0] In this test
case, the relative errors of the cross-sections as well as the absolute errors of
the reactivity are the worst compared to the other cases (UOX, MOX (see
later)). But in these results, we did not perform any improvement (e.g., change
the discretization, add more points on some axis, etc., as shown in the section
in order to get better results. We see in the table @that the relative errors
are smaller than 200 pcm in general, except for X25"! (550 pcm) and 2 (327
pcm). (However, these results are all better than accuracies obtained by the
multilinear interpolation).

Cross €Tucker (PCM) efS (pem)

Section formula la for cross-sections | formula l for cross-sections
formula for reactivity formula for reactivity

D) 54 ) 0.16

52 93 0.36

sl 77 0.15

2 327 0.64

VE} 76 0.18

vy 175 0.45

ST 38 0.12

2?2 150 0.32

¥t 550 2.91

5272 87 0.36

Z} 79 0.20

%7 175 0.46

Reactivity | 535 1.30

Table 9: Accuracy of the Tucker decomposition over 13,000 points of the reference grid used
for UOX-Gd assembly on the extended domain.

In order to maintain the order of accuracy, the multilinear model must take
more points for its grid (3060 — 3960 points), compared to previous use cases.
Table [10] and [11] show that, by using the Tucker decomposition, the number of
APOLLO?2 calculations is reduced by 29.4% and the storage size is reduced by
a factor of 3.6 to 20.84, compared to the multilinear interpolation.

Number of APOLLO2 calculations
Tucker decomposition Multilinear Interpolation
720 + 1440 =2610 3960
~~ —
for the 5 xj-grids for the Tucker grids related to the systems

Table 10: Comparison of the number of APOLLO2 calculations between the Tucker decom-
position and the multilinear interpolation for UOX-Gd assembly on the extended domain.
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Cross | Storage (number of floats)
section | Tucker Multilinear
P 478 3960
2 190 idem
! 1070 idem
2 537 idem
1/2} 1098 idem
VE?« 410 idem
»it 478 idem
»1? 537 idem
N 791 idem
n272 190 idem
E}. 1098 idem
Efc 410 idem

Table 11: Comparison of the storage for each cross-section, between the Tucker decomposition
and the multilinear interpolation for UOX-Gd assembly on the extended domain.

5.4.83. MOX assembly on the extended domain

In this case, the MOX assembly (a mixture of uranium enriched with 2.5%
and plutonium) is considered. For this use case, we use a reference grid con-
taining 14,000 points.

Cross €Tucker (PCM)
Section formula lg for cross-sections | €Tycker pcm)
formula l for reactivity formula for cross-sections

) 15 ) 0.04

2 58 0.24

2(11 20 0.06

2 28 0.10

vy 11 0.03

I/E? 24 0.10

Ei(? 1 12 0.03

»I? 11 0.06

¥t 482 2.61

n2;72 62 0.28

E}- 11 0.03

%7 25 0.10
Reactivity | 93 0.24

Table 12: Accuracy of the Tucker decomposition over 14,000 points of the reference grid for
MOX assembly on the extended domain

We show in table [12] the evaluated errors of the Tucker decomposition for
some cross-sections and for the reactivity. We see that the relative errors are
smaller than 100 pcm, except for the worst case %2;°! (482 pem). The absolute
errors of the reactivity are smaller than 93 pcm. This is the best approximation
results that we have (on the extended domain), not only for the accuracy but
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also for the number of APOLLO2 calculations and the storage size in the neutron
library.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation
720 + 720 =1440 3060
~—~
for the 5 xj-grids for the Tucker grids related to the systems

Table 13: Comparison of the number of APOLLO2 calculations between the Tucker decom-
position and the multilinear interpolation for MOX assembly on the extended domain.

The number of APOLLO2 calculations in table [I3] and the storage size in
table are compared to those of the multilinear interpolation. These results
show that, by using the Tucker decomposition, the number of APOLLO2 cal-
culations is reduced by 52.9% and the storage size is reduced by a factor of 3.3
to 17.2.

Cross | Storage (number of floats)
section | Tucker Multilinear

P 178 3060

2 223 idem

! 446 idem

2 446 idem

I/E} 286 idem

VE? 343 idem
»it 178 idem
»i? 446 idem
¥t 920 idem
$272 223 idem

D 286 idem

Efv 343 idem

Table 14: Comparison of the storage for each cross-section, between the Tucker decomposition
and the multilinear interpolation for MOX assembly on the extended domain.

5.5. Discussion

With the results obtained in the proposed use cases, we showed that the
Tucker decomposition allows us to reduce the pre-calculated data as well as the
storage size (compared to the multilinear model) while achieving high accuracy.

The subdivision (described in section in order to capture the variations
of cross-sections is applied to some axes, e.g. burnup axis is subdivided into three
sub-intervals. Hence, for the burnup axis, we have three Lagrange polynomials
(one for each sub-interval) which lead to the global reconstructed cross-sections
are not of class C''. This problem can be solved if for each segment, we choose
a higher degree polynomial and absorb the remaining degree of freedom with
the continuity of the function and first derivative.
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We can also improve the accuracy of the Tucker decomposition by taking
more tensor directional basis functions for some axes (see the section [4.3.2 with
the example of the cross-section ¥} where we added tensor directional basis
functions more for the burnup axis and the moderator density axis). Unfortu-
nately, since the tensor directional basis functions are only the approximations
of the eigenfunctions issued from the Karhunen-Loeéve decomposition, this so-
lution could be unsuccessful in some cases. Hence, the method to find auto-
matically the optimal number of tensor directional basis functions needs to be
investigated.

The study has been only performed on macroscopic cross-sections but the
same methodology could have been done on microscopic cross-sections. In fact,
Tucker decomposition is performed for a cross-section at a given energy group
and the variables are only the feedback parameters: there is no energy group
axis. For a given energy group, each cross-section is seen as a new function of
feedback parameters. Therefore the variation of cross-section due to the energy
spectrum is not dealt with Tucker decomposition but with the change of cross-
section energy group.

6. Conclusion and perspective

The Tucker decomposition described in this paper allows us to efficiently
reconstruct the macroscopic neutron cross-sections. It also allows us to analyze
the results obtained as a function of each parameter in order to improve the
accuracy.

Using the Tucker decomposition, we reduce the number of APOLLO2 cal-
culations (from 15% to 50%), the storage size in the neutron libraries (from
1.5 times to 20 times), compared to the multilinear interpolation. While pre-
calculated data are significantly reduced, we still achieve high accuracy for the
reconstructed cross-sections: around 100 pcm in relative errors, in general.

With a simplified hypothesis about an infinite medium and the two-group
energy theory, the reactivity is analytically calculated. We can therefore verify
the reactivity accuracy without using the flux solver. In general, the maximal
absolute error for the reactivity are about 100 pcm to 600 pcm (depending on
the use case). It is worth noting that the accuracy obtained using the Tucker
decomposition is the same for the standard and the extended domains. No de-
terioration have been observed when moving from the standard to the extended
domain.

However, the Tucker decomposition has some limitations. The evaluation
step performed at the core code level could be expensive in CPU time because
the Lagrange interpolation is used to reconstruct the tensor directional basis
functions from the eigenvectors. Moreover, the Tucker decomposition does not
ensure the positivity of cross-sections. The linearity relation, e.g. ¥} = X1 +
$1572 + 21571 is also not exactly preserved (except of course if we define the
approximation of ¥} as being the sum of the three approximations). However
at this point, and for practical use, this does not seem to be an issue since, even
without this linear property, Tucker decomposition gives a cross-section more
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accurate than the multilinear one. There may be numerical side effects, unseen
at that time, that will have to be checked using test cases once the method has
been fully implemented in COCAGNE. If that is the case, we may need to add
some correction factors. But until then there is no reason to believe that the loss
of the linear property may be a problem except for code debugging purposes.
In future, we plan to study criteria which allow us to eliminate (a priori and
a posteriori) the less important coefficients a in the representation of the Tucker
decomposition. It means that the accuracy of the Tucker decomposition could
be of the same order while many coefficients could be eliminated. This idea is
feasible because the Tucker decomposition is constructed from “sorted” tensor
directional basis functions (via the order of eigenvalues, e.g. decreasing order).
Hence, there a priori exist less important coeflicients, e.g. coefficients associated
with the product of the last tensor directional basis functions. Therefore, such
an elimination could lead to a similar accuracy while the number of APOLLO2
calculations and the storage size in the libraries would be further reduced.
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