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Optimal graphon estimation in cut distance

Olga Klopp∗ and Nicolas Verzelen†

March 15, 2017

Abstract

Consider the twin problems of estimating the connection probability matrix of an inhomo-
geneous random graph and the graphon of a W -random graph. We establish the minimax
estimation rates with respect to the cut metric for classes of block constant matrices and step
function graphons. Surprisingly, our results imply that, from the minimax point of view, the raw
data, that is, the adjacency matrix of the observed graph, is already optimal and more involved
procedures cannot improve the convergence rates for this metric. This phenomenon contrasts
with optimal rates of convergence with respect to other classical distances for graphons such as
the l1 or l2 metrics.

Keywords: inhomogeneous random graph, graphon, W-random graphs, networks, stochastic
block model, cut distance.

1 Introduction

In the last decade, network analysis has become an important research field driven by applications
in social sciences, computer sciences, statistical physics, genomics, ecology. . . A flourishing line of
literature amounts to fit observed networks to parametric or non-parametric models of random
graphs. Among the parametric models, one of the most popular is the stochastic block model [23].
In the stochastic block model with n vectices and k blocks, the class Zi of each vertex i ∈ [n] is
drawn independently in [k] according to some probability distribution π. Given Z, the edges of the
graph are then sampled independently, the probability that there is an edge between i and j being
equal to QZiZj

where Q = (Qij) ∈ [0, 1]k×k is a given symmetric matrix. Although this model is
suitable for analyzing small networks, it does not allow to analyze the finer structures of extremely
large networks. To go beyond the possible limitation of parametric models, non-parametric models
of random graphs have been introduced [18, 22].

One possible non-parametric generalization of the stochastic block models is given by the W -
random graph model [18] based on the notion of graphon. Graphons are symmetric measurable
functions W : [0, 1]2 → [0, 1]. In the sequel, the space of graphons is denoted by W+. Given a
graphon W0 ∈ W+, a graph on n vertices is sampled according to the W -random graph model in
the following way. Let Θ0 = (Θij) be a n× n random symmetric matrix defined by

Θij = ρnW0(ξi, ξj) ,∀i 6= j and Θii = 0 (1)

where 1 ≥ ρn > 0 is the scale parameter that can be interpreted as the expected proportion of
non-zero edges and ξ1, . . . , ξn are unobserved (latent) i.i.d. random variables uniformly distributed
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on [0, 1]. Then, given Θ0, the graph is sampled according to the inhomogeneous random graph
model [6]. More precisely, vertices i and j are connected by an edge with probability Θij and these
events are independent for all pairs (i, j) with i < j. When Θ0 is considered as a deterministic
matrix, we call it inhomogeneous random graph model with respect ot Θ0. If W0 is a step-function
with k steps, the graph is distributed as a stochastic block model with k groups. The case of a
dense graph corresponds to ρn = 1, whereas the choice ρn → 0 when n → ∞ produces sparser
graphs. This model was recently studied by a number of authors, see e.g., [4, 5, 16, 17, 27, 34].

In the present paper we consider the problems of estimating the matrix of connection probabil-
ities Θ0 and the graphon f0 = ρnW0 from a single observation of a graph. Suppose that we observe
the n × n adjacency matrix A = (Aij) of a graph that has either been sampled according to the
inhomogeneous random graph model with a fixed matrix Θ0 or to the W -random graph model
with graphon W0. Then, given a single observation A, we want to estimate Θ0 or f0.

Graphon estimation is more challenging than probability matrix estimation, in particular, be-
cause of identifiability issues: multiple graphons can lead to the same distribution on the space of
graphs of size n. This is not unexpected as the distribution of the network is invariant with respect
to any change of labeling of its nodes. More precisely, two graphons U and W in W+ define the
same probability distribution if and only if there exist measure preserving maps φ, ψ: [0, 1] → [0, 1]
such that U (φ(x), φ(y)) =W (ψ(x), ψ(y)) almost everywhere. This equivalence relation is called a

weak isomorphism [28]. The corresponding quotient space is denoted by W̃+. As a consequence,

one can only estimate the equivalence class of ρnW0 in W̃+ and we refer henceforth to graphon es-
timation as the problem of estimating this equivalence class from the adjacency matrix A sampled
from the W -random graph model (1). When there is no amibiguity, we shall identify a graphon
W ∈ W+ and its corresponding equivalence class.

The problem of estimating Θ0 was previously considered in a number of papers. For matrix
estimation problem, the quality of an estimator Θ̂ is usually assessed through the Frobenius loss
‖Θ̂ − Θ0‖2. For instance, [16] obtain sub-optimal convergence rates for this problem using a
singular thresholding algorithm. Relying on a least-square estimator [20] have established the
minimax estimation rates for Θ0 on classes of block constant matrices and smooth graphon classes.
Their analysis is restricted to the dense case with constant ‖Θ0‖∞. More recently, [26] extended
their results to sparse case when ‖Θ0‖∞ depends on n and goes to zero when n→ ∞.

As for graphon estimation, most of results on estimation error are expressed in terms of l2 loss
‖Ŵ−W0‖2 (see below for a formal definition of this metric). For classes of smooth graphons, estima-
tors based on maximum likelihood, restricted least-squares estimators, or neighborhood smoothing
have been studied in [1, 14, 15, 26, 33, 35]. For classes of step-function graphons, restricted least-
squares estimators have been considered in [10, 26] and the minimax optimal rates of convergence
have been derived in [26].

Although one can take advantage of the Euclidean structure of the Frobenius matrix norm and
the l2 metric on W+, both these metrics do not readily reflect the closeness in terms of the topology
of the random graphs. As the structure of the graphon space is infinite-dimensional, not all norms
are equivalent and one may wonder whether one should not study the graphon estimation problem
with respect to a more suitable distance. We argue below that the cut distance which plays a
central role in the random graph theory is a good candidate for this.

1.1 Cut metric

One of the fundamental questions in graph theory is the following one: what does it mean for
two large graphs to be similar or close? There are different ways of defining the distance of two
graphs. For example, the edit distance is defined as normalized Hamming distance of the edge
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sets. Up to a normalization, it corresponds to l1 distance between the adjacency matrices. One
of the troubles with this notion of distance is that it does not reflect well structural similarities
between two graphs. For instance, the edit distance between two independent graphs drawn from
the Erdös-Rényi model G(n, p) with p = 1/2 is close to 1/2 with high probability. Another notion
of distance, called cut distance, better reflects the structural similarity. The cut norm of a matrix
B = (Bij) ∈ R

n×n has been introduced by Frieze and Kannan [19]. It is defined by

‖B‖� =
1

n2
max
S,T⊂[n]

∣∣∣
∑

i∈S,j∈T
Bij

∣∣∣.

In other words, ‖B‖� corresponds (up to to a renormalization) to the maximal sum of entries over
all submatrices of B. Then, the cut distance d�(G,G

′) between two graphs G and G′ defined on
the same set of nodes and with adjacency matrices A and A′ is defined as the cut norm ‖A−A′‖�.
Denoting eG(S, T ) the number of edge between nodes in S and T in the graph G, the cut distance
d(G,G′) is the supremum over all S, T of (eG(S, T ) − eG′(S, T ))/n2. In other words, d�(G,G

′) is
small if the restrictions of G and G′ to all subsets S, T have similar edge densities.

Let us denote W the collection of symmetric measurable functions [0, 1]2 → [−1, 1]. By analogy
with the matrix cut norm, we can define the cut norm of a kernel W ∈ W:

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∣∣

∫

S×T

W (x, y)dxdy

∣∣∣∣∣∣
, (2)

where the supremum is taken over all measurable subsets S and T . Then, the distance d�(W,W
′)

between two graphons W and W ′ in W+ is simply ‖W − W ′‖�. As explained earlier in the
introduction, graphons in W+ are not identifiable. This is why we consider the metric induced by
‖ · ‖� on the quotient space W̃+ defined by

δ�(W1,W2) = inf
τ∈M

‖W1 −W τ
2 ‖� , (3)

where we take the infimum in the set M of all measure-preserving bijections τ : [0, 1] → [0, 1] and
W τ (x, y) =W (τ(x), τ(y)).

The cut distance is also a cornerstone in the graph limit theory introduced by Lovász and
Szegedy [29] and further developed in, e.g., [8, 9]. In particular, this theory states that graphons
can be interpreted as limits (with respect to δ�) of graph sequences. Besides, convergence in δ� is
equivalent to other structural properties such as the convergence of all homomorphisms numbers.
Given a simple graph F with q nodes and a graphon W0, the homomorphisms number t(F,W0) is
the probability that the edge set of size q of a graph sampled from the model (1) (with ρn = 1)
contains the edge set of F . As a consequence, the homomorphisms numbers t(F,W0) and t(F,W

′
0)

are close when the expected number of subgraphs F for a size n random graph G sampled from W0

is close to that of a size n random graph sampled fromW ′
0. It has been established that convergence

in the cut distance is equivalent to convergence of homomorphism numbers for all simple graphs
F (see Theorem 11.5 in [28] for more details). Hence, estimating well the graphon W0 in the cut
distance allows to estimate well the number of small patterns induced by W0. On the other hand,
the cut distance controls other quantities of interest for computer scientists such as the size of
multi-way cuts [10, 12]. So, a consistent estimator of W0 in cut distance gives consistent estimators
for the multi-way cuts.

The construction of δ� can be extended to any other norm N that is invariant under measure
preserving maps:

δN (W1,W2) = inf
τ∈M

‖W1 −W τ
2 ‖N . (4)
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Besides the cut norm, we already mentioned the l1 and l2-norms on W defined by ‖W‖1 =∫
[0,1]2 |W (x, y)|dxdy and ‖W‖2 = [

∫
[0,1]2 W

2(x, y)dxdy]1/2. These two norms define the correspond-

ing distances δ1 and δ2 on the quotient space W̃+. The distance δ� is dominated by δ1 and δ2
(for details see Section 2.2). As already noted for instance in [10], this immediately implies that

the convergence rate of an estimator Ŵ with respect to the δ�-distance is at least as fast as its
convergence rate with respect to the δ2-distance. Then, one may wonder whether the convergence
rates in δ�-distance can be significantly faster and whether those faster rates are achieved by the
estimators that are already minimax optimal with respect to other metrics.

In fact, a partial result on uniform convergence rates has already been proved. One of the
striking consequences of the celebrated Szemerédy’s Lemma [31] states that an adjacency matrix
sampled from a W -random graph model converges to the true graphon W0 in cut distance, this at
an uniform rate over all graphons. To be more specific, let W0 ∈ W+ be a graphon and let A be
the size n adjacency matrix sampled according to the W -random graph model (1) with ρn = 1. It
has been shown in [8] (see also [2] or [28]) that, with high probability, the empirical graphon f̃A
associated to the adjacency matrix A (see (18) for a precise definition) is O(1/

√
log(n)) close in

the cut distance to the true graphon W0:

Proposition 1 (Lemma 10.16 [28]). Let n ≥ 1 and let W0 ∈ W+ be a graphon. Then, with
probability at least 1− exp {−n/(2 log n)},

δ�

(
f̃A,W0

)
≤ 22√

log(n)
. (5)

An important point is that the above result is valid for all W0 ∈ W+. Note that if we replace
the cut-distance by δ1 or δ2-distance this is not true any more: even in the simple case of a constant
graphon W0 ≡ a (with a ∈ (0, 1)), the l2 distance between f̃A and W0 does not converge to zero.

1.2 Our contribution and related results

Our purpose in this paper is to go beyond uniform convergence rates over all graphons in W+ and
to understand the optimal cut distance convergence rates when W0 has a specific structure. First,
optimal convergence rates are derived for the estimation of the connection probability matrix Θ0

when it belongs to classes of block-constant matrices. Second, we establish the optimal convergence
rates for all classes of step-function graphons f = ρnW0 both in sparse and dense case. In particular
for ρn = 1 (dense case), our results imply that, for any integer k ∈ [2, n] and k–steps graphon W0,
one has

EW0

[
δ�

(
f̃A,W0

)]
≤ C

√
k

n log(k)
, (6)

where C is a numerical constant (independent of n and k) and that this convergence rate is optimal
from the minimax point of view. This result has some interesting implications. In particular, this
guarantees the optimality of the log(n)−1/2 rate in Proposition 1 for general graphons. On the
other hand, our results imply that for more structured classes of graphons (k ≪ n) much faster
rates are achievable. Interestingly, we show that the adjacency matrix and its associated empirical
graphons are already adaptive to the unknown number of blocks of the matrix Θ0 or steps of W0

and minimax optimal. As a consequence, there is no need to look for more involved estimators.
In practice, it could be disappointing that the raw data are already optimal with respect to

the cut distance, whereas they perform really badly with respect to the δ2 distance. This is why
we prove that a singular value hard thresholding estimator is still optimal with respect to the
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cut metric δ� while achieving the best known rate in δ2-distance in the class of polynomial-time
estimators.

Our results are in sharp contrast to all aforementioned manuscripts [1, 10, 14, 15, 26, 33, 35]
whose primary focus is the δ2-distance and whose convergence rates with respect to the δ�-distance
are derived from the domination of δ� by δ2. Closest to our contributions, is the recent paper [7]
where the authors introduce a least-cut norm estimator for a more general model of unbounded
graphons. Translated in our framework, their non-polynomial time algorithm achieves, in some
cases, the optimal convergence rate (up to a logarithmic loss) and it is slower in other cases. In
Section 4.3 we extend our study to unbounded graphons and compare our results to those of [7].
In particular, our Proposition 7 implies that the empirical graphon associated to the adjacency
matrix and to the singular value hard thresholding estimator are optimal (up to a logarithmic
factor) also in the general case of unbounded graphons. Note that the main difference with the
method proposed in [7] is that both our estimators can be easily computed in polynomial time.

From a technical point of view, the tools needed for deriving optimal cut distance rates differ
from those used for the δ2-distance. For establishing the minimax lower bounds, the main technical
hurdle is to build a collection of well-spaces graphons with respect to the cut distance. Indeed,
the cut distance δ�(W1,W2) is difficult to lower bound as it is defined as an infimum over all
measure-preserving transformations. As for the minimax upper bound on the estimation error in
(6), it can be obtained quite easily without the correct logarithmic term thanks to the Bernstein
inequality together with some bounds from [26] for the stronger metric δ2. However, recovering the
right logarithmic term in (6) is much more challenging. The proof relies among other things on a
careful application of Szemerédi’s regularity lemma to distorted versions of the graphon.

The manuscript is organized as follows. First, we recall some basic results related to the cut
metric. The problem of estimating the matrix of connection probabilities is considered in Section
3. We study the problem of graphon estimation in Section 4. The appendix contains all the proofs
where in Appendix A we recall some basic facts and results that are often used in the proofs.

2 Notation and Preliminaries

2.1 Notation

We gather here some of the notation used throughout this paper. Some of them have already been
defined in the introduction.

• For a matrix B, Bij (or Bi,j, or (B)ij) is its (i, j)-th entry. Let Bi,· and B·,j stand for its ith
row and jth column respectively. We denote by R

k×k
sym the class of all symmetric k×k matrices

with real-valued entries. Given a matrix B and p ∈ [1,∞], ‖B‖p denotes its entry-wise lp
norm, that is ‖B‖pp =

∑
i,j |Bij|p for p <∞ and ‖B‖∞ = maxi,j |Bij |. Given (p, q) ∈ [1,∞],

‖B‖p→q stands for its lp → lq operator norm. Finally, 〈D,B〉 =∑i,jDijBij stands for the

canonical inner product between matrices D,B ∈ R
n×n.

• W is the collection of symmetric measurable functions [0, 1]2 → [−1, 1]. Given a kernel
W ∈ W and p ∈ (1,∞), its lp norm is defined by ‖W‖pp =

∫
|W (x, y)|pdxdy, whereas ‖W‖∞ =

ess supx,y|W (x, y)|. W+ is the space of graphons and W̃+ is the corresponding quotient space.
The cut distance δ�(·, ·) in the graphon spaces is defined by (3). Also, δ1(·, ·) and δ2(·, ·)
defined by (4) respectively correspond to the l1 and l2 distances on the quotient space of

graphons W̃+. Given a symmetric square matrix Θ with values in [0, 1], f̃Θ is the empirical
graphon Θ as defined in (18).
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• Given a probability matrix Θ0, we denote by EΘ0
the expectation with respect to the distri-

bution of A if we consider the inhomogeneous random graph model and given a graphon W
and ρn, we write EW for the expectation with respect to the joint distribution of (ξ,A).

• We denote by ⌊x⌋ the maximal integer less than or equal to x and by ⌈x⌉ the smallest integer
greater than or equal to x. For an positive integer m, set [m] = {1, . . . ,m}. 1A(·) denotes the
indicator function of a set A. In the sequence, C stands for a positive constant that can vary
from line to line. These are absolute constants unless otherwise mentioned. For two positive
functions f and g, we write f ≍ g when there exist two positive numerical constants C and
C ′ such Cg ≤ f ≤ C ′g. Finally, λ is the Lebesgue measure on the interval [0, 1].

2.2 Preliminaries

We start with a few basic properties of the cut norm for matrices A and graphons W . It is easy to
see that

‖A‖� ≤ 1

n2
‖A‖1 ≤

1

n
‖A‖2

where ‖ · ‖1 and ‖ · ‖2 are the usual entry-wise l1 and l2-norms of a matrix. For a function W ∈ W,
we have

‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1

where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2-norms of a graphon. In the opposite direction, we have
‖W‖2 ≤

√
‖W‖1. As a consequence, the metric δ1 and δ2 define the same topology on the space

W̃+ of graphons. In contrast, the cut distance δ� defines a weaker topology on the space W̃+ as
illustrated by the aforementioned sampling result (Proposition 1).

We shall also sometimes rely on the equivalence between the cut norm and to the l∞ → l1
operator norm:

‖W‖∞→1 = sup
‖f‖∞,‖g‖∞≤1

∣∣∣∣∣∣

∫

S×T

W (x, y)f(x)g(y)dxdy

∣∣∣∣∣∣
(7)

where the supremum is taken over all (real-valued) functions f and g with values in [−1, 1]. It is
known that (see e.g., [24])

‖W‖� ≤ ‖W‖∞→1 ≤ 4‖W‖� . (8)

3 Probability matrix estimation

3.1 Cut norm minimax risk

We start with a simple proposition that bounds the expected cut distance between Θ0 and the
sampled adjacency matrix A. Similar results already appeared in the literature, see e.g., [28,
Lemma 10.11], [7] or [21]. Its proofs is based on Bernstein inequality and is given in Section B.

Proposition 2. For any probability matrix Θ0 we have

EΘ0
‖A−Θ0‖� ≤ 12

√
‖Θ0‖1 + n

n3
. (9)

In particular, if ‖Θ0‖∞ ≥ 1/n, we get

EΘ0
‖A−Θ0‖� ≤ 24

√
‖Θ0‖∞
n

.
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This implies that the adjacency matrix A is
√

‖Θ0‖∞/n-close in cut-distance to the probability
matrix Θ0. This bound is valid for all matrices Θ0. It turns out that no estimator can perform
much better than A, even on some simple classes of parameters Θ0.

Let n, k be integers such that 2 ≤ k ≤ n and T [k] be defined by

T [k] = {Θ0 : ∃ z ∈ Zn,k, Q ∈ [0, 1]k×ksym such that Θij = Qz(i)z(j), i 6= j, and Θii = 0 ∀i}

where we denote by Zn,k the set of all mappings z from [n] to [k]. In other words T [k] is made
of matrices that, up to a permutation of their rows and their columns, are (up to the diagonal)
block constants with at most k blocks. Also, this corresponds to connection probability matrices
of k-class stochastic blocks models whose vector label Z = (Za) has been fixed. For any ρn ∈ (0, 1],
consider the set

T [k, ρn] = {Θ0 ∈ T [k] : ‖Θ0‖∞ ≤ ρn} ,

of matrices whose largest value is smaller or equal to ρn. The following Proposition, proved in section
C, gives a lower bound on the minimax risk over the class T [2, ρn] of block-constant matrices with
only two blocks:

Proposition 3. The minimax risk measured in cut norm satisfies

inf
Θ̂

sup
Θ0∈T [2,ρn]

EΘ0

[∥∥∥Θ̂−Θ0

∥∥∥
�

]
≥ Cmin

(√
ρn
n
, ρn

)

where EΘ0
denotes the expectation with respect to the distribution of A when the underlying prob-

ability matrix is Θ0.

Comparing Proposition 3 with Proposition 2 we observe that the raw dataA is minimax optimal
for the class T [2, ρn] for all ρn ≥ 1/n. As a consequence, there is no need to look for a more involved
estimator. Since for ρn ≤ 1/n the constant estimator Θ̂ = 0 satisfies EΘ0

[‖Θ̂ − Θ0‖�] ≤ ρn and
using that the collections T [k, ρn] are nested, the two previous propositions imply that the optimal
cut norm estimation rates for T [k, ρn] with k ≥ 2 is given by

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[∥∥∥Θ̂−Θ0

∥∥∥
�

]
≍ min

(√
ρn
n
, ρn

)
.

Until now, we left aside the specific case of constant matrices T [1, ρn] which correspond to
Erdös-Renyi random graphs. It turns out that the situation is quite different for this simple class.
For a constant matrix Θ0, estimating Θ0 given A amounts to infer the parameter p of a Bernoulli
distribution given a sample of size n(n− 1)/2. From this analogy, we consider the matrix A whose
all non-diagonal entries are equal to

∑
i,jAij/(n(n− 1)). Then, it is straightforward to prove that

EΘ0

[
‖Θ0 −A‖�

]
≤
√

2ρn
n(n− 1)

,

which is
√
n-faster than what is achieved by the adjacency matrix A. Using again the analogy with

the problem of Bernoulli parameter estimation, one may easily get the following minimax lower
bound:

inf
Θ̂

sup
Θ0∈T [1,ρn]

EΘ0

[∥∥∥Θ̂−Θ0

∥∥∥
�

]
≥ Cmin

(√
ρn

n
, ρn

)

which assesses that the
√
ρn/n-rate achieved by A is optimal.
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3.2 Comparison with l1 and l2-estimation

The cut norm optimal estimation rate is quite different from what has been established for the
Frobenius norm (also called l2) estimation rate in [26] (see also [20] for the dense case), that is

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n

∥∥∥Θ̂−Θ0

∥∥∥
2

]
≍ min

(√
ρn log(k)

n
+

√
ρnk

n
, ρn

)
, (10)

for any k = 2, . . . , n. Besides, the minimax risk bound is achieved by the restricted least-square
estimators [26] defined by

Θ̂k,ρn := arg min
Θ∈T [k,ρn]

‖Θ−A‖22 . (11)

Since the Frobenius norm dominates the cut norm, it is expected that the cut norm convergence
rate is faster than the Frobenius norm estimation rate. When ρn is not too small and the number
of blocks remains small (k ≤

√
n log(n)), the gain is a log(k) factor, whereas, for larger k, the gain

is of order k/
√
n. More importantly, the optimal Frobenius norm convergence rate (10) is only

known to be achieved by non-polynomial time estimators such as (11).

In view of the above discussion, one may wonder whether it is possible to build estimators
that are near optimal is terms of both the cut and Frobenius distances. Since for any matrix B,
‖B‖� ≤ ‖B‖2/n, it follows that, for k ≤ √

n, the restricted least-square estimator Θ̂k,ρn (11) is
also near optimal (up to

√
log(k) factor) with respect to the cut distance, that is,

EΘ0

[∥∥Θ̂k,ρn −Θ0

∥∥
�

]
≤ C

√
ρn log(k)

n
.

For matrices Θ0 with more than
√
n blocks, it is not clear whether the estimator Θk,ρn achieves a

fast rate of convergence in the cut norm.

In any case, the computational complexity of Θ̂k,ρn is non polynomial. In fact, no polynomial-
time algorithm is known to achieve the minimax risk (10) with respect to the Frobenius norm.
Below, we describe an estimator that is optimal in the cut distance and also achieves the best
known rate in Frobenius distance in the class of polynomial-time estimators. Let us write the
singular value decomposition of A:

A =
rank(A)

Σ
j=1

σj(A)uj(A)vj(A)T , (12)

where σj(A) > 0 are the singular values ofA indexed in the decreasing order, uj(A) are eigenvectors
of A and vj(A) = ±uj(A). Given a tuning parameter λ > 0, we define

Θ̃λ = Σ
j:σj(A)≥λ

σj(A)uj(A)vj(A)T (13)

as the singular value hard thresholding estimator of Θ0. We have the following

Proposition 4. Assume that ρn ≥ log(n)/n. Let λ = c
√
ρnn where c is a sufficiently large

numerical constant. Then, for any k ∈ [n] and any Θ0 ∈ T [k, ρn], the hard thresholding estimator
Θ̃λ simultaneously satisfies, with probability larger than 1− 1/n,

1

n
‖Θ̃λ −Θ0‖2 ≤ C

√
ρnk

n
, (14)

‖Θ̃λ −Θ0‖� ≤ 1

n
‖Θ̃λ −Θ0‖2→2 ≤ C

√
ρn
n
, (15)

where C is a numerical constant.
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The low-rank estimator Θ̃λ was previously considered in [16] for Frobenius norm estimation,
but error bounds obtained in [16] are much more pessimistic than (14). It follows from (15), that
for ρn ≥ log(n)/n, with high probability, Θ̃λ achieves the optimal rate in the cut norm and the√
ρnk/n rate in Frobenius norm, which is the best known rate among polynomial-time estimators.

We close this section by the following proposition which gives the minimax optimal rate of
estimation in l1-norm. This will allow us to further compare the δ1 and δ� convergence rates for
graphon estimation in the next section.

Proposition 5. For any sequence ρn > 0 and any positive integer 2 ≤ k ≤ n, one has

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n2

∥∥∥Θ̂−Θ0

∥∥∥
1

]
≍ min

{√
ρn log(k)

n
+

√
ρnk

n
, ρn

}
. (16)

The upper bound in (16) is a consequence of the inequality ‖B‖1/n2 ≤ ‖B‖2/n together with
the control of the estimation error of the restricted least-squares estimator Θ̂k,ρn (11) performed in
[26]. The lower bound of the minimax risk in (16) is proved following the same lines as the proof
of Proposition 2.4 in [26] with ‖ · ‖2 replaced by ‖ · ‖1. We skip the details.

4 Graphon estimation problem

In this section, we are interested in estimating the graphonW0 in the sparseW -random graph model
(1). Let W+[k] be the collection of k–step graphons, that is, the subset of graphons W ∈ W+ such
that for some Q ∈ [0, 1]k×ksym and some φ : [0, 1] → [k],

W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1] . (17)

Note W+[k] is also in correspondence with the collection of stochastic block models with k blocks.
Our purpose here, is to characterize the minimax convergence rates over classes W+[k].

4.1 Cut distance minimax risk

Following [26], we start by associating a graphon to any n × n probability matrix Θ0. Then, we
can estimate graphon f0(·, ·) = ρnW0(·, ·) using the empirical graphon associated to an estimator
of Θ0. Given a n × n matrix Θ with entries in [0, 1], we define the graphon f̃Θ as the following
piecewise constant function:

f̃Θ(x, y) = Θ⌈nx⌉,⌈ny⌉ (18)

for all x and y in (0, 1]. For any estimator T̂ of Θ0 and any norm N that is invariant under measure
preserving maps the triangle inequality implies

EW0

[
δN (f̃T̂ , f0)

]
≤ EW0

[
‖T̂ −Θ0‖N

]
+ EW0

[
δN

(
f̃Θ0

, f0

)]
. (19)

We have two parts in (19). The first term is the estimation error term ‖T̂ − Θ0‖N that has
been considered in the previous section. The second term δN (f̃Θ0

, f0) is the agnostic error. It
measures the δN -distance between the true graphon f0 and its discretized version sampled at the
unobserved random design points ξ1, . . . , ξn. The behavior of δN (f̃Θ0

, f0) depends on the topology
of the considered class of graphons. The following theorem, proved in Section E, gives the upper
bound on the agnostic error, measured in δ�-distance for step function graphons:

9



Theorem 1 (Agnostic error measured in cut distance). Consider the W -random graph model (1).
For all integers k ≥ 2, all positive integers n, all W0 ∈ W+[k] and ρn > 0, we have

EW0

[
δ�(f̃Θ0

, f0)
]
≤ Cρn





√
k

n log(k)
if k ≤ n,

√
1

log(n)
if k > n.

Note that the case k > n is a consequence of Proposition 1 from [28], so that we effectively
only have to consider the case k ≤ n. The proof combines two ideas. First, we build W and
Ŵ as the representatives of W0 and f̃Θ0

in the quotient space W̃+ such that W and Ŵ match
everywhere except on a set of Lebesgue measure of order at most

√
k/n. This allows us to get a

risk bound of order
√
k/n. In order to recover the correct logarithmic factor

√
log(k), we rely on

the weak Szemerédy Lemma. Here, the key idea is to build a cut-norm approximation of a distorted
transformation of W where the weights of the group have been modified to take into account the
geometry of the sampling error.

As an immediate consequence of (19), Proposition 2 and Theorem 1, we get the following upper
bound on the risk of the empirical graphon f̃A. For any k ≥ 2, it holds that

sup
W0∈W+[k]

EW0

[
δ�

(
f̃A, f0

)]
≤ Cmin

(
ρn

(√
k

n log(k)
,

1√
log(n)

)
+

√
ρn
n

)
, (20)

where C is an absolute constant. Here, EW0
denotes the expectation with respect to the distribution

of observations A = (Aij, 1 ≤ j < i ≤ n) when the underlying sparse graphon is f0 = ρnW0. The
following Proposition provides a matching lower bound for 2 ≤ k ≤ n.

Theorem 2. There exists a universal constant C > 0 such that for any sequence ρn > 0 and any
positive integer 2 ≤ k ≤ n,

inf
f̂

sup
W0∈W+[k]

EW0

[
δ�

(
f̂ , f0

)]
≥ Cmin

(
ρn

√
k

n log(k)
+

√
ρn
n
, ρn

)
, (21)

where inf
f̂
is the infimum over all estimators.

Since the collections W+[k] are nested, it follows that for all k ≥ n, one has

inf
f̂

sup
W0∈W+[k]

EW0

[
δ�

(
f̂ , f0

)]
≥ Cmin

(
ρn

√
1

log(n)
+

√
ρn
n
, ρn

)
.

In view of (20) and (21), we observe that, as long as, ρn ≥ 1/n, the empirical graphon f̃A is minimax
optimal over all classes W+[k], k ≥ 2. For sparser graphs (ρn ≤ 1/n), the trivial estimator f̂ ≡ 0
achieves the optimal rate ρn.

Note that there are two distinct regimes in the minimax convergence rate. When ρn ≥ log(k)/k
(weakly sparse graphs or large number of groups), the agnostic error dominates and the minimax
risk is of order ρn

√
k/(n log(k)). For moderately sparse graphs or equivalently a small number of

steps (n−1 ≤ ρn ≤ log(k)/k), the error arising from the probability matrix Θ0 estimation dominates
and the minimax risk is of order

√
ρn/n.

As in the previous section, we left aside the specific case of constant graphons W+[1]. Note that
for a graphonW0 ∈ W+[1] the agnostic error is always zero and the loss comes from the probability
matrix estimation. Following the arguments of the previous section, we derive that the graphon
f̃A converges to ρnW0 at the rate

√
ρn/n which is optimal as soon as ρn ≥ 1/n2.
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4.2 Comparison with δ1 and δ2-estimation

Minimax risk for graphon estimation in the δ2-distance was obtained in [26, Proposition 3.2] :

inf
f̂

sup
W0∈W+[k]

EW0

[
δ2

(
f̂ , f

)]
≍ min

(√
ρnk

n
+

√
ρn log(k)

n
+ ρn

(
k

n

)1/4

, ρn

)
(22)

The following proposition, proved in Section G, gives the minimax δ1-convergence rate:

Proposition 6. For any sequence ρn > 0 and any positive integer 2 ≤ k ≤ n, we have

inf
f̂

sup
W0∈W+[k]

EW0

[
δ1

(
f̂ , f0

)]
≥ C1 min

(√
ρnk

n
+

√
ρn
n

+ ρn

√
k

n
, ρn

)
. (23)

Conversely, there exists an estimator f̂ based on the restricted least-squares estimator (11) such
that

sup
W0∈W+[k]

EW0

[
δ1

(
f̂
Θ̂k,ρn

, f0

)]
≤ C2min

(
ρn

√
k

n
+

√
ρnk

n
+

√
ρn log(k)

n
, ρn

)
. (24)

The upper and lower bounds given by Proposition 6 match (up to a
√

log(k) multiplicative
term in one of the regimes). There are three regions in (24) for δ1 graphon estimation. The first
one corresponds to the case of weakly sparse graphs with ρn ≥ k−1 ∨ (k/n). In this case, the
agnostic error dominates and the optimal risk is of order ρn

√
k/n. For moderately sparse graphs

with n−1 ∨ (k/n)2 ≤ ρn ≤ k−1 ∨ (k/n), the probability matrix estimation error dominates and the
minimax rate is of order

√
ρn/n +

√
ρnk/n (up to a log(k) multiplicative term). In the case of

highly sparse graphs with ρn ≤ n−1 ∨ (k/n)2 ∨
(
k
n

)2
, the minimax risk is ρn which corresponds to

the risk of the null estimator f̃ ≡ 0.
Let us compare the optimal convergence rates with respect to the δ1 (24), δ2 (22) and δ� (21).

Bearing in mind that δ2 dominates δ1, which in turn dominates δ�, one should not be surprised
that optimal rates with respect to δ2 are the slowest. When the number of steps k is less than

√
n

or when the graph is weakly sparse (ρn ≥
√
k/n), then the δ1 and δ� optimal rates only differ by a

log(k) multiplicative term. For larger k and sparser graph, the optimal δ1-risk can be k/
√
n larger

than the δ�-risk.

Following the discussion in Section 3.2, one may easily build graphon estimators performing well
in all these three distances. For instance, the graphon f

Θ̂k,ρn
based on the restricted-least-squares

estimator is optimal with respect to δ2 and δ1 and near optimal (up to a possible
√

log(k) loss)
with respect to δ� for k ≤ √

n. Besides, the graphon f
Θ̃λ

based on the singular value thresholding
estimator is optimal with respect to δ� and achieves best known convergence rates with respect to
δ1 and δ2 among polynomial time algorithms.

4.3 Cut distance estimation of L1 and L2 graphons

Until now we have restricted our attention to graphons W taking values in [0, 1]. As argued in
[11, 12], in this case the empirical degree distribution of a graph sampled from the corresponding
W -random graph model (1) is light. This contrasts with many practical situations, where the degree
distribution is heavy tailed. To circumvent this limitation, Borgs et al [11, 12] introduce, for p ≥ 1,
the class W+

p of symmetric measurable functions W : [0, 1]2 → R
+ such that

∫
|W (x, y)|pdxdy <

∞. This collection W+
p is referred as the collection of Lp graphons. We have the inclusions

11



W+ ⊂ W+
p ⊂ W+

p′ for p > p′ ≥ 1. Given a graphon W0 ∈ W+
p and a sparsity parameter 1 ≥ ρn > 0,

the correspondingW -random graph model amounts to generating a graph with n vertices according
to the random matrix Θ0 sampled as follows

Θij =
[
ρnW0(ξi, ξj)

]
∧ 1 , ∀i 6= j and Θii = 0 , (25)

where ξ1, . . . , ξn are, as in (1), i.i.d. random variables uniformly distributed in [0, 1]. Note that
sinceW0 is now unbounded, we have to take the minimum with 1 in (25). We write f ′0 = (ρnW0)∧1.
Since W0 is now allowed to be unbounded, graphs sampled according to the model (25) may have
power law degree distribution [11]. As in the introduction, we may extend the norms ‖.‖� and ‖.‖q
and the distances δ� and δq to any graphon W0 ∈ W+

p with p ≤ q. Also, we write W̃+
p for the

quotient space of Lp graphons under weak isometry.
Let us also define the collection W+

p [k] of k-steps Lp graphons, that is the subsets of graphon

W ∈ W+
p such that W (x, y) = Qφ(x),φ(y) for some Q ∈ (R+)k×ksym and some φ : [0, 1] → [k] (note

that W+
p [k] does not depend on p). For 1 ≥ µ > 0 we denote by W+

p [k, µ] the subset of W+
p [k] of

“balanced” step functions, that is, W ∈ W+
p [k, µ] if λ(φ

−1(a)) ≥ µ/k for all a ∈ [k]. This means
that the size of each step is larger than µ/k.

Without lost of generality we can consider normalized graphons, that is, we assume that
‖W0‖1 = 1. The following proposition proved in Appendix H gives an oracle inequality for the
risk of the empirical graphon associated to the adjacency matrix and to the singular value hard
thresholding estimator:

Proposition 7. Let λ = c
√
ρnn where c is a sufficiently large numerical constant. Given a graphon

W0 and ρn > 0, write W ′
0 = ρ−1

n [(ρnW0) ∧ 1].

(1) Let W0 ∈ W+
1 with ‖W0‖1 = 1, ρn ≥ 1/n and 1 ≥ µ > 0. Then, for any positive integer

k ≤ µn, we have

EW0

[
δ�

(
f̃A, f

′
0

)]
≤ 2ρn inf

W∈W+

1
[k,µ]

δ1
(
W,W ′

0

)
+ C

[
ρn

√
k

µn
+

√
ρn
n

]
(26)

and

EW0

[
δ�

(
f̃
Θ̃λ
, f ′0
)]

≤ 2ρn inf
W∈W+

1
[k,µ]

δ1
(
W,W ′

0

)
+ C

[
ρn

√
k

µn
+

√
ρn
n

]
. (27)

(2) Assume that W0 ∈ W+
2 with ‖W0‖1 = 1 and ρn ≥ 1/n. For any positive integer k ≤ n, we

have

EW0

[
δ�

(
f̃A, f

′
0

)]
≤ 2ρn inf

W∈W+

2
[k]
δ2
(
W,W ′

0

)
+ C

[
ρn‖W0‖2

√
k

n
+

√
ρn
n

]
, (28)

EW0

[
δ�

(
f̃
Θ̃λ
, f ′0
)]

≤ 2ρn inf
W∈W+

2
[k]
δ2
(
W,W ′

0

)
+ C

[
ρn‖W0‖2

√
k

n
+

√
ρn
n

]
. (29)

IfW0 belongs to someW+
2 [k] or toW+

1 [k, µ] the convergence rates given by Proposition 7 are the
same as the optimal rates for bounded graphons up to a log−1/2(k) factor. We conjecture that the
log−1/2(k) factor should appear in Proposition 7. Indeed, for bounded graphons, this logarithmic
terms derives from Szemerédi Regularity lemma and extensions of this lemma to Lp graphons have
been recently proved [11]. Nevertheless, our arguments in the proof of Theorem 1 makes heavily

12



use of the boundedness of the graphons. In particular, one should replace all applications of Mc
Diarmid’s inequality (Lemma 1) by more involved concentration inequalities [13]. We leave this for
future work.

When the graphonsW0 is not a finite step graphons, a bias term is occurring in the risk bounds
(26–29). As the estimation risk is measured in the cut-distance, one could have hoped to obtain
a bias term in the cut distance also (instead of the larger l1 and l2 distances). It is an interesting
open problem to prove whether one can obtain oracle inequalities with cut distance bias terms.
Note that, for bounded graphons W ∈ W+, using Theorem 1, we can also get an oracle inequality
with the δ1 bias term and minimax optimal error term.

Upper bounds of the cut distance risk for Lp graphons estimation were previously obtained in

[7] where the authors introduced the least cut norm estimator f̂LC . For any L1 normalized graphon
W0 any κ ∈ [log n/n, 1], Borgs et al. [7] show in their Theorem 4.1 that this estimator f̂LC achieves
the risk bound

EW0

[
δ�(f̂LC , f

′
0)
]
≤ C

[
ρn inf

W∈W+

1
[⌊κ⌋−1,1/2]

δ1
(
W,W ′

0

)
+ ρn

√
log n

κn
+

√
ρn
n

]
. (30)

For L1 graphons, this bound is quite similar (up to an additional log1/2(n) term) to those
we obtained in (26–27) for the empirical estimators f̃A and f̃

Θ̃λ
. Note that the least cut norm

estimator can not be computed in polynomial time contrary to the empirical graphons associated
to the adjacency matrix and to the singular value hard thresholding estimator. Also, when the true
graphon W0 either belongs to W+

2 or to W+[k], then the rate in (30) is much slower than what has
been obtained in Proposition 4 and Theorem 1.

A Proof methods

In this section, we summarize some basic facts and fundamental results that we use in the proofs.

A.1 Non-symmetric kernels

At some point, we will need to work with non-symmetric kernels and with kernel defined on general
measurable subsets of R . In this section we define the corresponding spaces. Let X and Y denote
two bounded measurable subsets of R. Then, WX ,Y refers to the collection of bounded measurable
functions W : X × Y → [−1, 1]. We will denote by W+

X ,Y the collection of bounded measurable
and non-negative functions W : X × Y → [0, 1]. Let WX ,Y [k] be the collection of k−step kernels,
that is, the subset of kernels W ∈ WX ,Y such that for some Q ∈ R

k×k and some φ1 : X → [k],
φ2 : X → [k],

W (x, y) = Qφ1(x),φ2(y) for all (x, y) ∈ X × Y . (31)

A kernel W is also said to be a q1 × q2-step function when it decomposes as in (31) but where Q

is a size q1 × q2 matrix, φ1 mapping X to [q1], and φ2 mapping Y to [q2]. The cut norm can be
readily extended to kernels W ∈ WX ,Y in the following way:

‖W‖� := sup
X⊂X , Y⊂Y

∣∣∣∣
∫

X×Y
W (x, y)dxdy

∣∣∣∣ (32)

where the supremum is taken over all measurable subsets X and Y .
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A.2 Concentration inequalities

In the proofs we repeatedly use Bernstein’s inequality. We state it here for the readers’ convenience.
Let X1, . . . ,XN be independent zero-mean random variables. Suppose that |Xi| ≤M almost surely,
for all i. Then, for any t > 0,

P

{
N∑

i=1

Xi ≥ t

}
≤ exp

[
− t2

2
∑

i E[X
2
i ] + 2Mt/3

]
. (33)

We shall also rely on the bounded difference inequality (also called Mc Diarmid inequality).

Lemma 1 (Bounded difference inequality). Let X1, . . . ,Xn denote n independent real random
variables. Assume that g : Rn → R is a measurable function satisfying, for some positive constants
(ci)1≤i≤n, the bounded difference condition

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x
′
i, . . . , xn)| ≤ ci ,

for all x = (x1, . . . , xi, . . . , xn) ∈ R
n, x′ = (x1, . . . , x

′
i, . . . , xn) ∈ R

n and all i ∈ [n]. Then, the
random variable Z = g(X1, . . . ,Xn) satisfies

P[Z ≥ E[Z] + t] ≤ exp

[
− 2t2∑n

i=1 c
2
i

]
,

for all t > 0.

A.3 Fano’s lemma

In the sequel, KL(., .) denotes the Kullback-Leibler divergence between two distributions. In this
manuscript, all the proofs of the minimax lower bounds rely on Fano’s method. The following
version of Fano’s lemma is borrowed from [32]:

Lemma 2. [32, Theorem 2.7] Consider a parametric model Pθ, with θ ∈ Θ and a metric d(., .) on
Θ. Assume that Θ contains elements θ1, . . . , θM , M ≥ 3, such that for all j, k ∈ [M ] with j 6= k

(i) d(θj , θk) ≥ s > 0 ,

(ii) KL(Pθj ,Pθk) ≤ log(M)/32 .

Then, we have
inf
θ̂
sup
θ∈Θ

Eθ

[
d(θ̂, θ)

]
≥ Cs ,

where the constant C > 0 is numeric.

A.4 Khintchine’s inequality

Next, we state a particular case of Khintchine’s inequality that turns out to be useful for bounding
the cut norm of step kernels in terms of their l1 norm:

Lemma 3. [30] Let ǫ1, . . . , ǫp be i.i.d. Rademacher random variables and let x1, . . . , xp be some
real numbers. Then,

E

[∣∣∣∣∣

p∑

i=1

ǫixi

∣∣∣∣∣

]
≥ 1√

2

[
p∑

i=1

x2i

]1/2
. (34)
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We use this result to prove the following lower bound on the cut norm of step kernels:

Lemma 4. Let U : X × Y 7→ [−1, 1] denote a measurable q1 × q2–step function. Then,

‖U‖� ≥ 1

4
√
2q2

‖U‖1 . (35)

Proof of Lemma 4. There exist partitions X = X1 ∪ . . .Xq1 and Y = Y1 ∪ . . .Yq2 such that, for any
fixed y ∈ Y, U(x, y) is constant over Xi for all i ∈ [q1] and, for any fixed y ∈ X , U(x, y) is constant
over Yi for all i ∈ [q2]. For any a ∈ [q1] (resp. b ∈ [q2]), denote xa (resp. yb) any element of Xa
(resp. Yb). By definition of ‖U‖�,

‖U‖� = sup
S⊂X ,T⊂Y

∣∣∣
∫

S,T
U(x, y)dxdy

∣∣∣

= sup
S⊂X ,T⊂Y

q1∑

a=1

q2∑

b=1

∣∣∣λ(S ∩ Xa)λ(T ∩ Yb)U(xa, yb)
∣∣∣

= sup
ǫ∈[0,1]q1

sup
ǫ′∈[0,1]q2

∣∣∣
q1∑

a=1

q2∑

b=1

ǫaλ(Xa)ǫ′bλ(Yb)U(xa, yb)
∣∣∣ ,

where we used in the last line that the value of the sum only depends on S and T through the
quantities λ(S ∩ Xa) and λ(T ∩ Yb). Since the maximum of a linear function on a convex set is
achieved at an extremal point, it follows that

‖U‖� = sup
ǫ∈{0,1}q1 , ǫ′∈{0,1}q2

∣∣∣
q1∑

a=1

q2∑

b=1

ǫaλ(Xa)ǫ′bλ(Yb)U(xa, yb)
∣∣∣

≥ 1

4
sup

ǫ∈{−1,1}q1 ,ǫ′∈{−1,1}q2

∣∣∣
∑

a∈[q1],b∈[q2]
ǫaǫ

′
bλ(Xa)λ(Yb)U [xa, yb]

∣∣∣

≥ 1

4
sup

ǫ′∈{−1,1}q2

∑

a∈[q1]
λ(Xa)

∣∣∣∣∣∣
∑

b∈[q2]
ǫ′bλ(Yb)U [xa, yb]

∣∣∣∣∣∣

where we use (8) and take ǫa = sign
∑

b∈[q2] ǫ
′
bλ(Yb)U [xa, yb]. Let v = (v1, . . . , vq2) denote i.i.d.

Rademacher random variables and let Ev[.] denotes the expectation with respect to v. Now, Khint-
chine’s inequality (34) and Cauchy-Schwarz inequality imply

sup
ǫ′∈{−1,1}q2

∑

a∈[q1]
λ(Xa)

∣∣∣
∑

b∈[q2]
ǫbλ(Yb)U [xa, yb]

∣∣∣ ≥ Ev

[ ∑

a∈[q1]
λ(Xa)

∣∣∣
∑

b∈[q2]
vbλ(Yb)U [xa, yb]

∣∣∣
]

≥ 1√
2

∑

a∈[q1]
λ(Xa)


∑

b∈[q2]
λ2(Yb)U2[xa, yb]




1/2

≥ 1√
2q2

∑

a∈[q1]

∑

b∈[q2]
λ(Xa)λ(Yb) |U [xa, yb]|

=
1√
2q2

‖U‖1 .
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B Proof of Proposition 2

Since the diagonals of A and Θ are both zero, it suffices to control the supremum over disjoints
subsets S and T (see, e.g., [8])

‖A−Θ0‖� ≤ 4

n2
max
S∩T=∅

∣∣∣
∑

i∈S,j∈T
(Aij −Θij)

∣∣∣ .

Let S and T be any two disjoint subsets of [n]. Using Bernstein’s inequality (33) we have that

P





∣∣∣∣∣∣
∑

i∈S,j∈T
Aij −Θij

∣∣∣∣∣∣
≥ 3
√

(‖Θ0‖1 + n)n



 ≤ 2 exp

(
− 9 (‖Θ0‖1 + n)n

2‖Θ0‖1 + 2
√

(‖Θ0‖1 + n)n

)

≤ 2 exp

(
−9

4
n

)

Now, using that the number of disjoint pairs (S, T ) is 3n and the union bound, we get that the
probability that |∑i∈S,j∈T Aij − Θij | exceeds 3

√
(‖Θ0‖1 + n)n for some (S, T ) is bounded by

2 exp(−n). Hence, we have

‖A−Θ0‖� ≤ 4 sup
S∩T=∅

1

n2

∣∣∣∣∣∣
∑

(i,j)∈S×T
Aij −Θij

∣∣∣∣∣∣
≤ 12

√
‖Θ0‖1 + n

n3

with probability 1 − 2e−n. Now bounding the distance by 1 in the exceptional case we get the
statement of Proposition 2.

C Proof of Proposition 3

This proof is based on Fano’s method. To apply Fano’s Lemma (Lemma 2), it is enough to check
that there exists a finite subset Ω of T [2, ρn] such that for any two distinct Θ,Θ′ in Ω we have

(a) ‖Θ−Θ′‖� ≥ C
√
ρn

(
1√
n
∧ √

ρn

)
and

(b) KL(PΘ,PΘ
′) ≤ log(|Ω|)/32

for some constants C > 0.
To prove it, we fix some ρn/4 > ǫ > 0. For any u ∈ {−1, 1}n, define Θu by (Θu)i,j =

ρn/2 + u(i)u(j)ǫ where u = (u(1), . . . , u(n)). Obviously, we have

{Θu : u ∈ {−1, 1}n} ⊂ T [2, ρn].

Denote Vu := {i ∈ [n] : u(i) = 1} and V̄u its complementary. Then, if we take S := Vu \ Vv and
T := Vv ∩ Vu, we obtain

∣∣∣
∑

i∈S,j∈T
(Θu −Θv)ij

∣∣∣ = 2ǫ|Vu \ Vv||Vv ∩ Vu |.

By symmetry, we derive that

n2‖Θu −Θv‖� ≥ 2ǫmax{|Vu \ Vv|, |Vv \ Vu|}max{|V̄u ∩ V̄v|, |Vv ∩ Vu|}
≥ ǫ

2
|Vu△Vv|(n− |Vu△Vv|) ,
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where A△B is the symmetric difference of A and B. We can use Varshamov-Gilbert bound (see,
e.g., [32, Lemma 2.9]) to pick u1, . . . , uN satisfying

n

4
≤ |Vui△Vuj | ≤

3n

4
for i 6= j ∈ [N ]

with N ≥ exp(c1n) for some c1 > 0. Let Ω = {Θui : i = 1, . . . , N}, hence we have log |Ω| ≥ c1n
and

‖Θui −Θuj‖� ≥ ǫ/14

which proves (a) when one takes ǫ as defined in (36) below.
To prove (b) we use the definition of Kullback-Leibler divergence KL(PΘu ,PΘv) and log x ≤ x−1

for x > 0 to get

KL(PΘu ,PΘv) =
∑

ij

(Θu)i,j log

(
(Θu)i,j
(Θv)i,j

)
+ (1− (Θu)i,j) log

(
(1−Θu)i,j
1− (Θv)i,j

)

≤
∑

ij

((Θu)i,j − (Θv)i,j)
2

(Θv)i,j (1− (Θv)i,j)
.

Now, (Θv)i,j ≥ ρn/4 and ρn ≤ 1 imply

KL(PΘui
,PΘuj

) ≤ 16

3ρn

∑

ij

((Θu)i,j − (Θv)i,j)
2 ≤ 16n2ǫ2

3ρn
.

Taking

ǫ = c2
√
ρn

(
1√
n
∧ √

ρn

)
(36)

with a suitable constant c2 > 0, we have that

KL(PΘui
,PΘuj

) ≤ log |Ω|/32

which proves (b).

D Proof of Proposition 4

Set E = A−Θ0. We have the following simple proposition (see Theorem 5 in [25])

Proposition 8. If λ ≥ ‖E‖2→2, then

‖Θ̃λ −Θ0‖2→2 ≤ 2λ.

In view of Proposition 8 we need to estimate ‖E‖ with high probability in order to specify the
value of the regularization parameter λ. Let E∗ = (E∗

ij) be such that E∗
ij = Eij for i < j and

E∗
ij = 0 for i ≥ j. Then ‖E‖2→2 ≤ 2‖E∗‖. We can upper bound ‖E∗‖ using the following bound

on the spectral norm of random matrices from [3]:

Proposition 9. Let W be the n×m rectangular matrix whose entries W ij are independent centered
random variables bounded (in absolute value) by some σ∗ > 0. Then, for any 0 < ǫ ≤ 1/2 there
exists a universal constant cǫ such that, for every t ≥ 0

P

{
‖W ‖2→2 ≥ (1 + ǫ)2

√
2(σ1 ∨ σ2) + t

}
≤ (n ∧m) exp

( −t2
cǫσ2∗

)
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where we have defined

σ1 = max
i

√∑

j

E[W 2
ij], σ2 = max

j

√∑

i

E[W 2
ij] .

For E∗, we have σ1 ≤ √
ρnn, σ2 ≤ √

ρnn, and σ∗ ≤ 1. Taking ǫ = 1/2 and t =
√

2cǫ log(n) in
Proposition 9, we obtain that there exists absolute constants c∗ such that

‖E‖2→2 ≤ 2 ‖E∗‖2→2 ≤ 6
√

2ρnn+ 2c∗
√

log(n) , (37)

with probability at least 1−1/n. Since ρn ≥ log(n)/n, we can take λ = c
√
ρnn where c ≥ 12

√
2+4c∗

so that ‖E‖2→2 ≤ λ/2. Then, Proposition 8 implies

‖Θ̃λ −Θ0‖2→2 ≤ C
√
ρnn .

It is easy to see that the cut-norm of a matrix can be bounded by its spectral norm:

‖A‖� ≤ 1

n
‖A‖2→2.

Bound on the cut-norm (15) then follows from

‖Θ̃λ −Θ0‖� ≤ 1

n
‖Θ̃λ −Θ0‖2→2 ≤ C

√
ρn
n
.

In order to prove the Frobenius bound (14), we use the argument from [25]: we can equivalently
write the singular value hard thresholding estimator as the solution to the following optimization
problem:

Θ̃λ ∈ argmin
Θ∈Rn×n

{
‖ A−Θ ‖22 +λ2 rank(Θ)

}

which implies that, with probability larger than 1− 1/n,

‖Θ̃λ −Θ0‖22 ≤ 2
∣∣〈E, Θ̃λ −Θ0〉

∣∣+ λ2 rank(Θ0)− λ2 rank(Θ̃λ)

≤ 2 ‖E‖2→2

∥∥∥Θ̃λ −Θ0

∥∥∥
2

√
rank(Θ̃λ −Θ0) + λ2 rank(Θ0)− λ2 rank(Θ̃λ)

≤ 1

2
‖Θ̃λ −Θ0‖22 + 2λ2 rank(Θ0) ,

where we used in the last line that ‖E‖2→2 ≤ λ/2. Since rank(Θ0) ≤ k, we have proved (14).

E Proof of Theorem 1

Note that both f0 = ρnW0 and f̃Θ0
are proportional to ρn, so without loss of generality we can

assume that ρn = 1. For k ≥ n/2, the result is a straightforward consequence of the second
Sampling Lemma for Graphons of [28] stated in Proposition 1. Given any graphon W0 ∈ W+[k],
one can always divide some of the steps into smaller in such a way that W0 is a 2k–step graphon
whose weights are all less than or equal to 1/k. Thus, we only need to prove the results for all
graphons W0 ∈ W+[k] with 32 ≤ k ≤ n and such that its weights are all smaller or equal to 2/k.

Let Θ′
0 be the matrix with entries (Θ′

0)ij =W (ξi, ξj) for all i, j. As opposed to Θ0, the diagonal
entries of Θ′

0 are not constrained to be null. By the triangle inequality, we have

E

[
δ�

(
f̃Θ0

,W0

)]
≤ E

[
δ�

(
f̃Θ0

, f̃Θ′
0

)]
+ E

[
δ�

(
f̃Θ′

0
,W0

)]
. (38)

18



As the entries of Θ0 coincide with those of Θ′
0 outside the diagonal, the difference f̃Θ0

− f̃Θ′
0
is null

outside of a set of measure 1/n. Since ‖W0‖∞ ≤ 1, E[δ�(f̃Θ0
, f̃Θ′

0
)] ≤ 1/n. Thus, we only need to

prove that

E[δ�(f̃Θ′
0
,W0)] ≤ C

√
k

n log(k)
. (39)

We first need to build two suitable representations of W0 and f̃Θ′
0
in the quotient space W̃+.

Step 1: Construction of a suitable representation W of W0 in W̃+.
In the sequel, we denote q1 := ⌊

√
k⌋. Here, we want to choose W in such a way that a distortion

of W is well approximated in the cut norm by a q1–step kernel. We use the following lemma which
is based on a variation of Szemerédy lemma. Let Q0 ∈ R

k×k
sym and φ0 : [0, 1] → [k] be associated to

W0 as in definition (17).

Lemma 5. There exist a permutation π of [k] and a partition P = (P1, . . . , Pq1) of [k] made of
successive intervals such that the following holds. Let Q be the matrix obtained from Q0 by jointly
applying the permutation π to its rows and its columns. Denote by φ = π ◦φ0, and for a = 1, . . . , k,
λa := λ(φ−1(a)). There are two matrices Q(ap) and Q(ap,+) ∈ [0, 1]k×k that are q1-block-constant
according to the partition P and that satisfy

sup
ǫ∈{0,1}k, ǫ′∈{0,1}k

∣∣∣
k∑

a,b=1

ǫaǫ
′
bλb
√
λa
(
Qab −Q

(ap)
ab

)∣∣∣ ≤ C

√
k

log(k)
, (40)

sup
ǫ∈{0,1}k , ǫ′∈{0,1}k

∣∣∣
k∑

a,b=1

ǫaǫ
′
b

√
λb
√
λa
(
Qab −Q

(ap,+)
ab

)∣∣∣ ≤ C
k√

log(k)
. (41)

Invoking Lemma 5, we consider the graphons

W (x, y) := Qφ(x)φ(y) , W1(x, y) := Q
(ap)
φ(x)φ(y), W+

1 (x, y) := Q
(ap,+)
φ(x)φ(y) . (42)

Obviously, W is weakly isomorphic to W0.

Step 2: Construction of a suitable representation Ŵ of f̃Θ′
0
in the quotient space W̃+.

Recall that ξ1, . . . , ξn are the i.i.d. uniformly distributed random variables in the W -random graph
model (1) and that φ is defined in the previous step. For a = 1, . . . , k, let

λ̂a =
1

n

n∑

i=1

1{ξi∈φ−1(a)}

be the (unobserved) empirical frequency of the group a corresponding to a finer partition of [0, 1]
given by φ. For a = 1, . . . , q1, let

ω̂a =
1

n

n∑

i=1

∑

b∈Pa

1{ξi∈φ−1(b)}

be the (unobserved) empirical frequency of the group a corresponding to a coarser partition P of
[0, 1] given by P ◦ φ.

The relations
∑k

a=1 λa =
∑k

a=1 λ̂a = 1 imply
∑

a:λa>λ̂a

(λa − λ̂a) =
∑

a:λ̂a>λa

(λ̂a − λa) and
∑

a:ωa>ω̂a

(ωa − ω̂a) =
∑

a:ω̂a>ωa

(ω̂a − ωa). (43)

Consider a function ψ : [0, 1] → [k] such that:
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(i) For all a ∈ [k], λ({x, ψ(x) = φ(x) = a}) = λ̂a ∧ λa ,

(ii) for all a ∈ [q1], λ
[
{x , ψ(x) ∈ Pa and φ(x) ∈ Pa}

]
= ωa ∧ ω̂a,

(iii) for all a ∈ [k], λ(ψ−1(a)) = λ̂a.

Such a function ψ exists. First we construct ψ to satisfy (i) and (iii). For each a such that
λa > λ̂a, conditions (i) and (iii) are trivially satisfied if we take ψ−1(a) to be any subset of φ−1(a)
of Lebesgue measure λ̂(a) and there is a subset of φ−1(a) of Lebesgue measures λa − λ̂a left non-
assigned. Summing over all such a, we see that there is a union of subsets with Lebesgue measure
m+ :=

∑
a:λa>λ̂a

(λa − λ̂a) left non-assigned. On the other hand, for a such that λa < λ̂a, we must

have ψ(x) = a for x ∈ φ−1(a) to satisfy (i), while to meet condition (iii) we need additionally to
assign ψ(x) = a for x on a set of Lebesgue measure λ̂a − λa. Summing over all such a, we need
additionally to find a set of Lebesgue measure m− :=

∑
a:λ̂a>λa

(λa− λ̂a) to make such assignments.

But this set is readily available as the union of non-assigned intervals for all a such that λa > λ̂a
since m+ = m− by virtue of (43). To ensure that condition (ii) is satisfied, we assign as a priority
ψ(x) to values belonging to the same partition element as φ(x). Again, (43) ensures that this is
possible.

Finally, define the graphons Ŵ (x, y) = Qψ(x),ψ(y), Ŵ1(x, y) = Q
(ap)
ψ(x),ψ(y), and Ŵ+

1 (x, y) =

Q
(ap,+)
ψ(x),ψ(y) where Q, Q(ap), and Q(ap,+) are as in (42). Notice that in view of (iii) Ŵ is weakly

isomorphic to the empirical graphon f̃Θ′
0
. Let R = {x , φ(x) 6= ψ(x)}. Since W and Ŵ match

on Rc × Rc, the purpose of (i) is to minimize the Lebesgue measure of the support of W − Ŵ .

With properties (i) and (iii) alone, it would be possible to prove that E[‖W − Ŵ‖� ≤ C
√
k/n as

the Lebesgue measure of its support is at most of order
√
k/n. We will improve this rate by a

logarithmic term as (ii) will enforce that the cut norm of W −Ŵ is much smaller than its Lebesgue
measure.

Step 3: Control of the cut norm. Since δ�(·, ·) is a metric on the quotient space W̃+,

δ�(W0, f̃Θ′
0
) ≤

∥∥∥W − Ŵ
∥∥∥
�

= sup
S,T

∣∣∣∣
∫

S×T
(W (x, y)− Ŵ (x, y))dxdy

∣∣∣∣ .

By definition of ψ, the two functions W (x, y) and Ŵ (x, y) are equal except possibly when either x

or y belongs to R. As a consequence of triangular inequality and of the symmetry of W − Ŵ , we
get

∥∥∥W − Ŵ
∥∥∥
�

≤ 2 sup
S⊂R,T⊂Rc

∣∣∣∣
∫

S×T

(
W (x, y)− Ŵ (x, y)

)
dxdy

∣∣∣∣

+ sup
S,T⊂R

∣∣∣∣
∫

S×T

(
W (x, y)− Ŵ (x, y)

)
dxdy

∣∣∣∣

= 2

∥∥∥∥(W − Ŵ )
∣∣∣
R×Rc

∥∥∥∥
�

+

∥∥∥∥(W − Ŵ )
∣∣∣
R×R

∥∥∥∥
�

. (44)

First, we focus on E[‖(W − Ŵ )|R×Rc‖�], the second term being handled similarly at the end of
the proof. For a and b in [k], we write a ∼P b (resp. a ≁P b) when a and b belongs (resp. do not
belong) to the same element of the partition P . Define

R2 := {x, ψ(x) ≁P φ(x)} .
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Obviously, we have R2 ⊂ R. Property (ii) of ψ, implies that λ(R2) =
∑q1

a=1(ωa − ω̂a)+. We shall

rely on the decomposition W =W1+(W −W1) and Ŵ = Ŵ1+(Ŵ − Ŵ1). For any x ∈ R\R2, we

have by definition (42) of W1 that (W1 − Ŵ1)(x, y) = 0. Together with the triangular inequality,
this yields

∥∥∥(W − Ŵ )|R×Rc

∥∥∥
�

≤
∥∥∥∥(W1 − Ŵ1)

∣∣∣
R2×Rc

∥∥∥∥
�

+

∥∥∥∥(W −W1)
∣∣∣
R×Rc

∥∥∥∥
�

+

∥∥∥∥(Ŵ − Ŵ1)
∣∣∣
R×Rc

∥∥∥∥
�

. (45)

To control the first expression in the rhs, we simply bound the cut norm of the difference by its l1
norm

∥∥∥∥(W1 − Ŵ1)
∣∣∣
R2×Rc

∥∥∥∥
�

≤
∥∥∥∥(W1 − Ŵ1)

∣∣∣
R2×Rc

∥∥∥∥
1

≤ λ(R2)
∥∥∥W1 − Ŵ1

∥∥∥
∞

≤ λ(R2) ,

sinceW1 and Ŵ1 take values in [0, 1]. Then, relying on the fact that nω̂a is distributed as a Binomial
random variable with parameters (n, ωa) and on Cauchy-Schwarz inequality, we get E |ωa − ω̂a| ≤√

ωa(1−ωa)
n and

E

[∥∥∥∥(W1 − Ŵ1)
∣∣∣
R2×Rc

∥∥∥∥
�

]
≤ E

[
q1∑

a=1

|ωa − ω̂a|
]

≤
q1∑

a=1

√
ωa(1− ωa)

n
≤
√
q1
n

≤ k1/4√
n
, (46)

where we used again Cauchy-Schwarz in the last line. Let us turn to the second and third expressions
in (45). To this end, we introduce a new kernel function U . For a = 1, . . . , k, define λ̂δa = |λa − λ̂a|
and the functions F

λ̂δ
: [k] →

[
0,
∑

a |λa − λ̂a|
]
and Fφ : [k] 7→ [0, 1] by

Fφ(b) =

b∑

a=1

λa and set Fφ(0) = 0

F
λ̂δ
(b) =

b∑

a=1

λ̂δa and set F
λ̂δ
(0) = 0 . (47)

For any a, b ∈ [k], set Π̂a,b = [F
λ̂δ
(a − 1), F

λ̂δ
(a)) × [Fφ(b − 1), Fφ(b)) and let U be a k × k step

kernel on [0,
∑

a |λ̂a − λa|]× [0, 1] defined by

U(x, y) :=

k∑

a,b=1

[
Qab −Q

(ap)
ab

]
1Π̂a,b

(x, y).

By definition of R and of the function ψ, we have that for any a ∈ [k], λ(φ−1(a))∩R) = (λa− λ̂)+
and λ(ψ−1(a)) ∩Rc) = λa ∧ λ̂. As a consequence, the restriction of (W −W1) to R×Rc is, up to
a measure preserving bijection of its rows and of its columns, equal to the restriction of U to the
set (∪

a: λa>λ̂a
[F
λ̂δ
(a− 1), F

λ̂δ
(a))) × (∪a[Fφ(a− 1), Fφ(a− 1) + λ̂a ∧ λa). This entails that

∥∥∥∥(W −W1)
∣∣∣
R×Rc

∥∥∥∥
�

≤ ‖U‖
�
. (48)
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On the other hand, for any (x, y) ∈ R×Rc,

(Ŵ − Ŵ1)(x, y) = Qψ(x)ψ(y) −Q
(ap)
ψ(x)ψ(y) = Qψ(x)φ(y) −Q

(ap)
ψ(x)φ(y)

by the definition of R. In view of the definition of ψ, for any a ∈ [k] we have λ(φ−1(a)) ∩ R) =

(λ̂−λa)+. As a consequence, the restriction of (Ŵ − Ŵ1) to R×Rc is, up to a measure preserving
bijection of its rows and of its columns, equal to the restriction of U to the set (∪

a: λa<λ̂a
[F
λ̂δ
(a−

1), F
λ̂δ
(a))) × (∪a[Fφ(a− 1), Fφ(a− 1) + λ̂a ∧ λa). This implies that ‖(Ŵ − Ŵ1)|R×Rc‖� ≤ ‖U‖�.

Thus, we only have to control E[‖U‖�].

Step 4: Control of E[‖U‖�]. Define the sets B1 :=
∏k
a=1[0, |λ̂a − λa|] and B2 :=

∏k
a=1 [0, |λa|].

Then, the cut norm of U writes as

‖U‖� ≤ sup
γ∈B1,γ′∈B2

∣∣∣∣∣∣

k∑

a,b=1

γaγ
′
b

(
Qab −Q

(ap)
ab

)
∣∣∣∣∣∣

≤ sup
S,T∈[k]

∣∣∣∣∣∣
∑

a∈S,b∈T
λb|λ̂a − λa|

(
Qab −Q

(ap)
ab

)
∣∣∣∣∣∣
, (49)

since the supremum of a linear function on a convex set is achieved at an extremal point. The
random variable |λ̂a − λa| is in expectation of the order

√
λa/n. If we could replace each |λ̂a − λa|

by
√
λa/n in (49), then thanks to (40), we could prove that ‖U‖� is (up to a multiplicative constant)

less than
√
k/(n log(k)). Unfortunately, if we directly applied Bernstein inequality or the bounded

difference inequality to simultaneously control |λ̂a−λa| over all a ∈ [k] or to simultaneously control∑
a∈S,b∈T λb|λ̂a − λa|(Qab −Q

(ap)
ab ) over all S, T ⊂ [k], we would lose at least a logarithmic factor.

To bypass this issue, we adapt Lemma 10.9 of [28], which is a key point in the proof of sampling
Lemma for graphons (Lemma 10.5 in [28]). Given a bounded non-symmetric kernel W ∈ WX ,Y , let
us define the following one-side version of the cut norm:

‖W‖+
�
= sup

X⊂X , Y⊂Y

∫

X×Y
W (x, y)dxdy ,

where we take the supremum without any absolute value. As a consequence, the cut norm ‖W‖�
is the maximum ‖W‖+

�
and ‖ −W‖+

�
.

Lemma 6. Let W ∈ W[0,u],[0,v][k] and let Q ∈ R
k×k, φ1 : [0, u] → [k] and φ2 : [0, v] → [k] be

associated to W as in (31). For a = 1, . . . , k, define αa := λ(φ−1
1 ({a})) and βa := λ(φ−1

2 ({a})).
Given any subset R ⊂ [k], let

Rl,W :=
{
b,
∑

a∈R
αaQab > 0

}
, Rr,W :=

{
a,
∑

b∈R
βbQab > 0

}
. (50)

Finally, we define for any S, T ⊂ [k], W [S, T ] :=
∑

a∈S,b∈T αaβbQab . Then, for any integer q with
1 ≤ q ≤ k, we have

‖W‖+
�
≤ max

Ri⊂[k],|Ri|≤q
W
[
Rr,W2 , Rl,W1

]
+
u
√
k
∑k

a=1 β
2
a + v

√
k
∑k

a=1 α
2
a√

q
. (51)
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Note that in contrast to Equation (49) where one considers a supremum of 22k sums, only k2q

terms are involved in (51) up to the price of an additive term of order q−1/2. The difficulty is that
we will apply this lemma to U for which these k2q will turn out to be random.

In the sequel, we fix q = ⌊
√
k⌋ and apply Lemma 6 to U . Then, we can take u = v = 1.

Since
∑k

a=1 λa = 1 and since we assumed at the beginning of the proof that the weights λa are

all smaller than 2/k, it follows that (k
∑k

a=1 λ
2
a)

1/2 ≤
√
2. Let M and N denote the random

variables M :=
∑k

a=1 |λ̂a − λa| and N :=
(∑k

a=1 k|λ̂a − λa|2
)1/2

. Both M and N are functions

of the independent random variables (ξ1, . . . , ξn). Besides, if we change the values of one of these
ξ′i the value of M changes by at most 2/n and the value of N changes by at most

√
2k/n. As a

consequence, we may apply the bounded difference inequality (Lemma (1)) to these two random
variables. Then, with probability larger than 1− 2 exp(−

√
k/ log(k)), one has

k∑

a=1

∣∣∣λ̂a − λa

∣∣∣ ≤ E

[
k∑

a=1

|λ̂a − λa|
]
+

√
2k1/2

n log(k)
≤ C

√
k

n
, (52)

(
k

k∑

a=1

|λ̂a − λa|2
)1/2

≤ E



(
k

k∑

a=1

|λ̂a − λa|2
)1/2


+

√
2k3/2

n log(k)
≤ Ck1/4

√
k

n log(k)
. (53)

In (52) - (53) we bound the expectation using that, since ξ1, . . . , ξn are i.i.d. uniformly distributed
random variables, nλ̂a has a binomial distribution with parameters (n, λa) and the Cauchy-Schwarz
inequality:

E

[
k∑

a=1

|λ̂a − λa|
]
≤

k∑

a=1

√
λa(1− λa)

n
≤
√
k

n
and

E



(
k

k∑

a=1

|λ̂a − λa|2
)1/2


 ≤

√√√√k
k∑

a=1

λa(1− λa)

n
≤
√
k

n
.

Bound (53) and (k
∑k

a=1 λ
2
a)

1/2 ≤
√
2, implies that for U , with probability larger than 1 −

2 exp(−
√
k/ log(k)), √

k
∑k

a=1 β
2
a +

√
k
∑k

a=1 α
2
a

k1/4
≤ C

√
k

n log(k)
. (54)

Fix any two subsets R1, R2 ⊂ [k] of size less than or equal to q. In view of (51), one needs to
control the following random variable

ZR1,R2
:= U

[
Rr,U2 , Rl,U1

]
=

∑

a∈Rr,U
2

∣∣∣λ̂a − λa

∣∣∣
∑

b∈Rl,U
1

λb(Qab −Qad
ab ) . (55)

It is done in the following Lemma:

Lemma 7. Let R1, R2 be two subsets of [k] of size less than or equal to q and ZR1,R2
given by (55).

Then, we have that with probability larger than 1− (1 + 2k) exp(−
√
k/ log(k)),

max
R1,R2 : |R1|≤q|R2|≤q

ZR1,R2
≤ C

√
k

n log(k)
.
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Now, it follows from Lemma 6 together with (54) and Lemma 7 that, with probability larger
than 1− (3 + 2k) exp(−

√
k/ log(k)),

‖U‖+
�
≤ C

√
k

n log(k)
.

Controlling analogously ‖ − U‖+
�
, we conclude that there exists an event A of probability larger

than 1− 10 exp(−
√
k/ log(k)) such that, on A,

‖U‖� ≤ C

√
k

n log(k)
.

To finish the control of E[‖U‖�], we use the rough bound ‖U‖� ≤ ‖U‖1 ≤ ∑k
a=1 |λ̂a − λa| on the

complementary event Ā.

E[‖U‖�] ≤ E [‖U‖�1A] + E [‖U‖�1Ā]

≤ C

√
k

n log(k)
+
√

P
(
Ā
)

E
(

k∑

a=1

|λ̂a − λa|
)2


1/2

≤ C

√
k

n log(k)
+ C ′e−

√
k/(2 log(k)) k√

n
≤ C ′′

√
k

n log(k)
(56)

where we use (52). Now, using the decomposition (45), (46) and (48), we can conclude that

E

[∥∥∥(W − Ŵ )|R×Rc

∥∥∥
�

]
≤ C

√
k

n log(k)
.

The following lemma gives a corresponding bound on the second term
∥∥∥(W − Ŵ )

∣∣∣
R×R

‖� in

(44). The proof is somewhat analogous to that of the control of
∥∥∥(W − Ŵ )|R×Rc

∥∥∥
�

and is differed

to the end of the section.

Lemma 8. We have

E

[∥∥∥(W − Ŵ )|R×R
∥∥∥
�

]
≤ C

√
k

n log(k)
.

In view of (44), we have proved Theorem 1.

Proof of Lemma 5. For a ∈ [k], we denote (λ0)a = λ(φ−1
0 (a)) and ua =

√
(λ0)a∑

b

√
(λ0)b

. For any

b ∈ [k], define the cumulative distribution functions F0(b) =
∑b

a=1(λ0)a and F1(b) =
∑b

a=1 ua. For
a, b ∈ [k], let (Πd)ab = [F0(a − 1), F0(a)) × [F1(b − 1), F1(b)) and (Π+

d )ab = [F1(a − 1), F1(a)) ×
[F1(b− 1), F1(b)). Finally we consider the (non necessarily symmetric) kernels Wd and W

+
d defined

by

Wd(x, y) =

k∑

a=1

k∑

b=1

(Q0)ab1(Πd)ab(x, y) , W+
d (x, y) =

k∑

a=1

k∑

b=1

(Q0)ab1(Π+

d
)ab

(x, y) .

In comparison to W0, the length of the steps in Wd and W+
d has been modified.
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Lemma 9. Let W ∈ W[0,1],[0,1] be a k-step kernel defined by

W (x, y) =

k∑

a=1

k∑

b=1

Qab1Sa×Tb(x, y)

where Q ∈ [0, 1]k×k and (S1, . . . , Sk) and (T1, . . . , Tk) are two partitions of [0, 1] into a finite number
of measurable sets. For any integer q0 ≥ 2, there exist a q0–step kernel W (ap) ∈ W+

[0,1],[0,1] satisfying

(i) for any (a, b) ∈ [k], W (ap) is constant on Sa × Tb and

(ii)
∥∥W −W (ap)

∥∥
�
≤ C√

log(q0)
.

The second property (ii) is just the consequence of the weak Regularity Lemma for kernels [19]
(see also Corollary 9.13 in [28]). The first property, (i), follows from the explicit construction of
the approximate kernel by Kannan and Frieze (see the proof of Lemma 9.10 in [28]). For the sake
of completeness, we give the details in the end of this section.

Fix q0 = ⌊k1/4⌋. Note that q0 ≥ 2 since we assume that k ≥ 16. We denote by W
(ap)
d and

W
(ap,+)
d the q0–step kernels given by Lemma 9 to respectively approximate Wd andW

(+)
d . In virtue

of Property (i), there exist two matrices Q
(ap)
0 and Q

(ap,+)
0 in [0, 1]k×k such that

W
(ap)
d (x, y) =

k∑

a=1

k∑

b=1

(Q
(ap)
0 )ab1(Πd)ab(x, y) and W

(ap,+)
d (x, y) =

k∑

a=1

k∑

b=1

(Q
(ap,+)
0 )ab1(Π+

d )ab
(x, y) .

There exist two partitions Pd and P+
d of [k] such that Q

(ap)
0 is block constant according to Pd and

Q
(ap,+)
0 is block constant according to P+

d . Let P∗ be the coarsest partition that refines both P and
P+
d . As a consequence, P∗ is made of less than q20 ≤ q1 subsets. By possibly refining P∗, we may

assume without loss of generality that P∗ = (P ∗
1 , . . . , P

∗
q1) is made of exactly q1 elements. Let π

be a permutation of [k] transforming P∗ in a partition P = (P1, . . . , Pq1) with Pa = {π(b), b ∈ P ∗
a }

made of consecutive intervals. Denoting Π the corresponding permutation matrix, we finally take

Q = ΠTQ0Π, Q(ap) = ΠTQ
(ap)
0 Π, and Q(ap,+) = ΠTQ

(ap,+)
0 Π .

Now we are ready to prove (40) and (41). Recall that we denote φ = π ◦φ0 and λa := λ(φ−1(a)) for

a ∈ [k]. Define the sets B1 :=
∏k
a=1[0, uπ(a)] and B2 :=

∏k
a=1[0, λa]. Since Wd −W

(ap)
d is a k–step

function, its cut norm writes as

‖Wd −W
(ap)
d ‖� = sup

γ∈B1γ∈B2

∣∣∣∣∣∣
∑

a,b

γaγb

(
Qab −Q

(ap)
ab

)
∣∣∣∣∣∣

(57)

= sup
ǫ∈{0,1}k , ǫ′∈{0,1}k

∣∣∣∣∣∣
∑

a,b

ǫaǫ
′
bλbuπ(a)

(
Qab −Q

(ap)
ab

)
∣∣∣∣∣∣
≤ C√

log(q0)
(58)

since the supremum is achieved at an extremal point of the convex and in the last inequality we
use property (ii) of Lemma 9. Now (57) and the definition of uπ(a) imply

sup
ǫ∈{0,1}k , ǫ′∈{0,1}k

∣∣∣∣∣∣
∑

a,b

ǫaǫ
′
bλb
√
λa

(
Qab −Q

(ap)
ab

)
∣∣∣∣∣∣
≤ C

∑
b∈[k]

√
λb√

log(q0)
≤ C ′

√
k

log(k)
,

by Cauchy-Schwarz inequality. We have proved (40). The second inequality (41) is derived similarly.
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Proof of Lemma 9. We adapt the proof of the weak Regularity Lemma for symmetric kernels
[28, Lemma 9.9] to non symmetric ones. We use the following extension of Lemma 9.11(a) in [28].

Lemma 10. For every W ∈ W[0,1],[0,1][k] such that

W (x, y) =
k∑

a=1

k∑

b=1

Qab1Sa×Tb(x, y)

where Q ∈ R
k×k and P = {(S1, . . . , Sk) , (T1, . . . , Tk)} are two partitions of [0, 1] into a finite

number of measurable sets, there are two sets A,B ⊂ [k] and a real number 0 ≤ a ≤ maxa,b |Qab|
such that, for S′ = ∪a∈ASa and T ′ = ∪b∈BTb,

‖W − a1S′×T ′‖22 ≤ ‖W‖22 − ‖W‖2� .

Now we apply Lemma 10 repeatedly, to get pairs of sets S′
i, T

′
i and real numbers ai such that

for any positive integer j, Wj =W −∑j
i=1 ai1S′

i×T ′
i
we have

‖Wj‖22 ≤ ‖W‖22 −
j−1∑

i=1

‖Wi‖2�.

Fix some integer k0 > 0. Since the right-hand side of the above equation remains non-negative,
there exists 0 ≤ i < k0 with ‖Wi‖2� ≤ 1/k0. Now putting al = 0 for l > i we get that for any
W ∈ W[0,1],[0,1][k] and any k0 ≥ 1 there are k0 pairs of subsets S′

i, T
′
i ⊂ [0, 1] and k0 real numbers

ai such that ∥∥∥∥∥W −
k0∑

i=1

ai1S′
i×T ′

i

∥∥∥∥∥
�

<
1√
k0
. (59)

Note that the approximation W ap =
∑k0

i=1 ai1S′
i×T ′

i
is a step function with at most 2k0 steps and

ai ≥ O, for all i. On the other hand, by construction we have that for any (a, b) ∈ [k], W (ap) is
constant on all sets of the form Sa × Tb. We conclude by taking k0 = ⌊log(q0)/ log(2)⌋.

Proof of Lemma 10. This lemma is proved in [28, Lemma 9.11] for symmetric kernels. For read-
ers convenience we get the details here. Let W be a k–step kernel and let (S1, . . . , Sk) , (T1, . . . , Tk)
be two measurable partitions of [0, 1] such that W is constant on each set Si × Tj. Relying on a
convexity argument as in the proof of Lemma 5, the cut norm is achieved for measurable sets S
and T that are unions of Si and Tj respectively, that is

‖W‖� =

∣∣∣∣
∫

S×T
W (x, y)dxdy

∣∣∣∣ ,

where S = ∪a∈ASa and T = ∪b∈BTb with A, B ⊂ [k]. Let a = 1
λ(S)λ(T )‖W‖�. Then, we have

‖W − a1S×T‖22 = ‖W‖22 −
1

λ(S)λ(T )
‖W‖2

�
≤ ‖W‖22 − ‖W‖2

�

which completes the proof.

Proof of Lemma 6. This proof follows closely that of Lemma 10.9 in [28]. It is easy to see that

‖W‖+
�
= max

S,T⊂[k]
W [S, T ]
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so we only need to bound these expressions. Let Q and Q′ be independent uniformly chosen q-
subset of [k] and let EQ (resp. EQ′) denote the expectation with respect to Q (resp. Q′). We shall
prove that, for any S, T ⊂ [k]

W [S, T ] ≤ EQ

[
W [(Q ∩ T )r,W , T ]

]
+
u
√
k
∑k

a=1 β
2
a√

q
. (60)

By symmetry, this will imply

W [S, T ] ≤ EQ′

[
W [S, (Q′ ∩ S)l,W ]

]
+
v
√
k
∑k

a=1 α
2
a√

q
,

so that gathering both inequalities yields to

W [S, T ] ≤ EQ,Q′

[
W [(Q ∩ T )r,W , (Q′ ∩ (Q ∩ T )r,W )l,W ]

]
+
u
√
k
∑k

a=1 β
2
a + v

√
k
∑k

a=1 α
2
a√

q
.

Since the above expectation is less than or equal to supRi, |Ri|≤qW
[
Rr,W2 , Rl,W1

]
, this will conclude

the proof. Thus, we only have to show (60). Note that W [S, T ] ≤ W [T r,W , T ] implies that it
suffices to prove

EQ

[
W [T r,W \ (Q ∩ T )r,W , T ]

]
− EQ

[
W [(Q ∩ T )r,W \ T r,W , T ]

]
≤
u
√
k
∑k

a=1 β
2
a√

q
. (61)

Let us denote Z the above difference of expectations. For any a ∈ [k], write Ba =
∑

b∈T βbQab and
Aa =

∑
b∈T∩Q βbQab. By the definition (50), we have that Ba is non-negative for a ∈ T r,W and

Ba ≤ 0 if a 6∈ T r,W . In the same way, Aa > 0 for a ∈ (Q ∩ T )r,W and Aa ≤ 0 for a /∈ (Q ∩ T )r,W .
Denoting PQ the probability with respect to Q, we obtain

Z = EQ


 ∑

a∈T r,W

1{a/∈(Q∩T )r,W }αaBa +
∑

a/∈T r,W

1{a∈(Q∩T )r,W }αa|Ba|




=
∑

a∈T r,W

PQ[Aa ≤ 0]αaBa +
∑

a/∈T r,W

PQ[Aa > 0]αa|Ba|.
(62)

Now, using EQ[Aa] = qBa/k, it follows from the Chebyshev inequality that, for a ∈ T r,W , we
have PQ[Aa < 0] ≤ VarQ[Aa]/E

2
Q[Aa]. Since a probability is smaller or equal to one, it follows

that PQ[Aa < 0] ≤
√

VarQ[Aa]/|EQ[Aa]|. Similarly, for a /∈ T r,W we also have that PQ[Aa > 0] ≤√
VarQ[Aa]/|EQ[Aa]|. Coming back to Z, this yields

Z ≤
∑

a∈[k]
αa|Ba|

Var
1/2
Q [Aa]

|EQ[Aa]|
=
k

q

∑

a∈[k]
αaVar

1/2
Q [Aa] ≤

ku

q
max
a∈[k]

Var
1/2
Q [Aa] .

Working out the variance, we get VarQ[Aa] ≤ q
k

∑
b∈T β

2
bQ

2
ab ≤ q(

∑
b∈[k] β

2
b )/k, which concludes

the proof.
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Proof of Lemma 7. Note that in (55), the definition of ZR1,R2
, the set Rr,U2 is deterministic whereas

the set Rl,U1 only depends on (λ̂a)a∈R1
. We can upper bound ZR1,R2

in the following way:

ZR1,R2
≤

∑

a∈Rr,U
2

\R1

∣∣∣λ̂a − λa

∣∣∣
∑

b∈Rl,U
1

λb

(
Qab −Qad

ab

)
+
∑

a∈R1

∣∣∣λ̂a − λa

∣∣∣ (63)

where we use
∣∣∑

b λb(Qab −Qad
ab )
∣∣ ≤ 1. We set

TR1,R2
=

∑

a∈Rr,U
2

\R1

∣∣∣λ̂a − λa

∣∣∣
∑

b∈Rl,U
1

λb

(
Qab −Qad

ab

)
.

Conditionally to (λ̂a)a∈R1
, TR1,R2

is distributed as a function of n − n
∑

a∈R1
λ̂a i.i.d. random

variables ξ′i such that P[ξ′ = a] = λa/(1−
∑

a∈R1
λa) for any a ∈ [k] \R1. Besides, if we change the

values of one of these ξ′i the value of this expression changes by at most 2/n. It then follows from
the bounded difference inequality (Lemma (1)) that, for any t > 0

P

{
TR1,R2

≥ E

[
TR1,R2

|(λ̂a)a∈R1

]
+

√
2t

n

∣∣∣(λ̂a)a∈R1

}
≥ 1− e−t. (64)

Let us bound this conditional expectation:

E

[
TR1,R2

|(λ̂a)a∈R1

]
=

∑

a∈Rr,U
2

\R1

E

[∣∣∣λ̂a − λa

∣∣∣
∣∣(λ̂c)c∈R1

] ∑

b∈Rl,U
1

λb

(
Qab −Qad

ab

)

≤ sup
S⊂[k]\R1,T⊂[k]

∑

a∈S,b∈T
E

[∣∣∣λ̂a − λa

∣∣∣
∣∣(λ̂c)c∈R1

]
λb(Qab −Qad

ab ) . (65)

Now, using Cauchy-Schwarz inequality, we have

E

[∣∣∣λ̂a − λa

∣∣∣
∣∣(λ̂c)c∈R1

]
≤
√

λa

n
(
1−∑b∈R1

λb
) ≤

√
λa

n (1− 2q/k)
≤ 2

√
λa
n
,

where we used that λb ≤ 2/k, |R1| ≤ q ≤ k1/2 and k ≥ 8. The supremum in (65) is achieved
for subsets (S∗, T ∗) such that for all a ∈ S∗,

∑
b∈T ∗ λb(Qab − Qad

ab ) is non-negative (otherwise
this contradicts the optimality of S∗, T ∗). As a consequence, we can plug the upper bounds on

E

[∣∣∣λ̂a − λa|
∣∣∣ (λ̂c)c∈R1

]
into (65):

E

[
TR1,R2

|(λ̂a)a∈R1

]
≤ 2√

n
sup

S⊂[k]\R1,T⊂[k]

∑

a∈S,b∈T

√
λaλb(Qab −Qad

ab) ≤ C

√
k

n log(k)
,

where we used the property (40) of Qad. Coming back to (64) and integrating the deviation
inequality with respect to (λ̂a)a∈R1

, we conclude that, for any t > 0

P

[
TR1,R2

≥ C

√
k

n log(k)
+

√
2t

n

]
≥ 1− e−t.

Fixing t = 2 log(k)q +
√
k/ log(k) and taking an union bound over all possible R1, R2, we derive

that

max
R1,R2 ,|R1|≤q|R2|≤q

ZR1,R2
≤ C

√
k

n log(k)
+ q max

a=1,...k

∣∣∣λ̂a − λa

∣∣∣ (66)
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on an event of probability higher than 1− exp(−
√
k/ log(k)).

Next we bound maxa=1,...k |λ̂a−λa|. Recall that nλ̂a has a binomial distribution with parameters

(n, λa) and λa ≤ 2/k. For any a ∈ [k], applying Bernstein inequality to |λ̂a − λa| we get

P

{
n|λ̂a − λa| ≥ t

}
≤ 2 exp

(
− t2

4n/k + 2t/3

)
.

Taking t = C
√
n/ log(k) (for a suitable constant C > 0) and applying the union bound, we derive

that with probability larger than 1− 2k exp(−
√
k/ log(k))

√
k max
a=1,...k

|λ̂a − λa| ≤ C
√
k/(n log(k)). (67)

The bound (66) together with (67) imply the statement of Lemma 7.

Proof of Lemma 8. As the control of (W − Ŵ )|R×R is quite similar to that of (W − Ŵ )|R×Rc , we
only sketch the main steps. Relying on the graphon W+

1 (defined in (42)), we have the following
decomposition:

‖(W − Ŵ )|R×R‖� ≤ ‖(W+
1 − Ŵ+

1 )
∣∣
R×R‖� + ‖(W −W+

1 )
∣∣
R×R‖� + ‖(Ŵ − Ŵ+

1 )
∣∣
R×R‖�. (68)

Since (W+
1 − Ŵ+

1 )(x, y) is zero except if x ∈ R2 or y ∈ R2, we bound the first expression by its l1
norm as for W1 − Ŵ1:

E
[
‖(W+

1 − Ŵ+
1 )
∣∣
R×R‖�

]
≤ 2E[λ(R2)] ≤ 2

k1/4√
n
. (69)

The two last expressions in (68) are bounded by the cut norm of a kernel V defined as follows.
For any a, b ∈ [k], define Π̃a,b = [F

λ̂δ
(a − 1), F

λ̂δ
(a)) × [F

λ̂δ
(b − 1), F

λ̂δ
(b)) where F

λ̂δ
(.) has been

defined in (47). Let V be the k × k step kernel on
[
0,
∑

a |λ̂a − λa|
]2

given by

V (x, y) :=

k∑

a,b=1

[
Qab −Q

(ap,+)
ab

]
1
Π̃a,b

(x, y).

Now, as for the restrictions of W −W1 and Ŵ − Ŵ1 to R×Rc, we have

∥∥∥(W −W+
1 )
∣∣
R×R

∥∥∥
�

∨∥∥∥(Ŵ − Ŵ+
1 )
∣∣
R×R

∥∥∥
�

≤ ‖V ‖� . (70)

Thus, it boils down to controlling E [‖V ‖�]. Since V is a k–step kernel, its cut norm writes as

‖V ‖� = sup
S,T⊂[k]

∣∣∣
∑

a∈S, b∈T
|λ̂a − λa||λ̂a − λa|

(
Qab −Q

(ap,+)
ab

)∣∣∣.

As for the kernel U in the main proof, we rely on the Lemma 6. The random variables
∑

a |λ̂a−λa|
and (

∑
a |λ̂a − λa|2)1/2 are controlled as in (52) and (53).

Fix any two subsets R1, R2 ⊂ [k] of size less than or equal to q and define

ZR1,R2
:= V [Rr,V2 , Rl,V1 ] =

∑

a∈Rr,V
2

∑

b∈Rl,V
1

|λ̂a − λa||λ̂b − λb|(Qab −Q
ad,+
ab ) .
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The set Rl,V1 only depends on (λ̂a)a∈R1
and Rr,V2 only depends on (λ̂a)a∈R2

. We have

ZR1,R2
≤

∑

a∈Rr,V
2

\(R1∪R2)

∑

b∈Rl,V
1

\(R1∪R2)

|λ̂a − λa||λ̂b − λb|(Qab −Q
ad,+
ab ) + 4

∑

a∈R1∪R2

|λ̂a − λa| ,

since
∑

a∈[k] |λ̂a − λa| ≤ 2. We set

TR1,R2
=

∑

a∈Rr,V
2

\(R1∪R2)

∑

b∈Rl,V
1

\(R1∪R2)

|λ̂a − λa||λ̂b − λb|(Qab −Q
ad,+
ab ).

Write R := R1 ∪ R2 and λ̂{R} := (λ̂a)a∈R. Conditionally to λ̂{R}, TR1,R2
is a function of n −

n
∑

a∈R λ̂a independent random variables. Besides, if we change the values of one of these indepen-
dent random variables the value of TR1,R2

changes by at most 4/n. Hence, the bounded difference
inequality enforces that, for any t > 0,

P

[
TR1,R2

≥ E[TR1,R2
|λ̂{R}] + 8

√
2t

n

∣∣∣λ̂{R}
]
≥ 1− e−t. (71)

The conditional expectation is upper bounded by

E[TR1,R2
|λ̂{R}] ≤ sup

S⊂[k]\R,T⊂[k]\R

∑

a∈S,b∈T
E
[
|λ̂a − λa||λ̂b − λb|

∣∣λ̂{R}
]
(Qab −Q

ad,+
ab ) . (72)

Here, unfortunately, we cannot directly replace E
[
|λ̂a − λa||λ̂b − λb|

∣∣λ̂{R}
]
by an upper bound of

it because this expression does not factorize. We shall prove that E
[
|λ̂a − λa||λ̂b − λb|

∣∣λ̂{R}
]
is, up

to a small loss, close to a product of expectations.
Write N := n − n

∑
c∈R λ̂c, λR :=

∑
c∈R λc and λ̂R =

∑
c∈R λ̂c. Note that nλ̂R has a binomial

distribution with parameters (n, λR). Applying Bernstein inequality to |λ̂R − λR| we get

P

{
n|λ̂R − λR| ≥ t

}
≤ 2 exp

(
− t2

4n/
√
k + 2t/3

)
. (73)

Let R =

{
|λ̂R − λR| ≤ 1√

n log(k)

}
. Taking t =

√
n/ log(k) in (73) we have that

P(R) ≥ 1− 2e−
√
k/ log(k).

In what follows we assume that the event R is true. Take any two distinct elements a and b of

[k]\R. We shall prove that the conditional expectations E
[∣∣∣λ̂a − λa

∣∣∣
∣∣∣λ̂b − λb

∣∣∣
∣∣∣λ̂{R}

]
are close to the

products E
[∣∣∣λ̂a − λa

∣∣∣
∣∣∣λ̂{R}

]
E

[∣∣∣λ̂b − λb

∣∣∣
∣∣∣λ̂{R}

]
. It is easy to see that conditionally on (λ̂{R}, λ̂a),

nλ̂b follows the Binomial distribution with parameters ((N −nλ̂a), λb/(1−λR−λa)). On the other
hand, conditionally on λ̂{R}, nλ̂b follows the Binomial distribution with parameters (N,λb/(1−λR)).
Let z1, z2, . . . , be a sequence of independent Bernoulli random variables with parameters λb/(1 −
λa − λR), w1, w2 . . . , be an independent sequence of Bernoulli random variables with parameters
(1 − λa − λR)/(1 − λR) and v1, v2, . . . , be an independent sequence of Bernoulli random variables
with parameters λb/(1 − λR). We define the following random variables:

X :=

N−nλ̂a∑

i=1

zi , Y :=

N−nλ̂a∑

i=1

ziwi +

nλ̂a∑

i=1

vi
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where we use λc ≤ 2/k and |R| ≤ 2
√
k. It is easy to see that X follows the Binomial distribution

with parameters (N − nλ̂a) and λb/(1 − λR − λa) and Y follows the Binomial distribution with
parameters N and λb/(1 − λR). Hence, we have that

∣∣∣E
[
|λ̂a−λa||λ̂b−λb|

∣∣λ̂{R}
]
−E

[
|λ̂a−λa|λ̂{R}]E[|λ̂b−λb|

∣∣λ̂{R}
]∣∣∣ ≤ 1

n
E

[
|X−Y ||λ̂a−λa|

∣∣∣λ̂{R}
]
. (74)

Relying our coupling between X and Y , we obtain

1

n
E

[
|X − Y |

∣∣∣λ̂{R}, λ̂a
]

≤ 1

n
E



N−nλ̂a∑

i=1

zi(1− ωi)
∣∣∣λ̂{R}, λ̂a


+

1

n
E



nλ̂a∑

i=1

vi

∣∣∣λ̂{R}, λ̂a




=
N − nλ̂a

n

λbλa
(1− λR)(1 − λa − λR)

+ λ̂a
λb

1− λR

≤ λbλa
(1− λR)(1− λa − λR)

+
λ̂aλb
1− λR

. (75)

On the other hand, conditionally on λ̂{R}, nλ̂a follows the Binomial distribution with parameters
(N,λa/(1 − λR)) so that Cauchy-Schwarz inequality implies

E

[∣∣∣λ̂a − λa

∣∣∣
∣∣∣λ̂{R}

]
= E

[∣∣∣∣λ̂a −
Nλa

(1− λR)n
+

Nλa
(1− λR)n

− λa

∣∣∣∣
∣∣∣λ̂{R}

]

≤ E

[∣∣∣∣λ̂a −
Nλa

(1− λR)n

∣∣∣∣
∣∣∣λ̂{R}

]
+

∣∣∣∣
Nλa

(1− λR)n
− λa

∣∣∣∣

≤ C
√
λa/n+ λa

∣∣∣λR − λ̂R

∣∣∣

≤ C
√
λa/n+

4√
kn log(k)

(76)

where we use that λa ≤ 2/k and the definition of the event R. Similarly we compute

E

[
λ̂a

∣∣∣λ̂a − λa

∣∣∣
∣∣∣λ̂{R}

]
≤ C

(
1

kn
+

1

k
√
kn

)
(77)

Plugging (75 – 77) into (74) we get

∣∣∣E
[
|λ̂a − λa||λ̂b − λb|

∣∣λ̂{R}
]
− E

[
|λ̂a − λa|

∣∣λ̂{R}]E[|λ̂b − λb|
∣∣λ̂{R}

]∣∣∣

≤ E

[
λbλa

(1− λR)(1− λa − λR)
|λ̂a − λa|

∣∣∣λ̂{R}
]
+ E

[
λ̂a

λb
1− λR

|λ̂a − λa|
∣∣∣λ̂{R}

]

≤ C

[
1

k5/2n1/2
+

1

nk2

]
,

where we use λb, λa ≤ 2/k. For a = b, (76) implies that the above difference is of order (kn)−1.
Going back to (72), we obtain that

E

[
TR1,R2

|λ̂{R}
]
≤ sup

S⊂[k]\R,T⊂[k]\R

∑

a∈S,b∈T
E
[
|λ̂a − λa|

∣∣λ̂{R}
]
E
[
|λ̂b − λb|

∣∣λ̂{R}
]
(Qab −Q

ad,+
ab ) +

C√
n
.
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Take S∗ and T ∗ being two sets maximizing the above expression. Then, for all a ∈ S∗ we have that∑
b∈T ∗ E

[
|λ̂b − λb|

∣∣λ̂R
]
(Qab −Q

ad,+
ab ) is non-negative. As a consequence, using (76), we have that

E

[
TR1,R2

|λ̂{R}
]
≤ C sup

S⊂[k]\R,T⊂[k]\R

∑

a∈S,b∈T

(√
λa
n

+
4√

kn log(k)

)
E

[
|λ̂b − λb|

∣∣λ̂{R}
]
(Qab−Q

ad,+
ab )+

C ′
√
n
,

as soon as the event R holds. The same reasoning and |Qab −Q
ad,+
ab | ≤ 2 leads to

E

[
TR1,R2

|λ̂{R}
]

≤ C sup
S⊂[k]\R,T⊂[k]\R

∑

a∈S,b∈T

√
λbλa
n

(
Qab −Q

ad,+
ab

)
+ C ′′

(
k

n
√
log(k)

+
1√
n

)

≤ C

√
k

n log(k)
,

as soon as the event R holds. Going back to (71) and integrating the deviation inequality with
respect to λ̂{R}, we conclude that

P

[
TR1,R2

≥ C

√
k

n log(k)
+ 8

√
2t

n

]
≥ 1− e−t − P[R] ≥ 1− e−t − 2e−

√
k/ log(k)

where we use P(R) ≥ 1 − 2e−
√
k/ log(k). From this point the proof is identical to that of the main

proof: we fix t = 2 log(k)q +
√
k/ log(k) and take an union bound over all possible R1 and R2 to

derive that

max
R1,R2:|R1|≤q,|R2|≤q

ZR1,R2
≤ C

√
k

n log(k)
+ 4q max

a=1,...,k
|λ̂a − λa|

on an event of probability higher than 1−3 exp(−
√
k/ log(k)). Then, as in the main proof, Lemma

6 together with (54) and (67) enforce that ‖V ‖+
�
≤ C

√
K/(n log(k)) with probability larger than

1 − (5 + 2k) exp(−
√
k/ log(k)). By symmetry, we can find an event A of probability larger than

1− (10 + 4k) exp(−
√
k/ log(k)) such that, on A,

‖V ‖� ≤ C

√
k

n log(k)
.

In order to control E[‖V ‖�] on the complementary event Ā we use the rough bound

‖V ‖� ≤ ‖V ‖1 ≤
k∑

a,b=1

|λ̂a − λa||λ̂b − λa| ≤ 2

k∑

a=1

|λ̂a − λa|

which implies

E[‖V ‖�] ≤ E[‖V ‖�1A] + E[‖V ‖�1Ā]

≤ C

√
k

n log(k)
+ 2P1/2

[
Ā
]

E
(

k∑

a=1

|λ̂a − λa|
)2


1/2

≤ C

√
k

n log(k)
+ C ′e−

√
k/(2 log(k)) k√

n
≤ C ′′

√
k

n log(k)
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where we use (52). Together with the decomposition (68), (69) and (70), we conclude that

E

[∥∥∥(W − Ŵ )|R×R
∥∥∥
�

]
≤ C

√
k

n log(k)
.

F Proof of Theorem 2

It is enough to prove separately the following two minimax lower bounds:

inf
f̂

sup
W0∈W+[k]

EW0
[δ�(f̂ , ρnW0)] ≥ Cρn

√
k

n log(k)
, (78)

inf
f̂

sup
W0∈W+[2]

EW0
[δ�(f̂ , ρnW0)] ≥ C

(√
ρn
n

∧ ρn
)
. (79)

The proof of (79) is identical to the proof of (45) in [26] so we just sketch the main idea. Fix some
0 < ǫ ≤ 1/4. We consider W1 to be the constant graphon with W1(x, y) ≡ 1/2, and W2 ∈ W+[2] to
be the 2–step graphon with W2(x, y) = 1/2 + ǫ if x, y ∈ [0, 1/2)2 ∪ [1/2, 1]2 and W2(x, y) = 1/2− ǫ
elsewhere. Obviously, we have δ�[ρnW1, ρnW2] = ρnǫ. Then, standard testing arguments [32]
ensure that the minimax risk inf

f̂
supW0∈W+[2] EW0

[δ�(f̂ , ρnW0)] is at least of the order ρnǫ when

ǫ is chosen small enough so that the χ2-distance χ2(PW2
,PW1

) is smaller than 1/4. According to
Lemma 4.9 in [26], this is the case when ǫ is small in front of (ρnn)

−1/2 which proves (79).

Henceforth, we only focus on (78). We first consider the case of k multiple of 32 and such that
k ≥ C0 and k ≤ C1n for some sufficiently large numerical constants C0 and C1. As the collections
W+[k] are nested this will imply (78) for all k ∈ [32C0, n]. Afterwards, it will suffice to show (78)
for k = 2 to prove the proposition. So, we assume that k is a multiple of 32, k is large enough and
that k is small in front of n. Define k1 := k/2, Mk := ⌈128 log(k)⌉, η0 := 1/16 and η1 := 7/8.

As for Proposition 3, we will rely on Fano’s method (Lemma 2). Hence, we shall build a
collection (Wu) of graphons that are well-spaced in cut distance and such that the Kullback-
Leibler divergence between the associated distribution PWu remains small enough. All the graphons
considered in this collection will be based on a k1 ×Mk matrix B such that (i) the rows of B are
almost orthogonal and (ii) such that the l1 distance between permutation and convex combinations
of the columns of B are bounded from below.

Lemma 11. For k large enough, there exists a matrix B ∈ {−1, 1}k1×Mk satisfying the following
two properties:

(i) For any (a, b) ∈ [k1] with a 6= b, the inner product of two columns 〈Ba,·,Bb,·〉 satisfies
|〈Ba,·,Bb,·〉| ≤Mk/4. (80)

(ii) For any two subsets X and Y of [k1] satisfying |X| = |Y | = η0k1 and X∩Y = ∅, any labellings
π1 : [η0k1] → X and π2 : [η0k1] → Y , any subset Z of [Mk] of size larger than η1Mk and any
Z ×Mk stochastic matrix ω, we have

η0k1∑

a=1

∑

b∈Z

∣∣Bπ1(a),b −
∑

c∈[Mk]

ωb,cBπ2(a),c

∣∣ ≥ CMkk1, (81)

for some universal constant C > 0.
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1/(2Mk)

1/k ± ǫ

Qa,b

Figure 1: Restriction of Wu to [0, 1/2] × [1/2, 1].

Taking B as in Lemma 11, we define the connection probability matrix Q := (J +B)/2 where
J is the k1 ×Mk matrix with all entries equal to 1.

Fix some ǫ < 1/(8k1) and denote by C0 the collection of vectors u ∈ {−ǫ, ǫ}k1 satisfying∑k1
a=1 ua = 0. For any u ∈ C0, define the cumulative distribution Fu on {0, . . . , k1} by the relations

Fu(0) = 0 and Fu(a) = a/(2k1) +
∑a

b=1 ub for a ∈ [k1] and the cumulative distribution G on
{0, . . . ,Mk} by G(0) = 1/2 and G(b) = 1/2 + b/(2Mk). Note that Fu take values in [0, 1/2] and
G takes values in [1/2, 1]. Then, set Πab(u) = [Fu(a − 1), Fu(a)) × [G(b − 1), G(b)) and define the
graphon Wu ∈ W+[k1 +Mk] by

Wu(x, y) =





∑
(a,b)∈[k1]×[Mk]

Qab1Πab(u)(x, y) if x ∈ [0, 1/2] and y ∈ (1/2, 1]

Wu(y, x) if x ∈ (1/2, 1] and y ∈ [0, 1/2]
1/2 else .

See Figure (1) for a drawing of Wu. Note that Wu is a fairly unbalanced (k1 +Mk)–step graphon:
Mk of its steps have a large weight of order 1/ log(k). Besides, the k1 smaller steps are slightly
unbalanced as the weight of each class is either 1/k − ǫ or 1/k + ǫ. The purpose of these Mk big
steps is to make the cut distances between Wu and Wv the largest possible.

Next, we shall consider a subcollection C of C0 such that the graphons Wu with u ∈ C are well
spaced. The following combinatorial result is in the spirit of the Varshamov-Gilbert lemma [32,
Lemma 2.9]. It is borrowed from [26] (Lemma 4.4). For u ∈ C0, let Au := {a ∈ [k1] : ua = ǫ}.
Notice that, by definition of C0, we have |Au| = k1/2 for all u ∈ C0.

Lemma 12. There exists a subset C of C0 such that log |C| ≥ k1/16 and

|Au∆Av| > k1/4 . (82)

for any u 6= v ∈ C.

Lemmas 11 and 12 are used to obtain the following lower bound on the distance δ�(Wu,Wv)
between two distinct graphons with u and v in C. This lemma is the main ingredient of the proof.
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Lemma 13. There exists two positive universal constants C1 and C2 such that if kǫ ≤ C2 then,
for any (u, v) ∈ C with u 6= v, we have

δ�
(
Wu,Wv

)
≥ C1

kǫ√
Mk

(83)

which implies

δ�(ρnWu, ρnWv) ≥ C1ρn
kǫ√
Mk

. (84)

Note that for any u and v in C it is possible to build a measure-preserving transformation τ
such that Wu −W τ

v is null expect on a measurable set of Lebesgue measure of order kǫ (see the
proof of Theorem 1 in Section E for such construction). Hence, the l1 norm of Wu−W τ

v is of order
kǫ. Lemma 13 states, that by taking the infimum over all τ and by considering the weaker norm

‖.‖�, one still has a lower bound of the same order. The M
−1/2
k factor arises as a consequence of

Lemma 4. See the proof for more details.

To apply Fano’s method, we need to upper bound the Kullback-Leibler divergence between the
distribution corresponding to any two graphon Wu and Wv with u and v in C. Let PWu denote
the distribution of A sampled according to the sparse W -random graph model (1) with W0 =Wu.
Since the matrix Q is fixed the difficulty in distinguishing between the distributions PWu and PWv

for u 6= v comes from the randomness of the design points ξ1, . . . , ξn in the W -random graph model
(1) rather than from the randomness of the realization of the adjacency matrix A conditionally
on ξ1, . . . , ξn. The following lemma gives an upper bound on the Kullback-Leibler divergences
KL(PWu ,PWv):

Lemma 14. For all u, v ∈ C0 we have

KL(PWu ,PWv) ≤ 32nk21ǫ
2/3.

Now, choose ǫ such that ǫ2 = 3
(16)3nk1

. When k is small in front of n, this choice of ǫ satisfies

the conditions of Lemma 13. Then it follows from Lemmas 12 and 14 that

KL(PWu ,PWv) ≤
1

16
log |C|, ∀ u, v ∈ C : u 6= v. (85)

In view Fano’s Lemma (Lemma 2), inequalities (84) and (85) imply that

inf
f̂

sup
W0∈W+[k]

EW0
[δ�(f̂ , ρnW0)] ≥ Cρn

√
k

n log(k)

where C > 0 is an absolute constant. This completes the proof for k large enough.

Now we turn to the case k = 2. We reduce the lower bound to the problem of testing two

hypotheses. Consider the matrix B =

(
1 1
1 −1

)
. Given u ∈ {−ǫ,+ǫ} define Fu(0) = 0, Fu(1) =

1/2 + u and Fu(2) = 1. Then, we set Πab(u) = [Fu(a − 1), Fu(a)) × [Fu(b − 1), Fu(b)) for any
a, b ∈ {1, 2} and define graphons

Wu(x, y) :=
2∑

a,b=1

(Bab + 1)

2
1Πab(u)(x, y).
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For any measure preserving bijection τ , (Wǫ−W τ
−ǫ) is a four-step graphon. Thanks to Lemma 4, we

deduce that δ�(Wǫ,W−ǫ) ≥ Cδ1(Wǫ,W−ǫ). Then, it is not hard to see that δ1(Wǫ,W−ǫ) ≥ C ′ǫ so
that δ�(ρnWǫ, ρnW−ǫ) ≥ C ′ρnǫ. Moreover, exactly as in Lemma 14, the Kullback-Leibler divergence
between PWǫ and PW−ǫ is bounded by Cnǫ2. Taking ǫ of the order n−1/2, this divergence is small.
It is therefore impossible to reliably distinguish PWǫ from PW−ǫ and the estimation error is at least
of order ρnǫ. More formally, we use Theorem 2.2 from [32] to conclude that

inf
f̂

sup
W0∈W+[2]

EW0
[δ�(f̂ , ρnW0)] ≥ Cρn

√
1

n

where C > 0 is an absolute constant.

Proof of Lemma 11. LetB be a k1×Mk randommatrix whose entries are independent Rademacher
variables. We shall prove that, with positive probability, B satisfies both (80) and (81).

Fix a 6= b. Then, 〈Ba,·,Bb,·〉 is distributed as a sum of k1 independent Rademacher variables.
Using Hoeffding’s inequality, we have that

P [|〈Ba,·,Bb,·〉| ≥Mk/4] ≤ 2 exp[−Mk/32].

By the union bound, property (80) is satisfied for all a 6= b with probability greater than 1 −
k21 exp[−Mk/32]. SinceMk ≥ 128 log(k), for k greater than some absolute constant, this probability
is greater than 3/4.

Turning to (81), we first fix X, Y , Z, π1, π2, and ω. Let

TX,Y,Z,π1,π2,ω :=

η0k1∑

a=1

∑

b∈Z

∣∣Bπ1(a),b −
∑

c∈[Mk]

ωb,cBπ2(a),c

∣∣.

We have that, conditionally on (Bb,c)b∈Y,c∈[Mk], TX,Y,Z,π1,π2,ω stochastically dominates a binomial
distribution with parameters (η0k1)× |Z| and 1/2. Then, Hoeffding’s inequality yields

P {TX,Y,Z,π1,π2,ω ≤ η0k1|Z|/4} ≤ 2 exp(−η0η1k1Mk/8).

Given any integer Z ∈ [η1Mk,Mk], define ΩZ the collection of Z × [Mk] stochastic matrices taking
values in the discrete set {0, 1/(8Mk), 2/(8Mk), . . . , 1}. Since X,Y ⊂ [k1] and Z ⊂Mk, it is easy to
see that the cardinality of the set of all possible tuples (X,Y,Z, π1, π2, ω) with ω ∈ ΩZ is bounded
by

22k1+Mk ((η0k1)!)
2 (8Mk + 1)M

2
k .

Now, taking the union bound, we derive that, simultaneously for all such parameters,

TX,Y,Z,π1,π2,ω > η0k1|Z|/4

with probability greater than 1−22k1+Mk+1(η0k1)!
2(8Mk+1)M

2
k exp[−η0η1k1Mk/8]. Using Stirling’s

approximation
and η1Mk ≥ 64 log(k) we get that this probability is larger than 3/4 for k large enough.
Finally, let us consider a general case, when matrix ω does not necessarily belong to ΩZ . Observe

that in this case, there exists a matrix ω′ ∈ ΩZ such that maxb∈Z
∑

c∈[Mk]
|ωb,c − ω′

b,c| ≤ 1/8. This
implies that

TX,Y,Z,π1,π2,ω ≥ TX,Y,Z,π1,π2,ω′ − |Y ||Z|
8

≥ η0η1k1Mk/8 .

We have proved that (81) holds with probability larger than 3/4. As a consequence, B satisfies
both (80) and (81) with probability larger than 1/2.
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Proof of Lemma 13. We fix u and v, two different vectors in C, and fix τ , a measure-preserving
bijection on [0, 1] → [0, 1]. We shall prove that for kǫ small enough

‖Wu −W τ
v ‖� ≥ C

kǫ√
Mk

. (86)

Since δ�
(
Wu,Wv

)
= infτ ‖Wu(., .) −Wv(τ., τ.)‖� both (83) and (84) straightforwardly follow from

(86). We denote

B11 := τ−1 ([0, 1/2]) ∩ [0, 1/2), B12 := τ−1 ([0, 1/2]) ∩ (1/2, 1],

B21 := τ−1 ((1/2, 1]) ∩ [0, 1/2], B22 := τ−1 ((1/2, 1]) ∩ (1/2, 1]. (87)

Since τ is measure-preserving, we have

λ(B11) = λ(B22) = 1/2− λ(B12) = 1/2 − λ(B21). (88)

Now, we consider three cases (i) λ(B12) ≤ k1ǫ/64, (ii) k1ǫ/64 < λ(B12) ≤ 1/2 − k1ǫ/64 and (iii)
λ(B12) > 1/2−k1ǫ/64. In the Case (i) we shall focus on the restriction of Wu and W τ

v on B11×B22

so that these restrictions are k1 ×Mk–step functions. In the Case (ii), we focus on restrictions to
B21 × B22, so that W τ

v is constant on this restriction. In the pathological case (iii), we introduce
a subset such that the restriction of Wu is a Mk × k1–step function and the restriction of W τ

v is a
k1 ×Mk–step function.

Case (i). We focus our attention on coordinates (x, y) in B11 × B22. Recall that the cumulative
distribution function G is defined by G(0) = 1/2 and G(b) = 1/2 + b/(2Mk) for b ∈ [Mk]. For any
(r, s) ∈ [Mk]

2, define

ωr,s := λ
{
[G(r − 1), G(r)) ∩ τ−1 ([G(s − 1), G(s)))

}
.

By definition of ωr,s, for any r ∈ [Mk], we have

ωr• :=
∑

s∈[Mk]

ωr,s ≤ 1/(2Mk) and
∑

r,s

ωr,s = λ(B22).

LetR denote the sets of r ∈ [Mk] such that [G(r−1), G(r)) has a large intersection with τ−1([1/2, 0]:

R := {r ∈ [Mk] s.t. ωr• ≥ 3/(7Mk)} and Y := ∪r∈R[G(r − 1), G(r))
⋂

B22. (89)

Denote R̄ the complementary set of R. We have that λ(B22) = 1/2 − λ(B12) ≥ 1/2 − k1ǫ/64 ≥ 27
56

for k1ǫ small enough. Hence, it follows that

27

56
≤
∑

r,s

ωr,s =
∑

r∈[Mk]

ωr• =
∑

r∈R
ωr• +

∑

r∈R̄
ωr• (90)

which implies that |R| ≥ 3Mk/4 and λ(Y) =∑r∈R ωr• ≥ 9/28.

Now, denoting X := B11, we define a new kernel W
τ
v : X × Y → [0, 1] by

W
τ
v(x, y) :=

∑

r∈R
1{y∈[G(r−1),G(r))}

1

λ
{
[G(r − 1), G(r)) ∩ Y

}
∫

[G(r−1),G(r))∩Y
Wv(τ(x), τ(z))dz

=

k1∑

a=1

∑

r∈R
1{y∈[G(r−1),G(r))}1{τ(x)∈[Fv(a−1),Fv(a))}

∑

s∈[Mk]

ωr,s
ωr•

(1 +Bas)

2
. (91)
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We can view W
τ
v as a smoothed version of the restriction of W τ

v to X ×Y. The marginal functions
W

τ
v(x, .) are step functions with at most |R| ≤Mk steps of the form [G(r−1), G(r))∩B22. Moreover,

on each interval [G(r − 1), G(r)) ∩ B22, W
τ
v(x, y) is equal to the mean of W τ

v (x, z) for z ranging
on this set. Equipped with this notation, we can control the cut distance between Wu and W τ

v in
terms of the l1 distance between the restriction of Wu to X × Y and W

τ
v . For ease of notation, we

still write Wu for for the restriction of Wu to X × Y when there is no ambiguity.

The following lemma provides a lower bound of the cut norm ‖Wu −W τ
v ‖� in terms of the l1

norm of ‖Wu −W
τ
v‖1.

Lemma 15. For any u, v in C and any measure-preserving transformation τ , we have

‖Wu −W τ
v ‖� ≥ 1

4
√
2Mk

‖Wu −W
τ
v‖1 , (92)

where W
τ
v is defined in (91).

In view of Lemma 15 it is enough to control the l1 norm ‖Wu−W τ
v‖1. We can do it in a similar

way as it is done in the proof of Lemma 4.5 in [26]. For a 6= b and any x ∈ [Fu(a− 1), Fu(a)) ∩ X
and x′ ∈ [Fu(b− 1), Fu(b)) ∩ X , the inner product between Wu(x, .) and Wv(x

′, .) satisfies

∣∣∣∣
∫

Y
(Wu(x, y)− 1/2)(Wv(x

′, y)− 1/2)dy

∣∣∣∣

≤
∣∣∣∣∣

∫

[1/2,1]
(Wu(x, y)− 1/2)(Wv(x

′, y)− 1/2)dy

∣∣∣∣∣ +
1

4
λ
{
[1/2, 1] \ Y

}

≤ 1

8Mk

∣∣∣∣∣

Mk∑

c=1

BacBbc

∣∣∣∣∣+
5

112
≤ 1

32
+

5

112
(93)

where we used (80) in the last line. For any a, b ∈ [k1], let ψab denote the Lebesgue measure of the
set

[Fu(a− 1), Fu(a)) ∩ τ−1([Fv(b− 1), Fv(b))) ∩ X .

Since τ is measure preserving, it follows that
∑

b ψab ≤ 1/(2k1) + ua and
∑

a ψab ≤ 1/(2k1) + vb.
For any y ∈ Y, we set

hu,a(y) :=Wu(Fu(a− 1), y) − 1/2 and kv,b(y) :=W
τ
v(τ

−1(Fv(b− 1)), y) − 1/2 .

Equipped with this notation, we have

∫

X×Y
|Wu(x, y)−W

τ
v(x, y)|dxdy =

k1∑

a=1

k1∑

b=1

ψa,b

∫

Y
|hu,a(y)− kv,b(y)|dy.

Now take any a1 6= a2. By (93), |hu,a(y)| = 1/2 and using the triangle inequality, we derive that

‖hu,a1 − kv,b‖1 + ‖hu,a2 − kv,b‖1 ≥ ‖hu,a1 − hu,a2‖1
≥ ‖hu,a1 − hu,a2‖22
≥ 2

[
1

4
λ(Y)− 1

32
− 5

112

]
≥ 1

112
,
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where we used λ(Y) ≥ 9/28 in the last line. As a consequence, for any b ∈ [k1] there exists at most
one a ∈ [k1] such that ‖hu,a − kv,b‖1 < 1/224. If such index a exists, it is denoted by π(b). Then,
it is possible to extend π as a function from [k1] to [k1]. Since

∑
a,b ψa,b = λ(X ), we get

‖Wu −W
τ
v‖1 ≥ 1

224

k1∑

b=1

∑

a6=π(b)
ψa,b =

1

224

k1∑

b=1

[(
1/(2k1) + vb − ψπ(b),b

)
−
(
1

2
− λ[X ]

)]

=
1

224

k1∑

b=1

[(
1/(2k1) + vb − ψπ(b),b

)
− λ[B1,2]

]

≥ 1

224

k1∑

b=1

[(
1/(2k1) + vb − ψπ(b),b

)
− k1ǫ/64

]
,

since λ[B1,2] ≤ k1ǫ/64. If the sum
∑k1

b=1 1/(2k1) + vb − ψπ(b),b is greater than k1ǫ/32, then (86) is

satisfied. Thus, we can assume in the sequel that
∑k1

b=1 1/(2k1) + vb − ψπ(b),b ≤ k1ǫ/32.
Using that ψa,b ≤ (1/(2k1) + ua) ∧ (1/(2k1) + vb) and that the cardinality of the collection

{b ∈ [k1] : vb > 0} is k1/2 we deduce that the collection {b ∈ [k1] : vb > 0, uπ(b) > 0 and ψπ(b),b ≥
1/(2k1)} has cardinality greater than 7k1/16. Now, Lemma 12 implies that |Au ∩ Av| ≤ 3k1/8
for u 6= v ∈ C. Then, there exist subsets A ⊂ Au and B ⊂ Av of cardinality η0k1 (recall that
η0 = 1/16) such that π(B) = A, A ∩ B = ∅, and ψπ(b),b ≥ 1/(2k1) for all b ∈ B. The condition
ψπ(b),b ≥ 1/(2k1) implies that π is injective on B. Hence,

‖Wu −W
τ
v‖1 ≥

∑

b∈B
ψπ(b),b

∫

Y

∣∣hu,π(b)(y)− kv,b(y)
∣∣ dy

≥ C

k1Mk

∑

b∈B

∑

c∈R

∣∣∣∣∣Qπ(b),c −
∑

d∈[Mk]
ωb,dQb,d

ωb,•

∣∣∣∣∣

=
C ′

k1Mk

∑

b∈B

∑

c∈R

∣∣∣∣∣Bπ(b),c −
∑

d∈[Mk]
ωc,dBb,d

ωc,•

∣∣∣∣∣ ,

where the second inequality follows from ψπ(b),b ≥ 1/(2k1) and the fact that hu,π(b) and kv,b are
step functions with steps larger than 3/(7Mk) (see (89), the definition of R and Y). Finally, we
apply the property (81) of B to conclude that

∫
|Wu(x, y)−W

τ
v(x, y)|dxdy ≥ C ≥ C ′k1ǫ,

which, together with Lemma 15, proves (86).

Case (ii). Now we assume that k1ǫ/64 < λ(B12) < 1/2 − k1ǫ/64. Take X = B21 and Y = B22.
We have that, on X × Y, W τ

v is constant and equals 1/2. Denote U the restriction of Wu − 1/2 to
X ×Y. Then, it follows that ‖Wu−W τ

v ‖� ≥ ‖U‖�. The kernel U is at most k1×Mk step function.
By Lemma 4, we obtain

‖U‖� ≥ 1

4
√
2Mk

‖U‖1 =
1

8
√
2Mk

λ(X )λ(Y) = 1

8
√
2Mk

λ(X )

(
1

2
− λ(X )

)
,

where the last equality follows from (88). Using λ(X ) = λ(B12) and x(1/2−x) ≥ 1/4min (x, (1/2 − x))
we obtain (86).

39



Case (iii). Now we assume that λ(B12) ≥ 1/2 − kǫ/64 and take X = B21 and Y = B12 so that
λ(X ) = λ(B12) ≥ 1/2 − k1ǫ/64. Define the smoothed kernel W

τ
v : X × Y → [0, 1] by

W
τ
v(x, y) :=

Mr∑

a=1

1{y∈[G(a−1),G(a))}
1

λ
{
[G(a− 1), G(a)) ∩ Y

}
∫

[G(a−1),G(a))∩Y
Wv(τ(x), τ(z))dz .

As a consequence, W
τ
v is Mk ×Mk block-constant on subsets of the form

(
τ−1[G(a − 1), G(a)) ∩

X
)
×
(
[G(b− 1), G(b)) ∩ Y

)
. Arguing as in the proof of Lemma 15, we derive that

‖Wu −W τ
v ‖� ≥ 1

4
√
2Mk

‖Wu −W
τ
v‖1 . (94)

For any a such that [Fu(a − 1), Fu(a)) ∩ X 6= ∅ define the function hu,a on Y by hu,a(y) :=
Wu(Fu(a − 1), y) − 1/2. Arguing as in Case (i), we observe that ‖hu,a1 − hu,a2‖1 ≥ 1/112 for any
a1 6= a2. We have that the kernel W

τ
v is a Mk ×Mk step function. Hence, there exists a partition

(Xb)b=1,...,Mk
of X and Mk functions kb(y) such that

(
W

τ
v − 1/2

)
(x, y) =

∑Mk

b=1 1x∈Xb
kb(y). Then,

the triangular inequality ensures that, for any a1 6= a2 and any b ∈ [Mk], we have ‖hu,a1 − kb‖1 +
‖hu,a1 − kb‖1 ≥ ‖hu,a1 − hu,a2‖1 ≥ 1/112. As a consequence, for any b ∈ [Mk] there exists at most
one a, which we will denote by π(b), such that ‖hu,π(b) − kb‖1 ≤ 1/224. Now we compute

∥∥Wu −W
τ
v

∥∥
1

=

Mk∑

b=1

k1∑

a=1

λ(Xb ∩
[
Fu(a− 1), Fu(a)) ∩ X

)
‖hu,a − kb‖1

≥ 1

224

Mk∑

b=1

λ
[
Xb \

[
Fu(π(b) − 1), Fu(π(b))) ∩ X

]]

≥ 1

224

[
λ(X )−

Mk∑

b=1

1

2k1
+ uπ(b)

]

≥ 1

224

[
λ(X )− Mk

2k1
−Mkǫ

]
≥ C ′,

where we used λ(X ) ≥ 1/4, Mk/k ≤ 1/8, and that Mkǫ ≤ kǫ is small enough. Together with (94),
we obtain the desired result (86).

Proof of Lemma 15. We first prove that ‖Wu − W
τ
v‖� ≤ ‖Wu − W τ

v ‖�. Fix any measurable
subset S ⊂ X . Since functions

[
Wu −W

τ
v

]
(x, ·) are constant on each set [G(r − 1), G(r)) ∩ Y, the

supremum supT⊂Y
∣∣∣
∫
S×T Wu(x, y)−W

τ
v(x, y)dxdy

∣∣∣ is achieved by a subset T which is an union of

some of [G(r − 1), G(r)) ∩ Y, that is T = ∪r∈R′⊂R[G(r − 1), G(r)) ∩ Y. For such T , the definition
(91) of W

τ
v implies

∫
S×T W

τ
v(x, y)dxdy =

∫
S×T W

τ
v (x, y)dxdy so that

sup
T⊂Y

∣∣∣∣
∫

S×T
Wu(x, y)−W

τ
v(x, y)dxdy

∣∣∣∣ ≤ sup
T⊂Y

∣∣∣∣
∫

S×T
Wu(x, y)−W τ

v (x, y)dxdy

∣∣∣∣ .

Taking the supremum over all S leads to ‖Wu −W
τ
v‖� ≤ ‖Wu −W τ

v ‖�. By definition of Wu and
W

τ
v we have that U is a k21 ×Mk step function. Then, Lemma 4 allows us to conclude

‖Wu −W τ
v ‖� ≥ 1

4
√
2Mk

‖Wu −W
τ
v‖1 .
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Proof of Lemma 14. The proof of Lemma 14 follows the lines of the proof of of Lemma 4.3 in
[26] and we give it here for completeness. For u ∈ C0, let ζ(u) = (ζ1(u), . . . , ζn(u)) be the vector of
n i.i.d. random variables with the discrete distribution on [k1 +Mk] defined by

P[ζ1(u) = a] =

{
1/(2k1) + ua if a ∈ [k1]
1/(2Mk) if k1 + 1 ≤ a ≤Mk + k1

(95)

Let Θ0 be the n × n symmetric matrix with elements (Θ0)ii = 0 and (Θ0)ij = ρnQζi(u),ζj(u) for
i 6= j. Assume that, conditionally on ζ(u), the adjacency matrix A is sampled according to the
network sequence model with such probability matrix Θ0. Notice that in this case the observations
A′ = (Aij, 1 ≤ j < i ≤ n) have the probability distribution PWu . Using this remark and introducing
the probabilities αa(u) = P[ζ(u) = a] and pAa = P[A′ = A|ζ(u) = a] for a ∈ [k1 +Mk]

n, we can
write the Kullback-Leibler divergence between PWu and PWv in the form

KL(PWu ,PWv) =
∑

A

∑

a

pAaαa(u) log

(∑
a pAaαa(u)∑
a pAaαa(v)

)

where the sums in a are over [k1 + Mk]
n and the sum in A is over all triangular upper halves

of matrices in {0, 1}n×n. Since the function (x, y) 7→ x log(x/y) is convex we can apply Jensen’s
inequality to get

KL(PWu ,PWv) ≤
∑

a

αa(u) log

(
αa(u)

αa(v)

)
= n

∑

a∈[k1+Mk]

P[ζ1(u) = a] log

(
P[ζ1(u) = a]

P[ζ1(v) = a]

)

where the last equality follows from the fact that αa(u) are n-product probabilities. Using (95) we
get

KL(PWu,PWv) ≤ n
∑

a∈[k1]
(1/(2k1) + ua) log

(
1/(2k1) + ua
1/(2k1) + va

)
, (96)

which is equal to n/2 times the Kullback-Leibler divergence between two discrete distribution.
Since the Kullback-Leibler divergence is less than the chi-square divergence we obtain

∑

a∈[k1]
(1/k1 + 2ua) log

(
1/k1 + 2ua
1/k1 + 2va

)
≤
∑

a∈[k1]

4(ua − va)
2

1/k1 + 2va
≤ 64k2ǫ2/3,

where last inequality we use |va| ≤ ǫ ≤ 1/(8k1), and |ua − va| ≤ 2ǫ. Combining this with (96)
proves the lemma.

G Proof of Proposition 6

To prove (23), it is enough to prove separately the following three minimax lower bounds:

inf
f̂

sup
W0∈W+[k]

EW0
[δ1(f̂ , ρnW0)] ≥ Cρn

√
k − 1

n
, (97)

inf
f̂

sup
W0∈W+[k]

EW0
[δ1(f̂ , ρnW0)] ≥ Cmin

(√
ρn
k

n
, ρn

)
, (98)

inf
f̂

sup
W0∈W+[2]

EW0
[δ1(f̂ , ρnW0)] ≥ Cmin

(√
ρn
n
, ρn

)
. (99)
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The proof of (97) follows from the proof of (43) in [26] using the trivial inequality

‖Wu(x, y)−Wv(τ(x), τ(y))‖22 ≤ ‖Wu(x, y)−Wv(τ(x), τ(y))‖1. (100)

The proof of (98) follows the lines of the proof of (44) using that ‖B‖22 = ‖B‖1 for matrices with
entries in {−1, 1}. The proof of (99) is identical to the proof of (45) in [26].

In order to prove the upper bound (24), the proof of Proposition 3.2 in [26] can be easily
modified to get an upper bound on the agnostic error measured in l1-distance:

Lemma 16 (Agnostic error measured in l1-distance). Consider the W -random graph model. For
all integer k ≤ n, W0 ∈ W+[k] and ρn > 0, we have

E

[
δ1(f̃Θ0

, f0)
]
≤ Cρn

√
k

n
.

Now (24) follows from Lemma 16 and (16). Finally, the ρn convergence rate is simply achieved
by the constant estimator f̂ ≡ 0.

H Proof of Proposition 7

For Θ0 generated according to the sparse W -random graph model (25) with graphon W0 ∈ W+
1 ,

integrating (9) with respect to ξ and using ‖W0‖1 = 1, we get

EW0
[‖A−Θ0‖�] ≤ 6

√
ρn
n
.

So, using the triangle inequality (19) it is enough to bound the agnostic error EW0
[δ�(f̃Θ0

, f ′0)]. We
take W ∗ ∈ W+

1 [k, µ] (or W ∗ ∈ W+
2 [k] in the case of L2 graphons) such that

δ1
(
W ∗,W ′

0

)
≤ inf

W∈W+

1
[k,µ]

δ1
(
W,W ′

0

)
(1 + 1/n2) , (101)

or δ2 (W
∗,W ′

0) ≤ infW∈W+

2
[k] δ2 (W,W

′
0) (1 + 1/n2) for L2 graphons. Without lost of generality we

can assume that ρnW
∗(x, y) ≤ 1. Let f∗ = ρnW

∗ and Θ∗ = (Θ∗
ij) be such such that for i 6= j

Θ∗
ij =W ∗[ξi, ξj ] where (ξi) are the same as for Θ0. Triangle inequality implies

EW0

[
δ�

(
f̃Θ0

, f ′0
)]

≤ δ�
(
f ′0, f

∗)+ EW0

[
δ�

(
f∗, f̃Θ∗

)]
+ EW0

[
δ�

(
f̃Θ∗ , f̃Θ0

)]

≤ 2δ1
(
f ′0, f

∗)+ EW*

[
δ�

(
f∗, f̃Θ∗

)]

where we use δ�(f
′
0, f

∗) ≤ δ1(f
′
0, f

∗) and EW0
[δ�(f̃Θ∗ , f̃Θ0

)] ≤ δ1(f
′
0, f

∗) and that f̃Θ∗ is dis-

tributed as under W ∗. Similarly for L2 graphons, we obtain EW0
[δ�(f̃

′
Θ0
, f0)] ≤ 2δ2(f

′
0, f

∗) +

EW*[δ�(f
∗, f̃Θ∗)]. Then, we use the following lemma:

Lemma 17. (i) Consider any W ∗ ∈ W+
1 [k, µ] and ρn ≥ 1/n such that ρnW

∗(x, y) ≤ 1. Then

EW ∗

[
δ�

(
f̃Θ∗ , f∗

)]
≤ C

[
ρn‖W ∗‖1

√
k

µn
+

√
ρn
n

]
.
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(ii) Consider any W ∗ ∈ W+
2 [k] and ρn ≥ 1/n such that ρnW

∗(x, y) ≤ 1. Then,

EW ∗

[
δ�

(
f̃Θ∗ , f∗

)]
≤ C

[
ρn‖W ∗‖2

√
k

n
+

√
ρn
n

]
. (102)

Now (26) follows from (i) of Lemma 17 and ‖W ∗‖1 ≤ ‖W0‖1(2+n−2). The proof of (28) follows
the same lines using (ii) of Lemma 17.

To prove (27) and (29) we only need to prove that EW0

[
‖Θ̃λ −Θ0‖�

]
≤ C

√
ρn/n. Using the

definition of Θ̃λ (13) we compute

EW0

[
‖Θ̃λ −Θ0‖�

]
≤ EW0

[‖A−Θ0‖�] + EW0

[
‖Θ̃λ −A‖�

]

≤ 6

√
ρn
n

+ EW0

[
‖Θ̃λ −A‖2→2

n

]

≤ C

√
ρn
n

,

where we used that ‖B‖� ≤ ‖B‖2→2/n and the definition of Θ̃λ. This completes the proof of
Proposition 7.

Proof of Lemma 17. Consider the matrix Θ′ with entries (Θ′)ij = ρnW
∗(ξi, ξj) for all i, j. As

opposed to Θ∗, the diagonal entries of Θ′ are not constrained to be null. By the triangle inequality,
we get

EW ∗

[
δ�

(
f̃Θ∗ , f∗

)]
≤ EW ∗

[
δ�

(
f̃Θ∗ , f̃Θ′

)]
+ EW ∗

[
δ�

(
f̃Θ′ , f∗

)]
. (103)

Since the entries of Θ∗ coincide with those of Θ′ outside the diagonal, the difference f̃Θ∗ − f̃Θ′ is
null outside of a set of measure 1/n. Also, the entries of Θ′ are smaller than 1. It follows that
E[δ�(f̃Θ∗ , f̃Θ′)] ≤ 1/n ≤

√
ρn/n. Since δ�(f̃Θ′ , f∗) ≤ δ1(f̃Θ′ , f∗), it suffices to prove that

EW ∗[δ1(f̃Θ′ , f∗)] ≤ Cρn‖W ∗‖1

√
k

µn
, for W ∗ ∈ W+

1 [k, µ]

EW ∗[δ1(f̃Θ′ , f∗)] ≤ Cρn‖W ∗‖2
√
k

n
, for W ∗ ∈ W+

2 [k] .

Since W ∗ is a k-step function, we can reorganize f∗ and f̃Θ′ in such a way that these two
graphon are equal on a set of large Lebesgue value. More precisely, we adopt the same approach as
in the proof of Theorem 1 and we only sketch the result here. Let Q ∈ (R+)k×ksym and φ : [0, 1]× [k]
that characterize W ∗. For a = 1, . . . , k, denote λa = λ(φ−1({a})). For any b ∈ [k], define the
cumulative distribution function Fφ(b) =

∑b
a=1 λa and set Fφ(0) = 0. For any (a, b) ∈ [k]×[k] define

Πab(φ) = [Fφ(a − 1), Fφ(a)) × [Fφ(b − 1), Fφ(b)). Define W ′(x, y) =
∑k

a=1

∑k
b=1 Qab1Πab(φ)(x, y).

Obviously, f ′ = ρnW
′ is weakly isomorphic to f∗ = ρnW

∗. Now, let λ̂a = 1
n

∑n
i=1 1{ξi∈φ−1(a)} be

the (unobserved) empirical frequency of group a. Consider a function ψ : [0, 1] → [k] such that:

(i) ψ(x) = a for all a ∈ [k] and x ∈ [Fφ(a− 1), Fφ(a− 1) + λ̂a ∧ λa),

(ii) λ(ψ−1(a)) = λ̂a for all a ∈ [k].
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Such a function ψ exists (for details see the Step 2 of the proof of Theorem 1). Finally define the
graphon f̂ ′(x, y) = Qψ(x),ψ(y). Notice that f̂ ′ is weakly isomorphic to the empirical graphon f̃Θ∗ .
Since δ1(·, ·) is a metric on the quotient space of graphons, we have

δ1(f̃Θ∗ , f∗) = δ1(f̂
′, f ′) ≤ ‖f̂ ′ − f ′‖1 .

The two functions f ′(x, y) and f̂ ′(x, y) are equal except possibly the case when either x or y belongs
to one of the intervals [Fφ(a− 1) + λ̂a ∧ λa, Fφ(a− 1) + λa) for a ∈ [k] and we have

‖f̂ ′ − f ′‖1 = ρn

∥∥∥
k∑

a=1

k∑

b=1

Qab1Πab(φ)(x, y)−
k∑

a=1

k∑

b=1

Qab1Πab(ψ)(x, y)
∥∥∥
1

≤ ρn

k∑

a=1

k∑

b=1

Qabλ (Πab(φ)△Πab(ψ))

≤ ρn

k∑

a=1

k∑

b=1

Qab

{
|λa − λ̂a|λb + |λb − λ̂b|λa + |λa − λ̂a||λb − λ̂b|

}
.

Since ξ1, . . . , ξn are i.i.d. uniformly distributed random variables, nλ̂a has a binomial distribution
with parameters (n, λa). By Cauchy-Schwarz inequality we get E[|λa − λ̂a|] ≤

√
λa(1− λa)/n and

E(|λa − λ̂a||λb − λ̂b|) ≤
√
λaλb/n. Then, we get

EW ∗ ‖f̂ ′ − f ′‖1 ≤
ρn√
n

k∑

a=1

k∑

b=1

Qab

{
√
λaλb +

√
λbλa +

√
λaλb
n

}
.

Now for W ∗ ∈ W+
1 [k, µ] we use λa ≥ µ/k for all a ∈ [k] to get

EW ∗ ‖f̂ ′ − f ′‖1 ≤ Cρn

√
k

µn

k∑

a=1

k∑

b=1

Qabλaλb
(
1 +

√
k

µn

)
= Cρn‖W ∗‖1

√
k

n
,

since we assume that k ≤ µn. For W ∗ ∈ W+
2 [k] we use the Cauchy-Schwarz inequality:

EW ∗ ‖f̂ ′ − f ′‖1 ≤
2ρn√
n

√√√√
k∑

a=1

k∑

b=1

Q2
abλaλb

√√√√
k∑

a=1

k∑

b=1

λb +
ρnk

n

√√√√
k∑

a=1

k∑

b=1

Q2
abλaλb = Cρn‖W ∗‖2

√
k

n
,

since k ≤ n.
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[28] László Lovász. Large networks and graph limits, volume 60 of American Mathematical Society
Colloquium Publications. American Mathematical Society, Providence, RI, 2012.
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