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Abstract—Modeling the development of single-stemmed plants
is classically done by expressing the number of phytomers in
the main axis as a function of the thermal time. In many cases,
a strong inter-individual variability is encountered, that cannot
be straightforwardly associated to any environmental or micro-
environmental factors. We propose a methodological framework
to describe the heterogeneity of individual responses in a popu-
lation by hierarchical or mixed-effect models : some regression
parameters are random variables identically distributed in the
population. The method is illustrated using experimental data
collected on young Acacia erioloba plants, grown in CEREEP
greenhouse, for which two piecewise-linear models of organogene-
sis are identified using Expectation-Maximization (EM) algorithm
and compared according to their adequacy to the data. The E-
step and the M-step of the algorithm are analytic as long as the
dependence is linear with respect to the individual parameters,
i.e. the latent variables of the mixed-effect model. In the general
case, the posterior distribution of the individual parameters
cannot be analytically determined. Monte-Carlo Markov Chains
are generated with Metropolis-Hasting during the E-step to
estimate the distribution. Alternatively, a Laplace approximation
of the posterior distribution appeared to be quite relevant in our
case. Such framework will be adapted to the identification of a
complete FSPM of Acacia growth combining organogenesis and
functioning.

I. INTRODUCTION

The concept of thermal time and its use as time scale to
model plant development has a long history since its first intro-
duction by [1], [2]. It is usually the first and mandatory step for
building a functional-structural plant model (FSPM): relying
on the assumption that organogenesis is mainly monitored by
thermal time [3], it consists, for single-stemmed plants (e.g.
crops or trees in their early stages i.e. before the appearance
of secondary axes), in expressing the number of phytomers
along its main axis as a predefined function of thermal time.

Thermal time (expressed in degree-day) can be defined as:

τ(t) =

∫ t

t0

max(0, T (s)− Tb)ds (1)

where t is the time expressed in days, T (t) is the temperature
in ◦C, t0 is the emergence time of the plant, i.e. the date
at which its first phytomer is observed, and Tb is the base
temperature, below which the organogenesis process stops.

If the function of thermal time is chosen deterministic, plant
organogenesis should be the same from an individual to an-
other, as long as they share the same environmental conditions.
However, in many cases (see Figure 1 for an illustration), a
strong inter-individual variability is encountered, that cannot
be straightforwardly associated to any environmental or micro-
environmental factors. It has nevertheless to be accounted
for in the models and cannot be neglected since it is an
important characteristic that can influence the model behavior
and interpretations. Besides, by integrating random effects
into the model, parametric estimations at population level and
at individual level are intrinsically coupled : the predicted
development of an individual is consistent with the overall
trend of the phenomenon in the population, with individual
characteristics matching the observed population variability.

Heterogeneity was studied in a sugar beet population in [4]
for the organogenesis and in [5] for a full FSPM model. The
approach is based on the identification of non-linear mixed
effect models with the Stochastic Approximation Expectation
Maximization (SAEM) algorithm as proposed by [6]. In such
framework, the parameters of the model describing the in-
dividual behavior, such as phyllochrons, are assumed to be
randomly distributed over the population. In this article, we
follow such a population approach using hierarchical models
for plant development, developing in details each step of the
identification procedure.

The method will be presented using a specific case-study
that will be used all along the paper to illustrate the method
and interpretation of the results. This dataset was collected on
young Acacia erioloba plants, grown in CEREEP greenhouse.
Acacia Erioloba is a key species of savanna ecosystems. In
some areas, it is a dominant component of the tree cover,
providing food (specifically nutritive pods during the dry sea-
son [7]) and shadow to many browser herbivores and possibly
enriching the soil through nitrogen fixation. A noticeable plas-
ticity between individuals was observed in [8] and explained
by the plant adaptability to the multiple constraints it is subject
to: fires, drought, herbivory. The design of mechanistic models
to predict the dynamics of savana tree cover according to
environmental conditions is of prior importance for the man-



agement of the ecosystem resources. A first attempt to capture
the morphological variability induced by browser aggressions
was undertaken for a closely related species, Acacia tortillis,
growing in similar biotopes, using a GreenLab FSPM in [9].
It was able to reproduce some observed architectural patterns
such as the ball-shaped crown resulting from intense grazing
but was lacking proper follow-up of the individual growth
trajectories to be validated, especially for the organogenesis
part. This is why new experiments were conducted, with the
objective of a better understanding of the growth of Acacia
in controlled conditions. The study of organogenesis appears
a first step for the design of a complete GreenLab FSPM, as
architecture monitors biomass allocation.

Section 2 sets the notations of the problem and develops in
details a step of the iterative Expectation-Maximization pro-
cedure ([10]). According to the model formulation, different
versions of the EM algorithm are derived. In section 3, the
method is applied to the identification of different models of
organogenesis.

II. DATA AND HIERARCHICAL MODELS

A. Experimental conditions and observed variability

A large measurement campaign has been carried out since
2013 on Acacia erioloba specimens in the greenhouse of
CEREEP-Ecotron IleDeFrance (http://www.foljuif.ens.fr/) to
analyze the dynamics of development of trees according to
their environmental conditions. Plants were growing in regu-
larly spaced pots, so that the effect of competition for light
resources can be neglected. The study focuses on single axis
plants, which germinated in July 2013. Weekly measurements
of phytomers number, along with daily recordings of the
temperature inside the greenhouse, were gathered in a dataset,
totalling 567 observation points (temperatures, numbers of
phytomers), corresponding to the first five months of devel-
opment of 122 plants. Figure 1 gives a visualization of the
number of phytomers according to the cumulated temperature,
i.e. if germination date of a plant is denoted by t0, then the

associated cumulated temperature at day t is
t∑

s=t0

Ts.

A global pattern can be observed on Figure 1 : the growth
has essentially two stages, characterized by two distinct phyl-
lochrons. Around this overall behavior, important variations of
growth rate can be noticed from one individual to another. A
piecewise linear growth can be a good approximation of the
dynamics, similarly to the model adopted in [4]. The objective
is to design a model that reproduces this overall dynamics and
takes into account this inter-individual variability.

B. Design of two mixed-effect models

For simplicity sake, a non generic definition of mixed-effect
model is given in this section. A general formulation can be
found in [6].

Let y = (yi)1≤i≤N be the experimental observations for all
individuals of the population, i.e. for all i ∈ J1;NK, yi is a
vector in Rni , and for all j ∈ J1;niK, yij is the number of

Figure 1. Number of phytomers along plant main axes with respect to the

cumulated sum of temperature, i.e
n∑
j=1

Tj . To each colored line an individual

is associated.

phytomers of plant i at the observation time tij . ti0 denotes
the observed emergence date of plant i. Let Tb be the base
temperature specific to Acacia erioloba, which is unknown a
priori, its estimation being an interesting aspect of this study.
Then the thermal time associated to the plant i at time tij > ti0
is given by a discretization of equation (1).

τ(tij , Tb) = τij(Tb) =

tij−1∑
s=ti0

max(0, T (s)− Tb) (2)

with the initialization τ(ti0) = 0. In the previous equation,
T (s) is the averaged temperature at day s ∈ Jti0; tijK. A model
of organogenesis can therefore be formulated at the individual
level as follows, for all i ∈ J1;NK and for all j ∈ J1;niK

yij = 1 + f(τij , φ, α) + εij (3)

where f is a function of the thermal time, parameterized by
φ ∈ Rd and α ∈ Rm, and εij ∼

i.i.d.
N (0, σ2) are additive

centered Gaussian noise processes. As the germination date ti0
is the reference date for the thermal time, and as the number
of phytomers in the plant at that date is 1, we must have
f(0, φ, α) = 0.

To model the inter-individual variability, it can be assumed
that for each plant i a parameter vector φi is sampled from a
multivariate normal distribution in the population

φi ∼
i.i.d.
N (φp,Σp) (4)

with (φi)1≤i≤N , the set of individual parameters, or random
effects, ξ = (φp,Σp), the population parameters. α are the



fixed effects, that is to say that these parameters are constant
within the population.

Conditionally to φi, the distribution of the observation
model is given by equation (3)

yij |φi ∼ N (1 + f(τij , φi, α), σ2) (5)

In the following, in order to alleviate the derivations, the
notation ỹij = yij − 1 will be used. For convenience,
the dependence of the model with respect to the thermal
time may be occasionally written implicitly by the notation
fi(φi, α) = (f(τij , φi, α))1≤j≤ni

∈ Rni .
We have chosen two candidate models f to reproduce the

organogenesis dynamics of Acacia. Both of them represent
the organogenesis as a piecewise linear function, following
the guidelines given in [4], but the first model is linear with
respect to the individual parameters, whereas the other one is
non-linear.

a) Model 1 : Linear with respect to the individual pa-
rameters: For simplicity sake, let us first consider the case of
the linear model w.r.t. φ. The model is formulated as follows,
for all i ∈ J1;NK

f(τij , φi, α) = ai(τij−τ0)I{τij > τ0}+bi(τij−τc)I{τij > τc}
(6)

Here, the individual parameter is φi = (ai, bi)
T ∈ R2 are the

phyllochrons associated with the two stages of organogenesis:
the first one delimited between initiation thermal time τ0 and
the thermal time of the change point τc and has a rate ai ; the
second one takes place after τc and has a rate ai + bi.

The full parameter vector for our model is denoted θ and
θ = (φp,Σp, Tb, τ0, τc, σ

2). The constant parameters that are
connected to the notion of thermal time are called the thermal
parameters and are denoted α = (Tb, τ0, τc). To underline
the linear aspect with respect to the individual parameters,
we will use the notation fi(φi, α) = fi(α)φi. A descriptive
model which is linear with respect to the random effects and
non-linear with respect to the fixed effects was studied in the
case of orange tree growth in [11].

b) Model 2 : non-linear mixed effects: The assumptions
of the previous model are relaxed concerning the thermal
times. The equation is the same as in (6), except that here
τ0 and τc are also considered variable in the population and
φi = (ai, bi, τ

i
0, τ

i
c)
T ∈ R4. The full parameter vector is now

θ = (φp,Σp, Tb, σ
2) with φp ∈ R4, and the only fixed effect

parameter being the base temperature α = Tb.

In a frequentist approach, we want to estimate the param-
eters θ by maximizing the likelihood given the observations.
The likelihood is given by:

pθ(ỹ) =

N∏
i=1

∫
Rd

N (φi;φp,Σp)

 ni∏
j=1

N (ỹij ; f(τij , φi, α), σ2)

 dφi

where we denote N (x;µ,Σ) the probability density function
of N (µ,Σ) evaluated at x. The evaluation and/or the maxi-
mization of such likelihood, in the case of both model 1 and
model 2, is analytically intractable. Expectation-Maximization
(EM) algorithms, designed for the estimation in incomplete
data problems, is the intrinsic method to identify hierarchical
models, by generating a sequence (θn) such that (pθn(y)) is
increasing. The next subsection specifies how such algorithm
is applied to the identification of our two models.

III. AN ITERATION OF THE EM ALGORITHM

We recall the principles of the EM algorithm from [10], and
how it can be adapted to different model formulations. Let us
suppose that we have an estimate θn of the parameter θ from
the initialization or from a previous iteration. The observation
log-likelihood associated to individual i `i(θ) = log pθ(ỹi) can
then be decomposed as follows

`i(θ) =

∫
Rd

`i(θ)pθn(φi|ỹi)dφi (7)

=

∫
Rd

log pθ(ỹi, φi)pθn(φi|ỹi)dφi (8)

−
∫
Rd

log pθ(φi|ỹi)pθn(φi|ỹi)dφi (9)

= Qi(θ|θn) + Hi(θ|θn) (10)

where the derivation of the lines (8) and (9) is obtained
by applying Bayes’ rule. The first term (8) is the expected
joint log-likelihood Qi(θ|θn) = Eθn [log pθ(ỹi, φi)|ỹi]. The
second term (9) Hi(θ|θn) = −Eθn [log pθ(φi|ỹi)|yi] is the
cross entropy of the two posterior distributions. Using Jensen
inequality, it can be proved that for all θ, Hi(θ|θn) ≥
Hi(θn|θn). To maximize `i(θ), we are therefore interested in
maximizing the total expected joint likelihood

θn+1 = argmax
θ

N∑
i=1

Qi(θ|θn) = argmax
θ

Q(θ|θn) (11)

A qualitative description of EM can be formulated as
follows : at each iteration of the algorithm, we use our
current estimate θn to generate the latent variables φi, then
we maximize the joint log-likelihood Q(θ|θn).

The next paragraphs specify the expectation and the maxi-
mization steps for models 1 and 2.

A. Expectation step

The objective of this step is to find a close form of Q(θ|θn).
For all i ∈ J1;NK, let φi be a realization of an individual
parameter, then for all θ

log pθ(yi, φi) = log pθ(ỹi|φi) + log pθ(φi)

log pθ(ỹi, φi) = −ni + d

2
log(2π)− ni log(σ)

− ‖ỹi − fi(φi, α)‖2

σ2
− log det(Σp)−

1

2
(φi − φp)TΣ−1

p (φi − φp)



The expectation step therefore requires the evaluation of the
following functions

MSEni (α) = Eθn
[
‖ỹi − fi(φi, α)‖2|ỹi

]
(12)

Dn
i (φp,Σp) = Eθn

[
(φi − φp)TΣ−1

p (φi − φp)|ỹi
]
(13)

a) Model 1: For model 1, thanks to the linearity with
respect to φi, the posterior distribution pθn(φi|yi) can be
analytically derived, giving close form expressions for the
previous functions with respect to θ. Let us derive those
expressions. pθn(φi|yi) is proportional to the following dis-
tribution

pθn(φi|yi) ∝ pθn(yi|φi)pθn(φi) (14)

∝ exp

(
−‖ỹi − fi(α

n)φi‖2

2(σn)2
(15)

− 1

2
(φi − φnp )T (Σnp )−1(φi − φnp )

)
(16)

The previous equation shows that φi|yi is normally distributed,
and its covariance matrix and mean are respectively given by

Σni =

(
(Σnp )−1 +

fi(α
n)T fi(α

n)

(σn)2

)−1

(17)

µni = Σni

(
(Σnp )−1φnp +

fi(α
n)T ỹi

(σn)2

)
(18)

The expectation (13) is therefore

Dn
i (φp,Σp) = Eθn

[
(φi − µni )TΣ−1

p (φi − µni )|ỹi
]

+ (µni − φp)TΣ−1
p (µni − φp)

Dn
i (φp,Σp) = Tr

(
Σ−1
p Σni

)
+ (µni − φp)TΣ−1

p (µni − φp)
(19)

Similarly, for expectation (12)

MSEni (α) = Tr
(
fi(α)T fi(α)Σni

)
+ ‖ỹi − fi(α)µni ‖2 (20)

The expected joint log-likelihood is obtained by combining
all the individual terms

Q(θ|θn) = −M +Nd

2
log(2π)

−M log(σ)− 1

2σ2

N∑
i=1

MSEni (α) (21)

− N

2
log det(Σp)−

1

2

N∑
i=1

Dn
i (φp,Σp)

where the total number of observations is M =
∑N
i=1 ni.

b) Model 2: : The situation in the non-linear case is
more complex since the first and second order moments of
pθn(φi|yi) cannot be derived analytically as in the linear case.
The idea is then to estimate the quantities of interest MSE

and Dn
i by generating samples from the distribution. It is only

known up to a multiplicative constant

pθn(φ|ỹi) ∝ exp

(
−‖ỹi − fi(φi, T

n
b )‖2

2(σn)2

− 1

2
(φi − φnp )T (Σnp )−1(φi − φnp )

)
(22)

pθn(φ|ỹi) ∝ exp(−Jni (φi)) (23)

MCMC techniques, such as Metropolis-Hasting, enables the
generation of a Markov Chain, whose stationary distribution is
the target distribution (22), and the moments of interest can be
computed by the ergodic theorem. A MCMC simulation within
the Expectation step of pθn(φi|ỹi) is therefore adopted here
(for a a more detailed description on MCMC-EM methods,
see [12]).

An adaptative Metropolis-Hasting algorithm, introduced by
[13], is used in this paper. The procedure is described in the
following frame

Algorithm 1 Adaptative Metropolis-Hasting algorithm[14]
Let L be the length of the chain, λ0 > 0, β∗ ∈]0, 1[ and
(γk)k∈N a sequence of learning rates.

for i ∈ J1;NK do
Initialization
find good values for the starting point of the chain φ0

i ,
the initial covariance of the proposal distribution Σ0, and
the initial mean µ0 for covariance update

Iterations
for k ∈ J1;LK do

1. sample a new candidate
z ∼ N (φk−1, λk−1Σk−1)
2. select z with probability

β(φk−1
i , z) = min

(
pθn(z|ỹi)

pθn(φk−1
i |ỹi)

, 1

)
3. select z with probability β : φki = z
or reject it φki = φk−1

i .
4. update the mean
µk = µk−1 + γk(φki − µk−1)
5. update the covariance
Σk = Σk−1 + γk

(
(φki − µk)(φki − µk)T − Σk−1

)
6. Update the scale of the covariance
λk = exp

(
log(λk−1) + γk(β(φk−1

i , z)− β∗)
)

end for
Add the chain (φki ) to the stack

end for
return the stack of all chains (φki )1≤k≤L

1≤i≤N

Efficiency of the MCMC algorithm is sensitive to its ini-
tialization. We propose to choose φ0

i maximizing pθn(φ|ỹi),
which is equivalent to minimizing the quantity:

Jni (φi) =
1

(σn)2
‖ỹi−fi(φi, Tnb )‖2+(φi−φnp )T (Σnp )−1(φi−φnp )

(24)



As the function fi is non-smooth, we have chosen to use the
Nelder-Mead algorithm, embedded in the function optimize
in the Optim package (JULIA language), to compute φ0

i .
At this point, the posterior density has high values, and
the acceptance rate α is likely to be non zero (unless this
maximum is too sharp). Therefore, the generated chain will
potentially not get stuck in an area where the target density
is low. The covariance of the proposal is initialized at the
population covariance, so that the update of the parameter is
adapted to the scale of each component φi.

We use the generated samples (φki )1≤k≤N for the Monte-
Carlo estimation of MSEni and Dn

i for each individual i

MSEni (Tb) ≈
1

L−K + 1

L∑
k=K

‖ỹi − fi(φki , Tb)‖2

Dn
i (φp,Σp) ≈ Tr(Σ−1

p Σ̂ni ) + (µ̂ni − φp)TΣ−1
p (µ̂ni − φp)

where K is a burn-in period, µ̂ni =
1

L−K + 1

L∑
k=K

φki is the

empirical mean and Σ̂ni =
1

L−K + 1

L∑
k=K

(φki − µ̂ni )(φki −

µ̂ni )T is the empirical covariance. Injecting those expressions
in 21, we obtain the joint-likelihood of the expectation step.

c) Alternative E-step for Model 2: An alternative to
MCMC simulation of the posterior distribution appears when
considering its shape. As it is shown in the Results section,
pθn(φ|ỹi) are unimodal distributions, very sharp around their
respective modes. Such situation motivated [15] and [16] to
approximate the target by a multivariate Gaussian, either by
a linearization in the neighborhood of the fixed effects, either
by using the Laplace approximation.

The qualitative principle of such approximation is as fol-
lows: near the argmax of pθn(φi|yi) (that is to say near
the argmin of Jni ), denoted by µni , the distribution can be
approximated by the second order development

Jni (φi) = Jni (µni ) +
1

2
(φi − µni )T∂2

φi
Jni (µni )(φi − µni ) (25)

as the gradient is zero, leading to

pθn(φi|ỹi) ∝ exp

(
1

2
(φi − µni )T∂2

φi
Jni (µni )(φi − µni )

)
(26)

If φ̄i is an isolated maximum, the hessian ∂2
φi
Jni (φ̄i) is positive

definite, and pθn(φi|ỹi) can be approximated by a Gaussian

distribution N
(
µni ,−

(
∂2
φi
Jni (µni )

)−1
)

.

A problem specific to model 2 is the fact that it is non-
smooth (because of the indicator function) and taking second
order derivatives of fi(φi, Tb) might be numerically unstable.
A C∞ approximation of the model 2 was considered, using

a sharp sigmoid function σε as a surrogate of the indicator
function I{. > 0}1.

σε(x) =
1

1 + ε exp
(
−xε
) L2(R)−→

ε→0
I{x > 0} (27)

Similar differentiable approximations of piecewise-model
were used in [17]. This enables to have analytic expressions
of the derivative in every points of the parameter space.

The minimum µni of Jni can be obtained numerically, once
again by using Nelder-Mead or Gauss-Newton algorithms for
instance. The expression of the covariance matrix Σni as a
function of the model derivatives is

Σni =

(Σnp )−1 +
1

(σn)2

ni∑
j=1

∂φi
f(τij , µ

n
i )∂φi

f(τij , µ
n
i )T

(28)

+
1

(σn)2

ni∑
j=1

(f(τij , µ
n
i )− ỹij)∂2

φi
f(τij , µ

n
i )

−1

(29)

The previous equation is consistently equal to (17) if f is
linear with respect to the individual parameters. The positivity
of the matrix holds since µni is a minimizer of Jni .

The deviation Dn
i (φp,Σp) has with these notations exactly

the same expression as in (19). However, because of the non-
linearity, the mean square error MSEni has to be estimated
by an empirical mean, using an i.i.d sample (φki )1≤k≤L ∼
N (µni ,Σ

n
i )

MSEni (Tb) ≈
1

L

L∑
k=1

‖ỹi − fi(φki , Tb)‖2 (30)

B. Maximization step

This section derives the method to find the maximum
argument of the function Q(θ|θn) for model 1 and model 2.

a) Model 1: In the case of the linear model, the update
of the parameters φp,Σp, σ is analytic, while the update of
the fixed effects α (base temperature Tb and thermal times
τ0, τc) are performed by the numerical minimization of the

functional MSEn =

N∑
i=1

MSEni (α).Let us start by the updates

of φp and Σp which are obtained by solving the respective
equations ∂φpQ = 0 and ∂ΣpQ = 0.

φn+1
p =

1

N

N∑
i=1

µni (31)

Σn+1
p =

1

N

N∑
i=1

Σni + (µni − φn+1
p )(µni − φn+1

p )T (32)

1This C∞ approximation of the indicator function is obtained by taking its
convolution with the approximate Dirac distribution 1

ε
σε(x)(1−σε(x)) →

ε→0
δ0 in the sense of the distributions.



As for the fixed effects α̃, it is interesting to notice that the
quantity to minimize can be written as

MSEn(α) =

N∑
i=1

‖ỹi − fi(α)µni ‖2 +

N∑
i=1

Tr(fi(α)T fi(α)Σni )

(33)
which appears as a bias and variance decomposition. The
update of the fixed -effect estimate is obtained by minimizing
this mean square error term.

αn+1 = argmin
α

MSEn(α) (34)

This minimization is performed using a simplex algorithm
as for equation 24. This procedure estimates at the same
time the optimal change points τ0 and τc, and also the base
temperature Tb. As a matter of fact, the procedure does not
take into account the fact the model is piecewise-linear. A
methodology specific to the identification of change points in
piecewise-linear models were derived in [18]. Unfortunately,
such procedure cannot be straightforwardly applied here as
it requires to estimate the slopes and the change points at the
same time, whereas in our case the slopes are computed during
the expectation stage, prior to the estimation of the change
points. Finally the update of the observation noise parameter
σ is given by the equation ∂σQ = 0, which leads to

σn+1 =

√
MSEn(αn+1)

M
(35)

b) Model 2: The maximization step in the case of
the non-linear model follows exactly the same pattern as
previously, except that the characteristics of the posterior
distribution µni and Σni have to be replaced by their Monte-
Carlo estimates µ̂ni and Σ̂ni or by the characteristics of the
Gaussian posterior derived by Laplace approximation. Besides,
the MSE function is only dependent on the base temperature
Tb, such function can be efficiently minimized using univariate
optimization methods like the Brent method.

IV. RESULTS

Parameter identification of hierarchical models enables
multi-level predictions : at the population level, the distribution
of the observations depends on the estimated parameters φp,
Σp and on σ2; at the individual level, a distribution of
observations is also identified through the individual estimates.

A. Identification of Model 1

In the case of the linear model, the EM algorithm was run
for 200 iterations, starting from initialization values that are
presented in Table IV-A. After 150 iterations, the sequence of
(Q(θn+1|θn))n was quite stable, so as the standard deviations
of the observation (σn)n. The increase of Q(θn+1|θn) ensures
that the parameters update is going in a good direction, just
like the decrease of the standard deviation. The following table
gives the estimates of the model parameters after convergence.

Parameter Initial value Estimate

base temperature Tb 10 14.5◦C
initiation thermal time τ0 10 32.2 degree day

thermal time of the change point τc 100 208 degree day
observation noise σ 1.0 0.697

first phyllochron
1

φ1p
50 14.6 degree day

second phyllochron
1

φ1p + φ2p
100 49.6 degree day

variability of phyllochron 1 ±1 ± 4.6 degree day
variability of phyllochron 2 ±1 ± 13 degree day

correlation(φ1p, φ2p) 0 0.709
Table I

PARAMETERS ESTIMATES OF MODEL 1

At the population level (Figure 2), the observations made at
thermal time y(τ) = 1 + f(τ)Tφ+ ε are normally distributed:

y(τ) ∼ N
(
1 + f(τ)Tφp, σ

2 + Tr
(
f(τ)f(τ)TΣp

))
(36)

which gives the confidence intervals of the prediction distri-
bution.

Figure 2. Predicted distribution of the observations at the population level

We can also check in Figure 3 whether the shape of the
empirical distribution of the individual means (µni )1≤i≤N is
close to a Gaussian. If the number of individuals in the
population is too small, this graphical representation might
be inappropriate.



Figure 3. Empirical and theoretical distributions of the individual means

At the individual level, the predicted distribution of observa-
tions yi for some individual i can be represented as in Figure
4, replacing φp and Σp by the characteristics of the posterior
distribution, µni and Σni in (36).

Figure 4. Prediction of the observations distribution at the individual level

In conclusion, the linear model shows a good adequacy with
the observations. As model 2 is a more generic formulation of
model 1, in the sense that one can go from one to another by
setting the variance of τ0 and τc to zero, the parameter values
estimated in the linear case can be used to initialize the EM
algorithm performed in the non-linear case.

B. Identification of Model 2

For the non-linear model, a MCMC-EM was first performed
for 100 iterations starting from the values estimated in the
previous model. The length of the Monte-Carlo Markov chain
was set to 3000, with a burn-in period of 1000. The parameter
λ of Metropolis-Hasting algorithm was first initialized to 1 and
the optimal acceptance rate was set to β∗ = 0.234, following
advice in [13]. Such model did not improve significantly the
mean squared error compared to the first one, in terms of mean
square error and observation noise: the initial value of σ was
0.697 (see previous model) and it ends up being equal to 0.67.
The base temperature was also very stable, the final estimate
being 14.4. Nevertheless it was observed, by considering the
sample generated by Metropolis-Hasting algorithm, that the
Gaussian approximation could be a quite good estimate of
the posterior distribution in itself, leading us to implement a
Laplace approximation method.

After convergence of the EM with the Laplace approxima-
tion, we have noticed that the graph of the predicted population
distributions and individual distributions were quite similar to
the ones obtained in the linear case (Model 1). The standard
deviations of parameters τ0 and τc were found to be critically
low, respectively 9×10−3 ◦C.d and 1×10−2 ◦C.d. At this
point, there are two possible explanations of such results :
• either modeling initiation thermal time and thermal time

of the change point as random effects is inappropriate
and the linear assumption is justified

• or the fact to initialize the EM algorithm in the region of
parameter space corresponding to the configuration where
those two parameters were constant at the population
level maintains them in this disposition. In that case, a
new initialization procedure needs to be investigated.

V. DISCUSSION AND PERSPECTIVES

The organogenesis of young Acacia erioloba provides a
new and interesting case of application of hierarchical models.
Such population approach seems relevant: the heterogeneity
within the population is quite well represented by simple linear
models, whose identification with EM algorithm is analytic.
The non-linear version brought only minor improvements, due
to the fact that the thermal times of change point and initiation
could be appropriately modeled by fixed effects in our case.

The methodology developed could be easily extended to
other non-linear mixed effects models. Indeed, the first method
only requires linearity with respect to the individual param-
eters, and such assumption can be justified in a wide range
of dynamics. In our case, the model is a linear combination
of piecewise linear functions, but other families of non-linear
functions, such as sinusoids, Gaussian kernels would have lead
to the same derivations. Identifying a linearized version of the
model provides relevant initialization values to EM algorithms
applied on a generic form of the model, with non-linearity with
respect to the individual parameters.

Although the presentation and illustration of our methodol-
ogy was the core of this paper, this study is also a step towards



a more complete modeling of Acacia erioloba development
using a complete GreenLab FSPM. For further stages of devel-
opment, with branchings and reiterations, modeling the rhythm
of appearance of phytomers as a function of the thermal time
is no longer sufficient as current architecture plays a role.
The development of the branching patterns involves complex
processes that can be modeled through the retroaction of plant
functioning on architecture (see [19] within the GreenLab
framework) or with stochasticity ([20]).

Finally, the real objective is to derive a full population
model for Acacia erioloba based on an individual FSPM in
order to account for the inter-individual variability. Likewise,
and as introduced by [5], both organogenesis and functional
parameters should be modelled as mixed effects. The main
difficulty will rely on the joint estimation of organogenesis
and functioning, especially in the case of interaction between
both.
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