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Abstract

Robotic behaviors are mainly described by differential equations. Those mathematical models are
usually not precise enough because of inaccurately known parameters or model simplifications. Nev-
ertheless, robots are often used in critical contexts as medical or military fields. So, uncertainties in
mathematical models have to be taken into account in order to produce reliable and safe analysis results.
A framework based on interval analysis is proposed to safely verify and analyze robotic behaviors with
bounded uncertainties. It follows an interval constraint programming approach, combined with validated
numerical integration methods to deal with differential equations. A case study on robust path planning
is presented to emphasize the efficiency of the complete framework.

1 Introduction

Designing control algorithms of robots is a challenging activity in order to guarantee the success of the
mission and taking into account safety constraints. Moreover, control architecture is made of several layers
strongly interacting with each other which makes the design complex. Indeed, several kinds of algorithms
ranging from Proportional-Integral-Derivative controllers (PID controllers) to neural networks are used and
combined to achieve the missions of robots.

In control theory, mathematical models of the controlled element are essential to define control algo-
rithms. Nevertheless, such models are usually a simplification of the real world. Mainly, accurate models
are expensive to define, or even impossible, due to the presence of unknown, or hardly measurable, values
of the involved parameters (e.g., the inertial moment). Mathematical models represent possible behaviors of
robots in function of the control algorithms. So they play a critical role in the design or in the verification
process of robots.

The framework given by constraint programming [1] is powerful enough to solve many problems with nu-
merous constraints. Unfortunately, taking into account the dynamic of robots is not easy in this framework.
In contrary, validated numerical integration methods are mature techniques to simulate, with bounded un-
certainties, dynamical systems described by differential equations [2, 3, 4, 5]. While such methods produce
rigorous enclosures of the trajectories, they can not consider constraints on the dynamics without major
modifications. Our goal is to bridge the gap between these two approaches.

In this article, we propose an approach to analyze or verify control algorithms of robots based on math-
ematical models of their behaviors. An extension of constraint programming framework with differential
equations is proposed, hence our models can take into account bounded uncertainties on the parameters
offering guarantees on robot behaviors, while taking into account temporal constraints as safety. We extend
current work on this field, such as [6, 7, 8], by considering more complex constraints involving time.

Formal verification of robotic application is not new and several previous work address this problem.
Nevertheless, they usually rely on temporal logic specification as Linear Temporal Logic (LTL) to prove the
correctness. For example, this approach is used in [9, 10]. Satisfiability Modulo Theories techniques (SMT
techniques), which are described in [11, 12], can also be used to prove safety or even stability of hybrid
systems. Our contribution differs from these works by adopting constraint satisfaction problem formulation
in order to easily specify the requirements.

The paper is organized as follows. In Section 2, the basics of interval analysis, constraint satisfaction
problem and guaranteed numerical integration are provided. The main contribution is presented in sections 3
and 4. A case study is described in Section 5 before concluding in Section 6.
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2 Preliminary Notions

A presentation of the main mathematical tools is given in this section. First, basics of interval analysis is
provided in Section 2.1. Second, Section 2.2 gives a quick presentation of constraint satisfaction problem.
Finally, a short introduction of validated numerical integration is presented in Section 2.3.

2.1 Interval Analysis

The simplest and most common way to represent and manipulate sets of values is interval arithmetic
(see [13]). An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi. IR denotes
the set of all intervals over reals. The size or the width of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance, the interval sum, i.e.,
[x1] + [x2] = [x1 + x2, x1 + x2], encloses the image of the sum function over its arguments.

An interval vector or a box [x] ∈ IRn, is a Cartesian product of n intervals. The enclosing property
basically defines what is called an interval extension or an inclusion function.

Definition 1 (Inclusion function) Consider a function f : Rn → Rm, then [f ] :IRn → IRm is said to
be an extension of f to intervals if

∀[x] ∈ IRn, [f ]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as ×, ÷, sin, cos, exp, and
so on. The natural inclusion function is the simplest to obtain: all occurrences of the real variables are
replaced by their interval counterpart and all arithmetic operations are evaluated using interval arithmetic.
More sophisticated inclusion functions such as the centered form, or the Taylor inclusion function may also
be used (see [14] for more details).

Example 1 (Interval arithmetic) A few examples of arithmetic operations between interval values are
given

[−2, 5] + [−8, 12] = [−10, 17]

[−10, 17]− [−8, 12] = [−10, 17] + [−12, 8] = [−22, 25]

[−10, 17]− [−2, 5] = [−15, 19]

[−2, 5]

[−8, 12]
= [−∞,∞]

[3, 5]

[8, 12]
=

[
3

12
,

5

8

]
[

3

12
,

5

8

]
× [8, 12] =

[
2,

15

2

]
In the first example of division, the result is the interval containing all the real numbers because denominator
contains 0.

As an example of inclusion function, we consider a function p defined by

p(x, y) = xy + x .

The associated natural inclusion function is

[p]([x], [y]) = [x][y] + [x],

in which variables, constants and arithmetic operations have been replaced by its interval counterpart. And
so
p([0, 1], [0, 1]) = [0, 2] ⊆ {p(x, y) | x, y ∈ [0, 1]} = [0, 2]. �

2.2 Numerical Constraint Satisfaction Problems

In this section, we introduce the numerical constraint satisfaction problem (NCSP) formalism, following the
description given in [1], and present some basics on constraint programming.

A NCSP (V,D, C) is defined as follows:

• V := {v1, . . . , vn} is a finite set of variables which can also be represented by the vector v;
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• D := {[v1], . . . , [vn]} is a set of intervals such that [vi] contains all possible values of vi. It can be
represented by a box [v] gathering all [vi];

• C := {c1, . . . , cm} is a set of constraints of the form ci(v) ≡ fi(v) = 0 or ci(v) ≡ gi(v) 6 0, with
fi : Rn → R, gi : Rn → R for 1 6 i 6 m. Constraints C are interpreted as a conjunction of equalities
and inequalities.

The solution of a NCSP is a valuation of v ranging in [v] and satisfying the constraints C.
The approach of NSCP is both powerful to address complex problems (NP-hard problem with numerical

issues, even in critical applications) and simple in the definition of a solving framework [15, 16]. Indeed, the
classical algorithm to solve a NCSP is the branch-and-prune which needs only an evaluation of the constraints
and an initial domain for variables. If this algorithm is sufficient for many problems, some improvements
have been achieved and the algorithms based on contractors have emerged [17]. The branch-and-contract
algorithm consists in two main steps i) the contraction (or filtering) of one variable and the propagation to
the others till a fixed point is reached, then ii) the bisection of the domain of one variable in order to obtain
two problems, easier to solve. A more detailed description follows.

2.2.1 Contraction

A filtering algorithm or contractor is used in a NCSP solver to reduce the domain of variables till a fixed
point (or close to), by respecting the local consistencies. A contractor Ctc can be defined with the help of
constraint programming, analysis or algebra, but it must satisfy three properties:

• Ctc(D) ⊆ D: the contractance,

• Ctc cannot remove any solution: it is conservative,

• D′ ⊆ D ⇒ Ctc(D′) ⊆ Ctc(D): the monotonicity.

There are many contractor operators defined in the literature, among them the most notable are:

• (Forward-Backward contractor) By considering only one constraint, this method computes the interval
enclosure of a node in the tree of constraint operations with the children domains (the forward eval-
uation), then refines the enclosure of a node in terms of parents domain (the backward propagation).
For example, from the constraint x+ y = z, this contractor refines initial domains [x], [y] and [z] from
a forward evaluation [z] = [z] ∩ ([x] + [y]), and from two backward evaluations [x] = [x] ∩ ([z] − [y])
and [y] = [y] ∩ ([z]− [x]).

• (Newton contractor) This contractor, based on first order Taylor interval extension: [f ]([x]) = f(x∗) +
[Jf ]([x])([x]− x∗) with x∗ ∈ [x], has the property of

– if 0 ∈ [f ]([x]),

– then [x]k+1 = [x]k ∩ x∗ − [Jf ]([x]k)−1f(x∗) is a tighter inclusion of the solution of f(x) = 0.

Some other contractors based on Newton have been defined such as Krawczyk [14].

2.2.2 Propagation

If a variable domain has been reduced, the reduction is propagated to all the constraints involving that
variable, which allows to narrow the other variable domains. This process is repeated till a fixed point is
reached.

2.2.3 Branch-and-Prune

A Branch-and-Prune algorithm consists on alternatively branching and pruning to produce two sub-pavings
L and S, with L the boxes too small to be bisected and S the solution boxes. We are then sure that all
solutions are included in L ∪ S and that every point in S is solution.

Literally, this algorithm browses a list of boxes W, initially W is set with a vector [x] made of the
elements of D, and for each one i) Prune: the NCSP is evaluated (or contracted) on the current box, if it is
a solution it is added to S, otherwise ii) Branch: if the box is large enough, it is bisected and the two boxes
resulting are added into W, otherwise the box is added to L.

Example 2 An example of the problems that the previously presented tools can solve is taken from [18].
The considered NCSP is defined such that
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• V = {x, y, z, t}

• D = {[x] = [0, 1000], [y] = [0, 1000],
[z] = [0, 3.1416], [t] = [0, 3.1416]}

• C = {xy + t− 2z = 4;x sin(z) + y cos(t) = 0;x− y + cos2(z) = sin2(t);xyz = 2t}
To solve this CSP we use a Branch-and-Prune algorithm with the Forward-Backward contractor and a propa-
gation algorithm. We obtain one solution ([1.999, 2.001], [1.999, 2.001], [1.57, 1.571], [3.14159, 3.1416]). The
algorithm needs 6 bisections. �

2.3 Validated Numerical Integration Methods

A differential equation is a mathematical relation used to define an unknown function by its derivatives.
These derivatives usually represent the temporal evolution of a physical quantity. Because the majority
of systems is defined by the evolution of a given quantity, differential equations are used in engineering,
physics, chemistry, biology or economics as examples. Mathematically, differential equations have no explicit
solutions, except for few particular cases. Nevertheless, the solution can be numerically approximated with
the help of integration schemes such as Taylor series [2] or Runge-Kutta methods [5, 4].

In the following, we consider a generic parametric differential equation as an interval initial value problem
(IIVP) defined by 

ẏ = F (t,y,x,p,u)

0 = G(t,y,x,p,u)

y(0) ∈ Y0,x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] ,

(1)

with F : R × Rn × Rm × Rr × Rs 7→ Rn and G : R × Rn × Rm × Rr × Rs 7→ Rm. The variable y of
dimension n is the differential variable while the variable x is an algebraic variable of dimension m with
an initial condition y(0) ∈ Y0 ⊆ Rn and x(0) ∈ X0 ⊆ Rn. In other words, differential-algebraic equations
(DAE) of index 1 are considered, and in the case of m = 0, this differential equation simplifies to an ordinary
differential equation (ODE). Note that usually, the initial values of algebraic variable x are computed by
numerical algorithms used to solve DAE but we consider it fixed here for simplicity. Variable p ∈ P ⊆ Rr

stands for parameters of dimension r and variable u ∈ U ⊆ Rs stands for a control vector of dimension s.
We assume standard hypotheses on F and G to guarantee the existence and uniqueness of the solution of
such problem.

A validated simulation of a differential equation consists in a discretization of time, such that t0 6 · · · 6
tend, and a computation of enclosures of the set of states of the system y0, . . . , yend, by the help of a
guaranteed integration scheme. In details, a guaranteed integration scheme is made of

• an integration method Φ(F,G,yj , tj , h), starting from an initial value yj at time tj and a finite time
horizon h (the step-size), producing an approximation yj+1 at time tj+1 = tj +h, of the exact solution
y(tj+1; yj), i.e., y(tj+1; yj) ≈ Φ(F,G,yj , tj , h);

• a truncation error function lteΦ(F,G,yj , tj , h), such that y(tj+1; yj) = Φ(F,G,yj , tj , h)+lteΦ(F,G,yj , tj , h).

Basically, a validated numerical integration method is based on a numerical integration scheme such as
Taylor series [2] or Runge-Kutta methods [5, 4] which is extended with interval analysis tools to bound the
truncation error, i.e., the distance between the exact and the numerical solutions. Mainly, such methods
work in two stages at each integration step, starting from an enclosure [yj ] 3 y(tj ; y0) at time tj of the exact
solution, we proceed by:

i. a computation of an a priori enclosure [ỹj+1] of the solution y(t; y0) for all t in the time interval
[tj , tj+1]. This stage allows one to prove the existence and the uniqueness of the solution.

ii. a computation of a tightening of state variable [yj+1] 3 y(tj+1; y0) at time tj+1 using [ỹj+1] to bound
the term lteΦ(F,G,yj , tj , h).

Sometimes, additive constraints can be considered, coming from a mechanical constraint, an energy
conservation, a control law, or whatever [5]. It is important to understand that these constraints are linked
to the system, valid all the time, and thus semantically different from a constraint coming from a satisfaction
problem which are valid only at particular time instants. Finally a constrained parametric IIVP is considered

ẏ = F (t,y,x,p,u)

0 = G(t,y,x,p,u)

0 = H(t,y,p,u)

y(0) ∈ Y0,x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] ,

(2)
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Figure 1: Results of validated simulation: y2 w.r.t. y1.

where H : R×Rn ×Rr ×Rs 7→ Rc.
Methods defined in [5, 4] can take into account such kind of constraints by adapting the first stage of

validated numerical integration methods, that is the computation of the a priori enclosure.
A validated simulation starts with the interval enclosures [y(0)], [x(0)], [p] and [u] of respectively, Y0,

X0, P, and U . It produces two lists of boxes:

• the list of discretization time steps. {[y0], . . . , [yend]};

• the list of a priori enclosures: {[ỹ0], . . . , [ỹend]}.

Based on these lists, two functions depending on time can be defined

R :

{
R 7→ IRn

t→ [y]
(3)

with {y(t; y0) : ∀y0 ⊆ [y0]} ⊆ [y], and

R̃ :

{
IR 7→ IRn[
t, t
]
→ [ỹ]

(4)

with {y(t; y0) : ∀y0 ∈ [y0] ∧ ∀t ∈ [t, t]} ⊆ [ỹ].
Function R, defined in (3), is obtained by new applications of validated integration method starting from

[yk] at tk, and finishing at t with tk < t < tk+1. Function R̃, defined in (4), is obtained with the union of
[ỹk] with k = a, . . . , b and ta < t < t < tb. These functions are then strictly conservative.

More abstractly, the functionsR and R̃ define two interval enclosures of the solution function of differential
equations defined in Equation (2).

Example 3 We consider an Initial Value Problem based on the following constrained differential algebraic
equation 

F :


ẏ1 = −y3y2 − (1 + y3)x1

ẏ2 = y3y1 − (1 + y3)x2

ẏ3 = 1

G :

{
0 = (y1 − x2)/5− cos(y2

3/2)

0 = (y2 − x1)/5− sin(y2
3/2)

H :
{

0 = x2
1 + x2

2 − 1

(5)

and the initial values y(0) = (5, 1, 0) and x(0) = (−1, 0). Interesting variables are y1 and y2, the states of
the system. A picture of the result of validated simulation is given in Figure 1 and Figure 2.

It follows an example of the use of the functions providing enclosures at given time R(t) and R̃([t]):

• R(1.1) = ([5.001, 5.006]; [3.294, 3.299]; [1.099, 1.100])

• R̃([0.7, 0.8]) =
([5.463, 5.495]; [1.975, 2.270]; [0.699, 0.800])
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Figure 2: Results of validated simulation: y2 w.r.t. time.

The problem given by Equation (5) has a known exact solution which is

y(t) =


y1 = sin(t) + 5 cos(t2/2)

y2 = cos(t) + 5 sin(t2/2)

y3 = t

.

If we compute the previous enclosures with the exact solution (by combining interval arithmetic with
bisection method to obtain sharp results), we find:

• y(1.1) = ([5.003, 5.003]; [3.297, 3.297]; [1.1])

• y([0.7, 0.8]) = ([[5.464, 5.494][1.977, 2.269]; [0.7, 0.8])

The enclosure property of R(t) and R̃(t) is then verified. �

3 CSP with Differentials Constraints

Constraint Satisfaction Differential Problems (CSDP) extending the definition of NCSP have been defined
in [7] by adding new variables to represent time derivative, i.e., dy

dt and a new kind of constraints of the form
dy
dt = f(y, t). The main drawback of CSDPs is that temporal properties cannot be encoded because the time
variable t is not a variable of the problem. So, the property “for all t in [0, 10], the system does not collide
with an obstacle” cannot be represented as a CSDP in an obvious manner.

The work [8] considers differential equations as an implicit definition of temporal functions. In conse-
quences, considering only solution function Φ of differential equations makes an easy embedding of differential
equations into NCSP framework. Unfortunately, NCSPs naturally express existential problems, i.e., prob-
lems of the form ∃x ∈ [x],

∧n
i=1 fi(x) = 0 ∧

∧m
i=1 gi(x) 6 0. While this approach is appealing to simply

embed differential equations into constraint programming framework, it is also unable to express constraints
where the time variable is a variable of the problem.

In both previous work [7] and [8], the main drawback is the lack of quantification on variables. A
proposition of extension of these approaches to cope with this limitation is the main contribution of the
paper.

In order to be able to define a CSDP which can answer a question of the type “Will the system collide with
an obstacle before ten seconds?”, we propose a new definition of CSDP which mainly introduces quantification
over variables.

Definition 2 (QCSDP) Let S be a differential system as defined in (2) and tend ∈ R+ the time limit of
the problem handled. A QCSDP is a CSP defined by:

• a set of variables V including at least the time variable t, a vector y0 of dimension n representing
the initial state-space of S, variables associated to the parameters p, variables representing the control
input u of S. We represent these variables by the vector v;

• an initial domain D containing at least [0, tend] for time t, the initial domain Y0 of initial condition
y0, U for control input u, and P for parameters p;
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• a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that is, constraints of the form:

ci(v) ≡ Qv ∈ Di.fi(v) � A, ∀1 6 i 6 e,

with Q ∈ {∃,∀}, fi : ℘(R|V|) → ℘(Rq) stands for non-linear arithmetic expressions defined over
variables v and solution of differential system S, y(t; y0,p,u) ≡ y(v). The operator � denotes {⊂ ,⊃
,∩=∅,∩6=∅}, i.e., the set-based operations, and the set A ⊂ Rq where q > 0.

Note that ∩=∅ stands for the predicate f(v) ∩ A = ∅ and ∩6=∅ stands for the predicate f(v) ∩ A 6= ∅.
℘(E) denotes the power-set of the set E, while |E| denotes the cardinality of E.

Note that in Definition 2, constraints are expressed with set-based operator instead of equalities and
inequalities to simplify the notations despite of the complete equivalence with equalities and inequalities.
Moreover, set-based operations will emphasize, in Section 4, one important difficulty due to the representation
of sets with respect to the correctness of the proposed approach.

As the QCSDP over sets is not computable in general, a set abstraction has to be used. Moreover, solving
arbitrary quantified constraints over reals is a hard problem hence we focus on certain classes of problems
related to the robotic domain. In particular, three main classes are considered. Problem 1 deals with the
design of robot platform or control algorithms and for example is treated with a CSP approach in [19] or in
[20]. Problem 2 deals with the design of robust control algorithms. It is the case study of Section 5 and it
has been considered in the context of non-linear sampled switch systems in [21]. Problem 3 consists to find
the subset of initial states such that there exists at least one evolution ”viable”, in the sense that at each
time, the state of the evolution remains confined to the viability kernel [22]. The problem of viability kernel
computation has been considered by the help of our method in [23].

Problem 1 (Appropriate design) A parametric dynamics
of a robot described by a differential system is considered, the parameters represent some possible choices in
the characteristics of the robot such as its dimension, the power of the engine and so on. An appropriate
design problem aims at finding a value of the parameters such as a set of functional requirements is fulfill.
In other words, QCSDP problems are made of constraints over variables p, u and y0 based on quantification
∃p, ∀u, ∀y0, and some temporal constraints (see Section 4).

Problem 2 (Control synthesis) A parametric dynamics of a robot described by a differential system is
considered, the parameters represent perturbation. A control synthesis problem aims at finding value of the
control u such that some requirements are fulfill taking into account all possible perturbations. In other
words, QCSDP problems are made of constraints over variables p, u and y0 based on quantification ∃u, ∀p,
∀y0, and some temporal constraints (see Section 4).

Problem 3 (Viability kernel) A parametric dynamics of a robot described by a differential system is
considered, the parameters represent perturbation. A viability kernel problem aims at finding initial values
of the system such that there exists at least one evolution remaining into the viability kernel taking into
account all possible perturbations. In other words, QCSDP problems are made of constraints over variables
p, u and y0 based on quantification ∃y0, ∀p, ∃u, and some temporal constraints (see Section 4).

Note that it is also possible to add a cost function in the Definition 2, and hence consider constraint
optimization problems.

4 Reasoning Under Set Abstraction

In Definition 2, QCSDPs are defined over sets of values and hence they are not computable. Abstraction
with boxes is considered in this section. By denoting α() the box abstraction, the constraints of QCSDP
presented above becomes:

α(ci(v)) ≡ α(Qv ∈ Di.fi(v) � A) (6)

≡ Qv ∈ [di].α(fi(v) � A) (7)

≡ Qv ∈ [di].[fi](v)α(�A) . (8)

From Equation (6) to Equation (7), abstraction consists on an over-approximation of the domain of
variables. Then, from Equation (7) to Equation (8), the interval enclosure is used as an abstraction of
function f . It means that only enclosure of the solution of differential equations is considered, even if an
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inner approximation could be available. Indeed, enclosure is mainly favored because the approach presented
in this paper is oriented to safety problems and not to liveness. Abstraction α(�A) is not distributive in a
safe manner. Applied to the set A, the function α ∈ {Hull, Int} stands for an interval abstraction function
which maps a set A to a set of boxes. Hull(A) stands for the interval over-approximation of the set A while
Int(A) stands for an interval representation (a single interval or a paving) of an under-approximation of the
set A. By an abuse of notation, � in Definition 3 will denote the abstraction of the set-theoretic operator �
given in Definition 2 but it is important to keep in mind that the implementation is strongly dependent on
the abstraction of the set A.

The possible operations are gathered in the Table 1. Due to the abstraction, all these operators are
weak. Nevertheless, some results after abstraction imply the original logic formula. In Table 1, question
mark “?” means that neither true nor false implies a guaranteed result on the original logic formula.
On the contrary, true means that if the abstract formula is valid, then the original one is valid, i.e.,
[f ](v) ⊂ Int(A)⇒ f(v) ⊂ A. In the same way, false means that if the abstract formula is not valid, then
the original one is not valid, i.e., ¬([f ](v) ∩6=∅ Hull(A)) ⇒ ¬(f(v) ∩6=∅ A). Abstraction function α(�A)
can be distribute into α(�)α(A) by following carefully the results presented in Table 1.

Finally, we propose the Box-QCSDP formalism, which is a QCSP where sets are represented by boxes
and is formally defined in Definition 3. It mainly introduces two abstractions: the abstraction of the solution
of differential systems as defined in (2); and the abstraction of constraints ci, in particular, the abstraction
of the set A.

The first and major abstraction allows us to manage with the differential system in a CSDP. It is
performed by a validated simulation method as described in 2.3. This approach provides to us two abstraction
functions guaranteed to enclose all the behaviors of the differential system.

The second abstraction is done to be able to handle the sets by an outer or an inner approximation,
depending on the associated logic operation. In order to correctly translate a satisfaction problem, these
capabilities offered by QCSDP have to be used in the right way.

Definition 3 (Box-QCSDP) Let S be a differential system as defined in (2) and tend ∈ R+ the time limit
of the problem handled. A Box-QCSDP is defined by:

• a set of variables V including at least the time variable t, a vector y0 of dimension n representing
the initial state-space of S, variables associated to the parameters p, variables representing the control
input u of S. We represent these variables by the vector v;

• an initial box domain [d] containing at least [0, tend] for time t, the initial box [y0] of initial condition
y0, a box [u] for control input u, and a box [p] for parameters p;

• a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that is, constraints of the form

ci ≡ Qv ∈ [di].[fi](v)α (�A) , ∀1 6 i 6 e,

with Q ∈ {∃,∀}, [fi] : IR|V| → IRq stands for an inclusion function of non-linear arithmetic ex-
pressions defined over variables v and an interval enclosure of the solution of differential system S,
[y](t; [y0], [p], [u]). The set theory based operations are expressed by � ∈ {⊂,⊃,∩=∅,∩6=∅} and a set
A ⊂ Rq where q > 0. The function α(�A) maps a part of logic operations into abstract ones, following
Table 1.

Definition 3 is very dependent of the implementation. The following remarks give some insight to produce
safe results.

Remark 1 If a validated simulation cannot reach tend and fails at t = tfail then R̃(t) = [−∞,∞], for all
t > tfail. Hence the enclosure of [y](t; [y0], [p], [u]) is always correct and respects the contractor definition.

Table 1: Available operations
α(A)

Int(A) Hull(A)

α(f) [f ]

⊂ true ?
⊃ false ?
∩=∅ ? true

∩6=∅ ? false
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Table 2: Available operations
Verbal property CSDP translation

Stay in A ∀t ∈ [0, tend], R(t) ⊆ Int(A)
In A at τ R(τ) ⊆ Int(A)

Has crossed A ∃t ∈ [0, tend], R(t) ∩Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], R(t) ∩Hull(A) = ∅

Has reached A R(tend) ∩Hull(A) 6= ∅
Finish in A R(tend) ⊂ Int(A)

Remark 2 Solutions of differential equations need to be pre-computed to obtain our abstraction functions
R(t) and R̃([t]). If the parameters or control inputs involved in the definition of the differential equation is
reduced by the CSDP solver, then the abstraction functions need to be computed again. It is a part of the
propagation algorithm of a CSP.

QCSDP, see Definition 2, allows one to describe a complex satisfaction problem in order to reason about
a system defined by a differential equation. Nevertheless, a definition of the temporal constraints has not
been done yet, it is the purpose of the end of this section. We consider the main interesting properties for
robotic applications, by providing verbal operators in the sense of “system has the property of”, such as
“stay in till”.

By convention, these Boolean operations provide a guaranteed true answer. It means that “true” is
proven while “false” means “uncertain” due to the abstraction of boxes. In table 2, the different available
verbal operators and their Box-QCSDP translation are gathered. Despite this list of specifications is limited
it emphasizes the main difficulty to reason on abstraction of the behaviors of robots.

From table 2 and due to the abstraction, “Go out” is not equivalent to ¬(“Stay in”). Operators “Has
reached” and “Has crossed” are poor tests (true also means uncertain). They are equivalent but the validity
of “Has reached” at the end of a simulation implies a notion of stability. On the other hand, the negation of
these latter operators are strong and are useful to speed up a Box-QCSDP solver.

Following the same generalization than for Constraint Optimization Problems based on CSP, a cost
function can be added to Box-QCSDP to perform optimization.

Definition 4 (Optimization on Box-QCSDP) A Box-Quantified Constraint Optimization Differential
Problem involves in addition of a Box-QCSDP an objective function Q(v1, . . . , vn) that has to be maximized
or minimized over the set of all feasible solutions.

The details on algorithms to solve optimization problems is out of the scope of this paper, but there are
the same than the ones used for CSP [24].

Box-QCSDP and this list of specifications have been implemented in a library named DynIBEX1 [25].

5 Case Study: Robot Path Planning

We present an application of Box-QCSDP based on the algorithm Box-RRT defined in [26] which aims at
producing a robust path for a car-like vehicle while avoiding obstacles.

The dynamic model of the car is defined by
ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ =
v

L
tan (δ + ε)

. (9)

The state of the car is defined by the car position (x, y) and its heading θ. L is the distance between
the front and rear wheels. There are two control inputs v for the longitudinal speed and δ ∈ [δmin, δmax]
for the steering angle. The noise element ε = [−0.001, 0.001] stands for the steering angle imprecision. A
second source of uncertainties is the initial position of the vehicle. We denote by car(t; s0) the solution of
Equation (9) and by [car](t; s0) its interval enclosure produce by guaranteed integration methods. We denote
by s0 = (x0, y0, θ0) and [s0] = [x0]× [y0]× [θ0] the state variables and the initial conditions. We denote by
[sf ] the targeted state-space.

Box-RRT algorithm extends Rapid Random Tree (RRT) algorithm with interval analysis tools. A brief
recall of the Box-RRT algorithm is given before introducing our formalization with Box-QCSDP. From a

1http://perso.ensta-paristech.fr/~chapoutot/dynibex/
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map, denoted by Map, represented by a paving, i.e., a set of non-overlapping boxes and from a list of
obstacles, denoted by La, Box-RRT looks for a safe path between [s0] and [sf ], avoiding all obstacles in
La and staying in Map. To do this, a tree T of possible paths is generated from a random walk inside the
state-space represented by a paving. Box-RRT is an iterative algorithm which mainly follows three steps
until [sf ] is reached

i. pick a random state [srandom],

ii. find the closest state of [srandom] in the tree T named [snearest],

iii. pick a control u and compute [snew] which is the final state of the trajectory starting from [snearest] with
the control u. If this trajectory reaches an obstacle, an other state is chosen. Otherwise if [snew] ⊂ [sf ]
then a path is found and the algorithm terminates. Otherwise, the target [sf ] has not been reached
and [snew] is a possible safe state being on the path to reach the target [sf ]. Hence, [snew] is added as
a new node in T and the exploration of the state-space continues.

In Box-RRT algorithm, Step 3 is a Box-QSCDP. In particular, there are several constraints that must
be taken into account while the path is generated. First, the path generation works on a finite dimension
map and so trajectories must stay inside this map. Obviously, a constraint expressing the avoidance of
obstacles shall be considered. An other constraint has to be defined to detect when a trajectory reaches the
targeted region of the state-space. In consequence, the path generation is translated into Box-QCSDP which
is defined in Equation (10). Note that this Box-QCSDP has to be solved at each iteration of the Box-RRT
algorithm until a path has been found.

V = {t, x0, y0, θ0, v, δ} ,
D = {[t] = [0, 1], [x0] = [0.0, 0.3], [y0] = [0.0, 0.3],

[θ0] = [0.0]} ,
C = {

c1 = ∀s0 ∈ [s0],∀t ∈ [t] · [car](t; s0) ⊂ Map,

c2 = ∀s0 ∈ [s0],∀t ∈ [t],∀sa ∈ [La] · [car](t; s0) ∩6=∅ sa,

c3 = ∀s0 ∈ [s0],∃t ∈ [t] · [car](t; s0) ⊂ [sf ]

} .

(10)

In Equation (10), the constraint c1 states that the trajectory [car](t) from [snearest] to [snew] has to stay
inside the map Map. The constraint c2 states that the trajectory [car](t) shall not intersect an obstacle and
finally the constraint c3 states that a path is found if one state of trajectory is included into [sf ].

An example of the exploration of the state-space produced by the Box-RRT algorithm is given in Figure 3.
The red squares stand for obstacles while the blue square represents [sf ]. The small black square in the
center of the figure is [s0] while the black square inside [sf ] is the final state of the trajectory reaching the
target.

6 Conclusion

In this paper, we presented a framework for the formal verification of robotic behaviors in presence of
uncertainties. Based on the constraint satisfaction problem formalism and by the help of interval tools such
as interval arithmetic and the validated integration of differential equations, a method to verify the safety, in
a guaranteed manner, has been developed. Our approach mainly exploits box abstraction of uncertainties,
sets, functions and differential equations. Box abstraction is a very powerful approach to manage with
uncertainties and, more particularly, with differential equations. Nevertheless, this abstraction introduces
another difficulty, which is the handling of logic formula, because some logic operators become weak. We
carefully analyzed available operators and a new formalism called Box-QCSDP has been finally presented.
A well known problem, the robot path planning, has been studied under the formalism of Box-QCSDP.
An algorithm based on Rapid-exploring Random Tree has been defined including constraints (obstacles and
objectives) and solved with our method. The resulting path is guaranteed by construction, considering the
robot dynamics, which is an interesting improvement of classical path planners. To conclude, we presented
in this paper a new formalism that allows one to solve complex problems linking dynamical systems and
temporal logic, in a validated way.
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Figure 3: Results of Box-RRT
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