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ABSTRACT: Optical nanoantennas have a great potential for
enhancing light-matter interactions at the nanometer scale, yet
fabrication accuracy and lack of scalability currently limit
ultimate antenna performance and applications. In most
designs, the region of maximum field localization and
enhancement (i.e., hotspot) is not readily accessible to the
sample because it is buried into the nanostructure. Moreover,
current large-scale fabrication techniques lack reproducible
geometrical control below 20 nm. Here, we describe a new
nanofabrication technique that applies planarization, etch back,
and template stripping to expose the excitation hotspot at the
surface, providing a major improvement over conventional
electron beam lithography methods. We present large flat surface arrays of in-plane nanoantennas, featuring gaps as small as 10
nm with sharp edges, excellent reproducibility and full surface accessibility of the hotspot confined region. The novel fabrication
approach drastically improves the optical performance of plasmonic nanoantennas to yield giant fluorescence enhancement
factors up to 104−105 times, together with nanoscale detection volumes in the 20 zL range. The method is fully scalable and
adaptable to a wide range of antenna designs. We foresee broad applications by the use of these in-plane antenna geometries
ranging from large-scale ultrasensitive sensor chips to microfluidics and live cell membrane investigations.

KEYWORDS: Optical nanoantennas, template stripping, electron beam lithography, fluorescence enhancement, plasmonics

Optical nanoantennas take advantage of the plasmonic
response of noble metals to strongly confine light energy

into nanoscale dimensions and breach the classical diffraction
limit.1−3 This confinement leads to a drastic enhancement of
the interactions between a single quantum emitter and the light
field,4−7 enabling large fluorescence gains above a thousand
fold,8−13 ultrafast picosecond emission,14−16 and photobleach-
ing reduction.17,18 As such, optical antennas hold great interest
for ultrasensitive biosensing, especially for the detection of
single molecules at biologically relevant micromolar concen-
trations.19−21

Biosensing applications of nanoantennas require the large-
scale availability of narrow accessible gaps. Not only should
nanogaps with sub-20 nm dimensions be reproducibly
fabricated but also the gap region (plasmonic hotspot) must
remain accessible to probe the target molecules. Despite
impressive recent progress using electron beam,22 focused ion
beam,23 or stencil lithographies24−26 or alternatively with
bottom-up self-assembly techniques,6,7,9,13,16,27−30 the chal-
lenges of reliable narrow gap fabrication and hotspot

accessibility remain major hurdles limiting the impact and
performance of optical nanoantennas. For instance, when
aiming for the fabrication of aperture antennas, electron beam
lithography (EBL) using a positive-tone resist requires metal
dry etching, which produces high line-edge roughness that are
not suited for the definition of reliable and high aspect ratio
nanogaps. Alternatively, patterning openings in metal films
relying on EBL and negative-tone resist demands a lift-off
approach. This is an efficient approach when lifting a full metal
film for fabricating single particles but can be arduous when
removing small isolated clusters of metal to clear apertures.
Here, we report on a novel nanofabrication technique based

on EBL followed by planarization, etch back, and template
stripping. The process provides large flat arrays of in-plane
nanoantennas featuring 10 nm gaps with sharp edges and full
accessibility of the localized hotspot illumination provided by
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the antenna gap. These features enable single molecule
fluorescence enhancement factors of 104−105 and detection
volumes in the 20 zL range, outperforming previous plasmonic
realizations. Because the method achieves excellent geometric
control in the nanometer range over large areas, is fully
adaptable to different antenna designs, and provides direct
access to the enhanced field at the gap region, we foresee that
this fabrication approach will significantly improve the
effectiveness of plasmonic antennas for multiple applications,
including ultrasensitive biosensing and live cell research.
The antenna design is based on the “antenna-in-box”

platform featuring a nanogap dimer antenna inside a nano-
box.10,31 This design is especially tailored for optimal enhanced
single molecule analysis in solutions at high concentrations. It
combines a central nanogap antenna between two 80 nm gold
half-spheres to create the hotspot used for fluorescence
enhancement, and a cladding 300 × 140 nm2 box, to screen
the background by preventing direct excitation of molecules
diffusing away from the nanoantenna gap.
Figure 1a summarizes the different steps of our fabrication

process. First, we use EBL on negative tone hydrogen-
silsesquioxane (HSQ) resist (step I Figure 1a). HSQ features
a high-patterning resolution below 10 nm,32 as well as a high-
postprocessing stability due to its inert inorganic SiOx nature.
After EBL patterning, a 50 nm thick gold film is deposited by
electron beam evaporation at low temperature (step II) to
reduce the gold grain size by approximately a factor of 2 as
compared to room temperature evaporation (Figure S1). Then
flowable oxide (HSQ) is spun to planarize the overall structure
(step III) and so allow for a subsequent etch back (step IV)
that selectively removes the sacrificial top metal layer in order
to clear out the aperture geometry (Figure S2). This process is
uniformly carried out at 100 mm wafer-scale and reliably results
in the opening of all antennas at once after wet etching the
HSQ (Step V). We point out that doing conventional lift-off
without this etch back step is ineffective to remove the top

metal sacrificial layer due to hydrophobic interactions (Figure
S3).
Because of metal diffusion during the evaporation, the gold

sidewalls bear a tapering angle. Therefore, the narrowest gap
region lies at the bottom of the antenna close to the substrate
interface, as shown in Figure 1b and Figure S4. This hotspot
position is impractical for biosensing and fluorescence
enhancement applications, where the narrowest gap position
should be on the top surface of the antenna to maximize the
contact with the probe solution. We thus implement a template
stripping approach (step VI Figure 1a)33,34 whereby the gold
structures are transferred and flipped over onto a microscope
coverslip to facilitate access to the narrowest and brightest
region of the nanogap. Figure 1c,d shows a comparison before
and after template stripping, the gap size apparent on the top
surface seems slightly reduced after stripping, mostly due to
charging during imaging. Additionally, only the narrowest gap
region emerges on a flat top surface (Figure 1e,f) enabling
maximum fluorescence enhancement in a minimal near-field
probe volume. Our fabrication method is fully general, allowing
for the design of arbitrary planar geometries (Figure S5). It is
conveniently performed on conductive silicon substrates so that
the final structures may be subsequently transferred to arbitrary
substrates such as microscope coverslips, avoiding the need for
a supplementary adhesion layer that can damp the plasmonic
performance.35 Additionally, the last template stripping step
may be performed just before the final measurements, so the
antenna hot spot is protected from surface contaminants during
storage.
Transmission electron microscopy (TEM) is used to

accurately quantify the dispersion in the antenna dimensions
and the reproducibility of the fabrication method. The same
production process, excluding template stripping, is carried out
on a 30 nm thick freestanding silicon nitride membranes for
accurate TEM metrology on prototypical arrays of nano-
antennas (Figure 2a). Gap sizes from 10 to 45 nm are

Figure 1. Fabrication of planar antenna arrays. (a) The antenna fabrication process flow is performed on a silicon nitride on silicon thin-film. The
HSQ resist is patterned by electron-beam lithography (I) followed by gold evaporation (II), flowable oxide is spun for planarization (III) followed by
etch back by Ar ion beam etching (IV), wet etching of the remaining HSQ (V) and final template stripping by UV curable adhesive (VI). (b) Tilted
SEM view of an opened antenna-in-box before template stripping. The smallest part of the gap, here ∼12 nm, lies at the surface level. A similar
structure is imaged from the top before (c) and after (d) template striping. Dimensions are preserved and the space surrounding the antenna
surrounding is filled by the UV curable polymer as seen in the AFM image (e) showing less than 5 nm residual topography. Panel (f) shows two
AFM profiles averaged over 20 line scans before (dashed blue) and after (red) template stripping of the 50 nm thick gold structure. Scale bars are
100 nm.
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fabricated with narrow dispersions (Figure 2b,c). Although
HSQ is patterned at dimensions in the range of 5 nm for the
nanogap region, the effective gap size of the gold dimer appears
systematically larger. As already mentioned, this effect is due to
a combination of metal diffusion and aperture clogging during
evaporation, as well as metal wetting and diffusion onto the
substrate. It should additionally be noted that the low feature
density results in negligible contribution from proximity effects
in EBL, and that the lithographic resolution is equivalent on
bulk and membrane substrates, as it is inherently limited by
forward scattering in both cases.
We then used scanning transmission electron energy-loss

spectroscopy (STEM-EELS) to characterize the electro-

magnetic properties of the antennas. The EELS response of
the antenna-in-box can be quite complex because of the
influence of the rectangular aperture surrounding the dimer
antenna. Therefore, we first consider the simpler case of a
single gold dimer without the surrounding metal layer (Figure
3a,b). Several modes are identified: at 2.12 eV the longitudinal
antibonding mode is efficiently excited by the electron beam,36

although presenting a vanishing net dipole moment, therefore
being optically dark and not accessible for far field excitation.
The peak at 1.94 eV is assigned to both the bonding and
antibonding transverse modes that present limited energy
splitting as the transverse dipoles in each monomer are weakly
coupled. Finally, the lowest energy mode (1.78 eV) is the

Figure 2. TEM metrology. (a) TEM image of a 5 × 5 antenna array with a 10 nm nominal gap width used for metrology purposes with no template
stripping performed. The scale bar is 500 nm. The rectangular apertures have 300 nm by 140 nm dimensions with each nanosphere being 80 nm in
diameter. (b) Measured gap width of the Au dimers as a function of HSQ structure design width. Average gap width and associated standard
deviation error bars are displayed for 6 sets of 25 antennas each. (c) Corresponding distribution histogram with 1.5 nm bin width. The gap size
variations are due to the finite grain size in the Au film.

Figure 3. EELS analysis. (a) EELS maps at energy slices corresponding to the intensity maxima identified by extracting various spectra (b) at
different impact parameters highlighted in the high-angle annular dark-field image, for an isolated dimer without surrounding box. The bonding and
antibonding longitudinal dipoles are spatially and spectrally resolved at 1.78 and 2.12 eV, respectively. The bonding and antibonding transverse
dipoles are revealed at 1.94 eV with a characteristic EELS signal distribution along the sides of the dimer. In the case of the antenna-in-box (c,d), low
energy modes at 0.88 and 1.2 eV correspond to the fundamental dipole excited along the long or short axis of the rectangular box aperture,
respectively. Multiple higher order harmonics are spatially and spectrally resolved from 1.43 eV and higher. The mode excited at 1.78 eV corresponds
to the longitudinal bonding dipole of the dimer. A second mode, well identified in the green curve, corresponds to the expectedly higher energy
(2.12 eV) antibonding longitudinal dipole. The EELS colormap is scaled to the data range of each map and scale bars are 100 nm.
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optically active bonding longitudinal mode that we exploit to
optically drive the gap enhancement. The lack of EELS signal in
the gap region, originating from the cylindrical symmetry of the
field produced by the electron beam, does not directly reveal
the gap hotspot but further confirms the strong bonding nature
of this mode.36 In the complete antenna-in-box configuration
(Figure 3c,d), spectra and maps reveal a similar hybridization
scheme for the dimer. The longitudinal bonding mode is again
observed at 1.78 eV, in good qualitative agreement with the
measured dark-field scattering spectrum (Figure S6a,b). Lastly,
several low energy modes for the antenna-in-box are excited
below 1.78 eV. These modes are not present for the isolated
dimer (Figure 3a,b); we therefore relate them to the different
multipoles of the surrounding box aperture. These aperture
modes all occur at long wavelengths, do not overlap spectrally
with the longitudinal bonding dimer mode and therefore have a
minimal influence on the antenna’s performance for fluo-
rescence enhancement.

Fluorescence experiments assess the optical performance of
the nanoantennas, and quantify the fluorescence enhancement
together with the antenna’s near-field volume. The experiments
are performed by covering the sample with a solution
containing Alexa Fluor 647 or crystal violet fluorescent
molecules at micromolar concentrations. The absorption and
emission spectra of both dyes feature a strong overlap with the
antenna’s resonance (Figure S6c,d). The fluorescence signal is
analyzed with fluorescence correlation spectroscopy (FCS) and
fluorescence burst analysis. FCS determines the average
number of detected molecules from which we deduce the
fluorescence brightness per emitter and the detection volume
(see Methods for details). In order to maximize the
fluorescence enhancement brought by the nanoantenna, we
use low quantum yield emitters: 200 mM of methyl viologen is
added to the solution to quench the Alexa 647 quantum yield
to 8%, and the quantum yield of crystal violet is around
2%.10,37−39

Figure 4. Nanoantennas enhance the fluorescence detection of Alexa Fluor 647 molecules in solution. (a) Fluorescence time traces and (b)
corresponding FCS correlation functions (dots, raw data; lines, numerical fits) for nanoantennas with 10 and 35 nm gap sizes with the excitation
polarization set parallel or perpendicular to the antenna’s main axis. The experimental conditions correspond to 26 μM of Alexa Fluor 647 with 200
mM of methyl viologen as chemical quencher under 2.3 kW/cm2 excitation intensity at 633 nm wavelength. (c) Normalized time-resolved decay
traces show Alexa Fluor 647 fluorescence lifetime reduction as the gap size is reduced. Black lines are numerical fits convoluted by the instrument
response function (IRF). (d) Scatter plot of the fluorescence enhancement versus the nanoantenna’s detection volume as deduced from FCS analysis
on 83 different nanoantennas. The black line fit follows a power law dependence with a fixed −2/3 exponent. (e) Distribution of fluorescence
enhancement factors deduced from the data in (d) for different gap sizes. (f) Distribution of the nanoantenna detection volume. (g,h) Average values
of fluorescence enhancement (g) and detection volume (h) as a function of the gap size. The data for FIB milling is taken from ref 10 with similar
conditions for the FCS experiments. Error bars correspond to one standard deviation.
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Figure 4a,b displays the raw fluorescence intensity time traces
and corresponding correlation curves with excitation polar-
ization parallel and perpendicular to the antenna dimer axis for
two different gap sizes of 10 and 35 nm. Larger fluorescence
fluctuations and higher correlation amplitudes are clearly
observed when the incident electric field is parallel to the
antenna axis and when the gap size is reduced. This directly
evidence the presence of an electromagnetic hotspot in the
antenna gap region. All experiments are performed at 26 μM
concentration of Alexa Fluor 647, corresponding to 7630
molecules in the 0.5 fL confocal detection volume (Figure S7).
The FCS correlation amplitude scales as the inverse of the
number of fluorescent molecules, so in the confocal reference
without the nanoantenna, the FCS amplitude is very low at 1/
7630 = 1.3 × 10−4. In contrast, correlation amplitudes of 3.9 are
detected with the nanoantenna of 10 nm gap size and
correspond to an average number of 0.26 molecules. The
antenna detection volume can thus be quantified to 17 zL (1 zL
= 10−21 L = 1000 nm3) using the known 26 μM fluorophore
concentration. This volume is the smallest reported for FCS
applications on nanoantennas8−11,27,36 and corresponds to a
value 30 000 times lower than the diffraction-limited confocal
volume. The reduction of the detection volume is confirmed by
the shortening of the diffusion time from 64 μs in the
diffraction-limited confocal volume to 0.9 μs in the nano-
antenna. For a molecule undergoing Brownian diffusion, the
root-mean-square of the displacement scales as (2Dt)1/2, where
D is the diffusion coefficient and t the elapsed time. Using this
formula with D = 300 μm2/s for Alexa Fluor 647 at 21 °C40 and
t = 0.9 μs, we get a typical size of 23 nm, which corresponds to
a 50 zL volume. While this number confirms the detection
volume estimated from the FCS correlation amplitude, this
approach cannot be used for an accurate measurement due to
the complex 3D form of the antenna hot spot volume and the
presence of the interface influencing the Brownian diffusion.
For some experiments,10,29 the background fluorescence

from molecules diffusing away from the hotspot can overwhelm
the signal from the hot spot and complicate the FCS analysis.
Here, we find that the signal from the hotspot always largely
dominates the background, so that the previously used
corrections are no longer needed. The number of detected
molecules is simply the inverse of the correlation amplitude at
zero lag time, and the fluorescence brightness per emitter can
be computed by normalizing the average fluorescence intensity
by this number of detected molecules. For the antenna with 10
nm gap size, we find a brightness of 370 counts/ms. This value
is 1600 times higher than the 0.24 counts/ms found for the dye
in the confocal reference setup (Figure S7) and clearly
demonstrates the occurrence of large fluorescence enhance-
ment in the nanogap. Simultaneously, the fluorescence lifetime
is significantly reduced from 380 ± 15 ps in confocal
illumination to 45 ± 10 ps in the 10 nm gap antenna (Figure
4c and Figure S8).
Several additional test experiments confirm the near-field

origin of the FCS signal. First, all the relevant observables,
nanoscale volume confinement, fluorescence enhancement, and
lifetime reduction, disappear when the laser polarization is
oriented perpendicular to the main antenna axis or when the
gap size is increased. We have also performed control
experiments on an antenna sample with an extra 8 nm thick
silica layer deposited on top of the antennas to prevent the
molecules from accessing the hotspot region. In that case, the
FCS signal is lost (Figure S9) confirming the crucial role of the

few nanometers region surrounding the antenna gap. A study of
the excitation power dependence validates that no saturation,
photobleaching or triplet blinking affect our data (Figure S10).
We also checked that the residual background luminescence
from the gold antenna (in the absence of fluorescent
molecules) remains negligible and shows no temporal
correlation (Figure S11).
To assess the statistical reproducibility of the antenna

fabrication, we repeat the FCS experiments on a set of more
than 80 different antennas and measure for each antenna its
fluorescence enhancement and near-field detection volume.
The scatter plot in Figure 4d indicates a clear correlation
between the fluorescence enhancement and the detection
volume following an empirical power law with −2/3 exponent.
This exponent value can be understood as the volume scales as
the cube power of the typical near-field size, while the
fluorescence enhancement is dominated by the gain in local
excitation intensity which scales as the square power of the
typical near-field size. For each value of the desired nominal gap
size, the histograms of the fluorescence enhancement and
detection volume illustrate the statistical dispersion of the data
around the average (Figure 4e,f). This dispersion comes as
natural consequence of the variability of the gap sizes as
characterized by TEM in Figure 2b,c especially for the smallest
gaps where a nanometer variation in the gap size can have a
large influence on the antenna’s performance and the measured
enhancement factor.
Importantly, the performance of these new optical nano-

antennas significantly outperforms the values achieved
previously using focused ion beam lithography.10 Figure 4g,h
compares the average values of fluorescence enhancement and
detection volume obtained for nanoantennas fabricated with
conventional focused ion beam (FIB) milling or our technique.
For a more detailed view, Figure S12 displays a scatter plot of
the fluorescence enhancement versus the detection volume
reduction. The nanoantennas were tested under similar
conditions for FCS experiments to ensure a relevant
benchmarking. As clearly demonstrated in Figures 4g,h and
S12, template-stripped E-beam lithography provides higher
fluorescence enhancement factors in smaller detection volumes.
The improvement over FIB milling is especially worthwhile for
gap sizes above 25 nm, where our technique can lead to a 10
times increase for the fluorescence enhancement factor together
with a 5× reduction for the detection volume.
Emitters with low quantum yields allow reaching higher

fluorescence enhancement factors, as the nanoantenna provides
a larger benefit to increase the emission quantum yield.8,13 To
probe this effect, we perform experiments on crystal violet
(CV) molecules, which have 2% quantum yield.11,12 The CV
solution is set to a concentration of 1 μM in a water/glycerol
1:1 solution to slow down the diffusion of molecules crossing
the antenna hotspot allowing for direct analysis of the
fluorescence bursts for individual molecules. Using the
detection volume estimated previously with FCS, the 1 μM
concentration ensures that on average less than 0.02 crystal
violet molecules are present in the 10 nm gap region. This low
number rules out the possibility that the estimated count rates
per burst originate from more than one single molecule
diffusing in the nanogap. Intense fluorescence bursts are clearly
detected on the fluorescence time traces (Figure 5a−c) with
their amplitude decreasing as the gap size is enlarged. This
feature confirms that the fluorescence bursts stem from the
antenna gap region. To measure the fluorescence enhancement,
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we fit the photon count histograms in Figure 5d−f with
exponentially decaying probability distributions and record the
maximum peak amplitude in the fitted distribution. The
reference peak fluorescence count per CV molecule is
estimated at 0.18 counts/ms at the same 2.30 kW/cm2

excitation power (Figure S13), which is in agreement with
values reported independently in refs 11 and 12. For the
smallest 10 nm gap size, the maximum count is 2750 counts/
ms with a background of 100 counts/ms (set by the
fluorescence from the CV molecules diffusing away from the
hotspot region and the residual photoluminescence from the
metal). This leads to an impressive fluorescence enhancement
of 15 000 times. The same procedure performed on Alexa Fluor
647 with 200 mM methyl viologen (8% quantum yield)
indicates a fluorescence enhancement of 5300× for a 10 nm gap
size (Figures S14 and S15). The relative change in the
enhancement factors result from the differences of the quantum
yields between CV and Alexa 647 measurements, thus
confirming our measurements. Note that the enhancement
factor for Alexa 647 estimated from the burst peak intensity is
about 3 times higher than the one measured with FCS (Figure
4), as the burst analysis favors the best event when the emitter’s
position and orientation lead to the highest fluorescence
intensity. To avoid the strong dependence of the fluorescence
enhancement on the intrinsic quantum yield of the fluorescent
reporter, the fluorescence enhancement figure of merit was
defined as the product of the enhancement factor by the
reference quantum yield of the emitter in homogeneous
medium.13 For crystal violet and Alexa Fluor 647, the
fluorescence enhancement figures of merit amount to 300
and 420, respectively, and are the highest reported values to
date.8−13,16

The measured fluorescence enhancement factors come very
close to the values predicted theoretically using the formula41
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This equation states that the fluorescence enhancement ηF is
the product of the excitation intensity enhancement in the
nanogap Iexc* /Iexc, times the enhancement of the radiative decay
rates Γrad* /Γrad, and a third term that depends on the initial
quantum yield ϕ0 of the fluorescent molecule and an additional
decay rate Γloss* describing the nonradiative energy transfer to
the antenna’s material induced by ohmic losses. Here we
neglect the collection efficiency improvement brought by the
antenna (back focal plane imaging confirms this assump-
tion10,42). For the smallest 10 nm gap and a dipole emitter
located in the gap center, the FDTD simulations estimate the
different contributions to be Iexc* /Iexc = 600, Γrad* /Γrad = 700 and
(Γrad* + Γloss* )/Γrad = 1100 (Figure S16). These values predict
fluorescence enhancement of 18 000 times for crystal violet and
4700 times for Alexa 647, which come in excellent agreement
with the experimental data.
In conclusion, we have described the combination of EBL

followed by postprocessing and template stripping as a
powerful and versatile method to fabricate nanoantennas with
direct accessibility of the hotspot region, large-scale availability,
and gap sizes as small as 10 nm with sharp edges. This design
provides fluorescence enhancement factors up to 15 000 times,
together with nanoscale detection volumes in the range of 10
zL. The present method can be applied to many other antenna
designs while being fully scalable. Improvement on antenna
fabrication opens up the possibility of fully exploiting the
physical properties of plasmonic antennas for a whole range of
applications, including biosensing and/or live cell research at
the nanoscale.

Methods. Sample Fabrication. Silicon wafers (100 mm
diameter, prime grade) were cleaned following a standard RCA
procedure prior to the low pressure chemical vapor deposition
of 100 nm thick silicon nitride. Hydrogen silsesquioxane
(HSQ) 4% (Dow Corning) was spun at 1500 rpm for 240 s
yielding an approximately 100 nm thick coating. The samples
were then exposed by electron beam lithography (VISTEC
EBPG5000+, 100 kV) using a 1 nm grid and a 2 nA beam (5
nm FWHM). Short range dose corrections were used to
increase feature accuracy and reliably pattern the sub-10 nm
features that define the narrowest gaps. After exposure, the
samples were developed at room temperature in 25%
tetramethylammonium hydroxide (TMAH) for 2 min, rinsed
in deionized water and isopropanol prior to drying in order to
avoid capillary force-induced collapse of the narrowest features.
A gold layer of 50 nm thickness was then evaporated by
electron beam heating at a pressure of 8 × 10−7 mBar on static
substrates ensuring normal incidence of the metal flux. The
stage was cooled at −50 °C throughout the evaporation (Huber
unistat 705w) to ensure small grain size allowing for high
feature accuracy. In order to planarize the sample, flowable
oxide (Dow Corning FOX-16) was then spun at 1000 rpm for
240 s yielding a 1 μm thick film with a residual topography
above the structures of interest below 10 nm. Broad argon ion
beam milling (Veeco Nexus IBE350) performed at −45°
sample tilt was then used to etch back the flowable oxide until
the top gold caps were fully etched. End point detection was
performed by monitoring the gold signal on a secondary ion
mass spectrometer. A 30 s etch with hydrofluoric acid diluted
1:10 in deionized water was used to clear out the residual HSQ

Figure 5. Fluorescence enhancement on crystal violet molecules
measured with fluorescence bursts analysis. (a−c) Fluorescence time
traces recorded on nanoantennas with increasing gap sizes using 1 μM
of crystal violet in water/glycerol 1:1 solution with 2.3 kW/cm2

excitation intensity at 633 nm. The binning time is 1 ms. (d−f) Photon
count rate histograms deduced from the traces in (a−c). The dashed
lines are fits by exponentially decaying probability distributions.
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in the antenna apertures. The wafer was then cleaved into
individual dies. For template stripping, microscope coverlips
(30 mm diameter 150 μm thickness) were cleaned in piranha
solution and surface activated by oxygen plasma (Tepla
Gigabtach 1000W, 500 SCCM O2) before being brought into
contact with the gold substrates with a small drop of UV
curable OrmoComp (microresist technology GMBH) and
cross-linked under UV and light pressure (ESCO EUN-4200
375 nm, 2.5 mW/cm2) for 3 min followed by separation of the
glass from the silicon with a razor blade. Additional samples
were fabricated to perform high-resolution metrology and
EELS characterization following a similar process without
template stripping. The TEM membranes were fabricated at
wafer-scale by using 30 nm LPCVD silicon nitride that was
released in 100 × 500 μm2 windows from the backside by
potassium hydroxide wet etching.
Metrology and Statistics. Sample imaging was performed by

scanning electron microscopy (Zeiss Merlin) to measure the
features before (20 kV, 360 pA, 1 mm working distance and in-
lens detector) and after template stripping (2 kV, 80 pA, 3 mm
working distance, and in-lens detector). Topography was
measured by atomic force microscopy (Bruker FastScan) in
both ScanAsyst PeakForce Tapping and tapping mode. For
high-resolution metrology statistics, imaging was performed
both in TEM and STEM mode (FEI Talos) and processed with
a custom matlab toolbox.
EELS Measurements. STEM-EELS maps were acquired

using a FEI Titan Themis 60-300 equipped with a Wien-type
monochromator and a Gatan GIF Quantum ERS spectrometer.
A 300 keV incident electron beam was used for all experiments,
monochromated to give an energy spread of ∼110 meV fwhm
in the zero-loss peak of elastically scattered electrons and with
beam currents of ∼240 pA. A 17 mrad convergence semiangle
of the probe and a 22 mrad collection semiangle on the
spectrometer were used, with the probe having a mean
diameter of <1 nm for full width at tenth-maximum in incident
intensity. Mapping was performed using the “ultrafast”
spectrum imaging mode with typical dwell times of 0.20 to
0.26 ms per pixel and with the probe rastered in X, Y step sizes
of 0.5−0.6 nm for a total of >105 pixels per map. Each map was
treated with the HQ Dark Correction plugin to reduce noise
associated with dark current subtraction.
EELS Data Processing. The EELS data cubes were processed

using Gatan Digital Micrograph and custom Matlab scripts for
the removal of the background from the tails of the zero-loss
peak (ZLP), extraction of point spectra and spatial EELS maps.
The ZLP was first centered pixel by pixel using a Gaussian−
Lorentzian approximation. Following zero-loss alignment, each
data cube was spectrally cropped to the region of interest
including ZLP (−2 to 4 eV), and artifacts from cosmic rays
were removed. To account for the absorption and scattering
inside the Au film, the data cubes were normalized by dividing
each pixel-spectrum by the integrated zero-loss fit. Spectra
presented in Figure 3 were integrated over a 30 × 30 pixel
region of interest centered around the point overlaid on the
STEM image, whereas EELS maps were typically integrated
over a window of 0.06 eV in energy range.
Fluorescence Experimental Setup. The experiments use an

inverted confocal microscope with a Zeiss 40×, 1.2 NA water-
immersion objective, and a three-axis piezoelectric stage
allowing to select individual nanoantennas. The excitation for
FCS and fluorescence burst experiments was provided by a
linearly polarized He−Ne laser at 633 nm. For fluorescence

lifetime measurements, the excitation source was a picosecond
laser diode operating at 636 nm (Pico-Quant LDH-P-635). The
fluorescence signal was collected in epi-detection mode through
a dichroic mirror and a stack of two long-pass 650 nm filters to
reject the backscattered laser light and maximize fluorescence
collection. The detection was performed by two avalanche
photodiodes (PicoQuant MPD-5CTC) after passing through a
30 μm pinhole conjugated to the focus plane. The fluorescence
time traces for burst analysis and lifetime histograms were
recorded on a fast time-correlated single photon counting
module in time-tagged time-resolved mode (PicoQuant
PicoHarp 300). The concentration of fluorescent molecules
was measured with extinction spectroscopy and confirmed by
confocal FCS experiments on a series of dilutions. In the
photon count histograms, we determine the peak fluorescence
intensity by the intercept of the fitted exponential decay with
the x-axis at 10°. Events of lower probabilities within the 30 s
experiment duration and events lying above this level
(corresponding to the presence of two molecules within the
hot spot) are discarded.

Fluorescence Correlation Spectroscopy. The temporal
fluctuations of the fluorescence intensity F(t) were analyzed
with a hardware correlator (Flex02-12D/C correlator.com,
Bridgewater NJ) to compute the temporal correlation of the
fluorescence signal G(τ) = ⟨δF(t)δF(t + τ)⟩/⟨F(t)⟩2, where
δF(t) = F(t) − ⟨F(t)⟩ is the fluctuation of the fluorescence
signal around the average value, τ is the delay (lag) time, and ⟨
⟩ indicates time averaging. While our earlier works on
plasmonic antennas required a special data treatment to
compensate for the background fluorescence from molecules
diffusing away from the hotspot,10,29 we find here that the
signal from the hotspot largely dominates the background with
the new antenna design, so that the previously used correction
is no longer needed. This further simplifies the FCS analysis so
that the temporal correlation of the fluorescence intensity F can
be written as

τ = *
+ +τ

τ
τ

τ( )
G

N
( )

1 1

1 1 s

d

2

d

where N* is the number of molecules in the gap region, τd is
the mean residence time, and s is the ratio of transversal to axial
dimensions of the analysis volume. N* can be estimated by
taking the inverse of the correlation amplitude near zero lag
time. The fluorescence brightness per molecule is finally
deduced as ⟨F⟩/N*.
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