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Abstract

In this note, we present a new cumulative distribution function using sums and products of m existing
cumulative distribution functions. Properties of such function are justified and using it we propose
many distributions that exhibit various shapes for their probability density and hazard rate functions.
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1. Introduction

In literature, several transformations exist to obtain a new cumulative distribution function (cdf)
using other(s) well-known cdf(s). The most famous of them is the power transformation introduced by
[3]. Using a cdf F (x), the considered cdf is G(x) = (F (x))α, α ≥ 1. For extensions and applications,
see [4], [11] and [12], and the references therein. Another popular transformation is the quadratic rank
transmutation map (QRTM) introduced by [13], where the considered cdf is G(x) = (1 + λ)F (x) −
λ(F (x))2, λ ∈ [−1, 1]. Recent developments can be found in [1, 2], [5] and [6], and the references
therein. Modern ideas include the DUS transformation proposed by [7]: G(x) = 1

e−1 (eF (x) − 1), the

SS transformation introduced by [8]: G(x) = sin
(
π
2F (x)

)
and the MG transformation studied by [9]:

G(x) = e1−
1

F (x) . An interesting approach is also given by the M transformation developed by [10],

where using two cdfs F1(x) and F2(x), the considered cdf is G(x) = F1(x)+F2(x)
1+F1(x)

. In particular, [10]

showed that the M transformation has great applications in data analysis. With specific cdfs F1(x)
and F2(x), it can better fit real data in comparison to some exploited distributions.

In this study, we propose a generalized version of the M transformation, called GM transformation.
It is constructed from sums and products of m cdfs with m ≥ 1. In comparison to the M transfor-
mation, it offers more possibility of cdf, mainly thanks to more flexibility on the denominator term.
Then new distributions are derived, with the associated probability density function (pdf) and hazard
rate function (hrf). In particular, some graphs of such functions related to new distributions based on
Weibull and Cauchy with normal distributions are given and showing a wide variety of shapes, curves
and asymmetries.

The note is organized as follows. In Section 2, we present our new transformation. Sections 3
and 4 apply it with specific well-known distributions, defining the associated pdfs and hrfs with some
plots. Section 5 is devoted to the proof of our theorem.

2. GM transformation

Let m ≥ 1 be an integer, F1(x), . . . , Fm(x) be m cdfs of continuous distribution(s) with common
support and δ1, . . . , δm be m binary numbers, i.e. δk ∈ {0, 1} for any k ∈ {1, . . . ,m}.
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We introduce the following transformation of F1(x), . . . , Fm(x):

G(x) =

m∑
k=1

Fk(x)

m− 1 +
m∏
k=1

(Fk(x))δk
, (1)

with the imposed value δm = 0 in the special case where m = 1. The support of G(x) is the common
one of F1(x), . . . , Fm(x).

The role of δ1, . . . , δm is to activate or not the chosen cdfs in the product in the denominator. For

examples, taking m = 2, δ1 = 1, and δ2 = 1, the function (1) becomes G(x) = F1(x)+F2(x)
1+F1(x)F2(x)

. Taking

m = 3, δ1 = 1, δ2 = 1 and δ3 = 0, the function (1) becomes G(x) = F1(x)+F2(x)+F3(x)
2+F1(x)F2(x)

; F3(x) is

excluded of the denominator.
The following result motivates the interest of (1).

Theorem 1. The function G(x) (1) possesses the properties of a cdf.

The proof of Theorem 1 is given in Section 5.
Let us now present some immediate examples. Taking m = 1 (so δ1 = 0), we obtain the simple cdf

G(x) = F1(x). The choice δ1 = . . . = δm = 0 gives an uniform mixture of cdfs: G(x) = 1
m

m∑
k=1

Fk(x).

Finally, for m = 2, δ1 = 1 and δ2 = 0, we obtain the M transformation introduced by [10]:

G(x) = F1(x)+F2(x)
1+F1(x)

.

For this reason, we will call (1) as the GM transformation (as Generalization of the M transfor-
mation). To the best of our knowledge, it is new in literature.

New cdfs can also be derived by the GM transformation and existing transformations. Some of
them using only one cdf are described below.

• For any cdf F of continuous distribution with support equal to R or [0,+∞) or (−∞, 0) and any
real numbers β1, . . . , βm, where βk > 0 for any k ∈ {1, . . . ,m}, the GM transformation includes
the following cdf:

G(x) =

m∑
k=1

F (βkx)

m− 1 +
m∏
k=1

(F (βkx))δk
.

• Combining the GM transformation and the power transformation introduced by [3], for any
cdf F of continuous distribution and any real numbers α1, . . . , αm, where αk ≥ 1 for any k ∈
{1, . . . ,m}, we obtain the cdf:

G(x) =

m∑
k=1

(F (x))αk

m− 1 +
m∏
k=1

(F (x))δkαk
.

• Combining the GM transformation and the transformation using QRTM introduced by [13], for
any cdf F of continuous distribution and any real numbers λ1, . . . , λm, where λk ∈ [−1, 1] for
any k ∈ {1, . . . ,m}, we obtain the cdf:

G(x) =

m∑
k=1

(
(1 + λk)F (x)− λk(F (x))2

)
m− 1 +

m∏
k=1

((1 + λk)F (x)− λk(F (x))2)δk
.

Others interesting combinations are possible according to the problem. Thanks to their adaptability,
with a specific F (x), these cdfs are of interest from the theoretical and applied aspects.
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3. A particular case with some related new distributions

If we chose F1(x) = . . . = Fm(x) = F (x) and δ1, . . . , δm such that
m∑
k=1

δk = q with q ∈ {0, . . . ,m},

the GM transformation yields the following cdf:

G(x) =
mF (x)

m− 1 + (F (x))q
.

Let f be an associated pdf to F . Then an associated pdf to G is given by

g(x) =
m(m− 1− (q − 1)(F (x))q)f(x)

(m− 1 + (F (x))q)2
.

The associated hrf is given by

h(x) =
m(m− 1− (q − 1)(F (x))q)f(x)

(m− 1 + (F (x))q)(m− 1 + (F (x))q −mF (x))
.

Remark 1. For this special case, note that G is still a cdf for any real numbers m > 1 and q such
that q ∈ [0,m).

The case m = 2 and q = 1 corresponds to a particular case of the M transformation studied in
[10]. New distributions arise from these functions. Some of them with potential interest are presented
below.

• Considering the uniform distribution on [0, 1], we have F (x) = x1[0,1](x) + 1(1,+∞)(x),

G(x) =
mx

m− 1 + xq
1[0,1](x) + 1(1,+∞)(x), g(x) =

m(m− 1− (q − 1)xq)

(m− 1 + xq)2
1[0,1](x)

and

h(x) =
m(m− 1− (q − 1)xq)

(m− 1 + xq)(m− 1 + xq −mx)
1[0,1](x).

• Considering the exponential distribution with parameter λ > 0, we have

F (x) = (1− e−λx)1[0,+∞)(x),

G(x) =
m(1− e−λx)

m− 1 + (1− e−λx)q
1[0,+∞)(x), g(x) =

mλ(m− 1− (q − 1)(1− e−λx)q)e−λx

(m− 1 + (1− e−λx)q)2
1[0,∞)(x)

and

h(x) =
mλ(m− 1− (q − 1)(1− e−λx)q)e−λx

(m− 1 + (1− e−λx)q)((1− e−λx)q +me−λx − 1)
1[0,∞)(x).

• Considering the logistic distribution with parameters µ ∈ R and s > 0, we have

F (x) =
(

1 + e−( x−µs )
)−1

, x ∈ R,

G(x) =
m
(

1 + e−( x−µs )
)−1

m− 1 +
(

1 + e−( x−µs )
)−q , g(x) =

m

(
m− 1− (q − 1)

(
1 + e−( x−µs )

)−q)
e−( x−µs )

s
(

1 + e−( x−µs )
)2(

m− 1 +
(

1 + e−( x−µs )
)−q)2

and

h(x) =

m

(
m− 1− (q − 1)

(
1 + e−( x−µs )

)−q)
e−( x−µs )

s
(

1 + e−( x−µs )
)2(

m− 1 +
(

1 + e−( x−µs )
)−q)(

m− 1 +
(

1 + e−( x−µs )
)−q
−m

(
1 + e−( x−µs )

)−1) .
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• Considering the Cauchy distribution with parameters x0 ∈ R and a > 0, we have

F (x) = 1
π arctan

(
x−x0

a

)
+ 1

2 , x ∈ R,

G(x) =
m
(
1
π arctan

(
x−x0

a

)
+ 1

2

)
m− 1 +

(
1
π arctan

(
x−x0

a

)
+ 1

2

)q
and

g(x) =
ma
(
m− 1− (q − 1)

(
1
π arctan

(
x−x0

a

)
+ 1

2

)q)
π((x− x0)2 + a2)

(
m− 1 +

(
1
π arctan

(
x−x0

a

)
+ 1

2

)q)2 .
• Considering the normal distribution with parameters µ ∈ R and σ > 0, we have

F (x) =
∫ x
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt = Φ(x), x ∈ R,

G(x) =
mΦ(x)

m− 1 + (Φ(x))q
,

g(x) =
(m− 1− (q − 1)(Φ(x))q) e−

(x−µ)2

2σ2

√
2πσ2 (m− 1 + (Φ(x))q)

2

and

h(x) =
m(m− 1− (q − 1)(Φ(x))q)e−

(x−µ)2

2σ2

√
2πσ2(m− 1 + (Φ(x))q)(m− 1 + (Φ(x))q −mΦ(x))

.

• Considering the Weibull distribution with parameters k > 0 and λ > 0, we have

F (x) =
(

1− e−( xλ )
k)

1[0,+∞)(x),

G(x) =
m
(

1− e−( xλ )
k)

m− 1 +
(

1− e−( xλ )
k)q 1[0,+∞)(x), (2)

g(x) =

m k
λ

(
x
λ

)k−1(
m− 1− (q − 1)

(
1− e−( xλ )

k)q)
e−( xλ )

k

(
m− 1 +

(
1− e−( xλ )

k)q)2 1[0,∞)(x) (3)

and

h(x) =

m k
λ

(
x
λ

)k−1(
m− 1− (q − 1)

(
1− e−( xλ )

k)q)
e−( xλ )

k

(
m− 1 +

(
1− e−( xλ )

k)q)((
1− e−( xλ )

k)q
+me−( xλ )

k

− 1

)1[0,∞)(x). (4)

For this case, particularly rich, we denote the associated distribution by GMW (m, q, k, λ). The
case m = 2 and q = 1 corresponds to the distribution MW (k, λ) introduced by [10]. Our
distribution has the advantage to offer more flexibility thanks to the additional parameters m
and q, opening the door to many applications in data analysis. In order to illustrate the potential
of applicability of GMW (m, q, k, λ), some graphs of the associated cdf, pdf and hrf are presented
in Figures 1, 2 and 3 showing various shapes, curves and asymmetries.
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Figure 1: Some cdfs G(x) = G(x,m, q, k, λ) (2) associated to the distribution GMW (m, q, k, λ).
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Figure 2: Some pdfs g(x) = g(x,m, q, k, λ) (3) associated to the distribution GMW (m, q, k, λ).
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Figure 3: Some hrfs h(x) = h(x,m, q, k, λ) (4) associated to the distribution GMW (m, q, k, λ).
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4. Another case with some related new distributions

If we chose m = 2 and δ1 = δ2 = 1, then the GM transformation is reduced to the following form

G(x) =
F1(x) + F2(x)

1 + F1(x)F2(x)
.

The main difference with G and the cdf proposed by [10] is the function F2 in the denominator, leading
new cdf. The associated pdf is given by

g(x) =
f1(x)(1− (F2(x))2) + f2(x)(1− (F1(x))2)

(1 + F1(x)F2(x))2
.

The associated hrf is given by

h(x) =
f1(x)(1− (F2(x))2) + f2(x)(1− (F1(x))2)

(1 + F1(x)F2(x))(1− F1(x))(1− F2(x))
.

New distributions can arise from the expressions above and some of them are presented below.

• Considering the cdf F1 of the power distribution with parameters α > 0 and the cdf F2 of the
power distribution with parameters β > 0. Then we have F1(x) = xα1[0,1](x) + 1(1,+∞)(x),

F2(x) = xβ1[0,1](x) + 1(1,+∞)(x),

G(x) =
xα + xβ

1 + xα+β
1[0,1](x) + 1(1,+∞)(x),

g(x) =
αxα−1(1− x2β) + βxβ−1(1− x2α)

(1 + xα+β)2
1[0,1](x)

and

h(x) =
αxα−1(1− x2β) + βxβ−1(1− x2α)

(1 + xα+β)(1− xα)(1− xβ)
1[0,1](x).

• Considering the cdf F1 of the Weibull distribution with parameters k1 > 0 and λ1 > 0 and
the cdf F2 of the Weibull distribution with parameters k2 > 0 and λ2 > 0 . Then we have

F1(x) =

(
1− e−

(
x
λ1

)k1)
1[0,+∞)(x), F2(x) =

(
1− e−

(
x
λ2

)k2)
1[0,+∞)(x),

G(x) =
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
+ e
−
(
x
λ1

)k1−( x
λ2

)k2 1[0,+∞)(x),

g(x) =

k1
λ1

(
x
λ1

)k1−1
e
−
(
x
λ1

)k1 (
1−

(
1− e−

(
x
λ2

)k2)2
)

(
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
+ e
−
(
x
λ1

)k1−( x
λ2

)k2)21[0,+∞)(x)

+

k2
λ2

(
x
λ2

)k2−1
e
−
(
x
λ2

)k2 (
1−

(
1− e−

(
x
λ1

)k1)2
)

(
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
+ e
−
(
x
λ1

)k1−( x
λ2

)k2)21[0,+∞)(x)
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and

h(x) =

k1
λ1

(
x
λ1

)k1−1
e
−
(
x
λ1

)k1 (
1−

(
1− e−

(
x
λ2

)k2)2
)

(
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
+ e
−
(
x
λ1

)k1−( x
λ2

)k2)
e
−
(
x
λ1

)k1
e
−
(
x
λ2

)k2 1[0,+∞)(x)

+

k2
λ2

(
x
λ2

)k2−1
e
−
(
x
λ2

)k2 (
1−

(
1− e−

(
x
λ1

)k1)2
)

(
2− e−

(
x
λ1

)k1
− e−

(
x
λ2

)k2
+ e
−
(
x
λ1

)k1−( x
λ2

)k2)
e
−
(
x
λ1

)k1
e
−
(
x
λ2

)k2 1[0,+∞)(x).

• Considering the cdf F1 of the Cauchy distribution with parameters 0 and 1 and the cdf F2 of the
normal distribution with parameters µ ∈ R and σ > 0. Then we have F1(x) = 1

π arctan(x) + 1
2 ,

F2(x) =
∫ x
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt = Φ(x), x ∈ R,

G(x) =
1
π arctan(x) + 1

2 + Φ(x)

1 +
(
1
π arctan(x) + 1

2

)
Φ(x)

, (5)

g(x) =

1
π(x2+1)

(
1− (Φ(x))2

)
+ 1√

2πσ2
e−

(x−µ)2

2σ2

(
1−

(
1
π arctan(x) + 1

2

)2)(
1 +

(
1
π arctan(x) + 1

2

)
Φ(x)

)2 (6)

and

h(x) =

1
π(x2+1)

(
1− (Φ(x))2

)
+ 1√

2πσ2
e−

(x−µ)2

2σ2

(
1−

(
1
π arctan(x) + 1

2

)2)(
1 +

(
1
π arctan(x) + 1

2

)
Φ(x)

) (
1
2 −

1
π arctan(x)

)
Φ(−x)

. (7)

Some graphs of these three functions for arbitrary values of (µ, σ) are given in Figures 4, 5 and
6. Again, we see different kinds of shapes, curves and asymmetries, which can be of interest for
the statistician in a analysis data context.
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Figure 4: Some cdfs G(x) = G(x, µ, σ) (5) with various values for µ and λ.
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Figure 5: Some pdfs g(x) = g(x, µ, σ) (6) with various values for µ and λ.
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Figure 6: Some hrfs h(x) = h(x, µ, σ) (6) with various values for µ and λ.
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5. Proofs

Proof of Theorem 1. For any k ∈ {1, . . . ,m}, let fk(x) be a pdf associated to the cdf Fk(x). Recall
that Fk(x) is continuous with Fk(x) ∈ [0, 1], lim

x→+∞
Fk(x) = 1, lim

x→−∞
Fk(x) = 0 and fk(x) = F ′k(x)

almost everywhere with fk(x) ≥ 0. Let us now investigate the sufficient conditions for G(x) to be a
cdf.

• Since
m∑
k=1

Fk(x) and m−1+
m∏
k=1

(Fk(x))δk are continuous functions with m−1+
m∏
k=1

(Fk(x))δk 6= 0,

G(x) is a continuous function of x.

• Let us prove that G(x) ∈ [0, 1]. Owing to
m∑
k=1

Fk(x) ≥ 0 and m− 1 +
m∏
k=1

(Fk(x))δk > 0, we have

G(x) ≥ 0. On the other hand, using the inequality:
m∏
k=1

(1 − xk) ≥ 1 −
m∑
k=1

xk, xk ∈ [0, 1], with

xk = 1− (Fk(x))δk ∈ [0, 1] and observing that (Fk(x))δk ≥ Fk(x), we obtain

m∏
k=1

(Fk(x))δk ≥ 1−
m∑
k=1

(1− (Fk(x))δk) = 1−m+

m∑
k=1

(Fk(x))δk ≥ 1−m+

m∑
k=1

Fk(x).

Hence G(x) ≤ 1.

• Let us prove that G′(x) ≥ 0. For any derivable function u(x), note that ((u(x))δk)′ = δku
′(x)

since δk ∈ {0, 1}. Therefore we have G′(x) =
A(x)

B(x)
almost everywhere, where

A(x) =

(
m∑
k=1

fk(x)

)(
m− 1 +

m∏
k=1

(Fk(x))δk

)
−

(
m∑
k=1

Fk(x)

) m∑
k=1

δkfk(x)

m∏
u=1
u 6=k

(Fu(x))δu


and

B(x) =

(
m− 1 +

m∏
k=1

(Fk(x))δk

)2

.

We have B(x) > 0. Let us now investigate the sign of A(x). The following decomposition holds:
A(x) = A1(x) +A2(x), where

A1(x) =

m∑
k=1

δkfk(x)

m− 1 +

m∏
u=1

(Fu(x))δu −

(
m∑
v=1

Fv(x)

)
m∏
u=1
u6=k

(Fu(x))δu


and

A2(x) =

m∑
k=1

(1− δk)fk(x)

(
m− 1 +

m∏
k=1

(Fk(x))δk

)
.

Since A2(x) ≥ 0 as a sum of positive terms, let us focus on the sign of A1(x). Observe that,

if δk = 1, we have Fk(x)
m∏
u=1
u 6=k

(Fu(x))δu =
m∏
u=1

(Fu(x))δu . If δk = 0, the k-th term in the sum of

A1(x) is zero. Therefore we can write

A1(x) =

m∑
k=1

δkfk(x)

m− 1−

 m∑
v 6=k
v=1

Fv(x)

 m∏
u=1
u 6=k

(Fu(x))δu

 .
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Since Fv(x)
m∏
u=1
u 6=k

(Fu(x))δu ≤ 1, we have m − 1 −

 m∑
u 6=k
u=1

Fu(x)

 m∏
u=1
u 6=k

(Fu(x))δu ≥ 0, implying that

A1(x) ≥ 0. Therefore A(x) ≥ 0, so G′(x) ≥ 0.

• Let us now investigate lim
x→−∞

G(x) and lim
x→+∞

G(x). If m ≥ 2, we have m− 1 +
m∏
k=1

(Fk(x))δk ≥

m − 1 > 0. Since lim
x→−∞

m∑
k=1

Fk(x) = 0, we have lim
x→−∞

G(x) = 0. If m = 1, recall that we have

imposed δm = 0, so lim
x→−∞

G(x) = lim
x→−∞

F1(x) = 0. On the other hand, for any m ≥ 1, we have

lim
x→+∞

G(x) =
m

m− 1 + 1
= 1.
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