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Abstract. We define a Tanaka’s equation on an oriented graph with two edges
and two vertices. This graph will be embedded in the unit circle. Extending this
equation to flows of kernels, we show that the laws of the flows of kernels K solutions
of Tanaka’s equation can be classified by pairs of probability measures (m™,m™)
on [0, 1], with mean 1/2. What happens at the first vertex is governed by m™, and
at the second by m™. For each vertex P, we construct a sequence of stopping times
along which the image of the whole circle by K is reduced to P. We also prove
that the supports of these flows contain a finite number of points, and that except
for some particular cases this number of points can be arbitrarily large.

1. Introduction

Consider Tanaka’s equation

t
vsi(z) =2 —|—/ sgn(ps(x))dWy, s<t, x €R, (1.1)

where (W,).er is a Brownian motion on R (that is (W;)¢>0 and (W_;);>0 are two
independent standard Brownian motions) and ¢ = (ps¢; s < t) is a stochastic flow
of mappings on R. We refer to Le Jan and Raimond (2004) for a precise definition.
Roughly, s and ¢g:—s are equal in law, for any sequence {[s;,t;],1 < i < n}
of non-overlapping intervals the mappings s, ¢, are independent, and we have the
flow property: for all z € R, s <t <, a.s. @s4(x) = @140 @s(x). In Le Jan and
Raimond (2006), (1.1) is extended to flows of kernels. A stochastic flow of kernels
K = (Ks4; s <t)is the same as a stochastic flow of mappings, but the mappings are
replaced by kernels, and the flow property being now that for all x € R, s <t < u,
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a.s. Ky (v) = Ky Ky (x) (with the usual composition of kernels). For z € R and
s <t, K, (z) is a probability measure on R which describes the transport by the
flow of a Dirac measure at = from time s to time ¢. A simple example of flow of
kernels is K () = 0, ,(x), Where ¢ is a stochastic flow of mappings.

By applying Itd’s formula, it is easy to see that (¢, W) solves (1.1) if and only
if, setting K = d,, we have for all s < ¢, z € R and f € CZ(R) (f is C? on R and
1!, 1" are bounded), a.s.

K. f(x) = f(z) —|—/ K (f'sgn)(z)dW, —|—%/ K of" (x)du. (1.2)

Now, if K is a stochastic flow of kernels and W is a Brownian motion on R, we will
say that (K, W) solves Tanaka’s equation if and only if (1.2) holds for all s < ¢,
z € R and f € CZ(R). To give an intuitive meaning of this SDE, the transport by
a solution K is governed by W on |0, co[ and by —W on | — 00, 0], but with possible
splitting at 0. We will also be interested in diffusive solutions of Tanaka’s equation,
i.e. solutions K that cannot be written in the form d,. The main result of Le Jan
and Raimond (2006) is a one-to-one correspondence between probability measures
m on [0, 1] with mean 3 and laws of solutions to (1.2). Denote by P™, the law of
the solution (K, W) associated to m. Then

Ks,t(x) = 6m+sgn(z)WS’t1{t§~rS’z} + (Us,téwsft + (1 - Us,t)é_W:t)l{t>‘rS’z}

where Wy, = Wy = W, W, =W, — inf W, =W, — inf W,,,

we[s,t] u€|[s,t]
Ts,z = 1nf{t Z S Ws,t = —|$|}

and where U, is independent of W, with law m. In particular, when m = 5%,
then Uy ; = 3 and K is o(W)-measurable; this is also the unique o(W)-measurable
solution of (1.2). For m = £(80+61), we recover the unique flow of mappings solving
(1.1) which was firstly introduced in Watanabe (2000). In Hajri (2011), a more
general Tanaka’s equation has been defined on a graph related to Walsh’s Brownian
motion. In this work, we deal with another simple oriented graph with two edges
and two vertices that will be embedded in the unit circle ¢ = {z € C : |z| = 1}.

A function f defined on % is said to be derivable in zy € € if

2 eih _ 2
f'(z0) i= Jim M

exists. Let C?(%) be the space of all functions f defined on ¢ having first and
second continuous derivatives f’ and f”. Let P(%) be the space of all probability
measures on ¢ and (fy)nen be a sequence of functions dense in {f € C(%), || f||co <
1}. We equip P(%) with the following distance d and its associated Borel o-field:

d(p,v) = (zﬂ: 27" </ frdp — /fndy>2>é with p, v € P(%). (1.3)

In the following, arg(z) € [0, 27| denotes the argument of z € C and in all the paper
[ is a fixed parameter in ]0, 71]. Define for z € %,

6(2) = 1{arg(z)€[0,l]} - 1{a7‘g(z)6]l,27r[}
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and denote by % (or simply by ¢ since [ will not vary) the graph embedded in
¢ with two vertices 1 and e and two edges €+ = {z € ¢ : arg(z) €]0,1[} and
€~ =€\ ¢" with orientation given by ¢ (see Figure 1 below).

el

FIGURE 1.1. The graph %.

Definition 1.1. On a probability space (€2, 4,P), let W be a Brownian motion on
R and K be a stochastic flow of kernels on . We say that (K, W) solves Tanaka’s
equation on ¢ denoted (Ty) if for all s < t, f € C*(%) and x € €, as.

K. f(z) = f(z) +/ K u(ef)(z)dW,, + %/ K of"(z)du. (1.4)

If (K, W) is a solution of (T) and K = §, with ¢ a stochastic flow of mappings,
we simply say that (¢, W) solves (T ).

If (K, W) is a solution of (T%), then following Lemma 3.1 of Le Jan and Raimond
(2006), we have o(W) C o(K) (see Lemma 3.1 (ii) below). So we will simply say
that K solves (Ti).

In this paper, given two probability measures on [0,1], m* and m~ with mean
%, we construct a flow K™"m” solution of (Tg). Let (KT, K—, W) be such that
given W, the flows K+ and K~ are independent and (K*,4+W) has for law P
The flows KT and K~ provide the additional randomness when K m¥,m” passes
through 1 or ¢’ Away from these two points, K™ ™ just follows W on €+ and
—W on ¢~. We now state our first result.

Theorem 1.2.

(1) Let m™ and m™ be two probability measures on [0,1] satisfying

/Oluer(du)—/Olum(du)—%. (1.5)

There exist a stochastic flow of kernels (unique in law) K™ ™ and a
Brownian motion W on R such that (K™ ™ W) solves (Tt¢) and such
that if W;rt =W, — inf }Wu, Ws= sup Wy, —W; and

ue[s,t ue[s,t]

ps = inf{t > s, sup(W:t, Wey) =1},
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then conditionally to {s <t < ps}, a.s.
m+,m7
Ksyt (1) = U;rtiscxp(iW:t) + (1 - U;rt)(scxp(fiW:t)’

mTm™ il _ — _
K, (") = Us,téexp(i(l—i-W;t)) +(1 - Us,t)5exp(i(z_wsjt))

and conditionally to {s <t < ps}, (US,,U;,) is independent of W and has
for law mT™ ®@m™ .
(2) For all flow K solution of (Tw), there exists a unique pair of probability

measures (m™,m™) satisfying (1.5) such that K o

Kmhm

Contrary to Tanaka’s equation, where flows are concentrated on at most two points,
flows associated to (T%) have nontrivial supports. The version (K™ ™ W) de-
fined in Theorem 1.2 (1), and constructed in Section 2, satisfies Proposition 1.3
and Proposition 1.4 below. Proposition 1.3 shows the existence of some times
at which the support of K mTm” g only concentrated on a single point. For all
—00 < s <t <400, let

FY =0(Wyw, s <u<v<t). (1.6)

S,
Proposition 1.3.
(1) There exists an increasing sequence (Sk)p>1 of (Fg')i0-stopping times
such that a.s. limp_o S = +oo and Kggk’mi (2) = 0gu for all z € €
and all k> 1.
(2) There exists an increasing sequence (Ti)p>1 of (F')i0-stopping times

such that a.s. limp_oo T = +o00 and Kg?;k’mi(z) = 0y for all z € €
and all k > 1.

The next proposition shows that the support of K m¥,m” may contain an arbi-
trary large number of points with positive probability (more informations can be
found in Section 5).

Proposition 1.4. Assume that m™ and m~ are both distinct from 3 (60+01). Then
there exist a sequence of events (Cn)n>0 and a sequence of (F3Y)¢>o0-stopping times
(0n)n>0 such that for all n >0,

(i) P(Cn) >0,

(ii) Card supp (K{)’?;’mi(l)) =n-+1as. onC,.

We also mention that all the sequences of stopping times discussed in the previous
two propositions will be constructed independently of (m™,m™). They take values
in {pn,n € N} where pg = 0 and p,+1 = inf{t > p,, sup(W;;)t,W,;%t) =} for
n > 0. Set, for z € €,n € N,

z mT,m~
Xn = Supp (KOJJ”) (2)>

where m™ and m™ are distinct from $(do + 61). Then (X7), is a strong Markov
chain on F = Ug>1%*. Proposition 1.3 asserts that {1} and {e%} are recurrent
for this chain. Proposition 1.4 asserts that for all n > 0, both {1} and {e%} (by
analogy) communicate with "1, So one can deduce the following immediate

Corollary 1.5. For all z € €,n > 0, €™ is a recurrent set for X* (i.e. a.s.
Vn >0, X7 €€ for infinitely many k).
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Even that the supports of the flows K m®,m” may be concentrated on arbitrarily
many points at some times, these random sets are always finite in the following
sense: a.s.

Vze ¥, t>0, Cardsupp (Kgf:’mi (z)) < o0.

Let us describe the organization of this paper. In Section 2, we prove the first part
of Theorem 1.2. The proof of the second part will be the subject of Section 3. In
Section 4, we prove Proposition 1.3. Section 5 gives some informations about the
support of K™ ™ and proves Proposition 1.4.

2. Construction of flows associated to (T%)

Fix two probability measures m* and m™ on [0, 1] with mean %

2.1. Coupling flows associated with two Tanaka’s equations on R.
In this section, we follow Le Jan and Raimond (2006). By Kolmogorov extension
theorem, there exists a probability space (€2, .4,P) on which one can construct a
process (4,65, U, Uy, Wet)—socs<t<co taking values in {—1,1}? x [0,1]? x R
such that (), (ii), (111) (1v) and (v) are satisfied, where

(i) Wy, := W, — W for all s <t and W is a Brownian motion on R.

(ii) Given W, (e St,U:t)Sgt and (g5, Us.

s.t)s<t are independent.
(iii) For fixed s < t, (¢£,,U Sit) is independent of W and

(5, UZ) o (udi (dz) + (1 — w)é_y(dz))m™ (du).

In particular ]P’(s&t =1 S)t) = Us)t
(iv) Define for all s <t

m;")t = inf{W,;u € [s,t]} and mg, =sup{W,;u € [s,1]}.
Then for all s <t and u < v, then

]P)(E;tt u v’ Us i |m;tt = mi ) =1L (21)
(v) For all s < t and {(s;,t;);1 < i < n} with s; < t;, the law of (e St,USit)
knowing (e£ Sits Usf,ti)lgzgn and W is given by

(udy (dz) + (1 — u)d_1 (dz))m™ (du)
when ms L & {ms 131 <i<n} and is otherwise given by

0+ +

CsitirUsity

on the event {mit = miti} with 1 <7 < n.

Note that (i)-(v) uniquely define the law of
(er o U Ul et o UE L er UD W)

s1,t17 sl t1? Y s1,t10 1Sy tn? T Sn,tn ) TSn,tn? Y Sp,tn?
for all s; < t;, 1 < < mn. This family of laws is consistent by construction. Note in
particular that, when (iv) is satisﬁed for (s;,t;) and (s;,t;) with 1 <4,5 <mn, then
(v) properly defines the law of (e= Esits Usit) knowing (e i,tw U;E,ti)lﬁiﬁn and W, and

we have that (iv) also holds for (s,t) and (s;,t;) with 1 < j <n.
For s <t, x € R, define

E(x) = inf{r > s: W, = Flz|}
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and set
por(@) = (zEsen(@)We)lyetoyy T oWl sty
Ksi,t(f) = 5misgn(m)WS,t1{t§TSi(m)} + (Us,t5wsijt + (1 - Usj,ct)iwsijt)l{bf}(z)}-

Recall the following

Theorem 2.1. (Le Jan and Raimond (2006))

(1) (T, W) and (¢—,—W) solve Tanaka’s equation (1.1).

(ii) (KT, W) and (K~,—=W) solve Tanaka’s equation (1.2).

(iii) For all z € R, all s <t and all bounded continuous function f, a.s.

Kf (x) = E[f(pq () K*].

2.2. Modification of flows.
For our later needs, we will construct modifications of ¢* and of K+ which are

measurable with respect to (s, ¢, x,w). On a set of probability 1, define for all s < ¢,

(Snytn) = (%, %) and

~ T+ +
(587,5, Us,t) (lim sup 65 4, limsup US> t)-
n— 00 n— o0

Then, we have the following

Lemma 2.2. (i) For all s <t, a.s. %ft = Usit = Usit

(ii) Consider the random sets
9T ={(s,t) e R* s < t, m:t < main(Wg, W)},
T ={(s,t) e R*;s < t,m,, > mazs(W,, Wy)}.
Then a.s. for all (s,t) and (u,v) in 2%,

+ + ~+ 77t rr+
ms,t = mu,v = (Es,tv Us,t) ( u v U )

st’

Proof: (i) By (2.1), a.s. for all s < t,u < v such that (s,t,u,v) € Q*, we have

+ + +
ms,t:m :>(st’Ust) (ivai)

u,v

Fix s < t. With probability 1, mit is attained in |s, ¢[ and thus a.s. there exists ng

such that

mgtt = mjE P mfﬂo)tno for all n > ng. (2.2)

Taking the limit, we get G ststit) (ef U= ) a.s. From (2.1) and (2.2),

57107tn0 ’ 5n07tn0

we also have that (eF st Usit) (e ;tno,tnost:io,tno) a.s. and (i) is proved.

(ii) With probability 1, for all (s,t) and (u,v) in 2%, if m;’ft = mg,, then
Ing : m;tmtn = mfmvn for all n > ng, which implies that

Ing : (sgtn . ,US:EL o) = € o Ufn v,,) for all n. > ng
and thus that &5 st = =gt uv and that Usit = qut,v- O

We may now consider the following modifications of ¢ and K* defined for all
s<t,x € R by

Paa() = (@Esen@Won)lyet iy T S Wohl s rt )
-+
K@) = Gotsmn@wederzy + (Ul0wz, + (1= U0 e ) pnrt ()
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Then Theorem 2.1 holds also for 3=, K* (because (i), (ii), (iii) and (iv) stated at
the begining of Section 2.1 are satisfied by £+, U+, W)).

Lemma 2.3. (i) The mapping

(s,t,z,w) —> (@;‘ft(:v,w),f{;ft(x,w))
is measurable from {(s,t,z,w),s < t,z € R,w € Q} into R x P(R).
(i) For all s,t,x, a.s.

wift(:v) = @ft(x) and K;tt(x) = l?;tt(x)

Proof: (i) Clearly, the mapping

(Sv L, W) — (g;t,t (W)v [75:‘,:15 (w)v Ws,t(w))
is measurable. For all t > s, we have

+ o .
(@) > 1) = ink Wa + fa] > 0)

which shows that (s,z,w) — 7 (x,w) is measurable and a fortiori (s, z,w) —>

7, (x,w) is also measurable. (ii) is a consequence of Lemma 2.2 (i). O

To sunphfy the notation, throughout the rest of the paper, we will denote
~+ 77+ ot +

Et> Usitr @5, taK + simply by e t7Us t> Ps, th iz

2.3. The construction of K™ ™

In this paragraph, we construct a stochastic flow of kernels K m*m” and a stochastic
flow of mappings ¢ respectively from (K+, K~) and from (¢, 7). Let

ps = inf{r > s, sup(W;, , W, )=1}. (2.3)
We first define (¢, 1)s<i<p,. For t € [s, ps], set
psi(1) = explivg,(0)),
psr(e) = exp(i(l+ ¢,(0)))

and for z € €\ {1,¢"} and t € [s, p], set
psp(z) = 2 Mty )y

+ (sos,t(1)1{Zeie<z)ws,T3(z):1} + sos,t(eil)l{zeiew)ws,mz):eu}) Litsry(2)}5
where

7o(2) = inf{r > s, ze"Wer =1 or ¢},
Note that on {7,(2) < ps} N {ze®Wara) = 1}, we have W:TQ(Z) = 0 and con-
sequently ¢ - (»)(1) = 1. Also, on {74(2) < ps} N {ze“@Werss) = €'} we have
W, (5 = =0 and so ;4 Ts(z)(e“) = ¢,
Since (s,w) — ps(w) and (s, z,w) —> 75(z,w) are measurable, it follows from
Lemma 2.3 that

(8,1, 2,w) — 0s.¢(2, W)L {s<i<p, (W)}

is measurable from {(s,t,z,w),s < t,z € €,w 6 1} into ¥. Now we consider the
sequence of stopping times (ps)k>0 such that p? = s and pt! = ppr for k> 0.
Define for all s < t,

Ps,t = E : 1{p§§t<p’;“}¥’p’;,t O Ppk=1 pk OO Psps-
k>0
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Then (s,t,2,w) — @s1(z,w) is measurable from {(s,t, z,w),s < t,z € €, w € Q}
mt,m~

into ¢. By the same way, we define (K, "™ )s<i<,, for t € [s, ps]

+

K:;lt 7m7(1) = U:tacxp(iW:t) + (1 B U:t)acxp(fiW:t)’

m+,m7 il _ —
Ks,t (6 ) - Us,téexp(i(l-i-W;t)) + (1 - US7t)6exp(i(l—W;t))
and for z € €\ {1,¢%} and t € [s, ps]

171Jr m-
Koy ™ (2) =6 icorwa Lp<r ()}
N

m*,m7 mT,m- 3l
+ (Ks,t (1)1{zei€(z)ws,rs(z):1} + Ks,t (6 )l{zeie(z)ws,ﬂ's(z):eil}) 1{t>‘rs(z)}-

Define now for all s < ¢,

+, - yoo— +, - +, -
KmhmT 1 . KmomT L gmTms gemtme
5.t k§>: {pk<t<pit11trs,ps kol et pk
>0

Then (s, t,z,w) —> K;n’:’mi (z,w) is measurable from {(s,t,2,w),s <t,z € €,w €
Q} into P(%). For every choice s1 < t1 < -+ < 85 < Uy, (cpsi,ti,K:Z;’mi) is

ol vrenws Udvs Unps Waw, i < u < v < t;)-measurable and these o-fields are

w0 w0 Y u,vr Y u,v
independent for 1 < ¢ < n by construction. This implies the independence of the
family {(wsi,ti,K;’Z:i’mi), 1 < i < n}. It is also clear that the laws of s, and

42
K™ only depend on t — s.

2.4. The flow property for K™ ™™ and ®.
To prove the flow property for both ¢ and K m+>m7, we start by the following

Proposition 2.4. Let S and T be two finite (fKVOO7T)T€R—5t0pping times such that
S <T <pg. Then a.s. for allu € [T, pgl,z € €, we have

psu(z) = pruopsr(2)
and
K§, ™ (2) = Kgr™ K™ (2).
Proof: Define

le{weﬂzV(sl,tl),(52,t2)€@i,mi =mE, =>ef, =¢F }

s1,t1 S2,t2 s1,t1 S2,t2

Qy={we: m‘TL)TH <Wr <mpr.,., m;SH <Ws <mgg,, forallr > 0}.

Then P(21) = 1 (see Lemma 2.2 (ii)). It is also known that P(Qs) = 1 (see Karatzas
and~Shreve (1991) page 94). We will prove the proposition on the set of probabili‘gy
1: Q= Q1 NQy and we first prove the result for ¢. From now on, we fix w € Q.
Define

By = {(u,2): T<u<ps,u<7s(2)},

Eay = {(u,2): T <7s(z) <u<psh

Euiy = {(u,2): 75(2) <T <u < ps,u < 1mr(psr(2))},
By = {(u,2): 75(2) T < mr(psr(2)) < u < ps).
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Then E;y U E;;) U Eiiiy) U Eiyy = [T, ps] x €. Forall z € €, set Z = ¢g,r(z) and
0 = arg(z).
(i) Let (z,u) € Ey. Then as T' < 75(z), we have 6 ¢ {0,1},7 = zet(Z)Ws.T and
m(Z) = inf{r>T, Ze“@Wrr =1 or ¢!}
= inf{r>1T, 2 (cOWsr+e(D)Wr.r) _ 1 op e”} =715(2)
since €(z) = €(Z). Therefore u < 70(Z) and @1, o psr(z) = ZePIWra —
zele(DWs.u — 0s.u(2).
(ii) Let (z,u) € E;. Then, we still have 77(Z) = 75(2) and ¢7.,,.(2)(Z) =
©3,75(z)(2). Recall that
05:u(2) = 05D {ps o (21=1) + €5:u(€) (g (2) =it}
and
o1u(Z) = 01u(D s iy (=1} + 0T or ()=
Suppose for example ¢g ;. (2)(2) = ©7,r(2)(Z) = 1, then W;{TT(Z) = W;{Ts(z) =0
and so W;{T = W;T (and a fortiori m;T = mjg"r) for all r > 70(Z)(= 75(2)). From
the definition,
Psu(2) = s.u(l) = explivf ,(0)) and 1. (Z) = @r.u(1) = exp(ig; ,(0)).
If Wi, =Wg, =0, then ps.(2) = ¢ru(Z) = 1. Suppose that Wi, = Wg, >0,
then W, > ijL’u and W, > mJSr)u. Since w € s, we have
Wr > m;u and Wg > m;u.

In other words, (T,u) and (S,u) are in 2" so that £§7u = a;yu and o7, (Z) =

P5,u(2).
(iii) Let (z,u) € E(;;. Assume for example that g .:)(2) = 1, then Z =

vs.r(l) = 57 gince T < ps and
eru(Z) = exp(i(goET(O) +e(Z)Wrw))
= exp(i(sgyTWgyT +e(Z)Wrw)).
As T < u < 7r(2), it follows that Z ¢ {1,e} (if Z € {1,e"}, then 77(Z) = T),
e(Z) = Eg,T and so 1, (Z) = Zexp(isgﬁTWTﬂ) = exp(istL’T(Wu - mJSr’T)). As
Z # 1, we necessarily have W;T > 0. Thus if £§7T =1,

mr(Z)=inf{r >T: W, — m;T =0or I}

and if 6;71 = -1,
mr(Z)=inf{r >T: W, — m;T =0or 27 —1}.

Since u < 77(Z), we have m;u = m;T and @7, (Z) = exp(is‘SﬁTW;u). On the
other hand, since u < pg,

vsu(z) = exp(igaJSr)u(O)) = exp(iegﬁuW;u).
But (8,7) € 2% (from Wq, > 0), (S,u) € 2" (from u < 77(Z) which entails
that Wgru > 0). Consequently EJSr’u = EJSF)T and so o714 (Z) = @su(z). The case

©s,75(=)(2) = €' can be done similarly.
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(iv) Let (z,u) € E(;,). Assume for example that ¢g ;. .)(2) = 1 so that W;Ts(z) =

0. Consider the first case: aJSrT = 1. Then Z = eiW;T and

mr(Z) =inf{r >T: W, — m;T € {0,1}}.
If W2y — mgyT =1, then u = 77(Z) = ps and ¢s.,(2) = pr.u(Z) = €'
EW:(z)— m;T =0, then <pT7TT(Z)(Z) =1 and ¢7,(Z) = or(1).
Since 0g,74(z)(2) = 1, we have ©5..(2) = ¢s,.(1). Moreover W;fﬂ_ (z) = W;TT( 7)) =
0, which implies W:,qu = W;u (since u > mp(Z)).
Now, if u satisfies W, = W, =0, then ¢1.,(Z) = ¢su(z) = 1. If not, my,,, =
mJSr’u and (T, u), (S,u) are in 2. This implies EJTr’u = stL’u and ¢7.4(Z) = psu(z)
exactly as in (ii).
Assume now that 6;71 = —1, then 77(Z) satisfies W, (z) — m}-)T = 0 (recall that
mr(Z) < ps) and o1 (Z) = ps.u(z) as before.
The result for K™ ™ can be proved by replacing ¢g (%) by eWsr in Eiis) and
E(). However, the proof remains similar. ]

Corollary 2.5. Let S < T be two finite (FYV.
probability 1, for allu > T,z € €, we have

W o r)rer-stopping times. Then, with
ps.u(z) = pruc psr(z)
and L L L
Kg, " (2) = Kgp™ Kp,™ (2).
Proof: Fix k € N and define the family of (FY_ ),er-stopping times (T%);>o by
TO = (T V p&) A pgﬂ and T% = ppi—1 for i > 1. As r — p, is increasing, we have
Pt < TH < phHFL for all > 0. Applying successively Proposition 2.4, we have
a.s. forall 2 € €, i >0 and all u € [T T |
(PS,u(Z) = (pp;;ﬂ’u o SDTi*I,pf;H 0---0 (pTO,p§+1 o Spp’fq,TU o (ps,p)fg (Z)
-
and for all u € [T, p&tH],
P5u(2) = Pri © Phti 1i O 0 Pro i1 O Ppr 10 0 Pg i (2).
On {ph < T < pk™}, we have T? = pi. for all i > 0 whence a.s. on {pf < T <
pEtY for all 2 € € and all i > 0,

osu(z) = Pplti O Ppimt i OO Py ki1 O ps,r(z) for all u € [p&™, ph]

and

Ps,u(2) = Ppi u © Piti i OO Py k1 O @s.1(2) for all u € [ply, pititl],

Now define the family (S%);>1 of (F', | )rer- stopplng times by S* = (T'VpE™)Aph

and ST = pgi for i > 1. Then for all i > 0, p&f < ST < plf["’l.‘ Applying again
Proposition 2.4, we get a.s. for all z € ¢, i > 0 and all u € [p}., S,

CTu(Ps,1(2)) = i 0 © Pgipi 0 0 Pg1 1 0 o7 51(Ps,T(2))
and for all u € S, pit!],

PT,u(Ps,1(2)) = @sit1 0 0 Ppi git1 0 0 Qg1 1 0 o1 g1 (PsT(2)).
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On {p§ < T < pk+l} we have §° = P]f;ﬂ for all # > 1. Consequently a.s. on
{ph < T < pit'} forall z € €, i > 0 and all u € [ph, i+,

Pu(P5,1(2)) = Ppiu © Pyiti i 0 0 Ppeir 1 0 e (ps,7(2))

and for all u € [pETT! pif).

Pru(Ps,1(2)) = Qprrivt 0Py prrint 0 0@ kit 1 0@ ki (ps,1(2))-
We have thus shown that a.s. for all z € ¢ and all u > T,
1{p§§T<p’;+1}<PT,u opsr(z) = 1{p§§T<p’;“}<PS,u(Z)-

By summing over k, we get that a.s. Vz € G, Yu > T, o7, 0 psr(z) = vsu(2).
The flow property for K m*m” holds by the same reasoning. O

2.5. K™ ™" can be obtained by filtering .
For all —co < s <t < 400, let
FOOUW —oUh,, Us s W,

U,V u,v? ’U.’U7

s<u<v<t)=o(K K, ,; s<u<v<t).

u,v’ u,v?

Corollary 2.5 entails the following

Proposition 2.6. For all z € €, all s <t and all continuous function f, a.s.
mT,m~
I ) = B [ |F0 ]

Proof: Fix s <t,z € € and f € C(¥). Properties (ii) and (iii) of Section 2.1 imply
that a.s.

mt,m~ + U~
K& f(@)ls<icpy = B {f(%,t(z)) ‘fs[{t v ’W} Lis<t<p.} -

Define

t - Ut uU-
et e, UTUT W + +
For = U

oleg, Uiy Wuw; s<u<v<t)=o(pf, Kf,; s<u<v<i).

If Z is a random variable independent of Fg , <L U UTW , then a.s.
mt m™ tuU-
Koo ™ [l s<u<py = E {f(%)t(z)) ‘]:s[,]t v ’W} Ls<t<pay - (2.4)

For n > 1 and i € [0,n], let t} = s+ @,Anﬁi ={tr < ptiil} and for n > 1 let
A, =N A, ;. Notethat A, , € ]-'tVX 4 and A,, € ]-"SVZ Then since K* and <pi

N

are stochastic flows, }'Sst £ UTUEIW Vi 1an EtnU VW By Corollary 2.5,
i—17

a.s.

oo +
Ko™ (2) = K;")t?’m KZZ 1"; (2)
and
@s,t(2) = pin_ 100 s n(2).
Recall that the o-fields (}'fn f nU+ U™ W) are independent. Then, using
o 1<i<n

(2.4), we get that a.s.

+

m,m +uU-
K20 ()4, = B [F(poa() [F20 Y| 1,
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and therefore a.s.
+

KU f(2) = [%t \fUUW}
(1= B [ [ )

To finish the proof, it remains to prove that P(AS) — 0 as n — oco. Write

n

- t—s
P(AS) < 3P = Y BT — iy > e, =) =P (s )
=1

=1

Let p* =inf{r > 0: Woj,tr =1{}. Then

P(A;)§n<P<tT> +>+P<T>p >)—2nP<T>p)

We have pt+ ‘% inf{r > 0:|W,| =1}. Let T, = inf{r > 0 : W,. = [}, then

+oo l _12
= 4n/ exp(—)dz
) . T p(5,)

n

P(AS) < 4nP (t s

(see Karatzas and Shreve (1991) page 80). By the change of variable v = nx, the
right hand side converges to 0 as n — oo which finishes the proof. O

2.6. The L? continuity.
To conclude that K™ ™ and @ are two stochastic flows, it remains to prove the
following

Proposition 2.7. For allt >0, 6 € [0,27[ and f € C(¥), we have

lim B [ (f(¢0.(2)) = S (w0a(e))’] =

z—et?

lim E {(ng»m f(z) = K5 f(eie))? —0.

z—eif

Proof: By Jensen’s inequality and Proposition 2.6, it suffices to prove the result
only for ¢ and by the proof of Lemma 1.11 Le Jan and Raimond (2004) (see also
Lemma 1 Hajri (2011)), this amounts to show that

zl_i)fge P (d(</70,t(z)v wo,t(ew)) > 77) =0. (2.5)

where ¢ > 0,7 > 0 and 0 € [0,27[ are fixed from now on. For each z € €, let
A, = {d(po.4(2), po.(e?)) > n} and denote 79(2) and g simply by 7(z) and ¢;.
First case : # = 0. For « €]0,1[, we have 7(¢*®) = inf{t > 0: o+ W; =0 or [} and
P(Aeioc) S
P(t < T(eia)) +P (Aem N {@T(em)(eia) = l,t > T(eia)}) + P((p.,—(em)(eia) = eil).

If t > 7(e) and @, (cia)(e') = 1, then ¢;(e’™) = (1), thus in the right-hand
side, the second term equals 0. Since limq_o4 7(€’*) = 0 and P(@y(eiay(e) =
e'l) = P(o 4+ Wy(eioy = 1), it is clear that P(Acia) — 0 as @ — 0+ and similarly
P(Agia) — 0 as o — (2m)—. Thus (2.5) holds for # = 0 and by the same way for
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0=1.
Second case : 6 €]l,2n[. For all « €]l, 2x[, we have
P(Aem) < P( eiec [ {w‘r(e“" ( ) Pr(ei?) ( ) - 1})
"HP)( eio [ {SDT(eiO‘)( ) = (pr(eie)( 10) = ell}) + €a,0
where
€a,0 = P(@T(ei‘")(eia) =1, </7‘r(ei9)(ei9) = eil) +P(</)T(em)(eia) = eila @T(eie)(elp) = 1)
which converges to 0 as o — 6. Let us prove that

hm ]P’( «) = 0 where B, = Acia N {@r(cio)(e’ ) = ©r(ei0y (€' 9y =1}.

For | < a < 0, write
P(B.) = P(BaN{t < 7(e)})+P(Ban{r(e?) <t < 7(e")})+P(Ban{t > 7(e')}).
Since ¢.(e) and ¢.(e??) move parallely until one of them hits 1 or €%, it comes

that

lim (]P’(Ba N{t < 7(e)}) +P(B, N {r(e) < t < r(ei“)})> =0.

a—0—
Now
P(BaN{t>7(e")}) = P(BaN{r(e"*) <tApr(einy})
+P(Ba N {py(einy < 7(e") < t})
< P(B.N {T(eia) <tA pT(eie)}) + P(pT(eie) < T(em)).

Obviously limg_,g ]P’(pT(ele) < 7(e)) = P(py(einy < 7(e)) = 0.
Set Y = @, (ci0)(e'), then a.s. on By N {r(e'*) SEA prein) }, we have ¢ (e'®) =
©r(ei0),:(Y) by Corollary 2.5 and 7, (.i0)(Y) = 7(e'¥) < pr(cioy.
Recall that o (cioy (Y) 1= @r(ei0) (1) for all s € [1(ci0y(Y), pr(eiey] and conse-
quently @ (cio) o(Y) = ©0r(eio),s(1) for all s > 7.(.0y(Y) (by the definition of ¢).
This shows that a.s. on By N{7(e"*) <t A pr(eio)}, we have

d(pi(e”), 01(e")) = d(pr(eioy +(1), Pr(einy +(1)) = 0.
Finally lim,_¢— P(B,) = 0 and by interchanging the roles of # and «, we have
limy—,94 P(By) = 0. Similarly

: i0 i il

glj}I‘l‘)P (Aem N {‘P‘r(eie)(e ) = <Pr(em)(6 ) =e¢ }) =0

so that (2.5) is satisfied for all 6 €]l,2x[. By the same way, it is also satisfied for
all 6 €]0, 1[. O

2.7. The flows ¢ and K™ ™ solve (Ty).
In this paragraph we prove the following

Proposition 2.8. Both ¢ and K™ ™ solve (Ty).

Proof: First we check the result for . We will denote cpit(O) simply by cpit and

the mapping z — cp;'ft(z) by (goit(z))zecg to avoid any confusion. An important
consequence of the modifications defined in Section 2.2 which is the key argument
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here is that cpii s4. is a Brownian motion for any finite (]—'g}{ )-stopping time S. To
justify this, consider a finite (]—'g}f )-stopping time S and for ¢ > 1 and ¢t > 0, set

gS|+1

2
s, = L g0 =5, — o+t

Let t > 0, then a.s. (S,S+1t) € 27 and for ¢ large enough, we have (Sg, Sq¢) €
2% and szrq,Sqt = mJSr_SH. Lemma 2.2 (ii) implies that a.s. for ¢ large enough
+ o+ '

€5,5+t = €3,,8,.~ Thus a.s.

+ o +
PSS+t = qlingo PSy,Sqt" (2.6)
Let 0 < t; <--- < t, and take a family (f;)1<i<, of bounded continuous functions

from R into R. Using the independence of increments and the stationarity of o™,
we have

E

Hfi(@JSr,Sthi)] = Ilim F

. q—00
i=1

H fi(‘PJsrq,sq,ti )]

i=1

['n
— ] +
L1=

i 2 h h+1

heN Li=1

- h h+1
p— 3 .
= qhm E E I I fl(@o,ti %)‘| P (_q <S< —q )

heN Li=1

Hfi(ﬁpar)ti_g)‘|

= lim F
q—)OO "
=1

H fl(@gtl)‘| :

i=1

E

Since <p8ﬁ . is a Brownian motion, the same holds for SOJSF, s4.- Now the rest of the
proof will be divided into three steps.

First step. Let S be a finite (F}" )-stopping time. Then for all z € ¢, f € C?*(%),
a.s. Vt € [0, ps — 5], ’

flessnl@) = 1)+ [ (FessrlWssi+g [ Fessrl)dn

We first prove this for z = 1. By It6’s formula, for all f € C?(%) a.s. Vt > 0,

t 1 [t
f(eXP(i@Jsr,Sth)) = f(1)+/0 f/(exp(iwg,SJru))d(P;SJru—i_ 5/0 f”(eXP(i@JSF,SJru))dU-

Tanaka’s formula for local time yields a.s. V¢ € [0, ps — 5],

t
|<P§S+t| = / Sgn(%ﬁJsr,SJru)d@Jsr,SJru + Ly
0



Tanaka’s equation on the circle and stochastic flows 429

where L; is the local time in 0 of <p§)5+,. By construction, |90§,S+t| = W;SH for
all . So we can deduce from the previous line that a.s. V¢ € [0, ps — 5],

t
/o Sgn(@JSr,SJru)d@Jsr,Sﬂ + L= W§L,S+t'

Thus by unicity of the Doob-Meyer decomposition, a.s. Vt € [0, ps — 5],

t
/ Sgn(¢§,s+u)d‘%’§,s+u = Ws, s+t
0

Since sgn(ngSiSjLu) = 5§75+u a.s., we get a.s. Vt € [0, ps — 5],

t

t
¢§,5+t:/0 5§,5+udWS,S+u=/O e(ps,5+u(1))dWs, 5 4u-

Recall that pg g4++(1) = ¢S5+t for all ¢ € [0, ps — ST, thus the first step holds for
z = 1. The first step is similarly satisfied for z = e¢? and for all z € €'\ {1,€} by
distinguishing the cases t < 7g(z) — S and ¢t > 75(z) — S.

Second step. Let S be a finite (F3")-stopping time, G; = o(p0,u(2),2 € €,0 <
u <t), t>0. Then (s, (s+uyrps(2), 2 € €,u > 0) is independent of Gs.

Clearly

(@5, (S+uprps (2),2 € €,u>0) C o(0F g1yt > 0) Vo (Pg g4yt > 0).
Fix 0 <uy < -+ < Up, then a.s. (S, 8 +uq1), -, (S, S +uy,) are in 2T NP~. Take

a family {f1,91, -, fn, gn} of bounded continuous functions from R into R and let
A € Gs. By (2.6), we have

E|:Hfi(@§7S+ui)gi((p§,5+ui)1z4:| = lim E[Hfz-(so§q,sq,ui)gi(sDEQ,sq,ui)1A :

q—00
i=1 i=1

For ¢ large enough (% < uq), we have

B TLA68, . )05, 5,14

i=1

+ui)1Aﬁ{%SS< ’"“}]

q

= Z E|:Hfi(@fn+1)m1+ui)gi(90m+1 o1

;
m>0 =1 oo oo

with AN{2 < § < 2HY € G C (9, (2), puu(2),2 € 6,0 <u <o < 2H,
q

Now using the independence of increments and the stationarity of (o1, ¢~), the
second step easily holds.

Third step. ¢ solves (T).

Denote pf simply by p¥. Then as. for all k € Nand z € €, u — @, ,(2)
is continuous on [p*, pF*1]. Consequently for all z € €, a.s. u — @ou(2) is
continuous on [0, +oo[ and in particular, ¢ ,x(2) is G« measurable. Now fix f €
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C?(€),t >0,z € € and define for all y € €,
H(f,t) (y) = f(<Pp1,p1+tA(p2—p1)(y)) - f(y)

tA(p?—p")
_/0 (fle)((ppl,p1+u(y))de1,p1+u

1 tA(p®=p") .
5] et

Then a.s. y —— H(s4)(y) is measurable from % into R. Moreover Hs, is
a(@p,(p14uyrp2 (2),u > 0,2 € €)-measurable and H ;) (y) = 0 a.s. forally € € by
the first step. The second step yields Hy (@0, (2)) = 0 a.s. and we may replace
y by o, (2) directly in the stochastic integral so that, using the flow property, we
get

tA(p>—p")
f (@O,lert/\(p?fpl)(Z)): f(SDO,pl (Z)) + /0 (fle)(SDO,leru(Z))del,p1+u

1

tA(p?—p')
s3] o

- 1)
prHtA(p*—p")
- (FnntNas + 51 (o) )

By induction, we have a.s. Vk € N,

PR A (PP —pR)
F(@opsonperi_(2) = F2)+ / (') (o (=))W

1 rPiHtAGet ") ,
"1‘5 / f (cpoyu(z))du.
0

This implies that ¢ solves (T%). The fact that K mTm” solves (T) is similar to
Proposition 4.1 (ii) in Le Jan and Raimond (2006) using Proposition 2.6. O

3. Flows solutions of (T%)

From now on (K, W) is a solution of (T%) defined on a probability space (2, A, P).
Fix s € Rand z € €, then (K, (z))i>s can be modified such that, a.s. the mapping
t — K, (%) is continuous from [s, +oo[ into P(%). It is the version we consider
henceforth for all fixed s and z.

Lemma 3.1. (i) For all z € € and s € R, denote 7,(z) = inf{r > s, ze*(=)Wer =
1 or e'}. Then a.s.

Ks,t(z) = 52816(2)“’5,” Zf S S t S Ts (Z)
(it) o(W) C o(K).

Proof: (i) We follow Lemma 3.1 Le Jan and Raimond (2006). Define
¢t ={2€% arg(z) €0,l[} and ¢ =¥\E€". (3.1)

Fix z € €1 and let
To=inf {t >0: Ko4(z,€67) >0} .
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Let f € C?(%) such that f(y) = arg(y) if y € €*. By applying f in (T%), we have
for t < 7,

‘Zg arg(y) Ko (z,dy) = arg(z) + W;. (3.2)

By applying f? in (T ) and using (3.2), we also have for t < 7,

t
K07tf2(z) = f2(z)—|—2/0 ‘Zgarg(y)Kmu(z,dy)qu—i—t

() 42 / (awg(=) + W )dW, + ¢

(arg(z) + W3)2.

Thus that for t < 7.,

| (ax8to) = axa(e) = W) Koa (2. ) =Ko ()
— 2(arg(z) + W) Kot f(2)
+ (arg(z) + W;)* = 0.
By continuity a.s.
Ko, (2) = 0 cicoyw, for all t € [0,7,].

The fact that m9(z) = 7. easily follows.
(ii) Let (fn)n>1 be a sequence in C%(%) such that f/(z) — €(z) as n — oo for all
z€ €\ {1,e"}. Applying f, in (Ty), we get

| Koty 0¥, = Koafal)) = a0 = 5 [ KouufiVdu
0 0

It is easy to check that fg Kou(efh)(1)dW, converges towards W; in L?*(P) as
n — oo whence in L?(P)

which proves (ii). O

3.1. Unicity of the Wiener solution.

Our aim in this section is to prove that (T%) admits only one Wiener solution (i.e.
such that o(W) C o(K)). This solution is K™ ™ with m* = m~ = d1. For
this, we will essentially follow the general idea of Le Jan and Raimond (2002): the
Wiener solution is unique because its Wiener chaos decomposition can be given
(see (3.3) and (3.4) below). Let p be semigroup of the standard Brownian motion
on R. Then the semigroup of the Brownian motion on ¢ writes

Pt(e”, eiy) = Zpt(x,y + 2kn), x,y € [0,2n].
keZ

For all f € C'(¥), we easily check that P.f € C1(%) and (P.f) = P.f’. Let
Af = 31", f € C*(€) be the generator of P.



432 Hatem Hajri and Olivier Raimond

Proposition 3.2. Equation (Ty) has at most one Wiener solution: If (K, W) is
a solution such that (W) C o(K), then ¥Vt > 0, f € C>®(%) and all z € ¥,

Ko.f(2) +2Jt ) in L*(P) (3.3)
where
T f(z) = / L PuD(Pan DR D)y W, (34)

no longer depends on K and Df(z) = e(2)f'(2).

Proof: Let (K, W) be a solution of (T%) (not necessarily a Wiener flow). Our first
aim is to establish the following

Lemma 3.3. Fiz f € C™(%) and z € €. Then

KOtf( / KOu Pt uf))( )

Proof: Let f € C™(%),z € ¥ and denote Ky, simply by K,. Note that the
stochastic integral in the right-hand side is well defined:

[ B @i [ POE b [ 1

and the right-hand side is smaller than t||f’||%,. Now

Ko f(z / Ku(D(Pr_uf))(2)dW,

= Z K i Ptf i f— K%t Pti%tf)(z)

p=0
n—1 (p+1)f
-3 / (P = P, i) ) (2)AWs
(p+1)f
- Z D(P,_ @ f)(2)dW,.

For all p € {0,..,n — 1}, set fyn = P, w+u: [ € C(%) and so by replacing f by
fon in (Ts), we get
(41t (1)t

KU(Dfp,n)(Z)qu = wap,n(z)_K%fp,n(z)_/ ' Ku(Afp,n)(Z)du

bt n pt
n n

(p+1)t

:wap,n(z)_K%ffp,n(z)_%K%(Afp,n)(z)_/ﬂ ' (Ku— %)(Afzn )(2)du.

Then we can write

K f(2) — Puf( /K (Pruf))(2)dW, = Ay (n) + As(n) + As(n),
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where
n—1

t
Ai(n) = _ZK%[Ptf%tf_Ptf(’”nl)tf_EAPt*(ptmf](Z)’

(p+1)f

Ao(n) = —Z / D((Prw = Py ) f)(2)dWo,

n—1 (p+1)t

Agn) = 3 / (K~ K )AP,_ e f(2)du
=0 pt n
Using ||Ku9gllco < ]|9]loo for g a bounded measurable function, we see that |A;(n)]
is less than
n—1

>

p=0

t
P, en [Pof— f— —Af]H <n
n n n

P%f—f—%AfH
H L
=)=

-,

Since f € C°°(%), this shows that A;(n) converges to 0 as n — co. Note that
As(n) is the sum of orthogonal terms in L?(PP). Consequently

n—1 (p+1)t

A2 ()[|Z2@) = D

p=0

t

KuD((Pimu = P,_ene) f)(2)dW,

pt
n Lz(]p)
By applying Jensen’s inequality, we arrive at

(p+1)t

14 (n ||L2<P><Zp PV (2)du

where V, = (Pr—uf) = (P,_ et f) = Pruf' = P,_ene f'. Forallu e [2, 08

we have

2
PV2(:) < Vil = | < Pune = 1

/ /
P,_ it (P<p+1>t,uf - f)

Consequently

(p+1)f

Ao < 2 [ WP = [ RS
B 0
and one can deduce that As(n) tends to 0 as n — +oo in L?(P). Now

[As(n)llL2ce <Z
L2(8)

Set hpn = AP, @i f. Then pn € C°(€) for all p € [0,n —1]. By the Cauchy-
Schwarz inequalityn

(p+1)f

t—

% )AP, i1 f(2)du

pt
n

=

(P+1)f

[As(n)|[ L2 () <\f{Z/ Ky — Kt )hpn (2))2]du} .
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N
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3
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N
N
IN
=
z

K%t,uhpm - hp,n)2(2)]
K t,uh;n - 2h’PvnK’)—t,uh’P7" + h?),n)(z)]

IN
&
4

pt pt
< Pu (Poseh?, = 2P shyn +12,) (2)
< ||Pu—ﬂh§,n - 2hp,npu—ﬂhp,n + h;i,nHoo
< 2llhpnllool|Py—pthipn = hpnllo

+||Pu—%th12nn - h?),n”OO

Therefore [|A3(n)|[r2@) < VE(2C1(n) + Co (n))z, where
(o1

n—1
Co(0) = 3 Mhplloe [, I1Puc st Iyl
p=0 n

and
n—1 (p+1)t
Co(n) = 3 / 1Py w2 — B2l e
p=0""n

From ||Apn|lsc < [[Af]loc and ||Pu—%thp7n — hpnllos < ||Pu—%tAf — Aflloc, we get

n—1 (p+1)t t
< Aflle Y- [T 1P p AT Aflldu < [Afll [ |IP; AT -Af| s
p=0 o 0

As Af € C*(%), C1(n) tends to 0 obviously. On the other hand, h2, € C*(%)
and so

n—1 t n—1 t s
1 1 n
Caln) =~ :/ 1P2h o = by ollocds < =3 :/ </ ||Ahf,)n||oodu> ds.
p=0 0 p=0 0 0

Now we easily verify that hy ., hj, ., by, are uniformly bounded with respect to n

and 0 < p <n-—1. Asaresult Ca(n) tends to 0 as n — co. This establishes Lemma
3.3. O

Assume that (K, W) is a Wiener solution of (T ) and for ¢t > 0, f € C°°(%) and
z€ €, let Ko f(2) = Pif(2)+> .-, J" f(2) be the decomposition in Wiener chaos
of Ko +f(2) in L? sense. By iterating the identity of Lemma 3.3, we see that for all
n>1, J'f(z) is given by (3.4). O

Consequences: Let K" be the unique Wiener solution of (T%). Since o(W) C
o(K), we can define K* the stochastic flow obtained by filtering K with respect to
o(W) (Lemma 3-2 (ii) in Le Jan and Raimond (2004)). Then, for all s < ¢ and all
z €F, as.

K54(2) = E[Ks 1 (2)[o(W)].
As a result, (K™, W) solves also (T) and by the last proposition, for all s < ¢ and
all z € €, a.s.

E[Ks4(2)|lo(W)] = K(2). (3.5)
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3.2. Proof of Theorem 1.2 (2).

Using the flow property and the independence of increments satisfied by K, it
is easily seen that the law of (Ko, ,Koy,) for all (t1,---,t,) € (R4)™ and
therefore the law of K is uniquely determined by the knowledge of the law of Ky,
for all ¢ > 0. In the sequel, we will show the existence of two probability measures

m* and m~ on [0,1] with mean % such that for all ¢ > 0, Kgft+’m7 "% Ko which

will imply Part (2) of Theorem 1.2.

3.2.1. A stochastic flow of mappings associated to K.

Let P* = E [Kg@t”] be the consistent family of Feller semigroups associated to K.
By Theorem 4.1 Le Jan and Raimond (2004), a consistent family of coalescent
Markovian semigroups (P™¢),>1 is associated to (P™),>1. The Feller process as-
sociated to P™ (resp. to P™¢) will be called the n-point motion of P™ (resp. to
P™¢). The consistent family (P™°),,>1 will be such that

(i) The n-point motion of P™¢ up to its entrance time in A,, is distributed as
the n-point motion of P™ up to its entrance time in A,,, where A,, = {z €
C™; 3iF# §, wio=xj}

(ii) The n-point motion (X',..., X™) of P™ is such that if X} = X then for
all t >0, Xi = X/.

A possible construction of such a family is the following. Fix (z!,---,2") € €™
and let X = (X!,..., X") be the n point motion started at (z',--- ,2") associated
to P". Let

Ty = inf{t > 0,3 #j, X/ = X7}
For t € [0,T1], define Y; := X;. Let 1 <4y < --- < i < n be such that {YTli, 1<
j<k}= {YTil; 1 <i < n} and where k = Card{Y}l; 1 <i < n}. Then define the
process

Zi =X, fort>T and when Y}, =Y,/

Now set

Ty =inf{t >Ty,3j #£1, Z = Zj'}.
For t € [T1,T>], we define Y; = Z; and so on.

In this way, we construct a Markov process Y. It is the n point motion of the

family of semigroup P™¢. Note that such a construction does not insure that these
semigroups are fellerian.

Lemma 3.4. (P™¢),>1 is a consistent family of coalescent Feller semigroups as-
sociated with a flow of mappings ©°.

Proof: For each (z,y) € €2, let (XF,Y,”)i>0 be the two point motion started at
(z,y) associated with P? constructed as in Section 2.6 Le Jan and Raimond (2004)
on an extension (2 x Q& Q) of (Q, A,P) such that the law of (X7,Y}Y) given
we Nis Ko (r) ® Kou(y). Define

7Y :=inf{t >0: X7 =Y/}
By Theorem 4.1 Le Jan and Raimond (2004), we only need to check that: for all
t>0,e>0and z € 7,

lin QUT* > 1} N {d(XE, V) > ) =0 (C).
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Fixt > 0 and € > 0.
First case x = 1. Recall that for all s € [0, p] where p = pg, we have

1
K(‘;,Vt(l) - =

2 ((Sew‘/:r + 56—1'Wt+ )

This shows that when ¢ < p, Ko (1) is supported on {eth+,e_th+} and so X} =
eW" or e=W:" | Moreover, by Lemma 3.1 (i), if y ¢ {1, ¢}, then X¥ = yetc®)Ws
for all s € [0,7(y)] where 7(y) = 70(y) -

Let A ={T" >t} n{d(X},Y}) > e} with y close to 1 such that y # 1 and write

Q(A) = QAN{t <7(y)}) + QAN{t > 7(y)})-

Since 7(y) tends to 0 as y goes to 1, we have lim, 1 QAN {t < 7(y)}) = 0.
Moreover

QUAN [t > 7(3)}) < Q(B) + QXY = ).
where B = AN {t > T(y),X::’(y) = 1}. Obviously
Q(B) <QBN{r(y) <p}) +Q7(y) = p)

with lim,_1 Q(7(y) > p) = 0. On BN {7(y) < p}, we have X;(y) = Xf(y
thus THY < 7(y). As a result

QBN{r(y) <p}) <Qt <T"¥ < 7(y)).

)zland

Since the right-hand side converges to 0 as y — 1, (C) is satisfied for z = 1.

Second case = # 1. By analogy (O) is satisfied for = e?. Let z ¢ {1,¢e"} and
y be close to z, then X and XV move parallely until one of them reaches 1 or e
say at time T'. Since P? is Feller, the strong Markov property at time T and the
established result for = € {1,¢%} allows to deduce (C) for z. O

Consequences: By the proof of Theorem 4.2 Le Jan and Raimond (2004), there
exists a joint realization (K', K?) on a probability space (2, A,P) where K' and
K? are two stochastic flows of kernels satisfying K* faw Spe, K2 " 1 and such
that:

(i) Koilz,y) = K!,(x) ® K2,(y) is a stochastic flow of kernels on €2,
(i) Forall s <t,z € ¢, as. K2,(z) = E[K},(2)|K?].

To simplify notations, we will denote (K*, K2) by (J,¢, K). Recall that (i) and (ii)
are also satisfied by the pair (5¢,Km+>m7) constructed in Section 2.3. Now (ii)
rewrites, for all s <t,z € €,

Ks1(2) = Eldge ()| K] a.s. (3.6)
and using (3.5), we obtain, for all s <t¢,2 € €,
K (2) = Elbge ,()lo(W)] a.s. (3.7)

with K" being the Wiener solution.
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3.2.2. The law of K.
Recall the definitions of ¥ and ¢~ from (3.1) and set for all s < ¢,

Uf, = Ko (1,67) and Uy, = Ky (", €7).
Proposition 3.5. Recall the definition of ps from (2.3). Then
(i) There exist two probability measures m* and m~ on [0, 1] with mean 1 such

that for all s < t, conditionally to {s <t < ps}, Usjft is independent of W
and has for law m*. Moreover, for all s € R,z € €, a.s. ¥t € [s, ps],

Ks)t(z) = 5zeie(z)ws,t1{t§7-s(z)}
+ (Ks,t(1)1{zei€<Z>W3,rs<z>:1} + Ksﬁt(eil)l{ze“(z)wws<z):e“}> Lie>r @)

where
stt(l) = U:tacxp(iW:t) + (1 B US—i:t)(Sr:xp(fiwat)7
il — —
Ks,t (e ) = Us,téexp(i(l-‘rW;t)) + (1 - US,t)éexp(i([—W;t))'

(ii) For all s <t, conditionally to {ps > t}, US,,U;; and W are independent.

S

The proof of (i) essentially follows Le Jan and Raimond (2006) and will be deduced
after establishing the lemmas 3.6,3.7,3.8,3.9 and 3.10 below.

For all —oco < s < t < 400, define ]-"SK)t = 0(Kyuv,s < u < v < t)and recall
the definition of fg’z from (1.6). When s = 0, we denote K07t,<p81t,f(ﬁ,f&, Ugft
simply by Ky, of, Fi£, FV, Uti. We will always consider the usual augmentations
of these o-fields which include all P-negligible sets and are right-continuous. For
each each z € €, recall that t — K,;(z) is continuous from [0, +oc[ into P(¥).
Denote by P, the law of K.(z) which is a probability measure on C(R,,P(%)),
then since K.(z) is a Feller process (see Lemma 2.2 Le Jan and Raimond (2004))
the following strong Markov property holds

Lemma 3.6. Let 21,20 € € and T be a finite (FE)i>o-stopping time. On {Kr(z1)=
825}, the law of K. (z1) knowing FX is given by P.,.

Let
pt=inf{r>0: W =1} and L =sup{re(0,p"]: W =0}
Thanks to (3.7), on the event {0 <t < pt}, a.s.
1, st et
E[5¢§(1)|U(W)] = 5(6 Wi +e W, )
By the continuity of ¢¢(1), this shows that a.s.
vt e (0,0, @(1) € {e e WY, (3.8)

Let h € C(%) such that Va € [1,1], h(e™®) = |x|. Using (3.6), the fact that o(W) C
o(K) and the continuity of ¢t — K¢(1), we have a.s. Vg € Co(R),Vt € [0, pt],

Ki(goh)(1) = g(W;").
Thus a.s. V¢ € [0, pT], K;h(1) = W," and p* can be expressed as
pt =inf{t >0: K;:h(1) =1}. (3.9)
Define the o-fields:
Fr— =0(Xr,X is a bounded }"gf{ — previsible process),
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Fr+ =0o(Xp, X is a bounded ]—'g}{ — progressive process).
By Lemma 4.11 in Le Jan and Raimond (2006), we have Fr4 = Fr_. Let f :
R — R be a bounded continuous function and set
Xi = E[f(Uz?L”U(W)]l{ogtgpﬂ-
By (3.6), the process U™ is constant on the excursions of W out of 0 before p*.

Lemma 3.7. There exists an F" -progressive version of X denoted Y that is con-
stant on the excursions of W out of 0 before p™ and satisfies Y, = Y,+ a.s.

Proof: We closely follow Lemma 4.12 Le Jan and Raimond (2006) and correct an
error at the end of the proof there. By induction, for all integers k and n, define
the sequence of stopping times Sy, and T}, by the relations: T, = 0 and for
k>1,

Sk = inf{t >Th—1n: Wt+ = 2_n},

Tehn = inf{t > Skm W;r = 0}.
In the following U,:rn will denote U;rk . Forallt >0, on {t €[Skn, Thn|t< pTL,
we have U;” = U,In as. Let X, := E[f(U]::n)|W]1{Sk,n§p+}'
Since o(Ws, ,, ut .., > 0) is independent of F§ , we have

Xk = Elf(Ukn)|F8, s, <ot}

which is ]-'gzn measurable. Set I,, = Uk21[5k7n,Tk,n[ and define

Xin it €[Sk, Thn| (for some k) and ¢ < pt,
X =4 f(0) iftelsn]o,pr],

0 ift > pt.
Then X™ is FW-progressive. For all t > 0, set X, = lim SUup,, soo X{', then X is
FW_progressive and for all ¢ > 0, X, = X, a.s. Indeed, fix ¢ > 0 and on the event
{pt > t}, choose ko and ng such that ¢ € [Sk,.ngs Tho.nol, then X0 = Xp -
For all n > ng, there exists an integer I, such that ¢t € [Si, n, T}, n[. Thus X" =
X1, .n = Xko,no since Sk, n, and Sy, » belong to the same excursion interval of wt
containing also t. Now set Yy = f(0) and Y; = limsup,,_, o Xt+% for allt > 0. Then

Y is a modification of X which is F"-progressive and constant on the excursions
of W out of 0 before p*. Moreover Y7, = Y+ a.s. O

We take for X this F"-progressive version. Then X,+ = E[f(U;)b(W)] is
Fr+ measurable.

Lemma 3.8. E[X,|FL ] = E[f(Upt)]

Proof: Let S be an F"W-stopping time and dg = inf{t > S : W, = 0}. We have
{S < L} = {ds < pT} (up to some negligible set) and so {S < L} € F}V. Let
H=dsNpt and K =inf{r >0: Ky ,.h(1) =1}, then

E[Xp+1{ds<p+}] = E[f(UIj—;JrK)1{ds<p+,KH(l):51}]'
Note that on {dg < pT}, we have H + K = pT a.s. Applying Lemma 3.6 at time
H and using (3.9), we get

ElX,+ L <pty] = ELF(USDIEL g pt k1y=y] = ELFUSIB(ds < o).
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Since the o-field Fy,_ is generated by the events {S < L} for all stopping time S
(see Rogers and Williams (2000) page 344), the lemma holds. O

The previous lemma implies that Upt is independent of o(W) (Lemma 4.14
Le Jan and Raimond (2006)) and the same holds if we replace p* by inf{t > 0 :
Wt = a} where 0 < a <. For n such that 27" < [, define inductively 7", = 0
and for k > 1:

S,;’:n = inf{t > le—l,n : Wt"' =2""}
Ty, = inf{t>S8F W =0}
Set V7, = U +. . Then, we have the following

,n

Lemma 3.9. For all ¢ > 1, conditionally to {S;, < p™}, V1+n, VLW oare
independent and VLn, <,V have the same law (which depends onn but no longer

3 q n
depends on q).

Proof: We prove the result by induction on q. For ¢ = 1, this has been justified.
Suppose the result holds for ¢ — 1 and let (f;) be an approximation of € as in the
proof of Lemma 3.1 (ii). For a fixed ¢t > 0, in L*(P), we have

Wee T

q—1,n° q—1,n

Jlggo( T f]( ) — / Ku-i—T;ln J( )du)
On {S/, < p*}, we have KT*,I ( ) = 6, and therefore, in L*(P(.|S}, < p™T)),

WT: LT T Jhﬂrgo ( T f]( / Kvu.|-:/“q+ n ( )du)
(3.10)
As 27" <1 {S}, <p"}={T),, < p*} as. Choose a family {g1,- -, gq,9,h} of
bounded continuous functions on R. For any A € A, we will use the notation E 4
to denote the expectation under P(-|A). Set Ay, = {S}, < pT}, then using (3.10)

and Lemma 3.6 at time Tq L

h
ng S+ t/\Tq+ 1, n) (WT; 1,n’ t+Tq+ 1, n)

we get

q'n.

= FEa,, )

Since Aq_1 n C Agn, we have by the induction hypothesis

H 9:(U S* tATtl n)

In conclusmn

q—1,n

q—1
[T6:0g: JoWoyry )| EWOVLE [t )]
=1 ’ ’

q—1

=Fa, .., lH 9:(U S* )

,n
i=1

Ea,. [Q(Wt/\T;“ 1n)} .

qn

Eq

q,n

gi(U;}n)g(WMT; ) n)h(WT; L T ")1

1=

q—1
B, [H U5 )
=1

Agn {Q(Wt/\T;Ln YW

q—1,n°

ey ) E a0 )]
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The last identity remains satisfied if we replace g(W, ,,+ ) VhWWps 4T ) by
1

q—1,n° q—1,n

a finite product
P .
[Ti- QZ(WtiAT;Ln)hl(WT+

LT ). As a result, for all bounded continuous
g:O(R+aR)—>Ra , ’

q q—1
Ba,, | [0Vt Yo0)| = B, .. ngiwsm Ea,. WOV E 0,03 )]
i=1 " i=1 o i

Iterating this relation, yields

Ea,., Hgi(U;} )Q(W)] = HE [Qi(U;+
i=1 " i

1,n

)| Bl
In particular, for all ¢ € [1,¢],
Ba,.. [0 )] = Blawy )]
This completes the proof. O

Let m,} be the law of Vi*, and m™ be the law of U;" under P(.[p* > 1). Then,
we have the

Lemma 3.10. The sequence (m;})p,>1 converges weakly towards m™*. For allt > 0,
under P(-|pT > t), U and W are independent and the law of U, is given by m*.

Proof: For each bounded continuous function f: R — R,

E[f(Uj)|W]1{0<t<p+} = nlimmZE[l{tG[S;naT,in[}f(kan)|W} 1{0<t<p+}
k
Am > Lersy o mot ( / fdm;:>
k

= [1{0<t<p+}nli>moo/fdmz]

Consequently
. 1 i
Jim [ fdm,; = WE[f(Ut Mot >n]-
The left-hand side no longer depends on ¢, which completes the proof. 0

By analogy, we define the measure m~ such that if p~ = inf{t > 0: W, =1},

— law

then for all ¢ > 0, under P(-|p~ > t), U; and W are independent and U, "= m™.
Recall the definition py = inf(p*, p~), then for all ¢ > 0, the law of U," (respectively
U; ) knowing {po > t} is given by m™ (respectively m™).

Now take s = 0 and fix z € ¥. Similarly to (3.8), we can deduce from (3.7) that
a.s. for all ¢ € [0, pol,

(p,f(Z) _ ze“(z)wf, 905(1) c {ethJr,e—in} and (pf(eil) c {ei(lJrW[),ei(lfW[)}'

Note that ¢ is constructed such that for all z,y € € as. ¢¢(z) and p°(y) collide
whenever they meet. So a.s. for all ¢ € [0, po],

pi(z) = 2Ol ey

=+ (‘Pg(l)l{zeie(z)wm(ﬂ:l} + Sﬁf(eil)l{ze*(z)wr()(z):eu}) 1{t>‘r0(z)}7
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By (3.6), the second claim of Proposition 3.5 (i) holds.

Proof of Proposition 3.5 (ii) We first prove the following statements: For all
0 < s <t, we have
(a) Conditionally to {s < po,t < ps}, Uy, Ugs, W are independent and Ut
(resp. Uy ) has for law m* (resp. m™).
(b) Let
g =sup{u € [0,t] : WE =0}.
Then, conditionally to {g, < s < g;",5 < po}, U&’t, Up.t» W are independent
and the law of Uy, (resp. Ug,) is m* (resp. m™).
(c) Conditionally to {g;” < g;",t < po}, Ugy, Ug,, W are independent.
(d) Conditionally to {t < po}, Usy, Usy, W are independent.
(a) Note that {s < po} € FIV, {t < ps} € FYV., and F¢¥, = FV v FIV  with
FV c FE, F¥ oo C Fi - Now (a) holds from Proposition 3.5 (i) and using the
independence of FX and Ff, .
(b) By (a), it suffices to show that on A = {g; < s < g;", s < po} (which is a subset
of {5 < po,t < ps}), as. Uy, = Uy, and Uf, = US,. The first equality is clear since
r — U,  is constant on the excursions of W~ on [0, p] and on A, s and ¢ belong to

. T v+
the same excursion of W~. Moreover, on A, we have Z := ¢¢(1) € {eWs  eiWs'}

and so P(-|A) a.s.
7(Z) =inf{r > s: W, —m{, =0} =inf{r > s: W} =0} < g".

Clearly ¢¢ TS(Z)(Z) = ¢ TS(Z)(l) = 1 and therefore ¢ ,.(Z) = ¢ (1) for all r >
7s(Z) (using the coalescence property of ¢° and the independence of increments).
On A, 74(Z) < g;7 <t and by the flow property of ¢°, a.s.

pi(1) = ¢5(y) = 5, (1)
Using (3.6), we get P(-|A) a.s. U, = US,.
(c) For alln >0, let D, = {£, k € N} and D = UpenD,,. Define for 0 < u < v,
n(u,v) = inf{n € N:D,Nu,v[# 0} and f(u,v) = inf(Dy,y,0)N]u, v]).
Then by writing

{90 <g't<poy=Jlor <s<glt<pos=1rl9 .95}
seh

and using that f(g; ,9;") y is o(W)-measurable, (c) easily holds from (b).

Lgm ot
{9: <g;
(d) By analogy with (c), conditionally to {g;” < g;,t < po}, Ugy,Ugy, W are
independent. Now (d) holds after remarking that as. {t < po} = {g; < g/, t <
pot U{g < gy .t <po}.

Finally Proposition 3.5 (ii) holds for s = 0 and thus for all s using the stationarity
of K.

Now the proof of Proposition 3.5 is completed. O

law

Proposition 3.11. We have K & gkm"m™

Proof: Like in Section 2.3, extending the probability space, we can construct a
flow K’ such that (K', W) has the same law as (K™ ™ W). By Proposition 3.5,
for all t > s, K, law Ké,t conditionally to {ps > t}. For ¢ > 0 and n > 1, let
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t =% i €[0,n] and define A, ; = {t7 < pi } € Fi¥ ny An =Ny Ay Then

o

by the independence of increments of K and K’,
l
(Ko,tnu"' 7Kt"7 ,t) gﬂ (K6 sttt ,K;n t) on An
1 n—1 Sty 1

Recall that P(AS) — 0 as n — oo (see the proof of Proposition 2.6). Letting n — oo
and using the flow property for both K and K’, we deduce that Ky, faw Ky, O

Remark 3.12. Let ¢ be the coalescing flow constructed in Section 2, then ¢ o ¢°.
As before this remains to show that conditionally to {ps > t}, s, is distributed
as @5 ;. However the situation is more easy here and we do not need the lemmas
3.6,3.7,3.8,3.9 and 3.10. For example

Moy = Lige ,(yeety — Lipe (1)ew—}

is independent of o (|5, (1)],s < u < p,) conditionally to {ps >t} where |- | is the
distance to 1 since ¢ . (1) is a Brownian motion on €. Following Proposition 3.11,

we check that ¢ o ©¢. In particular ¢° solves (Ty).

4. Proof of Proposition 1.3

In this section, we use the same notations as in Section 2. For » > 0, we denote
Woj,tr simply by W*. For all a € R,b > 0 define

T, =inf{r >0: W, =a} and ~; =inf{r >0: W =b}.
We will further need the following
Lemma 4.1. For all a > 0,b >0 and ¢ <0, we have P(T, <, ANT.) > 0.

Proof: Fixn €]0,3A(—c)[ and let k > 1 such that kn > a. Now define the sequence
of stopping times (R;);>o such that Ry = 0 and for i > 0,

Ri+1 = inf{r Z Rl . |Wr — WRi

=}
Let A = Ni_ {Wgr, = Wgr,_, +n}. Then on A, sup,<x, W, = kn > a and for all
1€ [O,k - 1],u € [Ri,Ri+1],

W, =supW, —W, = sup (Wy—W,)<2n<b.
r<u R;<s<u
Moreover info<,<pr, Wy, > —n > c. Since A C {T, <, AT.} and P(A) = 2%, this
proves the lemma. 0

law

Obviously ;7 < T,,. Since W '= —W, we have P(y} < ;) =P(y, <) =
Remark also that

Let a > 0. Since {T, < v, AT_o} C {T, < 7, }, we deduce that P(T, <, ) > 0.
1
2

”y;r ANV :inf{TZO:WTJr—FW; =a}.

This shows that on {7} < 7, }, we have W'y_+ = 0 and similarly on {v, <.}, we
have W’:C =0.
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4.1. The casel = .
This is the more easy case.

Lemma 4.2. With probability 1, for all z € €, we have

m*,m7
pot(2)= 1 K (2) =4

and L
Pon () =1, KT (o) =4,

Proof: This lemma is a consequence of the facts that (gpoyﬁ(l),Kg?i’mf(l)) =

(—1,6_1) and that (%ﬁ;(_m,Kgf;m’(_m) = (1,61). Let us just explain why
@o+(1) = —1 implies ¢, _+(2) = —1 for all z € €. Fix 2 € €. To simplify,
assume arg(z) € [0,7]. It holds that py = 7,7 A7, and that 79(2) < pg. Then
%0,p0 (Z) = @pro(_l) on the event {arg(z> + W‘ro(z) = 7T} and %0,p0 (Z) = <P0,po(1)
on the event {arg(z) + Wr,(,) = 0}. Now, if pg = 7 < 75, then ¢, _+(1) =
@0+ (—1) = —1 (this thus implies that ¢, +(2) = —1). And if po = 77 < 77,
then ¢, - (1) = ¢, -(—1) =1 (this thus implies that ¢, _-(z) = 1). To conclude
in this case, we use the flow property ¢, +(2) = ¢ - +(py - (2)) =@, - +(1). It
remains to remark that ¢ - _+(1) = ¢, +(1) = —1. O

To prove Proposition 1.3, consider the sequences of stopping times given by S = p
and for k > 1,

T, = inf{u> Sg: Ws, w = T},
Skr1 = inf{u>Ty: W:,'i;)u =7}

Then Lemma 4.2 implies that (Sg)r>1 (resp. (Tk)k>1) satisfies (1) (vesp. (2)) of
Proposition 1.3.

4.2. The casel # 7.
The key argument to prove Proposition 1.3 in this case is to find some conditions
on the path of W under which the image of the whole circle by ¢ at some specific
time is reduced to e.
We fix § > 0 such that 0 <1 —§ <1+ 0 < 7. For any (F}")-finite stopping time

S and a € R define

Tgq=inf{r>S5:Ws, =a}
and

Ys.5 = inf{r > S: W, = 0}.
Let

As ={Ts2(x-1) <Vs5}-
The event Ag is the event "for all ¢ € [S, Ts o(r—)] we have sup W < Ws;+6".
s€[S,t]

Setting T' = T o(r—1), this event can be represented by the following figure (Figure
2). On the event Ag, W, < 0 for all t € [S,T] and Wsr = 2r — 2I. Thus on
this event, we have pg7(e) = psr(e™¥) = e’ and a fortiori s 7(2) = e for any
intermediate point z such that arg(z) € [[, 27 — []. In other words,

Ag C {gasy.(e*“) reaches e’ before 1 and before that pg.. (™) hits ¢! or i!=%) }-
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W + 2(7w — 1)

Wy +ort

sup W,

SSSSFWt MA)\WM i Mn

Ws

FIGURE 4.2. The path of W after S.

Note that Ag is independent of F3's and that P(As) > 0 and does not depend on
S.
When S = inf{t > 0; W, = I}, which is also the first time ¢ when

sup Wo,s — 1nf Wo,s =L
5€[0,1] s€[0,t]

Then at time S, we have arg(po,s(2)) € [I,2m — ] for all z € ¥. Applying the flow
property, we see that on Ag, o r(z) = e for all z € €. Now the rest of the proof
will only require an application of the Borel-Cantelli Lemma. We give the details
in the following.

Define the sequence (oj)k>0 of (fé’z)tzo-stopping times by oo = 0 and for k& >
0,0611 = Tp,, 2(x—1) (note that 2(r — 1) = arg(e™") — arg(e)). Then set, for
k>0,

{ a’kp l}mAP(rk'

Note that the events {W
proposition describes what happens on Cj.

=1} and Ap,, are independent. The following

Proposition 4.3. With probability 1, for all k > 0, on Cy, we have for all z € €,

(1) arg(‘pak Pak( )) [l 2m — l] .
(ii) If arg(z) € [I,2m — 1], then @y, o, (2) = eil
(111) Por, Uk+1( ) =l
)

(IV o, U'k+1( ) - eZl and KO ak+1 (Z) = 68” .

Proof: We take k = 0 (the proof is similar for all k). Denote po simply by p and
po by p". _

(i) Fix z € €. If 7o(2) < p, then ¢ ,(2) € {po,(1),p0,(e")}. On Co, we
have W = I and so W, = 0 (see the lines after Lemma 4.1). Consequently
©o,,(e) = e and g ,(1) € {e®, e},

Suppose p < To(z), then necessarily arg(z) €]l,2n] and using that W, = [ +
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inf W,, we have
0<u<p

p0.(2) = explilar(=) ~ W,) = expli(arg(2) ~ 1~ nf o).
Since p < 79(2), we have arg(z)—oinf; W, < 2m and therefore arg(yo,,(z)) < 2m—1.
<u<p

It is also clear that arg(yo ,(z)) > | which proves the first statement.

(ii) Let 2 € € with arg(z) € [I,2m —I]. Then ¢,.(e~%) arrives to e before 1
and this happens at time oq. Thus ¢, .(2) reaches e’ before o1. Let n be the
greatest integer such that p(= p"*') < 1. Then ¢, 4, (2) = @pni1,5,(Z) where
Z =, pn+1(z). Clearly T n1(Z) = 7,(2) < 01. Therefore @, 5, (2) = @pnt1 4, (e™).
But =W, +2(7 —1) > W, for all u € [p,01] and so W, = 0. As p"*' > p, we
get Wi, =0. That is g0, (2) = el

(iii) and (iv) are immediate from the flow property (Corollary 2.5) and (i), (ii).
The result for K™ ™ can be proved by following the same steps with minor
modifications. g

Since for all £ > 0, o is an (f(m)tzo-stopping time, the sequence (C)r>o is
independent. We also have P(Cy) = P(Cy) = P(Ag) x P(W,f =1) for all £ > 0. By

Lemma 4.1, >, P(Cy) = oo and the Borel-Cantelli lemma yields P(imCy,) = 1.
We deduce that with probability 1,

00,0, (€) = el and K™ ™ (¢) = b, for infinitely many k.

0,0k
To deduce Proposition 1.3, we only need to extract from (o )i a subsequence (o7},)
with the preceding property satisfied for all £ and not just for infinitely many k.
This is the subject of the following

Lemma 4.4. Let (ky,)n>0 be the sequence of random integers defined by ko(w) =0
and forn > 0,
kpt1(w) = inf{k > k,(w) : w € Ci}.

Set o], = oy, ,n > 1. Then (0] )n>1 is a sequence of (F(%,)e>0-stopping times such
. o
that a.s. lim, e 0}, = 400, Q0,0 (¢) = €' and K" ;"™ (€) = 0u for alln > 1.

Proof: Remark that Cj, € fgzﬂ for all k > 0. For all n > 1 and t > 0, we have

{ok, <t} =Ups1{or <tk =k}

It remains to prove that {k, = k} € F)¥ . We will prove this by induction on n.

Ok+41"

For n = 1, this is clear since {ky =1} = Cy and for k > 2,
{ki=k}=C{n---NCL_; NCy.
Suppose the result holds for n. Then for all £ > 2,
{kny1 =k} = Uicick1 ({kn =3 N C7 N CE_y N Ch)
and the desired result holds for n + 1 using the induction hypothesis. O

We have proved Part (1) of Proposition 1.3 (for both ¢ and K™ ™ ). Part (2)
can be deduced by analogy.

5. The support of K™ ™" (Proof of Proposition 1.4)

In this section p& and K mTm” will be denoted simply by p* and K.
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5.1. The case l = .
When m* and m~ are both different from (dp + 1), a precise description of
supp(Ko(1)) can be given as follows. Recall the definitions of the sequences
(Sk)k>1 and (Tk)k>1 from Section 4.1 and set Ty = 0. Then for all k¥ € Nt €
[Tk, Sk+1],

supp(Ko (1)) = {7t e Wiiry

and for all k > 1,¢ € [Sk, Tx],

supp(Ko (1)) = {ei(ﬂ+W§k,t), ei(“*WEk,t)}'
In fact, for all s <t,
supp(K (1)) = {e ot e o),
with X, being the unique reflecting Brownian motion on [0, 7] (see Bass and Hsu

(2000)) solution of
Xs,t = Ws,t + Lg,t - Lg,t, t> s,

and

e—0t 2

1 t
L?,t: lim —/ 1{|X311L_m|§€}du, IZO,T(.

If m™ =m™ = 4., then K is a Wiener flow such that Ky (1) = (6 ixes +0,-ix,.1)
for all s < t.

5.2. The case l # 7.

From the definition of K, K ;(z) is carried by at most two points for all & > 0,
t € [p¥, pF*1] and z € €. Using the flow property and the fact that limy_,o p* = 0o
a.s., it is therefore clear that a.s.

YVt >0, z € ¢, Card supp Ko (z) < oo.

We assume in this section that m™ and m™ are both distinct from £ (8o + 61) (for
the other case, see Remark 5.3 below).

Fix a decreasing positive sequence (ay)r>1 such that a; < inf(l,2(7 —1)). Now
define A1 = { W&_pl =1} and for k > 1,

Ao = {Wp_z,c71 p2k = I, aop < sup Wp2k—l7u < 042;6,1}
’ pRR—1<y< p2k
= {Wpi%,lﬂ o2k = I, =+ ag < Wp2k—l7p2k < —l+ 042]@71},
A = 4 =1, - inf —Q
2k+1 {VVP%»PZICJrl » T2k S P2k <yu< p2k+l WP%M < 2k+1}
— + —
= {szk,p2k+1 =1, l—oag < Wp2k7p2k+1 <l- a2k+1}.

We are going to prove the following

Proposition 5.1. Let Cy = Q and C,, = N}, A; for alln > 1. Then for alln > 0,
(i) P(Cy) >0,
(i) Card supp (Ko, (1)) =n+1 a.s. on Cy.

Moreover a.s. for all k > 0,
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(iil) On Cog,
supp (Ko por (1)) = (P21 <0 < 2k +1},
with arg(P?*) < arg(P2,) for alli € [1,2k],
Pk =1, P =¢e* and P22,f+1 = e (T Woako i),

(Note that arg(P3F, |) < 2m — ovay.)

(ii2) On Cok11, we have
supp (Ko pons1 (1)) = {PP*, 1 < < 2k + 2},
with arg(PPF*!) < arg(P2) for alli € [1,2k + 1],

2k+1 4l 2k+1 __ i(?l—W 2k 2k+1) 2k+1 _  —il
P; =ec", P =e p2k.p and P’y =e ",

(Note that arg(PH1) > 1 + aopy1.)
To prove this proposition, let us first establish the following

Lemma 5.2. Fiz 0 < a < <1 and define

E={W, =1, a< Oitingu < B}

where p = inf{r > 0: sup(W,,W,7) =1}. Then P(E) > 0.

Proof: Recall the definition of T, from the begining of Section 4. Consider the
event

F ={T, < Ts_; < Tz} N {after Tg_;, W reaches a — [ before § — 1 + a}.

Using the Markov property at time Ts_;, we have P(F') > 0. Note that p can be
expressed as
=inf{t>0: Wy — inf W, =1}.
poinf(i20: sup W faf Wo =1
On F, we have Tg_; < p <Tf—; and so o < sup W, < 3. Moreover, on F
0<u<p

oW _ (e
Wy =W, Oél;fSth<ﬁ l+a—(a=1)<l

In other words W, = [ which proves the inclusion /' C E and allows to deduce the
lemma. (]

Proof of Proposition 5.1 (i) The sequence (4;);>1 is independent and therefore
we only need to check that P(A4,) > 0 for all n > 1. But this is immediate from
Lemma 5.2 for n even. By replacing W with —W | it is also immediate for n odd.

(ii) We denote the properties (iil) and (ii2) respectively by Poj and Pojy1. Let
prove all the (P;)i>o by induction. First Py and P; are clearly satisfied since
Ko,0(1) = 6 and supp Ko ,1(1) = {e',e""} on C;. Suppose that all the P; hold
forall 0 <i < 2k—1wherek > 1. On Caqy, Kp2k—17t(67il) # 61 forallt € [p?k—1, p?K]

since for all t €]p?*~1, p?*], we have

_WPQk—17t < Wp_%*l,t <.
Moreover, on Cog, we have

inf 2l - W 2k—2 ,2k—1 — W 2k—1 - l - W 2k—2 ,2k—1 — W 2k—1 ,2k > l
pRh-l<i< p2k ( P P P 7t) P P P P
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Thus for all ¢ € [p?*~1, p?*], we have

Kp2k—1 t(P22k_1) = ei(2l_Wp2k’2,p2k*1_Wp%*l,f) # et

so that Pay holds. Similarly, on Cory1, K p2r . (€*') cannot reach . before pi

since for all t €]p?*, p?k+1],
W, < Whe , <1,
Moreover, on Copy1,

2k7u) =27 — (W

sup (27T -l - Wp2k—17p2k - W p

p2k <y < p2htl P

Thus, on Cogy1, szk’t(Pg,fH) # 6y for all t € [p?F, p?* 1] and Poy 1 easily holds.

2k-1 )2k + Wp2k7p2k+1) < 2.

Remark 5.3. When m™ # m~,m~ = 1(6y + 61), by considering
Egifl = Agifl and E2i = A2i N {KPQ'L—11P21' (eil) = 51} for i Z 1,

and then F,, = Ni<;<, By, we similarly show that supp (Ko (1)) may be sufficiently
large with positive probability.
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