Strongly Vertex-Reinforced-Random-Walk on a complete graph - Archive ouverte HAL Access content directly
Journal Articles ALEA : Latin American Journal of Probability and Mathematical Statistics Year : 2013

Strongly Vertex-Reinforced-Random-Walk on a complete graph

Abstract

We study Vertex-Reinforced-Random-Walk (VRRW) on a complete graph with weights of the form w(n) = n α , with α > 1. Unlike for the Edge-Reinforced-Random-Walk, which in this case localizes a.s. on 2 sites, here we observe various phase transitions, and in particular localization on arbitrary large sets is possible, provided α is close enough to 1. Our proof relies on stochastic approximation techniques. At the end of the paper, we also prove a general result ensuring that any strongly reinforced VRRW on any bounded degree graph localizes a.s. on a finite subgraph.
Fichier principal
Vignette du fichier
10-32.pdf (498.77 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01490009 , version 1 (15-03-2017)

Identifiers

  • HAL Id : hal-01490009 , version 1

Cite

Michel Benaim, Olivier Raimond, Bruno Schapira. Strongly Vertex-Reinforced-Random-Walk on a complete graph. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2013, 10, pp.767 - 782. ⟨hal-01490009⟩
115 View
23 Download

Share

Gmail Facebook Twitter LinkedIn More