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ON DOUBLY UNIVERSAL FUNCTIONS

A. MOUZE

ABSTRACT. Let (An) be a strictly increasing sequence of positive integers. Inspired by the notions
of topological multiple recurrence and disjointness in dynamical systems, Costakis and Tsirivas
have recently established that there exist power series >, . arz"® with radius of convergence 1 such

that the pairs of partial sums {(37_, ar2", 30", axz®) : n = 1,2,...} approximate all pairs of
polynomials uniformly on compact subsets K C {z € C : |z| > 1}, with connected complement, if
and only if lim sup,, AT" = +o0. In the present paper, we give a new proof of this statement avoiding
the use of advanced tools of potential theory. It allows to obtain the algebraic genericity of the set
of such power series and to study the case of doubly universal infinitely differentiable functions.
Further we show that the Cesaro means of partial sums of power series with radius of convergence
1 cannot be frequently universal.

1. INTRODUCTION

For a simply connected domain ©Q C C, we will denote by H(£2) the space of all holomorphic
functions on Q. Let D := {z € C : |z| < 1}. For f € H(D), we denote by S,(f) the n-th partial
sum of its Taylor development with center 0. In 1996 Nestoridis proved that there exist functions
[ € H(D) such that for every compact set K C C with K¢ connected and K NID = ) and for every
function h € A(K), where A(K) := H(K)NC(K), there exists a sequence of positive integers (\,,)
such that sup,cg |y, (f)(2) — h(2)] = 0 as n — +oo [19]. Such functions are called universal
Taylor series. The partial sums of its Taylor development diverge in a maximal way. In the
following, the set of universal Taylor series will be denoted by U(D,0). We refer the reader to [3]
and the references therein for its properties. In particular we know that U(ID,0) is a G5 dense
subset of H(D), endowed with the topology of uniform convergence on all compact subsets of I,
and contains a dense vector subspace apart from 0. Notice that we know C'* versions of Nestoridis
result (see for instance [3 8, 12} I8 20]). Inspired by the notion of topological multiple recurrence
and disjointness in dynamical systems, Costakis and Tsirivas introduced the following new form of
universality [IT].

Definition 1.1. Let (A\,) be a strictly increasing sequence of positive integers. A function f € H (D)
belongs to the class U(D, (A\y),0) if for every compact set K C C\ D with connected complement
and for every pair of functions (g1,92) € A(K) x A(K), there exists a subsequence of positive
integers (uy,) such that

sup |S,.,, (f)(z2) — g1(2)] — 0 and sup \SAM (f)(2) = g2(2)| = 0, as n — +o0.
zeK zeK

Such a function will be called doubly universal Taylor series with respect to the sequences (n), (A,).

Using tools from potential theory they proved that the set U (D, ()\,),0) is non-empty if and
only if limsup,, AT" = +4o00. Moreover they obtained that the existence of a doubly universal se-
ries implies topological genericity of such series. In the present paper we show that the advanced
knowledge of potential theory does not play a dominant role to obtain the proof of the implication
UMD, (A\,),0) # 0 = limsup,, )‘7” = +o00. Instead we employ some polynomial inequalities which
were recently used to study the densities of approximation subsequences of universal Taylor series
in the sense of Nestoridis (see [I6] [I7]). It seems quite natural that the arithmetic structure of
subsequences along which the partial sums possess the universal approximation property is con-
nected with the above notion of disjointness. As a consequence, we obtain that the set of doubly
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2 A. MOUZE

universal Taylor series is densely lineable, i.e. contains a dense vector subspace except 0. This
concept gives some information about the algebraic structure of the set of such series. Several
authors were recently interested in this phenomenon (see for instance [4]). Further, since we avoid
the use of potential theory in a large way, we extend the aforementioned Costakis-Tsirivas result
to the case of the sequence of partial sums of Taylor development at 0 of infinitely differentiable
functions on R. This generalization uses in an essential way classical Bernstein polynomials of given
continuous functions on intervals of the type [0, A]. In particular, these specific polynomials possess
a useful property in our context: we control both their degree and their valuation provided that
the associated function vanishes on a neighborhood of zero. Finally we return to the connection
between doubly universality and topological recurrence. In a recent note, Costakis and Parissis
proved that every frequently Cesaro operators is topologically multiply recurrent [9]. In our con-
text, we show that the Cesaro means of partial sums of a real or complex power series cannot be
frequently universal series. So the doubly universality, which is related to the topological multiply
recurrence, does not imply the frequent Cesaro universality.

The paper is organized as follows. In Section [2] we give a new shorter proof of the implication
lim Supn%" < 400 = U, (N\,),0) = @ and we establish the algebraic genericity of the set
UD, (A\n),0). In Section Bl we are interested in the case of doubly universal infinitely differen-
tiable functions with respect to an increasing sequence (\,,) of positive integers. We establish both
the topological and algebraic genericity of the set of such functions provided that lim sup,, %” = +o00
again. In Section[d] we study the frequent Cesaro universal series and finally we give an example, in
a different context, of the existence of doubly universal series with respect to an increasing sequence
(M) # N of positive integers without additional assumption.

2. DOUBLY UNIVERSAL TAYLOR SERIES IN THE COMPLEX PLANE

In this section, we begin by giving a proof with rather elementary arguments of the fact that
lim sup,, )‘7" < +oo implies that U(D, (\,),0) = 0. To do this, let us recall the nice Turén inequality
[21], which estimates the global behavior of a polynomial on a circle {z € C : |z| = r} by its
supremum on subsets of {z € C: |z| = r}.

Lemma 2.1. Let Q be a polynomial of arbitrary degree which possesses only n non zero coefficients.
Then for any r >0 and any 6 (0 < < 27)

sup |Q(2)] < <4i) sup [Q(re™).

|2l =r 0 /) y<o/2
For r > 0 and 0 < 0 < 27, I', 5 will be the set
4] 0
I''s =32€C; |z| =r and —5 <arg(z) < 3
and Cy = 4%;“ the constant of the above Turan inequality.

Now we state [I1], Proposition 4.5] and we furnish a simple proof.

Proposition 2.2. Let (\,) be a strictly increasing sequence of positive integers. Assume that
lim sup,, (%) < 4o00. Then the set U(D, (\,),0) is empty.

Proof. The proof is based on the use of Turan’s inequality. We argue by contradiction. Take
f=2 502" inU(D, (A,),0). Since we have limsup,, (%) < 400, there exists d > 0 such that

(1) Vn e N, A, <dn.

Let » > 0 and 0 < § < 27. Fix a compact set K C C\ DD with connected complement. Let us choose
R > 0 so that

R
2 — > sup |z|.
@ ca > sl
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Clearly the set Krs := I'rs U K is a compact set with connected complement. Since f €
U(D, (N\,),0) there exists an increasing (i, ) of positive integers such that

sup [Sy, (f)(2) =1] = 0and sup [Sy, (f)(2)] =0, asn — +oo.
ZeKr,é ZeKT,&

Therefore, for any 0 < € < 1, we can find ng € N such that for all n > ng,
(3) sup [S,,(f)(z) =1 <e/4 and sup [Sy, (f)(2)] <e/4.

2€K; 5 2€K, 5

In particular, we have, for every n > ng,

Aﬂn
sup Zajzj <e/4.
ZGFR75 §=0
Using Lemma [ZT] and Cauchy estimates, we get for every n > ng and j =0,...,,,,
1/j .
/i« & cAunli
@ o' < .
Taking into account (), we get for every n > ng and j =14 pin,..., Ay,
. /i ¢d
/5 <« €Y
(5) ’aJ’ — 41/] R :

By () and (), we deduce that there exists a positive integer ns > ng such that for n > no the
following estimate holds

Aﬂn )
sup | Z a;z’| < e/4.
zeK j=1+pun

Finally using the inequality sup,c g |5y, (f)(2)| < &/4, we have, for all n > na,

)‘I»Ln )‘#n
(6) sup Sy, (£)(2)] = sup [Sx,, ()= D a;2| <sup Sy, (F)(2)+sup| D a2 <e/2,
zeK zeK j=14pn zeK zeK j=14pn

Combining (B with (6]) we obtain

1< 5up [Sy, (£)(2) — 1] 4 sup S, ()(2)] < 3e/4,
zeEK zeK
which is a contradiction. This completes the proof of the proposition. O

Further we are interested in the algebraic structure of U (D, (\,),0). First let us define the set of
doubly universal Taylor series along a given subsequence.

Definition 2.3. Let (\,) and g = (u,) be increasing sequences of positive integers. A function
f € H(D) belongs to the class U™ (D, (\,),0) if for every compact set K C C\ D with connected
complement and for every pair of functions (g1, g2) € A(K) x A(K), there exists a subsequence of
positive integers (v,,) C u such that

sup |5y, (f)(2) — 91(2)] = 0 and sup |Sy,, (f)(2) — g2(2)] = 0, as n — +o0.
zeK zeK

Remark 2.4. Arguing as in the proof of Proposition 2.2l we obtain that the existence of uni-
versal elements in U (D, (\,),0) implies limsup,, %? = +00. On the other hand, the hypothesis

lim sup,, % = +oo implies that the set U(*) (DD, (\,),0) is Gs and dense in H(ID). The proof works
as in [I1], Proposition 4.1] with obvious modifications.

Moreover a careful examination of the proof of Proposition gives the following lemma.
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Lemma 2.5. Let (\,) and u = (u,) be increasing sequences of positive integers. Let f be in
U (D, (A\n),0). For every compact set K C C\D, with K¢ connected, and for every pair of functions
(g1,92) € A(K) x A(K), with g1 # g2, there exists a subsequence (vy,) of p with lim sup,, )1‘/": = 400
such that

sup |5y, (f)(2) — g1(2)| = 0 and sup |Sy, (f)(2) — g2(2)| = 0, as n — +o0.
zeK zeK

Proof. As in the proof of Proposition [Z2] let us choose R > 0 so that C%i > sup,cg |2| and consider
the compact set Kps:= s UK. Since f € UM (D, (\,),0) there exists an increasing (v,) C v of

positive integers such that

Sup 10, (f)(2) — 01 ()] > 0 amd sup S, (F)(2) — ga(2)] = 0, s m — +oo.
ZeKT,& ZeKr,é

Arguing as in the end of the proof of Proposition[2.2, we deduce that we have necessary lim sup,, );L: =
+00.

Combining Remark [2.4] with Lemma we get that the set U(D, (\,),0) U {0} is algebraically
generic.

Theorem 2.6. Let (\,) be a strictly increasing sequence of positive integers such that lim sup,, (%) =

+oo. The set U(D, (N\y,),0) U{0} contains a dense vector subspace of H(D).

Proof. We proceed as in the proof of [3, Theorem 3| with essential modifications. Let us fix a dense
sequence (h;); in H(D). In the following, dgp)y denotes the standard metric of H(ID). Let (K,) be
a family of compact sets with connected complement and K,, NID = ) for every m € N such that
every compact subset K C {z € C: |z| > 1}, with K¢ connected, is contained in some K,, n € N
[T9, Lemma 2.1]. We construct a sequence (f;); in H(D) and sequences u*! of positive integers
satisfying the following conditions, for any k,[l > 1,

o 1Ml is a subsequence of xF!~1, with pF0 = N,
o dym)(fi.h) <27,
A
e limsup, % = +o00,
I8
e f; belongs to ﬂ@lu(“k’kl)(ﬂ), (An),0),
® SUp,ck, ‘S)\Hk,l (fl)’ — 0, SUpP.eck, ‘Suf;l(fl) — 1‘ — O, and dH(D)(SMﬁJ(th)afl) — O, as
n— +oo.
To do this, observe that first we can choose f; in the dense set U(ID, (\,),0) so that dgmp)(f1,h1) <

2~1. Therefore, applying Lemma 3], for any k& > 1, one may find a subsequence ,uk’l with
Ak
lim sup,, :,;jl = +00, such that supg, |Sx ,, (f1)] — 0 and supg, |Sﬂk,1(f1) —1] - 0asn— +oo.
n Hp) n

At step 2, we choose fy € ﬂkZIU(“k’l)(]D), (An),0), which is a G5 and dense subset of H(D), with
dH(D) (f2, ha) < 272 In particular, according to Lemma25 for any k > 1, there exists a subsequence
A
k2 of %t with lim sup,, %25 = +oo such that supg, [Sx ,,(f2)| = 0 and supy, \Suk,g (f2)—-1—0
Hn, [ n

as n — +o0o. Then we repeat the same arguments to construct (f;); in H(D) and sequences p*! of
positive integers satisfying the above properties. To finish the proof, it is sufficient to check that
the linear span of the (f;) is both dense in H(D) and contained in U (D, (\,),0), except for the
zero function. The density is clear by construction. Moreover let f = a1 f1 + -+ + qyn fm, with
am # 0. Let us consider two polynomials g1, go and a compact set K with connected complement
and K NQ = (). There exists k such that K C Kj,. Since f,, € YW (D, (A,),0), there exists a
sequence (v,,) of positive integers with (v,) C u*™~! such that

(7)
m—1

sup [Sx,, (amfm)(2) —g1(2)| = 0 and sup |9, (m fm)(2) — (92(2) — Z a;)] = 0 asn — +oo.

zeKy 2€Ky i=1
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Observe that (7,) is a subsequence of any u*! for [ < m — 1. Hence by construction we have, for
any [ <m — 1,
(8) sup |Sx,, (a1 fi)(z)| = 0 and sup [S,, (e fi)(2) — il = 0 as n — +o0.

z€Ky, zeKy,

Finally from (7)) and (&) we get
sup [Sy,, (f)(2) = g1(2)] = 0

zeKy

and

m—1
sup [Sy, (£)(2) = g2(2)] < sup |8y, (@mfm)(2) = (g2(2) = Y i) |+Z sup [Sy, (i fi)(z) —ou| =0
i=1

zeKy zeKy i—1 z€EK},

as n — 400, which implies that f belongs to U(D, (A,),0). O

3. DOUBLY UNIVERSAL INFINITELY DIFFERENTIABLE FUNCTIONS

First let us introduce some notations and terminology. We consider the set C5°(R) of functions
f € C*(R) with f(0) = 0. Its topology is defined by the seminorms sup,e(_, m) 1£U)(z)|, j,m € N
and the associated standard translation-invariant metric will be denoted by dcoo(R) Moreover
we will consider the classical space RY endowed with the metric dgn defined by dgn((uy), (v,)) =
Y >0 2 M(maxo<j<p |[u; — v;|/(1 + maxo<j<p |u; — v5])). The metric space (RN, drv) is complete.
As far as we know Fekete exhibited the first example of universal series by showing that there
exists a formal power series ) -, ap,2™ with the following property: for every continuous function
g on [~1,1] with g(0) = 0 there exists an increasing sequence (\,) of positive integers such that
SUPge[-1,1] | 2221 arpr® — g(x)] — 0, as n — 4oo [20]. A slight modification of Fekete’s proof
combined with Borel’s theorem allows to obtain C'°°-function whose partial sums of its Taylor
series around 0 approximate every continuous functions vanishing at 0 locally uniformly in R (see
[12]). In the present section, we are going to obtain a natural extension of the results of Section
to the case of Fekete functions, exploiting the fact that we did not need to use advanced tools of
potential theory to study the class of doubly (complex) universal Taylor series.

First of all, let us mention a useful inequality for polynomials in many variables between the
complex and the real sup-norms [I} [13].

Theorem 3.1. There exists a constant C' > 1 such that, for any polynomial P of degree n in k
variables with real coefficients, we have
sup |P(2z1,...,2k)| <C" sup |P(z1,...,2k)]|-

|z1]="=|z|=1 @1, zp€[—1,1]
In Theorem 3.1} we can choose the constant C' to be 1+ /2 [I], [13].

Definition 3.2. Let ()\,) be a strictly increasing sequence of positive integers. A function f €
C3°(R) belongs to the class U(CF°(R), (An)) if for every compact set K C R and for every pair
(h1,ha) of continuous functions hi, he : R — R vanishing at zero, there exists a subsequence of
positive integers (p,) such that

k) g (k)
! (O)xk — hi(z)| — 0 and sup [0 zk

zeK |3 k! zeK =0 k!

— ha(z)| — 0 as n — +oo.

Now we can state a version of Proposition in this context.
Proposition 3.3. Let (\,) be a strictly increasing sequence of positive integers. Assume that
limsup,, (22) < +o0. Then the set U(CFC(R), (\,)) is empty.

Proof. We argue by contradiction. Take f in U(C§°(R), (A,)) and set, for every k > 0, aj, = ! 2,( ),

Since we have lim sup,, ( - ) < 400, there exists d > 0 such that
(9) Vn €N, A, < dn.
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Let us fix

(10) 0<e< !

© S g0
where C'is the absolute constant given by Theorem Bl Since f belongs to U(C§°(R), (Ay)), there
exists a subsequence (1) of positive integers such that, for any n > ny,

Hn Aun

(11) sup Za]x] —z| <e/4and sup Zajxj] < e/4.
ze[—1,1] ze[—1,1] T

Using Theorem Bl we get, for every n > ng,

)‘Hn
(12) sup Za Al < O &
21=1 |52 4

It follows from Cauchy’s formula, for every n > ng and j =0,...,\,,,

el/i
1 A
(13) |, i< o /JC wn/d
From (@) we deduce, for j =14 pin,..., Ay,
el/i

1/4 d
(14) laj|? < 41/]0
and therefore we get, for n > ny,

An An

sup | Z ajlegi Z 2i<

2€[~1/(209),1/(209)] ;T J=Thpm

mm

Finally using (1)) we have, for all n > ny,
(15)
Aﬂn A“n

sup |Za x| < sup Za 2! |+ sup | Z a;z’| < g/2.

z€[-1/(2C9),1/(2C")] ;5 z€[— 1/(2Cd /20N = z€[-1/(2C"),1/2CN] ;211
Combining ([II) with (1) we obtain, for n > ny,

1

— = sup lz] < a;z’| + sup Iy a2l —x
204 e1/0d)1 /0 :1:6[ 1/(2cd 1/(209)] JZ; ’ 2€[~1/(2C4),1/(204)] JZ; ’

<— — .
< 2+4<6

This last inequality gives a contradiction with (I0). This completes the proof. O

To obtain the converse result, we will follow the main ideas of the proof of [II, Proposition

4.1]. First we need a quantitative approximation polynomial lemma which will play the role of [IT],
Theorem 2.1]. We have to approximate a given continuous function vanishing at 0 by polynomials
whose both degrees and valuations are imposed. Exploiting the form of the classical Bernstein
polynomials, we begin with the case where the approximation takes place on compact subsets of
[0, +00).
Lemma 3.4. Let (I,) and (my) be two strictly increasing sequences of positive integers such that
I <my and T—: — +00 as n — +0o. Let A > 0. For every continuous function h : Ry — R, with
h(0) = 0, there exists a sequence (Py) of real polynomials of the form Py (x) = Y™ Ccn i, such
that

sup |P,(z)— h(z)| = 0, as n — +o0.
z€[0,A4]
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Proof. Let € > 0. By continuity of the function / at 0, one can find 17 > 0 such that for all z € [0,7),
|h(z)| < /4. Let us consider the continuous function h defined on Ry by

0 for 0 < <n/2
h(z) = 2z —p/2) forn/2<z<n
h(z) for z >n

Then, for every n > 1, let us consider B,,, (iL) its Bernstein polynomial of degree m,,, given by

By (7)(x) = ﬁ g: <”;"> p <Amin> 2F(A — )k,

k=0
Moreover since the sequence (I,,/my) converges to 0, there exists a positive integer N; such that,

for every n > Ny, Al,/m, < n/2. Therefore by construction, for every n > Nj and for k =

0,1,...,1l,,we have h <Amin> = (. The Bernstein polynomials of & have the following form

~ I & (mn) 5 k _ ol

B i) = iz 32 (1) (450 ) ot = 3 ot
k=ln k=ln

Obviously the function h is continuous on [0, A]. So it is known that the sequence (B, (h)) converges

uniformly to h on [0, A] [5]. Thus we deduce the existence of a positive integer No > Nj such that,

for every n > No,

sup |an(ﬁ)(az) - B(ﬂ:)| <e/2.
z€[0,A]

Now, for z < /2, since h(x) = 0, the triangle inequality gives
| Bin, (B)(@) = h(@)] < | B, (h)(2)] + |h(2)] < £/2 + /4 < e.
On the other hand, for /2 < x <1, we have
|Bin, (B)(@) = h(@)] < | B, (h)(x) = h(z)| + |h(z) — h(z)| <e/2+¢/2 =
Finally for & > 7, we have h(x) = h(x) and we get |By,, (h)(x) — h(z)| < e. This completes the
proof. O

Then we extend Lemma 4] to the case of symmetric intervals [—A, A].

Lemma 3.5. Let (I,) and (m,,) be two strictly increasing sequences of positive integers such that
lp, < my, and T—: — 400 as n — +oo. Let A > 0. For every continuous function h : R — R, with

h(0) = 0, there exists a sequence (Py,) of real polynomials of the form P,(z) = ZZL:"M cmk:ck, such
that

sup |P,(z) — h(z)| = 0, as n — +o0.
zE€[—A,A]

Proof. Let € > 0. By continuity of the function h at 0, one can find > 0 such that for all z € [0,7),
|h(z)| < /4. Let us consider the continuous function h defined on R by
0 for |z| < n/2
h
= 2 (3 — n/2) for n/2 <z <n

h —
D=1 ) tor g << g2
h(z) for |z| > n
Observe that we have
(16) sup [h(z) — hiw)| < 2/2.
z€[—A,A]

Define also the continuous functiong : R = R, z — iL(m) /x?%. By classical Weierstrass approximation
theorem one can find a polynomial P such that

sup |P(x) —g(z)| < e/4A%.
z€[—A,A]
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We deduce the following inequality

(17) sup |2%P(z) — h(z)| < g/4.
z€[—A,A]

Set W (x) := 2?P(z). Observe that W (0) = W’(0) = 0. Let us write
W(z) = Qi(2®) + 2Q2(z?)

where ()1 and ) are polynomials vanishing at 0. Then we apply Lemma B4l to find two sequences
of polynomials P, and P, s of the form

[mn /2] |(mn—1)/2]
Po()= Y et and B = Y et
F=lin/2)31 b=Lin/2)
such that
sup [Po1(2) = Q1(@)] > 0and sup |Pra(a) = Qafa) =0, asn — +oo.
z€[0,A2] 2€[0,4?]

For n large enough we get

sup [ Py1(2?) — Qi(2?)| <e/8and  sup [P, a(a?) — Qa(2?)] < £/84.
ze[—A,A] ze[—A,A]
Thus by construction the polynomial W (z) := P,1(22) + 2Py 2(2?) has the following form
(18) W(z) = Z ok
k=ln

and we have

sup  [W(z) = W(z)] < sup [Poi(2?) —Qu(@®)|+ sup |a(Poa(2?) — Qa(2?))|
(19) #€l-AA [AA] . z€[—A,A]

Siac _E
Ry

Finally combining the triangle inequality with (I6]), (I7)) and (I9]), we get
sup |h—W| < sup |h — h| + sup |lh —W|+ sup |W —W|
[—AA

< — — — =
2 + 4 * 4
Thus the polynomial W has the desired properties (given by (I8) and (20)). This completes the
proof. O

Next we introduce an intermediate result.

Definition 3.6. Let (a,,) and (b,) be strictly increasing sequence of positive integers. A function
f € C§°(R) belongs to the class U(CF°(R), (an), (b)) if for every compact set K C R and for every
continuous function h : R — R vanishing at zero, there exists a subsequence of positive integers
(t4n) such that

- f(’“ ©) ¢

Supz — h(z)| — 0 and supz

zeK ! reK

¥ h(x)] = 0as n — +oo.

Proposition 3.7. Let (a,) and (by,) be strictly increasing sequence of positive integers. Then the
set U(CGC(R), (an), (by)) is G5 and dense in CG°(R).

Proof. Tt suffices to combine the ideas of the proof of [11, Proposition 3.2] with the arguments of
[18]. Let (f;) be an enumeration of all the polynomials with coefficients in Q and f;(0) = 0. Let us
define the set

, )
E(m, j,s,n) = {f € CF(R) : subsel o | Dy Lk = f(0)] < L
(k)
and SUPge|_m,m] ‘22":1 : k.(o) zk — fj(x)‘ <1}
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for every m,j,s,n € N*. Observe that E(m,j,s,n) is an open set and the following description
holds

UCFER), (an), (bn)) = () | E(m.j.s,n).
m,7,s€N* neN

By Baire’s category theorem it suffices to show that Up,enE(m, j, s,n) is dense in C§°(R). To do
this, let m,j,s € N*, ¢ > 0 and g be a polynomial. We seck f € C§°(R) and n € N such that
f € E(m,j,s,n). Applying the proof of [7, Lemma 2.3], for any n > 0, we find ¢1,¢2,...,¢ in R
such that
dpe((c1,...,¢,0,...),0) <nand sup |p(x)+ g(z) — fi(z)] <n,
z€[—m,m]

with p(z) = 22:1 crpx®. Since the sequences (a,) and (b,) are strictly increasing, we fix n € N
such that min{ay,,b,} > max{l,deg(g)}. Moreover the linear Borel map Tp : C°(R) — RN, f s
(f*)(0)/k!) is open. Hence with a previous good choice of 7 < ¢ we find a function w € C§°(R)
such that Tow = p and dege(r)(w, 0) = dege(r)(w + g,9) < €. So the function f = w + g does the
job. O

Proposition 3.8. Let (\,) be a strictly increasing sequence of positive integers. Assume that
lim sup,, )‘7" = +00. Then the set U(CF(R), (\n)) is Gs and dense in C§°(R) and contains a dense
vector subspace apart from 0.

Proof. Let (f;) be an enumeration of all the polynomials with coefficients in Q vanishing at zero.
Let us consider the sets

.. (k)
E(m, j1,j2,5,m) = {f € C&(R) : Sy | Sonro L la” " fh< )| <L
k
and SUPg e[ m) | 2p= of !(0 — fi(2)] < %}

for every m, j1, jo2, s, n € N. Weirstrass approximation theorem ensures that

UCE®, D)= () U Em.jigas,n).

m,j1,j2,SENneN

Since the sets E(m, j1, jo2, s, n) are open, according to Baire’s category theorem it suffices to prove
that UpenE(m, j1,j2,s,n) is dense in C§°(R) for every m, ji, j2, s € N to obtain that the set
U(CGC(R), (A\n)) is Gs and dense in C§°(R). To do this, we fix m, ji1, jo, s € N, ¢ > 0 and
g € C§°(R). Then it suffices to find n > 0 and f € E(m,j1,j2,s,n) such that

(21) dC(?O(R) (f7 g) <g,
where dcee(r) denotes the Fréchet distance in Cg°(R). By Weierstrass approximation theorem we
can assume that ¢ is a polynomial with ¢g(0) = 0. Since lim sup,, )‘7" = 400, there exists a strictly
increasing sequence (u,) C N such that % — 400 as n — +oo. We apply Lemma for
h:= fj;, = fjss ln = 1+ pp, and m,, = X,,,. We obtain a sequence of polynomial (P,) of the form
P,(z) = ZZZLHM cn kx® which converges to f;, — fj, uniformly on [—m,m]. There exists N; € N
such that for every n > N; the following inequality holds
Sup[Pa(a) = (£ () — Fia(a))| < 1/2.

z€[—m,m)]

Observe that the linear Borel map Ty : C5°(R) — RN, £+ (f(*)(0)/k!) is open. Hence the image
of every €/2-neighborhood of 0 in C§°(R) contains some 7-neighborhood of 0 in RN, Moreover, by
construction we have

(22) val(P,) > pn and p, — 400, as n — 400,

where val(P,) denotes the valuation of the polynomial P,. So the property (22) implies that the
inequality dpn(P,,0) < n holds for n large enough. Therefore one can find a positive integer
Ny > Nj such that for n > N there exists u, € C§°(R) with Tou,, = P, and dose (r) (un,0) < /2.
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On the other hand, applying Proposition B for a,, = ju,, by = Ay, we find a function w € C§°(R)
and a sufficiently large positive integer v with p,, > deg(f;,) such that

A#u
deser) (W, 9 — fj,) <e€/2, [Sup |Z k| < 1/2s and [sup ]|Z k| < 1/2s.
z€[—m,m] TE[=m,m| L4

Thus the function f := w + u, + ij belongs to E(m,j1, 72,8, 1y) and satisfies inequality (21]).
Indeed we have

He (k) (0 M w0

e[sup }|Z f k( )xk — i ()] = e[sup }|Z%xk| < 1/2s,
z€[-m,m] z€[-mm]

A

b f<k w®) (0

s 1350 p ol < s 15O s ()~ () = Fla)

z€[-m,m] z€[-m,m] z€[—m,m]
< 1/2s+1/2s =1/s,
and
dese®)(f19) = dogem) (W +uw + fio,9) < deger)(w, 9 — fjy) + dogew) (ww, 0)
< g/24¢/2=c¢.

Hence the set U(C5°(R), (An)) is Gs and dense in C§°(R). Finally to prove that the set U (C§° ( )s (An))
contains a dense vector subspace, except 0, it suffices to write the analogue of Lemma 2.5 (which
will be a corollary of Proposition B.3]) and to follow the proof of Theorem 2.61 O

Propositions and can be summarized as follows.

Theorem 3.9. Let (\,) be a strictly increasing sequence of positive integers. The following asser-
tions are equivalent

(1) U(CG(R), (An)) is non-empty,

(2) limsup,, %” = +o00.
In addition, in the case limsup,, 22 = +oo, the set U(CS(R), (\,)) is a Gs and dense subset of

n
C§°(R) and contains a dense vector subspace apart from 0.

4. FURTHER DEVELOPMENT AND REMARK

The notion of doubly universal series has connection with that of topological multiple recurrence
in dynamical systems. We refer the reader to [I1], page 22|. Recently Costakis and Parissis proved
that a frequently Cesaro hypercyclic bounded linear operator 1" acting on an infinite dimensional
separable Banach space over C is topologically multiply recurrent [9]. The notion of Cesaro hy-
percyclicity for an operator T was introduced in [14] and that of frequent Cesaro hypercyclicity in
[10]. Let us introduce the set of frequent Cesaro universal series. For a power series f =3~ a2,
on(f) == n%rl >7—0S;(f) denotes the sequence of Cesaro means of the partial sums of the Taylor
expansion of f at 0. We know that the set Uces(D) of functions f € H(D) such that, for every
compact set K C C with K¢ connected and K NID = ) and for every function h € A(K), there
exists an increasing sequence (\,) of positive integers such that sup,cx |on, (f)(2) — h(z)| — 0, as
n — +00, is a Gg-subset of H(DD) (see [I5] or for instance [3]).

Definition 4.1. A power series f = Zj>0 ajzj of radius of convergence 1 is said to be a frequently
Cesaro universal series if for every € > 0, for every compact set K C C\ D with connected
complement, and any function h € A(K), we have

dens {1 € 4 supan (1)) - (=) <& b >0
zeK

The lower and upper densities of a subset A of N are respectively defined as follows

A:n<N — A:n<N
dens(A) = lim inf #n e n< N and dens(A) = lim sup #ne n< N}
N—=oo N N—~+o0 N

where as usual # denotes the cardinality of the corresponding set.
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According to a recent result we know that universal Taylor series cannot be frequently universal
in the sense of Definition 1] where we replace the Cesaro operators o, by the partial sums S,, [16].
We state a similar result for the Cesaro universal series .

Theorem 4.2. The set of frequently Cesaro universal series is empty.

Proof. Let f be in Uces(D). According to [2, Corollary 4.4] f is a universal Taylor series. Let
K c C\ D be a compact set with connected complement and h be a non-zero polynomial. Then
Theorem 3.3 of [16] ensures that there exists a subsequence (\,,) of positive integers with dens(\,) =
1 such that sup,cx |Sh, (f)(2) — h(2)] = 0, as n — +oo. According to Section 4 of [6] we have
sup,ex |oa, (f)(2) — h(z)] = 0. We end as in the proof of [16, Theorem 3.3]. Indeed define the
subset A of N by

A= {n €N sup o (£)(2)] < d/2),

where d = sup,cg |h(z)|. Thus there exists an integer N large enough, such that, for every n > N,

An ¢ A. Let us consider the sequence A = (An, An+1,...). Clearly dens(A) = 1. So the inclusion
A C N\ X implies

dens(A) < dens(N\ \).
But we have dens(N\ A) = 1 — dens(\) = 0. Thus f cannot be a frequently Cesaro universal
series. m

Therefore the sequence of operators given by Cesaro means of sequence of operators given by the
partial sums (S,,) of the Taylor development at 0 of functions of H(ID) is not frequently universal
even if the sequence of operators (S,) is doubly universal. Since the notion of doubly universality
has connection with that of topological recurrence, we can compare this result with the main result
of [9].

Remark 4.3. (1) Theorem remains true in the case of Fekete universal functions. To see
this, it suffices to argue as in the proof of Theorem taking into account the results of
[17].

(2) The proof of Theorem shows that all the elements f = Y, ., ax2" of Uces(D) are 1-
upper frequently Cesaro universal, i.e. for every compact set K C C \ D with connected
complement, and any function h € A(K), there exists an increasing sequence A = (\,,) of
positive integers with dens(\) = 1 such that sup,c g |ox, (f)(2) — h(z)| = 0 as n — +o0.

Let (\,) be a strictly increasing sequence of positive integers with (\,,) # N. We end the paper
with the following remark, which shows that one can find examples of doubly universal series with
respect to the given sequence (\,,) without additional hypothesis. For instance, let us define the set
URN, (X)) of sequences (a,) C RY satisfying the following universal property: for every pair of real
and | Y " ap — lo] — 0, as n — +o00. Then U(RY, (\,,)) is a G5 and dense subset of RY, endowed
with its natural topology defined in Section Bl In particular we have U(RY, (\,)) # 0. Indeed, let
us consider

numbers (l1,l2) there exists a subsequence (u,) of positive integers such that ]22“’6 ar —li| =0

An n
L 1 1
E(j1,J2,8,n) = {(an) cRN: \kgoak —rj| < B and \kgoak — 71| < g}

for every ji, jo, s, n € N, where (r;) is an enumeration of Q. Obviously we have the following
description
U(RNv()‘n)) = ﬂ U E(j17j2787n)'
j1,72,s€eNneN

Since the sets E(j1, j2, $,n) are open, according to Baire’s category theorem it suffices to prove that
UnenE(j1, j2, 5,n) is dense in RN for every ji, j2, s € N. Fix ji, j2, s € N, £ > 0 and (b,) € RY.
We seek n > 0 and (ax) € E(j1,J2,5,n) such that dgn((an), (by)) < €. Let us choose n € N so
that 3",-, 2% < e and A, > n. It is easy to check that the sequence (a;) defined by aj, = by, for
k=0,....,n—1, ay, =7j,— Y pobr, ag =0for k=n+1,...,\, — 1 and ay, =r;, —rj, does the
job.
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