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Abstract

In this paper we study different types of Recurrent Neural Networks (RNN)
for sequence labeling tasks. We propose two new variants of RNNs integrating
improvements for sequence labeling, and we compare them to the more traditional
Elman and Jordan RNNs. We compare all models, either traditional or new, on
four distinct tasks of sequence labeling: two on Spoken Language Understanding
(ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and
the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs
are always more effective than the others.

1 Introduction
Recurrent Neural Networks (RNN) [1–3] are neural models able to take some context
into account in their decision function. For this reason, they are particularly suitable for
several NLP tasks, in particular sequential information prediction [4–8]. In RNNs, the
contextual information is provided to the model by a loop connection in the network
architecture. This connection allows to use at the current time step one or more pieces
of information predicted at previous time steps. This architecture seems particularly
effective for neural networks since it allows to combine the power of distributional
representations (or embeddings) with the effectiveness of contextual information.

In the literature about RNNs for NLP, two main variants have been proposed, also
called “simple” RNNs: the Elman [2] and the Jordan [1] RNN models. The difference
between these models lies in the position of the loop connection giving the recurrent
character to the network: in the Elman RNN, it is put in the hidden layer whereas in
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the Jordan RNN it connects the output layer to the hidden layer. In this last case, the
recurrent connection allows to use, at the current time step, the information predicted
at previous time steps. In the last few years, these two types of RNNs have been
very successful for language modeling [9, 10], and for some sequence labeling tasks
[6–8, 11, 12].

The intuition at the origin of this article is that embeddings allow a fine and effective
modeling not only of words, but also of labels and their dependencies, which are very
important for sequence labeling. In this paper, we define two new variants of RNN to
achieve this more effective modeling.

In the first variant, the recurrent connection is between the output and the input
layers. In other words, this variant gives labels predicted at previous positions in a se-
quence as input to the network. Such contextual information is added to the usual input
context made of words, and both are used to predict the label at the current position
in the sequence. Moreover we modified the hidden layer activity computation with
respect to Elman and Jordan RNN, so that to take the different information provided
by words and labels into account. From our intuition, thanks to label embeddings and
to features-learning abilities of the hidden layer, this variant models in a more effective
way label dependencies. The second variant we propose combines an Elman RNN and
our first variant. This variant can thus exploit both contextual information provided by
the previous states of the hidden layer, and the labels predicted at previous positions of
a sequence.

A high-level schema of the Elman’s, Jordan’s and our first variant of RNN are
shown in Figure 1. The schema of our second variant can be obtained by adding the re-
cursion of the first one to the Elman architecture. In this figure, w is the input word, y is
the predicted label,E,H ,O andR are the parameter matrices between each pair of lay-
ers: they will be described in details in the next section. Before, it is worth discussing
the advantages our variants can bring with respect to traditional RNN architectures,
and explaining why they are expected to provide better modeling abilities.

(a) Elman RNN (b) Jordan RNN (c) Our variant of
RNN

Figure 1: High Level Schema of the Main RNNs Studied in this Work.

First, since the output at previous positions is given as input to the network at the
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current position, the contextual information flows across the whole network, affecting
each layer’s input and output, at both forward and backward phases. In contrast, in
Elman and Jordan RNNs, not all layers are affected at both forward and backward
phases.

A second advantage of our variants is given by label embeddings. Indeed, the first
layer of our RNNs is just a look-up table mapping sparse “one-hot” representations into
distributional representations.1 Since in our variants the output of the network at previ-
ous steps is given as input at the current step, the mapping from sparse representations
to embeddings involves both words and labels. Label embeddings can be pre-trained
from data as it is usually done for words. Pre-trained word embeddings, e.g. with
word2vec, have already shown their ability to capture very attractive syntactic and se-
mantic properties [13,14]. Using label embeddings, the same properties can be learned
also for labels. More importantly, using several predicted labels as embeddings provide
a more effective modeling of label dependencies via the internal state of the network,
which is the hidden layer’s output.

Another advantage coming from the use of label embeddings and different previous
labels as context, is an increased robustness of the model to prediction mistakes. This
effect comes from the syntactic and semantic properties that embeddings can encode
[14].

All these advantages are also supported by our second variant, which uses both a
label embedding context, like the first variant, and the loop connection at the hidden
layer, like an Elman RNN.

All RNNs in this article are studied in their forward, backward and bidirectional
versions [3]. In order to have a fair and straightforward comparison, we give the results
of our new variants of RNNs together with those obtained with our implementation
of Elman and Jordan RNNs. These implementations are very close to state-of-the-art,
even if we did not implement every optimization feature.

All models are evaluated on four tasks. Two are Spoken Language Understanding
(SLU) tasks [15]: ATIS [16] and MEDIA [17], which can be both modeled as sequence
labeling problems. Two are POS-tagging tasks, one on the French Treebank (FTB) [18,
19] and one on the Penn Treebank (PTB) [20]. The results we obtain on these tasks
with our implementations, despite they are not always better than the state-of-the-art,
provide a stable ranking of different RNN architectures: at least one of our variants,
most of the time and surprisingly the simpler one, is always better than Jordan and
Elman RNNs.

In the remainder of the paper, we introduce RNNs and we describe in more details
the variants proposed in this work (section 2). In section 3, we describe the corpora
used for evaluation and all the results obtained, in comparison with state-of-the-art
models. In section 4, we draw our conclusions.

1The “one-hot” representation of an element at position i in a dictionary V is a vector of size |V | where
the i-th component has the value 1 whereas all the others are 0.
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2 Improving Recurrent Neural Networks
The RNNs we consider in this work have the same architecture also used for Feedfor-
ward Neural Network Language Models (NNLM), described in [21]. In this architec-
ture, we have four layers: input, embedding, hidden and output. Words are given as
input to the network as indexes, corresponding to their position in a dictionary V .

The index of a word is used to select its embedding (or distributional representa-
tion) in a real-valued matrix E ∈R|V |XN , |V | being the size of the dictionary and N
the dimensionality of the embeddings (which is a parameter to be chosen). We name
E(v(wt)) the embedding of the word w given as input at the position t of a sequence.
v(wt) = i is the index of the word wt in the dictionary, and it can be seen alternatively
as a “one-hot” vector representation (the vector is zero everywhere except at position
v(w), where it is 1).

In contrast to NNLM, RNNs have one more connection, the recursive connection,
between two layers, depending on the type of RNNs. As mentioned previously, Elman
RNNs have a recursion loop in the hidden layer. Since this layer encodes the inter-
nal representation of the input to the network, the recurrent connection of an Elman
network allows to keep “in memory” words used as input at previous positions in the
sequence. Jordan RNNs have instead a recursion between the output and the hidden
layer. This means that a Jordan RNN can take previous predicted labels into account to
predict the label at the current position in a sequence. For every type of RNN, we call
R the matrix of parameters of the recursion connection.

Our implementation of Jordan and Elman RNNs is like in the literature. [1–3]. 2

2.1 RNN Learning
Learning the described RNNs consists in learning the parameters Θ = (E,H,O,R)
between each pair of layers (see Figure 1), and we omit biases to keep notations lighter.
We use a cross-entropy cost function between the expected label ct and the predicted
label yt at the position t in the sequence, plus a L2 regularization term [22]:

C = −ct · log(yt) +
λ

2
|Θ|2 (1)

λ is an hyper-parameter of the model. Since yt is a probability distribution over
output labels, we can also view the output of a RNN as the probability of the pre-
dicted label yt: P (yt|I,Θ). I is the input given to the network plus the contex-
tual information provided by the recurrent connection. For Elman RNN IElman =
wt−w...wt...wt+w, ht−1, that is the word input context and the output of the hidden
layer at the previous position in the sequence. For Jordan RNN IJordan = wt−w...wt...wt+w, yt−1,
that is the same word input context as Elman RNN, and the label predicted at the pre-
vious position. We associate the following decision function to predict the label at
position t in a sequence:

l̃t = argmaxj∈1,...,|L|P (yjt |I,Θ) (2)

2We also find [7] quite easy to understand, even for readers not familiar with RNNs.
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l̃t is a particular discrete label.
We use the back-propagation algorithm and the stochastic gradient descent with

momentum [22] for learning the weights Θ.

2.2 Learning Variants
An important choice for learning RNN models concern the back-propagation algo-
rithm. Indeed, because of the recurrent nature of their architecture, in order to prop-
erly learn RNNs the Back-Propagation Through Time algorithm (BPTT) should be
used [23]. The BPTT algorithm constists basically in unfolding the recurrent archi-
tecture for a choosen number of steps, and then learning the network as a standard
Feed-Forward network. This is supposed to allow RNNs to learn arbitrarily long past
context. However, [10] has shown that RNNs for language modelling learn best with
just 5 time steps in the past. This may be due to the fact that, at least in NLP tasks,
the past information kept “in memory” by the network via the recurrent architecture,
actually fades away after some time steps. Moreover, in many NLP tasks, using an
arbitrarily-long context on either input or output side, doesn’t garantee better perfor-
mances, as increasing the context size also increases the noise. Since BPTT is quite
more expensive than the traditional back-propagation algorithm, [7] has preferred to
use explicit output context in Jordan RNNs and to learn the model with the traditional
back-propagation algorithm, not surprisingly without loosing performance.

In this work we use the same variant as [7]. When using an explicit context of
output labels from previous time steps, the hidden layer activity of a Jordan RNN is
computed as:

ht = Σ(It ·H + [yt−c+1yt−c+2...yt−1] ·R) (3)

where c is the size of the history of previous labels that we want to explicitly use as
context to predict next label. [·] indicates the concatenation of vectors.

All the modifications applied to the Jordan RNN so far can be applied in a similar
way to the Elman RNN.

2.3 New Variants of RNN
As mentioned in the introduction, the new variants of RNN proposed in this work
present two differences with respect to traditional RNNs: i) the recurrent connection
is from the output to the input layer, meaning that predicted labels are converted into
embeddings in the same way as words; ii) the hidden layer activities are computed
in a slightly different way. Indeed, in Elman and Jordan RNNs the contextual infor-
mation provided by the recurrent connection is summed to the input information (see
equation 3 above). In our variants of RNNs instead, word and label embeddings are
concatenated and provided to the hidden layer as different inputs.

The most interesting consequence of modifications in our RNN variants, is the fact
that output labels are mapped into distributional representations, as it is usually done for
input items. Indeed, the first layer of our network, is just a mapping from sparse “one-
hot” representations to distributional representations. Such mapping results in fine
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features and attractive syntactic and semantic properties, as shown by word2vec and
similar works [13]. Such representations can be learnt from data the same way as for
words. In the simplest case, this can be done by using sequences of output labels. When
structured information is available, like syntactic parse trees or structured semantic
labels such as named entities or entity relations, more sophosticated embeddings can
be learnt. In this work, we learn label embeddings using sequences of output labels
associated to word sequences in annotated data. It is worth noting that the idea of using
label embeddings has been introduced by [24] in the context of dependency parsing. In
this paper, we focus on the use of several label embeddings as context, thus encoding
label dependencies, which are very important in sequence labeling tasks.

Using the same notation as above, we name Ew the embedding matrix for words,
and El the embedding matrix for labels. We name

It = [Ew(v(wt−w))...Ew(v(wt))...Ew(v(wt+w))]
the concatenation of the vectors representing the input words when processing the

position t in a sequence, while
Lt = [El(v(yt−c+1))El(v(yt−c+2))...El(v(yt−1))]

is the concatenation of the vectors representing the output labels predicted at the
previous c steps. The hidden layer activities are computed as:

ht = Σ([ItLt] ·H)
Σ is the sigmoid activation function [22], [·] means the concatenation of the two

matrices and we omit biases to keep notations lighter. The remainder of the layer
activities, as well as the error computation and back-propagation are computed the
same way as in traditional RNNs.

Note that in this variant of RNN there is no R matrix at the recurrent connec-
tion. The recurrent connection here means that the output is given back as input to
the network and it is thus converted explicitely from probability distribution given by
the softmax into a label index, which is used in turn to select a label embedding from
the matrix El. Basically the role played from matrix R in Elman and Jordan RNN, is
played from matrix El in our variant.

Another important interest of having the recursion between output and input layers
is robustness. This is a direct consequence of using embeddings for output labels. Since
we use several predicted labels as context at each position t (see Lt above), at least in
the later stages of learning (when the model is close to the final optimum), it is unlikely
to have several mistakes in the same context. Even then, thanks to the properties of
distributed representations [14], wrong labels have very similar representations to the
correct ones. Taking an example cited in [14]: if we use Paris instead of Rome, it has no
effect for many NLP tasks, as they are both proper nouns for POS-tagging, locations for
named entity recognition etc. Distributed representations for labels provide the same
robustness on the output side.3

Jordan RNNs cannot provide in general the same robustness. We can interpret
hidden activity computation in a Jordan RNN in two ways.

On the one hand, if we interpret a Jordan RNN as using sparse label representations
as input to the hidden layer, such representations are either “one-hot” representations of

3Sometimes in POS-tagging, models mistake verbs and nouns. They make such errors because some
particular verbs occur in the same context of nouns (e.g. “the sleep is important”), and so have similar
representations.
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labels or probability distributions given as output by the softmax at the output layer. In
the first case it is clear that a mistake may have more effect than in the second one, as the
only value that is not zero is in a wrong position. But when probability distributions are
used, we have found that most of the probability mass is “picked” on one or few labels,
which thus does not provide much more softness than a “one-hot” representation. In
this interpretation, sparse labels are an additional input for the hidden layer, the matrix
R on the recurrent connection plays the same role as H does for input words. The two
matrices are then summed to compute the total input of the hidden layer.

On the other hand, we can see the multiplication of sparse representation of labels
in equation 3 as the selection of an embedding for labels from matrix R.4 Even in
this interpretation there is a substantial difference between the Jordan RNN and our
variant of RNN, I-RNN henceforth (I stands for Improved). In order to understand in
detail this difference, we focus on the equations for computing the hidden activities.
For Jordan RNN we have:

ht = Σ(It ·H + [yt−c+1yt−c+2...yt−1] ·R)
For I-RNN we have:

ht = Σ([ItLt] ·H)
where Lt is [El(v(yt−c+1))El(v(yt−c+2))... El(v(yt−1))], that is the concatena-

tion of c previous label embeddings.
In this second interpretation, in Jordan RNN labels are not directly concerned in the

computation of the total input for the hidden layer, since they are not directly multiplied
by matrixH . Only input context It is multiplied byH . The result of this multiplication
is summed to the result of label embedding selection, performed as y[t − i] · R, i =
1 . . . c−1. Finally the hidden non-linear function Σ is applied. Mixing input processing
It · H and label processing y[t − i] · R with a sum, can make sense for the tasks for
which the Jordan network was designed [1], as output units were of the same nature as
input units (speech signal). However we believe that it doesn’t express sufficiently well
words and labels interactions in NLP tasks. Also, since y[t − i] · R is an embedding
selection for labels, labels and words are not processed in the same way: It is already
made of word embeddings, which are further transformed by It · H . This further
transformation is not applied to label embeddings.

In I-RNN in contrast, sparse labels are first converted into embeddings withEl(v(yt−i))],
i = 1 . . . c, and their concatenation results in Lt. This matrix is further concatenated
to the input context It. The result of the concatenation is multiplied by matrix H to
compute the total input to the hidden layer.5 Finally the hidden non-linear function Σ
is applied. This means that information provided by the input context It is not mixed
with Lt with a sum like in Jordan RNN. These two data are given to the hidden layer
as separated inputs. More in particular, the concatenation of It and Lt is performed
neuron-wise, that is each hidden neuron receives as input all context words and all con-
text labels, encoding them as a network internal feature. Thus we let the hidden layer
itself to learn labels interactions, and words-labels interactions. This is indeed in agree-
ment with the “philosophy” of neural networks, where features designing is turned into
features learning. Since words and labels have different nature in sequence labeling

4Multiplying a “one-hot” representation by a matrix is equivalent to selecting one row of the matrix.
5We remind the reader that we are omitting biases to keep notation lighter
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tasks, we believe that modeling interactions in this way is more effective. Also, with
the I-RNN architecture, words and labels are processed in the same way, as both are
first converted into embeddings, and then “transformed” again via multiplication by H
matrix. In order to make results obtained with different RNNs comparable, we used
the same number of hidden neurons for all RNNs. In I-RNN thus, each hidden neuron
receives as input much more information than Jordan and Elman hidden neurons.

In order to make the explanation more clear, I-RNN architecture is detailed in
figure 2. Symbols have the same meaning as equations in the paper, the only exception
is that labels are indicated in the figure with upper-case L. Matrix H is replicated at
the hidden layer computation meaning that all neurons receive the whole [ItLt] input,
which is made of 2 ·w+ 1 + c D-dimensional embeddings: 2w+ 1 word embeddings
and c label embeddings. CAT is the concatenation operator. Please note that the
concatenations of embeddings are performed at two different steps just for the sake
of clearness and to be coherent with equations in the paper, all concatenations can be
performed in one step.

Our second variant of RNN combines the characteristics of an Elman RNN and of
our first variant. In this variant, the only difference with the first one is the computation
of the hidden layer activities, where we use the concatenation of the c previous hidden
layer states in addition to the information already used in the first variant:

ht = Σ([ItLt] ·H + [ht−c+1ht−c+2...ht−1] ·R)

2.4 Forward, Backward and Bidirectional RNNs
All RNNs described in this work are studied in their forward, backward and bidirec-
tional versions [3]. Forward RNNs work as described so far. Backward RNNs have
exactly the same architecture, the only difference being that they process sequences in
the reverse order, from the end to the begin. Backward RNNs can be used to predict
future labels in a sequence.

Bidirectional RNNs use both past and future information to predict the next label,
which is both words and labels in our variants and in Jordan RNNs, or both words and
hidden layers in Elman RNNs. When labeling sequences with bidirectional RNNs, a
backward network is first used to predict labels backward. The bidirectional RNN then
processes sequences in forward direction using past contextual information as usual,
and future contextual information provided by the states and labels predicted by the
backward network. The hidden layer of the bidirectional version of our fist variant of
RNNs is thus computed as:

ht = Σ([ItL
p
tL

f
t ] ·H)

where Lp
t = Lt introduced above, while

Lf
t = [El(v(yt+1)) . . . El(v(yt+c−1))El(v(yt+c))]

is the concatenation of the vectors representing the c future labels predicted by the
backward model. It is very similar for our second variant, refer to [3] for details.

2.5 Recurrent Neural Network Complexity
We provide here an analysis of the complexity in terms of the number of parameters
involved in each model. In Jordan RNN we count:
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Figure 2: Detailed architecture of I-RNN. Symbols have the same meaning as equations in the paper,
the only exception is that labels are indicated in the figure with upper-case L. Please note that matrix H is
replicated at the hidden layer computation meaning that all neurons receive the whole [ItLt] input, which
is made of 2 · w + 1 + c D-dimensional embeddings: 2w + 1 word embeddings and c label embeddings.
CAT is the concatenation operator.

|V | ×D + ((2w + 1)D + c|O|)× |H|+ |H| × |O|
where |V | is the size of the input dictionary, D the dimensionality of the embed-

dings, |H| and |O| are the size of the hidden and output layers, respectively, w the size
of the window of words used as context on the input side6 and c is the size of the con-
text of labels, which is multiplied by the dimensionality of the output label dictionary
|O|.

With the same symbols, in an Elman RNN and in our first variant we have, respec-
tively:

|V | ×D + ((2w + 1)D + c|H|)× |H|+ |H| × |O|
and

|V | ×D + |O| ×D + ((2w + 1)D + cD)× |H|+ |H| × |O|
6The word input context is thus made of w words on the left and w on the right of the word at a given

position t, plus the word at t itself, which gives a total of 2w + 1 input words
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The only difference between the Jordan and Elman RNNs lies in the factors c|O|
and c|H|. Their difference in complexity depends thus on the size of the output layer
(Jordan) with respect to the size of the hidden layer (Elman). Since in sequence labeling
tasks the hidden layer is often bigger, Elman RNN is more complex than Jordan RNN.
The difference between the Jordan RNN and our first variant is in the factors |O| ×D
and cD. The first is due to the label embeddings7, the second is due to the use of such
embeddings as input to the hidden layer. Since often D and O have sizes in the same
order of magnitude, and thanks to the use of vectorized operations on matrices, we
didn’t found a noticeable difference in terms of training and testing time between the
Jordan RNN and our first variant. This simple analysis also shows that our first variant
roughly needs the same number of connections in the hidden layer as a Jordan RNN.
Our first variant is thus architecturally equivalent to a Jordan RNN.

In contrast, for the second variant we have:
|V | ×D + |O| ×D + ((2w + 1)D + cD + c|H|)× |H|+ |H| × |O|

The additional term c|H|, is due to the same recurrent connection as in an Elman
RNN. Using vectorized operations for matrix calculations, we found the second variant
slower for both training and testing time by a factor 1.15 with respect to the other
RNNs. The same complexity analysis holds for backward RNNs. But bidirectional
RNNs are even more complex. Without deriving any new formula, we note that they
are slower with respect to their corresponding forward/backward models by a factor of
roughly 1.5.

3 Evaluation

3.1 Corpora
We used four distinct corpora:

The Air Travel Information System (ATIS) task [16] has been designed to au-
tomatically provide flight information in SLU systems. The semantic representation
is frame-based and the goal is to find the correct frame and the corresponding seman-
tic slots. For example, for the sentence “I want the flights from Boston to Philadel-
phia today”, the correct frame is FLIGHT and the words Boston, Philadelphia and
today must be annotated with the concepts DEPARTURE.CITY, ARRIVAL.CITY
and DEPARTURE.DATE, respectively.

ATIS is a relatively simple task dating from 1993. The training set is made of
4978 sentences taken from the “context independent” data in the ATIS-2 and ATIS-3
corpora. The test set is made of 893 sentences, taken from the ATIS-3 NOV93 and
DEC94 datasets. There are no official development data provided with this corpus, we
have thus taken a part of the training data at random to play this role. 8

The French corpus MEDIA [17] has been created to evaluate SLU systems pro-
viding tourist information, in particular hotel information in France. It is composed of
1250 dialogues acquired with a Wizard-of-OZ protocol where 250 speakers have ap-
plied 5 hotel reservation scenarios. The dialogues have been annotated following a rich

7We use embeddings of the same size D for words and labels.
8Please see [16] for more details on the ATIS corpus.
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training development test
# sentences 12,908 1,259 3,005

words concepts words concepts words concepts
# words 94,466 43,078 10,849 4,705 25,606 11,383
# vocab. 2,210 99 838 66 1,276 78
# OOV% – – 1.33 0.02 1.39 0.04

Table 1: Statistics on the corpus MEDIA
Section # sentences # tokens # unk. tokens
FTB-train 9881 278083
FTB-dev 1235 36508 1790 (4,9%)
FTB-test 1235 36340 1701 (4,7%)

Table 2: Statistics on the FTB corpus used for POS-tagging

semantic ontology. Semantic components can be combined to create complex semantic
labels.9 In addition to this rich annotation, another difficulty lies in the coreferences.
Some words cannot be correctly annotated without information about previous dialog
turns. For example in the sentence “Yes, the one at less than fifty euros per night”,
the one refers to an hotel previously introduced in the dialog. Statistics on training,
development and test data from this corpus are shown in table 1.

Both ATIS and MEDIA can be modelled as sequence labeling tasks using the BIO
chunking notation [25]. Several different works compared on ATIS [6–8,26]. [8] is the
only work providing results on MEDIA with RNNs, it also provides results obtained
with CRFs [27], allowing an interesting comparison.

The French Treebank (FTB) corpus is presented in [18]. The version we use for
POS-tagging is exactly the same as in [19]. But, in contrast to them, who reach the best
result on this task with an external lexicon, we don’t use any external resource here 10.
Statistics on the FTB corpus are shown in table 2.

The Penn Treebank (FTB) corpus is presented in [20]. In order to have a direct
comparison with previous works [28] [29] [5], we split the data as they do: sections
0 − 18 are used for training, 19 − 21 for validation and 22 − 24 for testing. Statistics
on the PTB corpus are shown in table 3.

3.2 RNNs Parameters Settings
In order to compare with some published works on the ATIS and MEDIA tasks, we
use the same dimensionality settings used by [6], [7] and [8], that is embeddings have
200 dimensions, hidden layer has 100 dimensions. We also use the same context size
for words, that is w = 3, and we use c = 6 as labels context size in our variants and
in Jordan RNN. We use the same tokenization, basically consisting of words lower-
casing.

In contrast, in our models the sigmoid activation function at the hidden layer and
the L2 regularization. While [6], [7], [8] and [26] use the rectified linear activation
function and the dropout regularization [22] [30].

9For example the label localisation can be combined with city, relative-distance,
general-relative-place, street etc.

10 [19] also provides results without using the external lexicon
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Data set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3: Statistics of the training, development and test data texts of the Penn Treebank
corpus

For the FTB POS-tagging task we have used 200-dimensional embeddings, 300-
dimensional hidden layer, again w = 3 for the context on the input side, and 6 context
labels on the output side. The bigger hidden layer gave better results during validation
experiments, due to the larger word dictionary in this task with respect to the others,
roughly 25000 for the FTB against 2000 for MEDIA and 1300 for ATIS. In contrast
to [19], which has used several features of words (prefixes, suffixes, capitalisation in-
formation etc.), we only performed a simple tokenization for reducing the size of the
input dictionary: all numbers have been mapped to a conventional symbol (NUM),
and nouns not corresponding to proper names and starting with a capital letter have
been converted to lowercase. We preferred this simple tokenisation without using rich
features, because our goal in this work is not obtaining the best results ever, it is to
compare Jordan and Elman RNNs with our variants of RNN and show that our variants
works better for sequence labeling. Adding many features and/or building sophisti-
cated models would make the message less clear, as results would be probably better
but the improvements could be attributed to rich and sophisticated models, instead of
to the model itself.

For the PTB POS-tagging task we use exactly the same settings and pre-processing
as for the FTB task, except that we used 400 hidden neurons. During validation we
found that this works better, again due to the size of the dictionary which is 45000 for
this task (after pre-processing).

We trained all RNNs with exactly the same protocol: i) we first train neural lan-
guage models to obtain word and label embeddings. This language model is like the
one in [21], except it uses both words/labels in the past and in the future to predict next
word/label. ii) we train all RNNs using the same embeddings trained at previous step.
We train the RNN for word embeddings for 20 epochs, the RNN for label embeddings
for 10 epochs, and we train the RNNs for sequence labeling for 20 epochs. The num-
ber of epochs has been roughly optimized on development data. At the end of training
we keep the model which gave the best tagging accuracy on development data. Also
we roughly optimized on development data the learning rate and the parameter λ for
regularization, the best values found are 0.5 and 0.003, respectively.

3.3 Training and Tagging Time
Since implementations of RNNs use in this work are prototypes11, it does not make
sense to compare them to state-of-the-art in terms of training and tagging time. How-
ever it is worth providing training times at least to have an idea and to have a compari-
son among different RNNs.

11Our implementations are basically written in Octave https://www.gnu.org/software/octave/
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As explained in section 2.5, our first variant I-RNN and the Jordan RNN have
the same complexity. Also, since the size of the hidden layer is in the same order of
magnitude as the size of the output layer (i.e. the number of labels), also Elman RNN
has roughly the same complexity as the Jordan RNN. This is reflected in the training
time.

The training time for label embeddings is always relatively short, as the size of the
output layer, that is the number of labels, is always relatively small. This training time
thus can vary from few minutes for ATIS and MEDIA, to less that 1 hour for the FTB
corpus.

Training word embeddings is also very fast on ATIS and MEDIA, taking less than
30 minutes for ATIS and roughly 40 minutes for MEDIA. In contrast training word
embeddings on the FTB corpus takes roughly 5 days, training time goes to roughly 6
days for the PTB word embeddings.

Training the RNN taggers takes roughly the same time as training the word em-
beddings, as the size of the word dictionary is the dimension that most affects the
computational complexity at softmax used to predict next label.

Concerning the second variant of RNN proposed in this work, I+E-RNN, this is
slower as it is more complex in terms of number of parameters. Training I+E-RNN
on ATIS and MEDIA takes roughly 45 minutes and 1 hour, respectively. In contrast
training I+E-RNN on the FTB and PTB corpora takes roughly 6 days and 7 days,
respectively.

We didn’t keep track of tagging time, however it is always negligible with respect
to training time, and it is always measured in few minutes. All times provided here are
with a 1.7 GHz CPU, single process.

3.4 Sequence Labeling Results
The evaluation of all models described here is shown in table 4 5 6 and 7, in terms of F1
measure for ATIS and MEDIA, Accuracy on the FTB and PTB. Our implementations
of Elman and Jordan RNN are indicated in tables as E-RNN and J-RNN. Our new
variants are indicated as I-RNN and I+E-RNN.

Table 4 shows results on the ATIS corpus. In the higher part of the table we show
results obtained using only words as input. In the lower part, results are obtained using
both words and word-classes available for this task. Such classes concern city names,
airports and time expressions. They allow the models to generalize from specific words
triggering concepts.12

Note that our results on the ATIS corpus are not always comparable with those
published in the literature because: i) Models published in the literature use a rectified
linear activation function at the hidden layer13 and the dropout regularization. Our
models use the sigmoid activation function and the L2 regularization. ii) For experi-
ments on ATIS we have used roughly 18% of the training data for development, we thus

12For example the cities of Boston and Philadelphia in the example above are mapped to the class
CITY-NAME. If a model has never seen Boston during the training phase, but has seen at least one city
name, it will possibly annotate Boston as a departure city thanks to some discriminative context, such as the
preposition from.

13f(x) = max(0, x).
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used a smaller training set. iii) The works we compare with do not always give details
on how classes available for the task have been integrated into their models. iv) Layer
dimensionality and hyper-parameter settings do not always match those of published
works. In fact, to avoid running too much experiments, we have based our settings on
known works, but this doesn’t allow a straightforward comparison with other published
works.

Despite this, the message we want to claim in this work is still true for two rea-
sons: i) Some of the results obtained with Elman and Jordan RNNs are close, or even
better, than state-of-the-art. Thus they are not weak baselines. ii) We provide a fair
comparison of our variants with traditional Elman and Jordan RNNs.

The results in the higher part of table 4 show that the best model on the ATIS
task, with these settings, is the Elman RNN of [26]. Note that it is not clear how the
improvements of [26] with respect to [7] (in part due to same authors) have been ob-
tained. Indeed, in [7] authors obtain the best result with a Jordan RNN, while in [26] an
Elman RNN gets the best performance. During our experiments, using the same exper-
imentation protocol as [26], we could not reach the same performances. We conclude
that the difference between our results and those in [26] are due to reasons mentioned
above. Beyond this, we note that our Elman and Jordan RNN implementations are
equivalent to those of [7]. Also, our first variant of RNNs, I-RNN, obtains the second
best result (93.84 in bold), which is the best result we could reach. Our second variant
is roughly equivalent to a Jordan RNN on this task.

The results in the lower part of the table 4 (Classes), obtained with both words and
classes as input, are quite better than those obtained with words only. They roughly
follow the same behavior, except that in this case our Jordan RNN is slightly better
than our second variant. The first variant I-RNN obtains again the best result among
our implementations (95.21 in bold). In this case also, we attribute the differences with
respect to published results to the different settings mentioned above. For comparison,
in this part of the table we show also results obtained using CRF.

On the ATIS task, using either words or both words and classes as inputs, we can
see that results are always quite high. This task is relatively simple. Label dependencies
can be easily modeled, as there is basically no segmentation of concepts over different
consecutive words (one concept corresponds to one word). In this settings, the potential
of our new variants of RNNs cannot be fully exploited. This limitation is confirmed by
the results obtained by [8] and [26] using CRFs. Indeed, RNNs don’t take the whole
sequence of labels into account in their decision function. In contrast, CRFs use a
global decision function taking all the possible labelings of a given input sequence into
account to predict the best sequence of labels. The fact that CRFs are less effective
than RNN on ATIS is a clear sign that label dependency modeling is relatively simple
in this task.

Table 5 shows the results on the corpus MEDIA. As already mentioned, this task is
more difficult because of its richer semantic annotation, and also because of the coref-
erences and of the segmentation of concepts over several words. This creates relatively
long label dependencies, which cannot be taken into account by simple models. The
difficulty of this task is confirmed by the magnitude of results (10 F1 points lower than
on the ATIS task).

As can be seen in Table 5, CRFs are in general much more effective than Jordan
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and Elman RNNs on MEDIA. This outcome could be expected as RNNs use a local
decision function not able to take long label dependencies into account. We can also
see that our implementations of Elman and Jordan RNNs are comparable, even better
in the case of Elman RNN, with state-of-the-art RNNs of [8].

More importantly, results on the MEDIA task shows that in this particular experi-
mental settings where taking label dependencies into account is crucial, our new vari-
ants are remarkably more effective than both our implementations and state-of-the-art
implementations [8] of Elman and Jordan RNNs. This holds for forward, backward
and bidirectional RNNs. Moreover, the bidirectional version of our variants of RNNs
outperforms even CRF. We attribute this effectiveness to a better modeling of label
dependencies, due to label embeddings.

Table 6 shows the results obtained on the POS-tagging task of the FTB corpus. On
this task, we compare our RNN implementations to the state-of-the-art results obtained
in [19] with the modelMElt0fr. We would like to underline thatMElt0fr, when it does
not use external resources like in the model obtaining the best absolute result in [19],
nevertheless uses several features associated with words that provide an advantage over
features used in our RNNs. As can be expected thus, MElt0fr outperforms the RNNs.
Results in table 6 shows that forward and backward RNNs are quite close to each other
on this task, I-RNN, providing a little improvement. In contrast, the bidirectional
version of I-RNN and I+E-RNN provide a significant improvement over Jordan and
Elman RNNs.

Table 7 shows the results obtained on the WSJ POS tagging task. We also provide
the results of [28] and [29] for comparison with the state-of-the-art. This is just for
a matter of comparison, as the results shown in those works were achieved with rich
features and more sophisticated models. Instead, we can roughly compare our results
with those of [5], which were also obtained with neural networks. In particular, we
can compare with the model called NN+SLL. Note that this is a rough comparison
as the model of [5], though not a RNN, integrates capitalisation features and uses a
convolution and a max-over-time layer to encode large context information.

Results for POS tagging on the PTB corpus roughly confirm the conclusions reached
for FTB results, with the only difference that in this case I+E-RNN is slightly better
than I-RNN. Our RNNs don’t improve the state-of-the-art, but are all more effective
than the model of [5]. This result is particularly important, as it shows that RNNs, even
without using a sophisticated encoding of the context like the model NN+SLL in [5],
are intrinsecally a better model for sequence labeling. This claim is enforced also by
the fact that NN+SLL of [5] implements a global probability computation strategy sim-
ilar to CRF (SLL stands for Sentence Level Likelihood), while all RNNs presented here
use a local decision function (see equation 2). Again, the ranking of RNN models on
the PTB POS-tagging task is stable, the variants of RNNs proposed in this work being
more effective than traditional Elman and Jordan RNNs.

We would like to notify that we have also performed some experiments on ATIS
and MEDIA without pre-training label embeddings. The results reached are not sub-
stantially different from those obtained with pre-training label embeddings. Indeed, on
relatively small data, it is not rare to have similar or even better results without pre-
training. This is due to the fact that learning effective embeddings requires a relatively
large amount of data. [8] also shows results obtained with embeddings pre-trained with
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word2vec and without embedding pre-training. His conclusions are indeed very simi-
lar. More generally, reaching roughly the same results on a difficult task like MEDIA
without label embedding pre-training is a clear sign that our variants of RNNs are su-
perior to traditional RNNs because they use a context made of label embeddings. As a
matter of fact, the gain with respect to Elman and Jordan RNNs cannot be attributed in
this case to the use of pre-trained embeddings. On relatively larger corpora like FTB
and PTB, label embedding pre-training seems to provide a slight improvement.

Finally, we have run experiments also modifying Jordan and Elman RNNs so that
to model words and labels interactions more like I-RNN does, that is word and la-
bel embeddings (or hidden states in Elman RNN) are not summed together, instead
they are concatenated. Results obtained were not substantially different from those ob-
tained with “traditional” Jordan and Elman RNN and in any case I-RNN was always
performing best, still keeping a large gain over Elman and Jordan RNN on the ME-
DIA task. The explanation of this outcome is that keeping word and label embeddings
separated, and then multiplying both by matrix H to compute hidden activities, as we
do in I-RNN, is more effective than concatenating It · H and y[t − 1] · R, as we did
for Jordan RNN, and analogously with previous hidden layer for Elman RNN. This is
not surprising, as I-RNN also in this case is applying one transformation more when
multiplying label embeddings by H to compute the total input to the hidden layer.

It is someway surprising that I-RNN systematically outperforms I+E-RNN, the
latter model integrates more information at the hidden layer and thus should be able
to take advantage of both Elman and I-RNN characteristics. While an analysis to
explain this outcome is not trivial, our interpretation is that using two recursions in
a RNN gives actually redundant information to the model. Indeed, the output of the
hidden layer keeps the internal state of the network, which is the internal (distributed)
representation of the input n-gram of words around position t and the previous c labels.
The recursion at the hidden layer allows to keep this information “in memory” and to
use it at the next step t + 1. However using the recursion of I-RNN the previous c
labels are also given explicitely as input to the hidden layer. This may be redundant,
and constrain the model to learn an increased amount of noise. A similar idea of hybrid
RNN model has been tested in [26] without showing a clear advantage on Elman and
Jordan RNNs.

What can be said in general from the results obtained on all the presented tasks, is
that RNN architectures using label embedding context can model label dependencies in
a more effective way, even when these dependencies are relatively simple (like in ATIS
and POS tagging tasks). The two variant of RNNs proposed in this work, in particular
the I-RNN variant, are for this reason more effective than Elman and Jordan RNNs on
sequence labeling tasks.

3.5 Comparison of Jordan-RNN and I-RNN label representations
We compare Jordan RNN and I-RNN label representations under the interpretation
where Jordan RNN hidden activity computation uses sparse labels as an additional in-
put to the hidden layer, as explained in section 2.3. As explained also in the same
section, under the other interpretation I-RNN provides the advantage of performing an
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Model F1 measure
forward backward bidirectional

Words
[7] E-RNN 93.65% 92.12% –
[7] J-RNN 93.77% 93.31% 93.98%
[26] E-RNN 94.98% – 94.73%
E-RNN 93.41% 93.18% 93.41%
J-RNN 93.61% 93.55% 93.74%
I-RNN 93.84% 93.56% 93.73%
I+E-RNN 93.74% 93.44% 93.60%

Classes
[8] E-RNN 96.16% – –
[8] CRF – – 95.23%
[6] E-RNN 96.04% – –
[26] E-RNN 96.24% – 96.29%
[26] CRF – – 95.16%
E-RNN 94.73% 93.61% 94.71%
J-RNN 94.94% 94.80% 94.89%
I-RNN 95.21% 94.64% 94.75%
I+E-RNN 94.84% 94.61% 94.79%

Table 4: Results of SLU on the ATIS corpus

Model F1 measure
forward backward bidirectional

[8] E-RNN 81.94% – –
[8] J-RNN 83.25% – –
[8] CRF – – 86.00%
E-RNN 82.64% 82.61% 83.13%
J-RNN 83.06% 83.74% 84.29%
I-RNN 84.91% 86.28% 86.71%
I+E-RNN 84.58% 85.84% 86.21%

Table 5: Results of SLU on the MEDIA corpus

additional transformation on labels, and gives words and labels embeddings as sepa-
rated inputs to the hidden layer.

Under the first interpretation, the advantage of using label embeddings in I-RNN
instead of “one-hot” or probability distribution representations like in Jordan RNNs, is
an increased amount of signal flowing across the network. A semantic interpretation
of the interaction of these two representations with the network is not trivial. Indeed,
in the probability representation output by the softmax in a Jordan RNN, the different
dimensions are just probabilities associated to different labels. In contrast, in label
embeddings used in I-RNN, the dimensions are different distributional features, related
to how a particular label is used in particular label contexts. A comparison between
these two representation is thus not really meaningful.

Instead, we performed a simple analysis of the magnitude of values found in the
probability distribution used as representations in Jordan RNNs, when using develop-
ment data of the MEDIA corpus. We summarize this analysis as follows:

1. 7843 out of 11051 ( 71%) of the time, the maximum value is greater than 0.9

2. 9928 out of 11051 ( 90%) of the time, the sum of the 3 highest probabilities is
greater than 0.9

3. Excluding the 3 highest probabilities, the remaining values in the distribution
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Model Accuracy
forward backward bidirectional

[19] MElt0fr – – 97.00%
E-RNN 96.31% 96.30% 96.32%
J-RNN 96.31% 96.27% 96.32%
I-RNN 96.36% 96.37% 96.51%
I+E-RNN 96.28% 96.33% 96.48%

Table 6: Results of POS-tagging on the FTB

Model Accuracy
forward backward bidirectional

[28] – – 97.24%
[29] – – 97.33%
[5] NN+SLL – – 96.37%
E-RNN 96.75% 96.76% 96.75%
J-RNN 96.71% 96.69% 96.77%
I-RNN 96.75% 96.72% 96.90%
I+E-RNN 96.73% 96.71% 96.93%

Table 7: Results of POS-tagging on the PTB

have very small values (less than 0.001)

This simple analysis shows that the probability distributions used for label repre-
sentations in Jordan RNNs do not provide much more information to the network than
a “one-hot” representation, and not much signal into the network. This problem is
someway similar to the “vanishing gradient” problem [31]: as the network learns, the
probability gets concentrated on few dimensions and all the other values get very small,
limiting network learning. This problem is all the more obvious that label dependency
modeling is more important for the task. On an absolute scale however, this is less
serious than the vanishing gradient problem, as Jordan RNNs still reach competitive
performances.

4 Conclusions
In this paper we have studied different architectures of Recurrent Neural Networks for
sequence labeling tasks. We have proposed two new variants of RNNs to better model
label dependencies, and we have compared these variants to the traditional architec-
tures of Elman and Jordan RNNs. We have explained the advantages provided by the
proposed variants with respect to previous RNNs. We have evaluated all RNNs, either
new or traditional, on 4 different tasks: two of Spoken Language Understanding and
two of POS-tagging. The results show that, even though RNNs don’t always improve
the state-of-the-art, our new variants of RNNs always outperform the traditional Elman
and Jordan RNNs.
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