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We present a construction of isotropic boundary adapted wavelets, which are orthogonal and
yield a multi-resolution analysis. We analyze direct numerical simulation data of turbulent channel
flow computed at a friction Reynolds number of 395, and investigate the role of coherent vorticity.
Thresholding of the vorticity wavelet coefficients allows to split the flow into two parts, coherent
and incoherent vorticity. The coherent vorticity is reconstructed from their few intense wavelet
coefficients. The statistics of the coherent part, i.e., energy and enstrophy spectra, are close to the
statistics of the total flow, and moreover, the nonlinear energy budgets are very well preserved.
The remaining incoherent part, represented by the large majority of the weak wavelet coefficients,
corresponds to a structureless, i.e., noise-like, background flow whose energy is equidistributed.

I. INTRODUCTION

Wall-bounded turbulent shear flows are of general
interest in many engineering applications. Three-
dimensional (3D) turbulent channel flow bounded by two
parallel walls is one of the canonical flow considered for
direct numerical simulation (DNS). Starting with the
seminal work of Kim et al. [1], many DNSs have been
performed for increasingly higher Reynolds number, tak-
ing advantage of the growing power of supercomputers
(see, e.g., a review article [2]). Currently the DNS with
the highest friction based Reynolds number, Reτ , of 5200
has been carried out by Lee and Moser [3].

Turbulent flows are typically characterized by the ex-
citation of a multitude of spatial and temporal scales,
which involves a large number of degrees of freedom in-
teracting nonlinearly. Self-organization of the flow into
coherent vortices is observed, even at large Reynolds
number [4], where one observes that these vortices are
superimposed to a random background flow [5]. More-
over, turbulence exhibits significant spatial and temporal

∗ This article is dedicated to Professor Javier Jimenez on the oc-
casion of his 70th birthday.

intermittency, especially in the dissipative range. This
implies that the strongest contributions become sparser
and sparser while going to small scale in space and
time. Wavelets being well-localized functions in space
and in scale, they yield efficient multi-scale decomposi-
tions, which have been applied to analyze, model and
compute turbulent flows since 1988 [6–9]. Decomposing
turbulent flows into a wavelet basis yields a sparse rep-
resentation, namely the most energetic contributions are
concentrated in few wavelet coefficients having strong in-
tensity, while the large majority of the remaining wavelet
coefficients have negligibly small intensity.

The presence of coherent structures superimposed to
a random background flow motivated the development
of the coherent vorticity extraction (CVE) method. The
idea of CVE, proposed by Farge et al. [10, 11], defines
coherent structures as what remains after denoising the
flow vorticity. Vorticity is better localized in space than
velocity, and thus more intermittent, its wavelet decom-
position is sparser and only few coefficients are neces-
sary to represent the coherent structures. The main
reason is that, in contrast to the velocity, vorticity pre-
serves Galilean invariance and has stronger topological
properties owned to Helmholtz’ and Kelvin’s theorems.
Numerous applications of CVE can be found for peri-
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odic domains in the literature starting with homogeneous
isotropic turbulence [10–15], temporally developing mix-
ing layers [16] and homogeneous shear flow with and
without rotation [17].

For wall-bounded flows, the situation becomes more
complex, because no-slip boundary conditions have to be
taken into account. Indeed, no-slip boundary conditions
generate vorticity due to the viscous flow interactions
with the walls. For turbulent boundary layers, Khujadze
et al. [18] obtained an efficient algorithm to extract co-
herent vorticity, constructing a locally refined grid us-
ing wavelets with mirror boundary conditions. However,
this construction does not yield a multiresolution analysis
where the basis functions are no more isotropic. Fröhlich
& Uhlmann [19] constructed wavelets based on second
kind Chebyshev polynomials and applied them to chan-
nel flow data. Scale-wise statistics in the wall-normal
directions have thus been performed. However, no fast
wavelet transform (FWT) is available for these Cheby-
shev wavelet bases. Two-dimensional (2D) wavelets have
also been applied to wall-parallel planes in channel flows,
in order to examine turbulent statistics, in particular
statistics of energy transfer [20, 21].

The aim of the present work is to examine the role of
coherent and incoherent flow contributions in 3D turbu-
lent channel flow. We propose a novel construction of 3D
isotropic orthogonal wavelets using boundary wavelets in
the wall-normal direction and periodic wavelets in the
wall-parallel directions. To this end, Cohen-Daubechies-
Jawerth-Vial (CDJV) boundary wavelets [22, 23] hav-
ing three vanishing moments, and the periodized Coiflet
30 wavelets [24] having ten vanishing moments are em-
ployed. These wavelets are orthogonal, the FWT can
be used while taking into account boundary conditions,
and the basis yields a multiresolution analysis. Hence,
the basis functions are isotropic since they have only one
scale in all three spatial directions.

DNS computation of the channel flow has been per-
formed, and the data are analyzed at different time in-
stants, using the above boundary adapted 3D isotropic
wavelets. The flow vorticity is decomposed into an or-
thogonal wavelet series, and we apply a thresholding to
split the coefficients into two sets, the coherent and inco-
herent ones. The coherent vorticity, reconstructed from
the few strongest wavelet coefficients, well preserves the
turbulent statistics of the total flow, while the incoherent
vorticity, reconstructed from the remaining large major-
ity of the coefficients that are very weak, corresponds to
a noise-like background flow. The corresponding coher-
ent and incoherent velocity fields are reconstructed from
the coherent and incoherent vorticity fields, respectively,
using the Biot-Savart relation satisfying the no-slip con-
ditions at the walls. Thus, we can efficiently examine
the role of coherent vorticity in turbulent channel flow.
Other conventional methods, such as the Q-criterion and
the λ2 method [25, 26] could be used to identify coherent
vortices in physical space, as regions for which Q or λ2 is
above a given threshold. Here, Q is the second-invariant

FIG. 1. Flow configuration for the turbulent channel flow.

of the 3D velocity gradient tensor, and λ2 is the second
largest eigenvalue of SijSjk +AijAjk, where Sij and Aij
are respectively the symmetric and antisymmetric tensor
of the velocity gradient tensor. It should be noticed that
these quantities do not preserve the scale information
about the vortices, as the smoothness of the flow field is
not preserved due to the clipping of vorticity in physical
space. In contrast, the proposed wavelet filtering does
preserve the smoothness of the coherent vorticity field
and the multiscale properties of the coherent structures.

The paper is organized as follows: Section II presents
the DNS computation and the data we analyze, including
the methodology. The construction of isotropic wavelets
is described, and the CVE method is summarized. Nu-
merical results are shown in Sec. III. Conclusions and
perspectives are given in Sec. IV.

II. DNS AND METHODOLOGY

A. Direct Numerical Simulation

We consider 3D incompressible fluid flow in a channel
bounded by two parallel walls subjected to a streamwise
mean pressure gradient, which is a canonical flow con-
figuration. It is illustrated in Fig. 1 together with the
Cartesian coordinate system x = (x1, x2, x3), where the
walls are at x2 = ±h, x2 being the wall-normal direction
and h the half width of the channel. The domain size in
the streamwise x1-direction is 2πh, and the size in the
spanwise x3-direction is πh. Periodic boundary condi-
tions are respectively imposed in x1- and x3-directions,
while in the x2-direction no-slip boundary conditions are
satisfied at the walls.

The fluid flow motion obeys the Navier-Stokes equa-
tions with the incompressibility condition,

∂tvi + ∂j(vjvi) = −∂ip+Gδi1 + ν∂j∂jvi, (1)

∂jvj = 0, (2)

where vi (i = 1, 2, 3) is the i-th velocity component, p is
the pressure fluctuation, G is the intensity of the mean
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pressure gradient in the x1-direction, δij is the Kronecker
delta, ν is the kinematic viscosity, t is time, and ∂t =
∂/∂t and ∂i = ∂/∂xi. Einstein’s summation convention
is used for repeated indices.

We performed DNS of turbulent channel flow at Reτ
of 395 using N1N2N3 grid points, where Reτ ≡ uτh/ν,
uτ is the friction velocity defined by [νdU1(x2)/dx2]1/2

at x2 = −h. The velocity field vj is decomposed as
vj = Uj(x2)+uj with Uj being the mean velocity defined
as Uj = 〈vi〉, and uj are the velocity fluctuations. Here 〈·〉
denotes the x2-dependent spatial average of · over the x1-
x3 plane, and Ni is the number of the grid points in the
xi-direction, N1 = N3 = 256 and N2 = 192. The toroidal
and poloidal representation of Eqs. (1) and (2) is em-
ployed, in order to satisfy the incompressibility constraint
as done by Kim et al. [1]. We used the Fourier pseudo-
spectral method in the x1-x3 planes, and the Chebyshev-
tau method in the x2-direction. The Chebyshev collo-
cation points are given by x2 = h cos{π(2j + 1)/(2N2)}
(j = 0, 1, · · · , N2−1) (see, e.g., Appendix B in Ref. [27]).
The aliasing errors are removed by the 3/2 rule in the
x1-x3 planes, and by the 2/3 rule in the x2-direction.
Time advancement is carried out using first-order im-
plicit Euler method for the viscous terms, and a third-
order Runge-Kutta method for the nonlinear terms and
the mean pressure gradient term G whose value is deter-
mined so that the total flow rate is kept constant. The
DNS code has been developed in Ref. [28].

Statistical quantities shown in this paper are obtained
by time averaging over 40 DNS snapshots with intervals
of 0.5 washout time, defined by 2πh/U1. The averaging
starts after the total Reynolds stress, −〈u1u2〉+νdU1/dx2
has become quasi-stationary.

B. Wavelets

In this subsection, we briefly summarize one-
dimensional (1D) orthogonal periodized wavelets and 1D
orthogonal boundary wavelets. Then, we propose a 3D
orthogonal isotropic wavelet transform constructed by
tensor product of these 1D wavelets. The CVE based
on orthogonal wavelets to extract coherent vorticity out
of turbulent channel flow is described in Sec. II C. In Fig.
2, we present the flowchart of the CVE method used here.

We first consider 1-periodic wavelets ψP (x) and their
corresponding scaling function φP (x), and orthogonal
boundary adaptive wavelets ψB(x) and their scaling
function φB(x), with the boundaries at x = (0, 1).
Wavelets at scale j are obtained by dilation, so that
ψγj,0(x) = 2−j/2ψγ(2−jx) and φγj,0(x) = 2−j/2φγ(2−jx),
where γ = P,B. The periodized orthogonal wavelets are
also self-similar with respect to translation. Then the
scaling function φγ and wavelet function ψγ at scale 2−j

(j ≥ 0) and position 2−ji (i = 0, 1, · · · , 2j − 1), φPj,i(x)

and ψPj,i(x), are defined as φPj,i(x) = 2−j/2φP (2−jx −
2−ji) and ψPj,i(x) = 2−j/2ψP (2−jx − 2−ji). In contrast,

ψBj,0 and φBj,0 are no more translation invariant due to
the boundary conditions, which modify the wavelets as
position i changes. Readers interested in the details
of boundary adapted wavelets may refer to the text-
book [29], as the construction of ψBj,i and φBj,i is rather
technical. All wavelets used here are orthonormal, i.e.,∫ 1

0
ψγj,i(x)ψγj′,i′(x)dx = δii′δjj′ ,

∫ 1

0
φγj,i(x)φγj,i′(x)dx =

δii′ , and
∫ 1

0
ψγj,i(x)φγj,i′(x)dx = 0.

In this paper, we use Coiflet 30 wavelets [24] in the
x1- and x3-directions, and the CDJV wavelets having
3 vanishing moments [22, 23] in the x2-direction, both
wavelets being compactly supported. The Coiflet 30
wavelets are quasi-symmetric and have 10 vanishing mo-
ments. The largest scale 2−j0 of the CDJV wavelets sat-
isfies 2j0−1 ≥ 3 [23]. The illustrations of these wavelet
functions are shown in Figs. 3 and 4.

The 3D orthogonal wavelets Ψµ (µ = 1, 2, · · · , 7) are
obtained by tensor product such that

Ψµ
j,i(x1, x2, x3) =

ψPj,i1(x1)φBj′,i2(x2)φPj,i3(x3) for µ = 1,

φPj,i1(x1)ψBj′,i2(x2)φPj,i3(x3) for µ = 2,

φPj,i1(x1)φBj′,i2(x2)ψPj,i3(x3) for µ = 3,

ψPj,i1(x1)φBj′,i2(x2)ψPj,i3(x3) for µ = 4,

ψPj,i1(x1)ψBj′,i2(x2)φPj,i3(x3) for µ = 5,

φPj,i1(x1)ψBj′,i2(x2)ψPj,i3(x3) for µ = 6,

ψPj,i1(x1)ψBj′,i2(x2)ψPj,i3(x3) for µ = 7,

(3)

where i = (i1, i2, i3), j′ = j0 + j and j = 0, · · · , J −
1. The corresponding scaling function is defined as
Φ(x1, x2, x3) = φP (x1)φB(x2)φP (x3).

Now, let us consider a 3D vector field w(x) =
(w1, w2, w3) in the computational domain D, where D =
{x1, x2, x3|0 ≤ x1 ≤ 2πh,−h ≤ x2 ≤ h, 0 ≤ x1 ≤ πh}.
Before applying this wavelet decomposition, we interpo-
late w(x) on an equidistant grid in the x2-direction from
the DNS data non-uniformly sampled on N2 Chebyshev
grid points in the wall-normal direction. We thus get
w(x) uniformly sampled on N ′2 equidistant grid points
at x2,n = h{−1+2n/(N ′2−1)} (n = 0, · · · , N ′2−1) using
the Chebyshev interpolation [30]. We choose N ′2 to be
equal to 2048 so that the flow field near the walls is kept
well-resolved. We have 2/N ′2 ∼ 8π2/N2

2 , which shows
that the grid width after the interpolation is compara-
ble to the minimum grid width of the Chebyshev grid.
In the x1- and x3-directions, we keep w(x) uniformly
sampled on N1 and N3(= N1) equidistant grid points,
respectively.

The field w(x), now sampled on N1 × N ′2 × N3

equidistant grid points, can then be decomposed into an
isotropic orthogonal wavelet series as follows;

w(x) = w̄ +

7∑
µ=1

J−1∑
j=0

2j−1∑
i1,i2,i3=0

w̃µ
j,iΨ

µ
j,i(x), (4)
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FIG. 2. Flowchart of the CVE procedure.

with wavelet coefficients computed with wavelets Ψµ
j,i

w̃µ
j,i =

1

V

∫ L1

0

dx1

∫ h

−h
dx2

∫ L3

0

dx3 w(x)Ψµ
j,i

(
x1

2πh
,
x2 + h

2h
,
x3
πh

)
,

(5)

the mean value computed with scaling function Φ

w̄ =

1

V

∫ 2πh

0

dx1

∫ h

−h
dx2

∫ πh

0

dx3 w(x)Φ

(
x1

2πh
,
x2 + h

2h
,
x3
πh

)
,

(6)

where J = log2N1 and V = 4π2h3.

C. Coherent vorticity extraction

We extract coherent vorticity out of turbulent channel
flow data using the CVE method based on the wavelet
decomposition of vorticity ω(= ∇× v). In the following,
we summarize our method. Then, since coherent struc-
tures do not have a universal definition yet, we define
coherent structures as what remains after denoising. As
first guess we consider the simplest type of noise, namely
additive, Gaussian and white, i.e., uncorrelated. Read-
ers interested in details of this ansatz may refer to the
original articles, e.g., Refs. [10, 11, 15].

The CVE method is based on nonlinear threshold-
ing the orthogonal wavelet coefficients of vorticity. To
this end the vorticity ω, interpolated on a sufficiently
fine equidistant grid, is decomposed into an orthogonal
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FIG. 3. Coiflet 30 wavelet on the periodic domain: scaling function φP8,i(x) (left) and corresponding wavelet ψP8,i(x) (right)
both at scale j = 8.

FIG. 4. CDJV wavelet on the interval: three scaling functions φB8,i(x) (left) and three wavelets ψB8,i(x) (right) at scale j = 8
and position i = 0 (red), 63 (green) and 127 (blue) are shown.

wavelet series using the FWT. Applying thresholding to
the wavelet coefficients, we split the flow into coherent
and incoherent contributions. The corresponding coher-
ent and incoherent vorticity fields are then obtained by
inverse wavelet transform.

In previous work, we used Donoho’s threshold [31] to
determine the value of the threshold and estimate the
variance of the incoherent vorticity using an iterative
scheme. Azzalini et al. [32] investigated the conver-
gence of the iterative scheme and for isotropic turbu-
lence Okamoto et al. [15] found that, depending on
the Reynolds number, 8.7 % and 6.0 % are obtained
for Reλ = 167 and Reλ = 732, respectively. In Ref.
[10], Farge et al. used one iteration only, which was
sufficient to get good compression while preserving the
statistics of the total flow. For the turbulent chan-
nel flow studied here we tried Donoho’s threshold and
found that very few wavelet coefficients keep almost the
whole enstrophy of the flow, which is illustrated in the
compression curve, shown in Fig. 5. The flow vi-

sualization in Fig. 6 shows tube-like coherent vortex
structures of different intensity, which are very strong
close to the wall and much weaker in the center of
the channel. In the current work, we propose instead
an ad hoc criterion for the threshold defined by T =

〈|ω̃µj,i|〉w + α〈
(
|ω̃µj,i| − 〈|ω̃

µ
j,i|〉

)2
〉1/2w , where 〈|ω̃µj,i|〉w =∑7

µ=1

∑J−1
j=0

∑2j−1
i1,i2,i3=0 |ω̃

µ
j,i|/(N1N

′
2N3). Our aim is to

retain only those wavelet coefficients which are responsi-
ble for the nonlinear dynamics of the flow, even if the fully
developed turbulent regime has not been yet reached. We
set α = 0.75 in the threshold value T such that both
velocity and vorticity statistics (as a function of x2), to-
gether with the nonlinear dynamics and structures, are
well preserved by the coherent flow.

Using the inverse FWT, the coherent vorticity ωc is
reconstructed from the wavelet coefficients whose inten-
sity is larger than the threshold value T . The incoherent
vorticity ωi is then obtained using ωi = ω − ωc. To
get ωc and ωi sampled on the Chebyshev grid points,
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FIG. 5. Compression curve for the CVE: % of retained en-
strophy per unit volume vs. % of retained wavelet coefficients.
The circle corresponds to the threshold T used for CVE in the
following.

which are useful and efficient for data analysis presented
in Sec. III, we perform a cubic spline interpolation in the
x2-direction.

Owing to the orthogonality of the wavelet decompo-
sition, ωc is orthogonal to ωi and thus Zt = Zc + Zi,
where Zt, Zc and Zi are respectively the total, coher-
ent and incoherent enstrophy per unit volume, defined
as Zα =

∫∫∫
D
|ωα|2dx/(2V) (α = t, c, i). The coher-

ent velocity vc and the incoherent velocity vi are com-
puted from ωc and ωi by solving Biot-Savart’s relation,
∇2v = −∇× ω, respectively. It is noted that vi and vc
are weakly non orthogonal, i.e., the cross term

∫
vi vc dx

is below 0.4% of the total energy.

III. NUMERICAL RESULTS

Now we analyze 40 snapshots of DNS data for the tur-
bulent channel flow with intervals of 0.5 washout times,
and we ensemble-average over those 40 snapshots to guar-
antee well-converged statistical results. We examine con-
tributions of coherent and incoherent flows obtained with
the previously described CVE method. Quantities with
the superscript + are expressed in wall units, i.e., they are
non-dimensionalized by uτ and ν. We define the distance
from the wall y as y = x2 + 1.

A. Visualization

Visualizations of isosurface values of the modulus of
vorticity for the total, coherent and incoherent flows
given at the same time instant are shown in Figs. 6
and 7. Corresponding zooms are also presented to see
flow structures more clearly. Figure 6 shows that the
most intense vorticity structures are near the walls. Since
the incoherent vorticity is much weaker than the total

and coherent vorticities in Fig. 6, the isosurface value
for the incoherent vorticity ωi is reduced by a factor
3 compared to the coherent and total vorticities. On
the other hand, Fig. 7 visualizes vorticity structures
in the core region, using y+-dependent isosurface val-
ues, |ω+| = |ω+

c | = 〈|ω+|〉 + 3〈(|ω+| − 〈|ω+|〉)2〉1/2 and
|ω+
i | = 〈|ω+

i |〉 + 3〈(|ω+
i | − 〈|ω

+
i |〉)2〉1/2, recalling 〈·〉 de-

notes the y+-dependent spatial average of · over each
wall-parallel plane.

We observe that the total flow exhibits intense vortex
tubes near the walls, as in previous DNS (e.g., Ref. [33]),
but we also see them in the core region, however they are
less intense. Looking at the coherent flow, we find that
these tubes are well preserved by ωc, which is recon-
structed from only 0.55% of the 2562× 2048(' 13× 107)
wavelet coefficients, i.e., 5.9% of the original 2562×192('
1.2× 107) grid points. The coherent flow retains almost
all of the total energy and enstrophy, 99.9% of the total
energy and 99.7% of the total enstrophy. In contrast,
the incoherent vorticity ωi looks less organized without
exhibiting vortex tubes near the walls and in the core
region. Although the incoherent flow is represented by
the remaining majority of wavelet coefficients, it retains
a negligible amount of energy, namely 2.3×10−3% of the
total energy, and only 0.5% of total enstrophy.

B. Mean velocity and vorticity statistics

We analyze the statistics of the mean velocity and
vorticity profiles of the coherent and incoherent flows,
and compare them with the total flow. The results are
averaged over 40 snapshots. Figure 8 shows the y+-
dependence of the streamwise mean velocity U+

1 (y+) and
of the spanwise mean vorticity Ω+

3 (y+), averaged over x1-
x3 planes, for the total, coherent and incoherent flows.
It is observed that the coherent flow perfectly preserves
U+
1 (y+) and Ω+

3 (y+), while both incoherent contribu-
tions are very weak. It can be noted that U+

2 (y+) van-
ishes identically and that U+

3 (y+) almost vanishes for the
total, coherent and incoherent flows. This implies that
Ω+

1 (y+) is almost zero, and Ω+
2 (y+) is identically zero.

The comparison of U+
1 with the DNS data at Reτ = 395

in Moser et al. [34] confirms the validity of the present
DNS.

C. Statistics of velocity and vorticity fluctuations

The root-mean-square (RMS) of the velocity fluctua-
tions u+j (j = 1, 2, 3) as a function of y+ are shown in

Fig. 9 (left). Again, we find an excellent agreement be-
tween the total and the coherent flow for all values of y+,
while the incoherent contribution is negligibly small. For
RMS of the vorticity fluctuations ω+

j in Fig. 9 (right),
the coherent contributions well preserves the total RMS
of ω+

j . The vorticity RMS of the incoherent flow is much
smaller than that of the total flow.
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FIG. 6. Visualization of total vorticity ω (green), coherent vorticity ωc (red) and incoherent vorticity ωi (blue). The left
column presents isosurfaces |ω+| = |ω+

c | = 0.3 and |ω+
i | = 0.1. The right column shows their zooms in the wall region where

0 ≤ x1 ≤ 0.71πh, −0.12h ≤ x2 ≤ h, and 0.5πh ≤ x3 ≤ πh.

D. Probability density functions of velocity and
vorticity

Figure 10 (left) shows the probability density functions
(PDFs), estimated using histograms with 200 bins, of
the streamwise velocity fluctuations u+1 for the total, co-
herent and incoherent flows at three representative posi-
tions y+: in the viscous sublayer, the log region, and
near the center of the channel. In all cases, we ob-
serve that the PDFs for the total and coherent veloc-
ity fluctuations perfectly superimpose, which indicates
that high order statistics are well preserved by the co-
herent flow. We also find that the velocity PDFs remain
skewed in the different regions and agree well with the
data of Ref. [34], using appropriate renormalization. In
contrast, the PDFs of the incoherent velocity fluctuations
are symmetric, and have strongly reduced variances. For
the incoherent velocity, we analyzed y+-dependent flat-
ness, and found values around 4 in the viscous sublayer
and in the log region, which decrease to 3.6 near the
center of the channel. For the y+-dependent skewness,
fluctuations around zero are observed with an ampli-

tude below 0.05. The PDFs of the incoherent veloc-
ity well superimpose the logistic distribution with zero
mean and the variances σ2(y+) of the incoherent velocity,
though their flatness is 1.2, which is much smaller than
the PDFs of the incoherent velocity. The distributions
P (u+1 ) are given by exp(−πu+1 /s)/{s(1 + exp(−u+1 /s)},
where s = 31/2σ(y+)/π.

In Fig. 10 (right), we illustrate the PDFs of the vortic-
ity fluctuations ω+

3 at three representative positions y+:
in the viscous sublayer, the log region, and near the cen-
ter of the channel. The coherent vorticity fluctuations
well represent the total vorticity PDFs which are skewed
in all cases, while the corresponding incoherent PDFs are
symmetric. The variances of these incoherent PDFs are
respectively significantly weaker than the variances of the
total and coherent PDFs.

E. Energy spectra

To get insight into the scale distribution of turbu-
lent kinetic energy we analyze the 1D energy spectra
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FIG. 7. Visualization of total vorticity ω (green), coherent vorticity ωc (red) and incoherent vorticity ωi (blue). Isosurfaces

|ω+| = |ω+
c | = 〈|ω+|〉+3〈(|ω+|−〈|ω+|〉)2〉1/2 and |ω+

i | = 〈|ω
+
i |〉+3〈(|ω+

i |−〈|ω
+
i |〉)

2〉1/2 are shown. The right column presents
corresponding zooms in the core where 0 ≤ x1 ≤ 0.79πh, −0.78h ≤ x2 ≤ 0.78h and 0 ≤ x3 ≤ 0.5πh.

of the streamwise velocity u+1 in the streamwise direc-
tion E+(k1h, y

+), which is defined as E+(k1h, y
+) =∑′ |ûi(k1h, y+, k3h)|2/2, where ûi(k1h, y, k3h) is the

Fourier transform of u+(x) in the x1-x3 planes,
∑′

de-
notes the summation in terms of all k3. The results are
shown in Fig. 11, again for the total, coherent an incoher-
ent flows at three representative positions; in the viscous
sublayer, the log layer and near the center of the chan-
nel. The dimensionless wavenumber in the x1-direction
is denoted by k1h. Figure 11 shows that the spectral
distribution of turbulent kinetic energy is well preserved
by the coherent flow, from the viscous sublayer to the
center of the channel. In contrast, the incoherent energy
exhibits an almost flat spectrum, which corresponds to
equipartition of incoherent energy, i.e., decorrelation of
the incoherent flow in physical space.

At large wavenumbers close to the cut-off scale, im-
posed by the resolution of the DNS, we find that the
incoherent energy dominates the total energy in the vis-
cous sublayer and the log layer, while it dominates the
coherent energy around the center of the channel. How-
ever, this is not surprising since the wavelet decompo-

sition is orthogonal for vorticity but not for velocity,
due to the fact that the Biot-Savart operator is not
diagonal in wavelet space. Note that ω̂+

c (k1, y
+, k3)

and ω̂+
i (k1, y

+, k3) are not orthogonal for any fixed
(k1, k3) at every y+. But even though the cross-term
〈ω+

c ·ω+
i 〉(x2) 6= 0, its averaged contribution vanishes,∫ h

−h dx2〈ω
+
c ·ω+

i 〉(x2) = 0.
The compression is most efficient for small scales, i.e.,

small j and large wavenumbers (Fig. 12). This implies
that the scale-by-scale incoherent enstrophy is compara-
ble or larger than the scale-by-scale coherent enstrophy.

F. Nonlinear dynamics

To get further insight into the nonlinear dynamics,
we consider the energy budget given in the equation for
〈u+j u

+
j 〉/2 per unit mass [35]:

1

2

(
∂t + U+

j ∂j
) 〈
u+j u

+
j

〉
=

P (v+) + T (u+) + Π(u+, p+)− ε(u+) + V (u+),
(7)
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FIG. 8. Streamwise mean velocity U+
1 (y+) (left) and spanwise mean vorticity Ω+

3 (y+) for total, coherent and incoherent flows,
together with the DNS results of Ref. [34] in the lin-log representation.

FIG. 9. RMS of u+
j (left) and RMS of ω+

j (right) for total, coherent and incoherent flows.

where P (v+) = −
〈
u+j u

+
l

〉
∂lU

+
j , T (u+) =

−∂l
〈
u+j u

+
j u

+
l

〉
/2, Π(u+, p+) = −∂l

〈
p+u+l

〉
,

ε(u+) = ν
〈
∂lu

+
j ∂lu

+
j

〉
, V (u+) = ν∂l∂l

〈
u+j u

+
j

〉
. In

Fig. 13 (left), we see that three nonlinear coherent
contributions, corresponding to production P (v+

c ), tur-
bulent diffusion T (u+

c ) and pressure diffusion Π(u+
c , p

+
c ),

are in good agreement with the corresponding total
ones. Hence, the coherent flow almost perfectly preserves
the nonlinear dynamics. Thus, we anticipate that the
departure of the coherent flow from the total flow is
negligibly small. Indeed, the incoherent contribution
to the different terms, defined by P (v+) − P (v+

c ),
T (u+) − T (u+

c ) and Π(u+, p+) − Π(u+
c , p

+
c ), is almost

zero. The two viscous contributions, ε(u+) and V (u+),
are also well retained by the coherent flow, ε(u+

c ) and
V (u+

c ), as confirmed in Fig. 13 (right). In the viscous
sublayer, the incoherent flow has small contribution on
ε(u+) and V (u+). The incoherent contribution to the
viscous terms, respectively measured by ε(u+) − ε(u+

c )
and V (u+) − V (u+

c ), becomes even smaller and more
negligible as y+ increases, a behavior which is expected.

The ratio between the production and the dissipation
yields insight into the equilibrium of the turbulent flow in
the log region, as discussed in Ref. [34]. Figure 14 (left)
shows this balance. Considering P (v+

c )/ε(u+), the co-
herent contribution perfectly superimposes with the ratio
of the total flow, P (v+)/ε(u+). The corresponding quan-
tity for the incoherent flow, {P (v+)− P (v+

c )}/ε(u+), is
negligible, as expected from Fig. 13 (left).

The Reynolds stress defined by −〈u+1 u
+
2 〉 measures the

fluctuation of turbulent momentum. The analysis of
the Reynolds stress provides detailed information on the
contribution to the turbulence production from various
events occurring in the flows. Figure 14 (right) shows
that the coherent Reynolds stress well represents the
Reynolds stress for the total flow, while its incoherent
contribution is negligibly small. The interaction between
the coherent flows is predominant over the stress. In con-
trast, the remaining interactions play a non-significant
role in the stress, not only between the incoherent flows
but also between the coherent and the incoherent flows.
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FIG. 10. PDFs of u+
1 ; (top left) y+ = 4.6 viscous sublayer, (top right) y+ = 96.8 around the log region, and (bottom)

y+ = 378.8 around the center of the channel.

IV. CONCLUSIONS AND PERSPECTIVES

DNS data of turbulent channel flow at moderate
Reynolds number have been analyzed using the coherent
vorticity extraction method. Boundary adapted isotropic
wavelets have been developed and implemented into a
fast wavelet transform. By thresholding the wavelet co-
efficients, the flow has been decomposed into coherent
and incoherent contributions. We found that few per-
cent of wavelet coefficients, i.e., 6 %, are sufficient to
represent the coherent structures of the flow. The low

order statistics, mean velocity, mean vorticity, RMS ve-
locity and RMS vorticity of the coherent part agree very
well with those of the total flow. A spectral decompo-
sition of turbulent kinetic energy confirms that the co-
herent flow matches the spectrum all along the inertial
range. In contrast, the incoherent flow exhibits energy
equipartition which suggests that filtering it out corre-
sponds to modeling turbulent dissipation. In order to
obtain reliable statistical results, averaging over 40 flow
snapshots has been performed. To get insight into the
flow dynamics we analyzed the energy budget and we
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FIG. 11. Dimensionless energy spectra of u+
1 in the x1-direction at three representative y+: (top left) y+ = 4.6 viscous sublayer,

(top right) y+ = 96.8 around the log region, and (bottom) y+ = 378.8 around the center of the channel.

FIG. 12. Scale-dependent compression rate.

found that the coherent flow almost perfectly retains the
nonlinear dynamics. The production/dissipation ratio of
the coherent flow superimposes well the one of the to-
tal flow in the log layer, while the interactions between
incoherent-incoherent and coherent-incoherent contribu-

tions are negligibly small. Although the coherent and in-
coherent vorticity fields are not perfectly divergence free.
The divergence issue is not crucial as discussed in ap-
pendix A.

The present construction requires that the DNS data
be interpolated onto an equidistant grid. This limits the
applicability of the current CVE algorithm as higher res-
olution DNS data may not be handled due to the implied
memory requirements. One way to overcome this is the
use of Chebyshev wavelets, see e.g. [19, 36]. In the ap-
pendix B, we tested this approach and we have shown
that similar results in terms of statistics and compres-
sion rate are indeed obtained.

The CVE results are encouraging for developing coher-
ent vorticity simulation (CVS) of wall bounded turbulent
flows. We anticipate that for higher Reynolds number the
compression rate will further improve, similar to what
was found for isotropic turbulence [15]. CVS is based
on a deterministic computation of the coherent flow evo-
lution using an adaptive orthogonal wavelet basis [12].
The influence of the incoherent background flow is ne-
glected to model turbulent dissipation. Applications of
CVS to turbulent mixing layers and isotropic turbulence
can be found in Refs. [16] and [37], respectively.

Some challenges for future work are that the wavelet



12

FIG. 13. Production term P , turbulent diffusion term T and pressure diffusion term Π vs. y+ (left). Energy dissipation ε and
viscous diffusion V vs. y+ (right). Coherent and incoherent contributions are presented together with the total one.

FIG. 14. The ratios of total, coherent and incoherent productions P to the dissipation of turbulent kinetic energy for total
flow, ε, vs. y+(left). The Reynolds stress −〈u+

1 u
+
2 〉 vs. y+(right).

bases are not orthogonal in 2D planes for fixed y+. This
implies that 2D statistics cannot be done, especially at
small scales. In this case it would be better to apply 2D
wavelets in each plane, as done in previous work [20].
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Appendix A: Divergence issues

The vector-valued wavelet basis used here is not
divergence-free, since the orthogonal wavelet transform
does not commute with the differential operator. Thus,
the coherent vorticity, ωc, and also the incoherent one,
ωi, are not divergence-free. In the following, we quan-
tify the y+-dependent contribution of the divergent com-
ponent ∇ξ of ωc on the streamwise vorticity spectra in
the x1-direction. Figure 15 shows dimensionless spectra
of total streamwise vorticity ω+ and those of ∇ξ+ at
two representative values of y+, which are respectively
located near the wall and around the center of the chan-
nel. The contribution of ∇ξ+ appears mostly in the dis-
sipative range, not only in the viscous sublayer but also
around the center of the channel. It can be seen that the
contributions of ξ+ are weak in the lower wavenumber
region. The intensity of ∇ξ+, denoted by 〈|∇ξ|2〉(y+),
is about 2.8 × 10−2% of the total enstrophy in the vis-
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cous sublayer, and about 1.89% around the center of the
channel. Therefore, this divergence issue in ωc is negli-
gible for the statistics, but also for simulations, since ωc
is almost divergence-free.

Appendix B: CVE using Chebyshev wavelets

In the following, we briefly summarize Chebyshev
wavelets which yield an alternative construction of
wavelets on the interval [38]. The idea is to per-
form a change of variables, similar to what is done for
the trigonometric definition of Chebyshev polynomials.
The efficient numerical implementation of Chebyshev
wavelets is based on the periodic wavelet transform, in
analogy with the fast Chebyshev transform which uses
the cosine transform. The CVE results presented here
use Chebyshev wavelets in the x2-direction instead of the
CDJV wavelets, while in the x1 and x3-directions peri-
odic Coiflet 30 wavelets are used.

1. On Chebyshev wavelets

Using the coordinate transform x = cos(θ) we map
the interval x ∈ [−1, 1] onto θ ∈ [0, π]. Then π-periodic
orthogonal wavelets ψP (θ) are used to construct wavelets
ψB(θ), [19], which are even functions:

ψB(θ) = ψP (θ) + ψP (π − θ). (B1)

The corresponding dilated and translated wavelets
are obtained by ψBj,i(θ) = 2j/2ψB(2jθ − i). Setting

θ = arccosx we obtain the boundary wavelets ψB(x) on
the interval [−1, 1] which yield an orthogonal basis with
respect to the weighted scalar product, i.e.,

∫ 1

−1
ψBj,i(x)ψBj′,i′(x)/(1− x2)1/2 dx = δjj′ δii′ .

To compute the Chebyshev wavelet transform effi-
ciently we use periodic orthonormal Coiflet 30 wavelets

with period 2π and extend the vorticity ω(x1, θ, x3) as
an even function g(x1, θ, x3) for each (x1, x3),

g(x1, θ, x3) =

{
ω(x1, θ, x3) for 0 ≤ θ ≤ π,
ω(x1,−θ, x3) for − π ≤ θ < 0.

(B2)

Before applying the extension of ω, we interpolate the
vorticity given on 192 Chebyshev grid points onto 256
equidistant grid points in the θ-coordinate. Then we can
proceed with the CVE method and apply the fast wavelet
transform to g using 3D orthogonal wavelets constructed
by a tensor product from ψP (x1), ψP (θ) and ψP (x3).

2. Numerical results

Now we extract coherent vorticity out of the turbu-
lent channel flow at Reτ = 395, using the previously de-
scribed Chebyshev wavelets. For the threshold value T
we use the coefficient α = 0.10. We find that the coher-
ent flow, reconstructed from only 4.8% of the 2562 × 512
wavelet coefficients, i.e., 6.4% of the original 2562 × 192
grid points, retains almost all of the total energy and en-
strophy, i.e., 99.9% of the total energy and 99.0% of the
total enstrophy. In contrast, the incoherent flow repre-
sented by the remaining majority of the wavelet coeffi-
cients has little energy and enstrophy, namely 10−2 % of
the total energy and 1.3% of the total enstrophy.

Inspecting Fig. 16 confirms that the PDFs for the total
and coherent velocity fluctuations perfectly superimpose,
indicating that high order statistics are well preserved
by the coherent flow. In contrast the PDFs of incoherent
velocity fluctuations have strongly reduced variances and
are not skewed, in contrast to what is found for the total
and coherent fluctuations. Coherent and incoherent flows
exhibit very similar properties as in Sec. III, where we
used CDJV wavelets instead of the Chebyshev wavelets
(figure with flow visualizations is omitted). Thus, Cheby-
shev wavelets can be more efficient for CVE than CDJV
wavelets if the flow data have a large number of grid
points, as no interpolation onto a fine equidistant grid is
required.
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