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Above the light line, guided modes cannot be perpetually sustained into a photonic crystal membrane owing

to its periodic modulation. The resulting leaky waves are nowadays largely exploited in the context of integrated

optics. We develop here a model affording insight into the mechanism that allows the obtention of resonances

endowed with extremely high quality factors. As a matter of fact, the model indicates that the quality factor can

take arbitrarily high values and that this phenomenon results from the coupling between guided and radiated

modes. The obtained tight control over the emission spectrum of a photonic crystal membrane is employed to

design a spectrally and spatially selective absorber.

DOI: 10.1103/PhysRevA.90.033824 PACS number(s): 42.25.Fx, 42.70.Qs, 02.70.−c

I. INTRODUCTION

Photonic crystals (PCs) have come to constitute in the last

decades a fundamental branch in the realm of nanophotonics,

especially because of their capability of harnessing light.

Although several three-dimensional (3D) structures have been

constructed {e.g., the so-called Yablonovite [1], stacks of

two-dimensional (2D) crystals [2], or woodpile structures [3]},

sustainable production at the industrial level is inhibited by

technological challenges such as the required precision in the

alignment of the repeated constituents.

Photonic crystal membranes (PCMs) [4] represent an attrac-

tive alternative by reason of their ease of fabrication through

conventional lithography and etching processes. PCMs are

dielectric waveguiding slabs with an in-plane one-dimensional

(1D) or 2D periodic texturization and, conversely, an out-of-

plane finite thickness. In the latter direction, say vertical, light

is confined by index contrast. It results from their vertical

compacity that these planar architectures are well suited in the

context of on-chip integrated photonics.

In a dispersion diagram, guided modes that are located

below the light line cannot couple with radiation modes and

hence exhibit an infinite lifetime. The range of applications

in nanotechnology is broad. For the sake of illustration, let

us mention the slow light effect [5,6] capable of increasing

the efficiency per unit length of a nonlinear process around

certain frequencies by means of the enhancement of light-

matter interaction.

Above the light line, guided modes can interact with

external radiations, yielding leaky waveguided slow Bloch

modes that propagate with a certain rate of radiative losses.

Following Wood’s seminal work [7], in which was reported

a strong switching of light energy between the reflected

and transmitted spectra of a beam diffracted by a grating,

such modes have long been considered as anomalies. Hessel

and Oliner provided the first theoretical analysis of the

phenomenon [8] before Magnusson and Wang eventually

exploited these guided resonances to achieve a new class

of optical filters [9]. Subsequently to these contributions it

was evidenced that PCMs have the ability to act as reflectors
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with adjustable bandwidth. In this way it was first shown

in [10] that PCMs exhibiting high index contrast regarding the

environing medium can give rise to reflectors with broadband

high reflectivity, a property that was used in the same article

for the design of surface emitting lasers. On the other hand,

it was established by numerical simulation that a suitable

selection of the PCM’s parameters (thickness, period, duty

cycle) results in Fano resonances with Q factors as high as

500 000 [11]. These resonances, whether they be with a low

or high Q factor, proceed as a consequence of the interaction

between external radiations and guided modes in the structure.

The above-mentioned interaction is customarily described by

using the concept of photons’ lifetime into the PCM which we

shall refer to as τc in the following. Provided there is no lateral

escape of the guided mode, τc is inversely proportional to the

spectral bandwidth of the resonance. One of our objectives in

this paper is to clarify the mechanism that presides over the

dramatic variation of the Q factor. There are so far two main

perceptions underlying this phenomena:

(a) The first approach, proposed by Karagodsky and

coworkers [12,13], is based on the theory of the diffraction

gratings. In such a vision the PCM is apprehended as a

high contrast grating (HCG), that is an object made up of

a corrugated layer whose index of refraction is high compared

to its surrounding. Through calculating the eigenmodes of the

grating, it is found that there exists a range of wavelength

for which only two modes carry energy. At the upper and

lower interfaces of the HCG these two modes couple and

eventually lead to hybrid modes that can be viewed as

Fabry-Perot modes into a vertical cavity. The value of the Q

factor is, thereby, featured by the interferences between these

Fabry-Perot modes.

(b) In the second approach, which was developed in our

team, the PCM is foremostly understood as a bare planar

waveguide. The impact of the corrugation on the waveguide

is twofold. (i) The alteration of the horizontal propagation

of light in the structure induces a bandgap in the dispersion

diagram. (ii) In case of operating above the light line, the

corrugation provokes the vertical coupling of the radiation

and guided modes in the PCM. The value of the Q factor

is precisely assumed to come as a result of the overlap

integral between the electromagnetic field distributions of

these eigenmodes [14]. In practice, what we shall design as
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the waveguided Bloch resonance approach readily provides

the variation of Q in terms of the thickness of the PCM

and, hence, proves advantageous for the design of photonic

structures. Note that a significant approximation is done here:

the Bloch modes of the PCM are apprehended as radiatively

lossless, though, they are above the light line.

While the former approach hinges on a rigorous analysis,

there is thus far no evidence to sustain the latter, aside from

heuristic arguments stating that the corrugation enters as a

disturbance of the waveguide. In this paper we present a per-

turbation theory, based on a reformulation of the seminal model

proposed by Kazarinov and Henry (KH) [15], that allows

valuable insight into PCMs. Our perturbation model provides

a clear demonstration of the validity of the waveguided Bloch

resonance approach. It is shown that the coupling rate is

proportional to the vertical overlap between eigenmodes of

the unpatterned membrane—i.e., in-plane guided modes—and

normally incident plane wave. The radiative losses are shown

to split into two terms: one is related to the previously men-

tioned overlapping effect while the second is an interferential

contribution that accounts for the multiple reflections at the

interfaces of the membrane. Furthermore, the central role

played by the membrane thickness will be emphasized as our

model evidences that there exists membrane thickness values

for which the radiative losses strictly get to zero (infinite Q

factor) and that this occurs regardless of the resonator (that is

the photonic crystal itself). What is more, we found that Q

factors tending to infinity appear for some universal optical

thicknesses irrespective of the constitution of the high index

contrast structure. The last section of this article is devoted to

the application of our model to the design of a spectrally and

spatially selective absorber.

II. COUPLED WAVE MODEL FOR THE CONTROL

OF THE PCM Q FACTOR

Let us consider a PCM embedded into two semi-infinite

media; the configuration is depicted in Fig. 1. The coefficients

ρ21 and ρ23 are the reflectivities at the two interfaces of

the PCM. The subsequent development does not require the

two surrounding media to be homogeneous. For example,

they can take the form of multilayered stacks that are

FIG. 1. (Color online) A PCM surrounded by two semi-infinite

media

taken into account through ρ21 and ρ23. At the Ŵ point

(k‖) of the dispersion diagram, the optical modes of the

PCM interact with vertical free space plane waves. Our

concern is to characterize this interaction which gives rise

to the radiation losses. The coupling rate between radia-

tion and guided modes is defined by the coupling time

constant τc.

KH developed a semianalytical model to discuss the effect

of radiation losses on a distributed feedback (DFB) laser [15].

However, KH did not explicitly consider the surrounding

medium, which results in disregarding the multiple reflections

that take place at the interfaces of the structure. Rosenblatt

et al. did take into account the effect of multiple reflections

but obtained an expression for the radiation losses that is not

invariant by permutation of the reflectivities of the upper and

lower boundaries (see Eq. (C2) in Ref. [16]). Even though it

was not its initial purpose, KH’s model has proven a useful

tool to treat guided resonances in PCMs as well [17,18]. In this

paper, KH’s model is adapted to the configuration depicted

in Fig. 1.

Following KH’s prescription, we consider a PCM whose

dielectric constant ǫ(x,z) is periodic along the direction of

propagation z and constant along x. A plane wave is normally

incident on the PCM, which leads to two identical guided

modes propagating in opposite directions �(x) exp(±iKz).

The function �(x) represents the profile of the guided wave

while K = 2π/� is the wave vector of the grating and � the

periodicity. In addition there are radiating waves which we will

refer to as 	E(x,z). Accordingly the electric field is sought in

the form

E(x,z) = [A(z)eiKz + B(z)e−iKz]�(x) + 	E(x,z). (1)

Upon introduction of Eq. (1) together with the Fourier

expansion of ǫ(x,z) into the wave equation, one gets a

set of coupled differential equations. By retaining only the

orders m = −1,0,1 in the ǫ(x,z) expansion, by neglecting the

second derivatives of the coefficients A(z) and B(z), and by

disregarding absorption, a somewhat tedious calculation yields

the following eigenvalue equation:

ω − ω0

vg

= −ih1 ± (h2 + ih1), (2)

with

h1 =
i	ǫ2ω4

2Kc4

∫ d

0

∫ d

0

G(x,x ′)ξ1(x ′)ξ1(x)�(x ′)�(x)∗dxdx ′,

(3a)

h2 = −
ω2

c2

∫ d

0

ξ+2(x)�(x)�∗(x)dx. (3b)

where G(x,x ′) is a Green’s function, vg represents the

group velocity, 	ǫ is the index difference between the two

constitutive media of the PCM, and the Fourier coefficients

are defined as

ξm =
sin mπF

mπ
, (4)

F being the duty cycle of the PCM. These equations are those

derived by KH to study DFB lasers with second-order gratings.
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In this paper the approach is pushed further in order to describe

the radiation losses in PCMs.

With reference to Eq. (2), we start the analysis by noticing

that we have a measure of the deviation experienced by

ω0 at the Ŵ point of the membrane dispersion diagram

when the perturbation is accounted for. Depending on the

plus or minus sign, two sets of dispersion results can be

obtained.

The minus sign makes complex the eigenfrequency of the

perturbated membrane. The real part of it characterizes the

opening of the bandgap while the imaginary part represents

the radiation losses. Since h2 is real, Eq. (2) indicates that the

radiation losses are wholly contained in two times the real part

of h1. It is interesting to note that the coefficients h1 and h2 can

be apprehended as the mathematical traduction of the twofold

impact, mentioned in the Introduction, that the corrugation

has on the waveguide. In the framework of this paper, we give

prominence to this case in which the eigenfrequency depends

on both h1 and h2.

The plus sign leads to a real eigenfrequency and thereby

describes a lossless mode of the dispersion diagram. In this

regime, the arrangement of the guided mode in the horizontal

plane is such that its lateral overlap with the radiation modes is

free of losses. In this configuration, light is perfectly confined

in the slab. The corresponding modes are true eigenmodes that

do not decay into the continuum even if they lie into the light

cone. In the literature, these modes are referred to as bound

states in the radiation continuum (or embedded eigenvalues)

and were extensively studied by Hsu and coworkers [19]. Such

resonances were exploited in the design and fabrication of

single-mode lasers with low lasing threshold [20] and capable

of operating above one unity of watt while the beam divergence

is low [21]. However, bound states must be distinguished from

the modes we are concerned with in this paper [minus sign

in Eq. (2)], which arise from the vertical guided and radiation

modes overlap and not from the horizontal arrangement of

the membrane. It will be shown below that the Q factor of

our resonances can reach infinity for specific values of the

membrane thickness. But aside from these specific values the

Q factor remains finite even at normal incidence (Ŵ point),

in opposition with bound states which are often called black

modes as they disclose themselves at off-normal incidence.

Note in passing that this property was exploited by Foley et al.

to build a narrow band transmission filter [22]. In Sec. III we

will propose an approach to provide wavelength selectivity

that relies on the mechanism of critical coupling rather than

on dark modes.

In order to make tractable the evaluation of h1 and h2 we

assume the guided mode to be symmetric,

�(x) = cos κ

(

x −
d

2

)

, (5)

where d is the thickness of the membrane and κ is the

vertical component of the wave vector. The construction of a

Green’s function is necessary to the evaluation of Eq. (3a). In

Appendix A is explained the process that allowed us to obtain

a suitable Green’s function [given in Eq. (A6)]. It follows

upon introduction of the Green’s function into Eq. (3a) that

the radiation losses take the form:

Re(h1) =
	ǫ2ω4ξ 2

1

4k2Kc4

×
[ρ21ρ23 − 1] [1 + ρ21ρ23 + (ρ21 + ρ23) cos dk2]

1 + ρ2
21ρ

2
23 − 2ρ21ρ23 cos 2dk2

×

[

sin d
2
(k2 − κ)

k2 − κ
+

sin d
2
(k2 + κ)

k2 + κ

]2

, (6)

an equation from which several conclusions can be drawn.

The real part of h1 splits into two d-dependent factors. The

first factor is related to interferences given that it depends

on the reflectivities ρ21 and ρ23. It is therefore well suited to

describe the propagation of waves in multilayered structures.

Interestingly the same interference factor is obtained when

the couple mode theory (CMT) is employed for a membrane

surrounded, on either side, by multilayer media. This feature is

demonstrated through Eq. (B4) in Appendix B (devoted to the

derivation of the CMT equations that are used in this paper).

The second factor (involving the sum of two sine functions) is

the clear signature of the overlap of the radiation and guided

modes along the membrane thickness inasmuch as

sin d
2
(k2 − κ)

k2 − κ
+

sin d
2
(k2 + κ)

k2 + κ
=

∣

∣

∣

∣

∫ d

0

eik2x�(x)dx

∣

∣

∣

∣

. (7)

Corroborative are the facts that the wave vectors k2 and κ

are coupled into the argument of the sines and that there are

solely parameters intrinsic to the membrane (d, k2, and κ) here.

Conclusively, our semianalytical model allows the justification

of the waveguided Bloch resonance approach we have been

talking about in the Introduction. In addition, Eq. (6) evidences

that the thickness of the membrane is a fundamental parameter

for the control of the radiation losses or, equivalently, the Q

factor. To sum up, our description affords a deep insight into

the behavior of the Q factor; it will be employed in Sec. III

to design an absorbing device that is directive and selective in

wavelength.

There is a feature worth pointing out regarding the deriva-

tion of h1. Whereas we are still dealing with a texturized

membrane in Eq. (1), the Green function of Eq. (A6) is

constructed from waves propagating into media that are

homogeneous. This prescription is part of the perturbation

approach. In the same way we will assume that the guided

modes in the membrane �(x) are akin to the guided modes

of a homogeneous slab waveguide. Accordingly �(x) is the

solution of a classic eigenvalue problem which is treated

with great details in the first chapter of Marcuse’s book for

instance [23]. Upon this prescription we calculate Re(h1) in

terms of d/λ for a silicon membrane surrounded by silica. The

corresponding plot, Fig. 2(a), evidences that the coefficient

Re(h1) is an oscillating function of d which periodically

reaches zero values. Let us stress that there does exist values

for d that render Re(h1) strictly zero. This is a conspicuous

characteristic since it is, hence, possible to design a PCM with

a theoretical infinite Q factor. High Q-factor designs were

quite recently proposed [11,24]; we show through our model

that there is actually no theoretical upper limit as long as the

structure is symmetric.
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FIG. 2. (Color online) (a) Radiation losses in terms of the ratio

d/λ of a silicon membrane embedded in silica (we have assumed that

nSi = 3.481 and nSiO2
= 1.528). The curve has been normalized to

the maximum value of Re(h1). (b) Enlargement of the radiation losses

and comparison with the inverse of the Q factor calculated by FDTD

simulations. Gray (dark) curve: perturbation approach. Orange (light)

curve: numerical calculation of 1/Q.

In order to validate the suitability of our approach to

determine the PCM thicknesses that induce high Q-factor

values, we numerically calculate [by using the finite-difference

time-domain (FDTD) method] the Q factor for a PCM made

up of an alternation of Si-SiO2 environed by SiO2. The result

is logarithmically plotted in Fig. 2(b) and therefore compared

to our perturbative approach in a window encompassing the

first zero. Undoubtedly the two curves get to zero at the same

point and the variation of the Q factor is well described in this

window.

It is worth dwelling on the major role played by the

membrane thickness in the control of the radiation losses.

Equation (6) indeed shows that if Re(h1) is to vanish, the

pertinent parameter to manipulate is d rather than other

specifications of the PCM such as its periodicity or duty cycle.

In this sense, we have verified that arbitrarily high Q factors

can be reached no matter the value of �, while our model

proves to work well for any F lower than 0.7 (70% of SiO2),

that is well beyond the usual validity domain of a perturbation

approach.

There is another remarkable conclusion that can be drawn.

We claim that if the refractive index of a membrane offers

a sufficient contrast to that of the environing medium, the

parameters n2, d, and λ that make h1 amounting to zero are

such that the product d̃ = dn2/λ is a universal constant. Let

FIG. 3. The optical thickness (dn2/λ) of the membrane that leads

to infinite photons lifetime is universal.

us demonstrate this interesting result. According to Eq. (6),

Re(h1) = 0 implies that

sin
[

1
2
(κ̃ − k̃2)

]

sin
[

1
2
(κ̃ + k̃2)

] = −
κ̃ − k̃2

κ̃ + k̃2

, (8)

where κ̃ = κd and k̃2 = k2d = n2k0d. Furthermore the well-

known eigenvalue equation for the even modes of a symmetric

slab waveguide reads (see [23]):

cos

[

κ̃

2

]

=
κ̃

k̃2

1
√

1 − n2
1

/

n2
2

. (9)

From the simultaneous resolution of the two last equations,

we plot (Fig. 3) d̃ in terms of the refractive index n2 of a

membrane. We observe a fast convergence towards a constant

values of 1.24. This feature is appealing for the design of

a high-Q-factor membrane as the thickness for which the

Q factor is maximum can be easily predict. For example,

let us consider again the design that conduced to Fig. 2(a).

We had λ = 1.5 μm and n2 = 3.481 and we know that the

radiation losses go to zero when dn2/λ = 1.241, that is when

d is around 0.534 μm, which does correspond to the first zero

of Fig. 2(a). Naturally the other zeros of Fig. 2(a) can also be

retrieved.

III. SPECTRALLY AND SPATIALLY SELECTIVE

ABSORBING DEVICES

The technologies whose efficiency is increased by means

of the capture and/or emission of light in a selective way

are numerous, e.g., heating, thermophotovoltaics, or radiative

cooling [25]. It was explicitly claimed by Bermel and cowork-

ers [26] that photonic crystals are highly promising structures

for reaching selectivity with respect to wavelength and angle.

Such a statement comes as no surprise considering the

developments provided by this paper which have enlightened

the tight control one may have on the Q factor of a PCM. The

design of an absorber, directional and selective in wavelength,

will be the focus of the rest of this article.

Let us consider a Si-SiO2 PCM that is embedded into SiO2

and illuminated by a plane wave. Equation (6) indicates that

the Q factor tends to infinity whenever d is adequately chosen.
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FIG. 4. (Color online) Quality factor in terms of θ . For the PCM

under consideration, Q is reduced by four orders of magnitude when

the angle is varied from 0 to 10.

As a result small variation of d will be of significant impact on

the Q factor. On the other hand varying the incident angle θ of

the plane wave modifies the length of its path throughout the

PCM or, equivalently, the effective optical thickness; the Q

factor is accordingly strongly altered by a variation of θ . This

characteristic can be positively seized to construct a directive

absorber by exploiting the concept of critical coupling. It is

well known that one gets maximum absorption if τc = τabs

(or equivalently Qc = Qabs), i.e., the decay of the lifetime

of photons by radiative losses turns out to match that owed

to absorption. This can be readily ascertained by employing

CMT as evidenced by Eq. (B3), which furthermore indicates

that the absorption is 50% in the critical coupling regime.

Now let us assume that the PCM is doped in such a manner

that the corresponding Qabs matches Qc for a given θ , say

θ = 0 for simplicity’s sake. Since the variation of Qc in terms

of θ is strong, the critical condition is expected to be quickly

degraded as the angle is taken away from θ = 0 and, hence,

the absorption drops from 0.5 to 0 for all the angles but around

θ = 0. Regarding the wavelength selectivity, it is plain from

Eq. (B3) that outside the resonance the absorption rapidly

drops, especially if τc is high.

We illustrate such a mechanism on an example. Let us

consider a PCM having a thickness of 0.527 μm. Figure 2(a)

shows that for such a thickness h1 is low at λ = 1.5 μm and

θ = 0; this is a beneficial feature if the absorber is intended to

be highly directive. Besides, the filling factor is assumed to be

50% which leads to a strong resonance at � = 0.753 μm. In

Fig. 4 is plotted the Q factor of the PCM against the angle of

incidence by employing FDTD simulations. As expected, one

will note that at θ = 0 the quantity Qc reaches its maximum

and rapidly decreases towards much smaller values. The

observed maximum attains a substantial value of Qc = 65 200.

Now an absorption lifetime such that Qabs = Qc is assumed

and in Fig. 5(a) are plotted the reflection, transmission, and

absorption coefficients as functions of θ at λ = 1.5 μm,

calculated by using RCWA (Rigorous coupled-wave analysis).

The directive absorption of the PCM is clearly established. Let

us plot in Fig. 5(b) these coefficients against λ at θ = 0; the

PCM is spectrally selective as well. The spectral and direc-

tional selectivities are well visualized in the mapping given

in Fig. 5(c).

FIG. 5. (Color online) Reflection, transmission, and absorption

coefficients as functions of (a) θ at λ = 1.5 μm and (b) λ at θ = 0.

(c) Mapping of the absorption coefficient in terms of λ and θ .

IV. CONCLUSION

We proposed a perturbation model based on a reformulation

of KH’s work. By means of our model we were capable of

showing that the radiation losses experienced by a PCM are

proportional to the coupling of the guided modes to the free-

space continuum.

By assuming a symmetric configuration we showed that

the expression for the radiation losses split into two terms. An

overlapping term directly emphasizes the major role played by

the above-mentioned coupling. An interferential term accounts

for the surrounding medium. This latter term is identical to

what one may obtain by a CMT treatment of the problem.
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The model indicates that arbitrarily high Q factors can be

achieved for specific thicknesses of the membrane. Further-

more, such thicknesses are universal in that they are largely

independent of the index contrast between the membrane and

the environing medium. The convergence towards these uni-

versal values in terms of the index contrast is surprisingly fast.

The model allows insight in the design of devices that

rely on the control of the photons lifetime. In this paper we

proposed a spatially and spectrally selective absorber. A PCM

containing the optical losses has the ability to absorb light

with selectivity. The involved mechanism is based on the fast

variation of the Q factor against the angle of the incoming

light, which thus leads to the fast degradation of the critical

coupling condition.

As a conclusive remark let us stress that, in virtue of

Kirchhoff’s law of thermal radiation, the absorptivity and the

emissivity of a structure at a particular wavelength must be

equal. Therefore, the device that was proposed here would

emit with the same spectral and spatial selectivity if it were

heated. The developments provided in this article constitute an

interesting tool for the design of narrow-band and directional

infrared sources with potential applications in the realm of

energy saving sensors or free-space communications, for

instance.
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APPENDIX A: CALCULATION OF h1

When employing the Green’s function technique, two inde-

pendent solutions of the homogeneous form of the differential

equation to be solved must be chosen. In KH’s paper, it was

proposed to use [15]:

�+(x) = exp(+ikxx), (A1a)

�−(x) = exp(−ikxx). (A1b)

The corresponding Wronskian is

W (x ′) = �−(x ′)
∂�+(x)

∂x

∣

∣

∣

∣

x=x ′

− �+(x ′)
∂�−(x)

∂x

∣

∣

∣

∣

x=x ′

= 2ikx . (A2)

The Green’s function reads

G(x,x ′) =

{

�−(x ′)

W (x ′)
�+(x) if x � x ′,

�+(x ′)

W (x ′)
�−(x) if x � x ′,

(A3)

which leads to

G(x,x ′) =

{

exp[+ikx (x−x ′)]

2ikx
if x � x ′,

exp[−ikx (x−x ′)]

2ikx
if x � x ′.

(A4)

The above function �+ and �− are two bare plane waves

unable to provide accounts of multiple reflections at the

interfaces of the membrane. We shall construct a Green’s

function that figures out such a limitation.

Let us consider three homogenous media separated by

plane boundaries. Medias 1 and 3 are semi-infinite while

the thickness of the separating sheet, medium 2, is d. The

coefficient ρ21 (respectively ρ23) is the complex ratio of

the amplitudes of reflected and incident waves at the interface

between medium 1 (respectively 3) and medium 2. We propose

to define �+ and �− as the electric field in medium 2 when

a plane wave is incoming from medium 1 and medium 3,

respectively. One obtains

�+(x) = E0

[

−1 + ρ21

−1 + ρ21ρ23e2idk2
exp(ik2x)

+ e2idk2
(−1 + ρ21)ρ23

−1 + ρ21ρ23e2idk2
exp(−ik2x)

]

, (A5a)

�−(x) = E0e
2idk2ρ23

1+ρ23

[

(−1 + ρ23)ρ21

−1 + ρ21ρ23e2idk2
exp(ik2x)

+
−1 + ρ23

−1 + ρ21ρ23e2idk2
exp(−ik2x)

]

, (A5b)

where E0 is the complex amplitude of the incident wave

and k2 the propagation factor of medium 2. From these new

expressions for �+ and �−, one can get the Green’s function

and, consequently, the h1 factor:

G(x,x ′) =
−i

2k2(ρ21ρ23e2ik2d − 1)

{

eik2(x−x ′) + ρ21ρ23e
2ik2de−ik2(x−x ′) + ρ21e

ik2(x+x ′) + ρ23e
2ik2de−ik2(x+x ′) if x � x ′,

e−ik2(x−x ′) + ρ21ρ23e
2ik2deik2(x−x ′) + ρ21e

ik2(x+x ′) + ρ23e
2ik2de−ik2(x+x ′) if x � x ′.

(A6)

APPENDIX B: COUPLE MODE THEORY FOR A PCM

SURROUNDED BY MULTILAYERED MEDIA

CMT is a powerful theoretical tool that can provide great

insight into the analysis of a broad range of devices [27]. In

this article, it has been stated that Eq. (6) includes a part

predicted by CMT. Furthermore we extensively employed

CMT for the design of the selective absorbers of Sec. III. Here

we present the CMT model we have employed to analyze

the structure under consideration; we further give, with a

concise demonstration, the equations that are useful to the

comprehension of the paper.
In the CMT approach, the PCM is modeled by a resonator

and a waveguide. The resonator describes the photonic crystal,
that is a resonant structure, while the waveguide stands for
the bare membrane of thickness d. The parameters r1, r2,
t1, and t2 describe the reflection and transmission at the
two interfaces between the membrane and the host medium.
The amplitude of the incoming (outgoing) waves outside the
membrane are designated by s+1 (s−1) and s+2 (s−2). Inside
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the membrane inward (outward) waves are denoted by c+1

(c−1) and c+2 (c−2). Note that the amplitudes s and c are

related by a transfer matrix from which, once combined

with CMT, one can get a phenomenological model well

suited to the description of the spectral characteristics of

PCMs [14].

The starting point of our analysis is an adaptation

of the approach provided by Manolatou and cowork-

ers [28] who considered a resonator supporting a single

mode with amplitude a and whose temporal evolution is

given by

da

dt
=

(

iω0 −
1

τc

−
1

τabs

)

a +
1

τc

c+1 + ε
1

τc

c+2. (B1)

In this expression the quantities not yet introduced are the

decay rate due to optical losses 1/τabs and ε a constant that

describes the spatial configuration of the mode. If the mode

is even (odd) about the PCM median plane, ε = 1 (ε = −1).

Note that an arbitrary mode can be expressed as a superposition

of even and odd modes.

Assuming s+2 = 0, the derivation of the reflection (rtot =
s−1

s+1
) from the input port of the waveguide and the transmis-

sion (ttot =
s−2

s+1
) through the output port of the waveguide

yields

rtot =
t1

t∗1

[r2 − r∗
1 e2iβd ]x − [εeiβd (1 + r∗

1 r2) + 2r2]

[e2iβd − r1r2]x + [(r1 + r2)εeiβd + 2r1r2]
, (B2a)

ttot =
t2

t∗1

eiβd (1 − r1r
∗
1 )(x − 1)

[e2iβd − r1r2]x + [(r1 + r2)εeiβd + 2r1r2]
, (B2b)

where x = i(ω − ω0)τc +
τc

τabs
+ 1.

Assuming r1 = 0, r2 = 0, t1 = 1, and t2 = 1, one obtains

the expressions for rtot and ttot that were provided by

Manolatou. In this case the absorption coefficient is defined

by A = 1 − |rtot|
2 − |ttot|

2, which leads to

A =
2τc/τabs

(1 + τc/τabs)
2 + τ 2

c (ω − ω0)2
. (B3)

At resonance (ω = ω0), the coefficient A reaches its maximum

value, that is, 1/2, for τc = τabs. This is the well-known critical

coupling condition.

On the other hand the eigenvalues of the system can be

calculated by assuming s+2 = 0 and s+1 = 0. One finds

i(ω − ω0)τc =
(εeiβd + r1)(εeiβd + r2)

r1r2 − e2iβd
, (B4)

where the term 1/τabs (related to optical losses) has been

disregarded. Through the assumption of a symmetric mode

(ε = 1), the real part of Eq. (B4) is

[r1r2 − 1][1 + r1r2 + (r1 + r2) cos dk2]

1 + r2
1 r2

2 − 2r1r2 cos 2dk2

, (B5)

that is precisely the interference term of Eq. (6), as stated in

Sec. II.
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(2013).

[20] S.-L. Chua, Y. Chong, A. D. Stone, M. Soljačić, and
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