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Abstract – This paper presents a new feature of the IDEA1 
Wireless Sensor Network (WSN) simulation platform: its 
ability to run simulations on heterogeneous sensor nodes that 
compose a network. This platform allows system-level 
simulations with hardware accurate models, with graphical 
inputs and outputs to easily simulate such distributed systems. 
When comparing IDEA1 simulation results to physical 
measurements, difference is 6 percent. IDEA1 is more than 
three times faster simulation compared to another simulator 
(NS2). In the testbed we consider, the well-known IEEE 
802.15.4 standard is considered and different microcontroller 
units (MCU) and radiofrequency units (transceivers) compose 
the heterogeneous nodes. Output curves, packet delivery rate 
(PDR), packet latency can be evaluated. Moreover, energy 
consumption of sensor nodes is detailed with a very fine 
granularity, at hardware and software level. Indeed, energy 
consumption of each internal block of each device on each node 
can be monitored with IDEA1. Therefore, it is possible to 
simulate quickly and accurately heterogeneous (hardware 
different) nodes. Indeed, multitude of hardware platforms and 
communication standards lead to inter-communicating 
heterogeneous networks. This simulation platform can be used 
to explore design space in order to find the hardware devices 
and IEEE 802.15.4 algorithm that best fit a given application 
with a constrained energy budget.  

Keywords – Wireless Sensor Network; WSN; heterogeneous; 
simulation; model; SystemC. 

I.  INTRODUCTION 

Wireless Sensor Networks (WSN) are widespread sensor 
systems. This paper presents IDEA1, a Wireless Sensor 
Networks simulator, as briefly presented in The Sixth 
International Conference on Sensor Technologies and 
Applications (SENSORCOMM) [1]. Wireless Sensor 
Networks are used in a large variety of applications, such as 
environmental data collection, security monitoring, logistics 
or health [2]. Wireless Sensor Networks are composed of 
resource-constrained sensor nodes that are deployed at 
different locations. The sensor nodes cooperatively monitor 
physical or environmental conditions, such as temperature, 
sound, vibration or pressure. Because of autonomy 
requirements, they have a specific architecture; they are 
typically composed of one or more sensors, an 8-bit or 16-bit 
microcontroller, sometimes an external non-volatile memory, 
a radiofrequency unit (transceiver) and an energy supply. 

Limited resources are energy, memory and processing 
capabilities. As mentioned in [3], many different platforms 
exist, and hardware heterogeneity is now a reality. Indeed, 
standards like IEEE 802.15.4 permit heterogeneous nodes to 
communicate. Meanwhile, such networks have to be 
simulated in order to estimate performances of the network. 

The typical hardware architecture of a sensor node is 
detailed in Fig. 1. As introduced previously, it is composed 
of a sensor, a microcontroller, a radiofrequency unit 
(transceiver) and a battery. The sensor converts physical data 
into electrical signal. Microcontroller is the central element 
in the node as it executes user software. It embeds an analog 
to digital converter that is connected to sensor, a 
synchronous serial communication block that is connected to 
radiofrequency unit, power aware functions (like sleep or 
power-down modes). Radiofrequency unit give the 
possibility of remote connections to other nodes and gives 
the wireless functionality in the network. A battery supplies 
all the circuits; its characteristics give node autonomy. 

Manufacturers of WSN hardware include ATMEL, 
Texas Instruments or Microchip microcontrollers and Texas 
Instruments, ATMEL, Freescale, or ST-Micro-electronics 
radiofrequency units. Many manufacturers supply sensors 
and battery modules. WSN applications are mainly low data 
rate.  

 

Sensor Microcontroller 
Unit

Radiofrequency 
Unit

NODEBatteryBattery

 
 

 
Figure 1.  Typical wireless sensor node architecture, block diagram and 

hardware example N@L 
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For high data rate applications and intensive 
computations, Linux systems composed of 32-bit RISC 
processors are preferred but energy consumption is still 
prohibitive and autonomy is largely affected. Examples are 
the well-known Crossbow's Stargate platform [4] (Intel X-
Scale processor at 400 MHz), or the TI CC2538 [5]. Even if 
these architectures will be probably more and more used in 
the future even though these systems shall be low-powered, 
they are for the moment relegated to the border of the WSN 
field. As stated in [3], 8-bit and 16-bit architectures represent 
75% of microcontrollers in WSN applications. We also do 
not consider high data rate systems for the moment, and we 
focus on several months of battery life systems. Meanwhile, 
our platform is able to support these circuits if new models 
are included in the framework. 

Wireless Sensor Networks design is a difficult task 
because designers have to develop a network at system level, 
with low-level (at sensor node: hardware and software) 
constraints. Therefore, CAD tools are required to make 
system-level simulations, considering low-level parameters. 
Our simulator IDEA1 permits that. Thus, we detail in this 
paper a new feature of our simulation platform: 
heterogeneous sensor nodes support. 

Structure of the paper is as follows. Section II gives state 
of art on WSN simulators and basis of our work. Section III 
details our work: models and IDEA1 simulator. Section IV 
presents classical simulation results and related work. 
Section V shows latest results on heterogeneous simulation 
results. 

II. WIRELESS SENSOR NETWORKS SIMULATORS 

Many simulators were developed over the last few years. 
Most of them are restricted to specific hardware or focus on 
either network level or node level. Research on sensor 
network evaluation can be broadly divided in two categories: 
network simulators enhanced with node models, and node 
simulators enhanced with network models. A more detailed 
description is available in [6]. A summary and the 
heterogeneity support are detailed in Table I. 

Typical network simulators are general-purpose network 
simulators, such as Network Simulator 2 (NS2) [7] and 
OMNeT++ [8] (and their declinations).  

NS2 [7], an event-driven object-oriented network 
simulator belonging to NSNM, is by far the most used 
simulator [9] in the Mobile Ad hoc NETworks (MANETs) 
domain. Simulations are implemented in the C++ language 
and Object-oriented Tcl (OTcl). Protocols and extension 
libraries are written in C++; creation, control and 
management of simulations in OTcl. The extension policy of 
NS2 library has greatly contributed to its popularity, many 
protocols being implemented by the scientific community. 
WSN-specific protocols were implemented in NS2 among 
which a version of the IEEE802.15.4 standard. Large-size 
networks are difficult to implement because of their memory 
requirements and their simulation time [10].  Furthermore, 
detailed energy models for the different hardware and 
software elements of the node are lacking, resulting in poor 
precision at high abstraction level.  Among the extensions of 
NS2 dedicated to WSN, SensorSim was developed too. 

Criticisms often made to NS2 are about the interdependences 
between modules resulting from its object-oriented structure. 
Hence, developing protocols for the NS2 library is complex 
and requires from developers a thorough knowledge of the 
software architecture of NS2. In the network community 
where standard protocols are clearly identified, such a 
limitation can be tolerated, but in WSN field, where no real 
standard was adopted and where research in protocols 
domain remains dominant, these mixing-up of modules 
become a hindrance to WSN-specific library development. 
Indeed, even if IEEE 802.15.4 or Zigbee are widespread, the 
increasing need for always-lower power consumption keeps 
the protocols domain in the most active research field in 
WSN. 

The third generation of NS simulator started in July 
2006. If NS3 is, as its predecessor, based on C++, OTcl is 
neglected in favor of C++ (network models) and the Python 
language (optional). In addition, it incorporates GTNetS 
[11], a simulator that is known for its support of scalability. 
These choices were made at the expense of backward 
compatibility that involves the manual and complete 
rewriting of any model developed under NS2. This 
incompatibility explains the sustained use of NS2 for which 
many protocols exist. [12] details more differences between 
these two generations. 

Second well-known simulator in this category (while 
technically it is an all-around simulation environment based 
on discrete events), OMNeT++ [8] is a simulator adopting a 
modular approach developed in a graphical Integrated 
Development Environment (IDE) based on Eclipse for 
development, creation, configuration, execution and analysis 
results. OMNeT++ is composed of modules that 
communicate through messages. OMNeT++ provides the 
infrastructure to assemble the simulations of models and 
manage their configuration through a specific language 
named NED (NEtwork Description). OMNeT++ was 
designed to overcome the development problems in NS2 
[13] [14] and is becoming even more popular. Often 
compared, they are the two most widely used simulators in 
the world of WSN [14]. Many WSN simulators are based on 
OMNeT++, like Mixim [15] (formerly Mobility Framework) 
-dedicated to the simulation of wireless network and mobile- 
or Pawis [16]. 

The problem is these interesting network simulators are 
not sensor platform-oriented and they are thus too high-level 
for hardware considerations. Moreover, there is no 
separation between computation and communication models. 
That modeling is not suitable for hardware analysis and 
explorations. Then, such simulators do not have accurate 
energy models [17], whereas it is the main constraint in 
WSN. 

Node simulators refer to precise hardware descriptions, 
with a synchronization strategy among the nodes, such as 
Avrora [18], TOSSIM [19], powerTOSSIM [20], Sycyphos 
[21] or SCNSL [22]. These simulators are well suited for 
embedded system designs analysis, requiring precise low-
level models.  
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TABLE I.  SIMULATION PLATFORMS AND HARDWARE HETEROGENITY SUPPORT 
 

Simulator Language Hardware modeling Heterogeneity support 
NS2 C++, OTcl No Yes 

OMNeT ++ C++ No Yes 
Avrora Java Yes (limited to ATMEL) No 

TOSSIM C Power TOSSIM: limited to ATMEL Yes 
Sycyphos SystemC Yes No 
SCNSL SystemC No No 

 
Avrora [18] is a sensor network instruction set simulator 

(written in Java). It combines the precision of ATEMU [23] 
(cycle accurate) to the scalability of TOSSIM (up to 10,000 
nodes). Avrora is furthermore language independent and of 
the embedded operating systems. The disadvantage of such a 
tool is its hardware support limited to ATMEGA128 
architecture from ATMEL (node MICA and MICAZ). 
Moreover, using a high-level language, Avrora cannot be 
easily integrated into a conventional hardware design flow. 

TOSSIM [19] and PowerTOSSIM [20] can emulate the 
execution of TinyOS. The application code of TinyOS is 
compiled and taken into account in the simulation 
framework. TOSSIM can consider thousands of TinyOS 
nodes with a very fine granularity. PowerTOSSIM is an 
extension of TOSSIM that gives power consumption 
evaluation. The main problem of these frameworks is that 
the user is constrained to a specific platform (typically 
MICA motes) and a single programming language (typically 
TinyOS/NesC) [24].  

Sycyphos [21] objective is to enable design at system 
level down to circuit-level, with the help from multilevel 
simulation. Sycyphos is dedicated to power consumption 
evaluation and reliability study. It is based on Transaction 
Level Modeling (TLM), and uses multi-master bus 
architecture for radiofrequency network modeling. Nodes 
models are based on a multi-threaded instruction set 
simulator. 

SCNSL (SystemC Network Simulation Library) [22] is 
an event-driven simulator of networked embedded systems, 
written in SystemC and C++. As SystemC is a C++ class 
library, it has the advantage to model both hardware and 
software. SystemC is a classical and widely used modeling 
language in micro-electronic systems design and particularly 
in System-On-Chip design.  

Table I gives an overview of the most known simulators, 
it details their modeling language, if hardware is modeled, 
and if simulators support heterogeneous nodes (different 
hardware) simulation. The analysis of Table I leads to the 
conclusion that there is no simulation platform taking 
hardware into account (electronics designer level) and at the 
same time supporting heterogeneous (hardware different) 
nodes in the same network. Based on this conclusion, we 
planned to answer this problem.  

Even with no support on hardware details and 
heterogeneity, SCNSL demonstrates a great perspective for 
accurate system-level simulation of WSN systems, and its 
architecture and language are well suited. Indeed, SCNSL 

models include nodes and network separately. That permits a 
low level modeling, with hardware support, and an easily 
scalable and tunable architecture. By our opinion, it also 
could answer fine granularity modeling, fine and accurate 
power consumption analysis and heterogeneous support. 

Meanwhile, limitations of that library are numerous. We 
detail some of them. The "node" block models at once the 
hardware node (microcontroller and radiofrequency unit); 
therefore, its behavior does not reflect real hardware. 
Moreover, only a subset of the IEEE 802.15.4 standard is 
implemented in this alpha version: unslotted CSMA-CA 
policy with acknowledgments. Then, simulation result is a 
CPU time; important node-level and network-level results 
are not calculated. SCNSL includes three modules: node 
(SystemC), node_proxy (SystemC) and network (C++), as 
shown in Fig. 2. 

 

 
Figure 2.  SCNSL model architecture 
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During the initialization of the simulation, each node 
registers its information (e.g., location, TX power and RX 
sensitivity) to a network class, which maintains the network 
topology and transmits packets to other nodes. The 
node_proxy is an interface between the network and nodes. 
By using node_proxy, nodes can be designed as pure 
SystemC modules so as to exploit all advantages of SystemC 
in hardware/software co-design and verification.  

Our simulation platform is based on SystemC and C++, 
and SCNSL architecture was the starting point of our work. 

III.  IDEA1 SIMULATOR 

A. Model architecture 

The architecture of our model is close to real node 
hardware architecture, as Fig. 3 (compared to Fig. 2) shows.  
It includes sensor, microcontroller and radiofrequency unit 
blocks. Hardware, software and the whole IEEE 802.15.4 
standard with many configurations are modeled. The 
SystemC blocks connected through a C++ network model 
was kept. The network model was modified to consider free 
space propagation. This simple propagation model could be 
extended to indoor context for example. Complex 
components, such as microcontroller or radiofrequency unit, 
are modeled as a Finite State Machine (FSM). Computing a 
Finite State Machine model in TLM with the efficient event-
driven kernel simulator of SystemC is an interesting 
approach to reach fast simulation. It is the reason why 
IDEA1 is faster when compared to others simulators, like 
NS2. 

 
Figure 3.  IDEA1 model architecture 

B. Hardware and Software models 

The sensor block receives physical data from a file, and 
sends its output voltage to the microcontroller. The sensor, 
microcontroller and radiofrequency unit are modeled 
separately, so that designers can easily switch these inter-
changeable devices. These two parts communicate through 
SPI (Serial Peripheral Interface) interfaces.  

The microcontroller is the central unit for processing and 
controlling purposes. In our typical case, the microcontroller 
initializes the radiofrequency transceiver, it reads (converts) 
analog data from the sensor, and communicates (digital) data 
with radiofrequency transceiver. As SystemC is event-
driven, it is possible to configure events in the sensor, and 
make the node react to the sensor with hardware interrupts 
available in the microcontroller. 

Switching between architectures is done by changing 
some parameters in the configuration files. The 
microcontroller model can for example switch from ATMEL 
to Microchip or Texas Instruments' ones. Radiofrequency 
unit can be Microchip or Texas Instruments devices. Figs. 4 
and 5 show Finite State Machine examples for 
microcontroller. Parameters depend on the microcontroller 
itself and on the radiofrequency unit (for example if 
hardware support of IEEE 802.15.4 is present or not). 

In the first case (Fig. 4), the microcontroller has to 
perform few tasks, as the radiofrequency unit is a relatively 
autonomous circuit: once configured, it is able to manage 
packet sending, packet reception or acknowledgments alone. 
The microcontroller has therefore to read the analog to 
digital converter, and send the data to the radio frequency 
circuit. In the second case (Fig. 5), the microcontroller is 
connected to a simple radiofrequency unit that just modulates 
ready-to-send data.  

 

 
Figure 4.  FSM of a microcontroller connected to a smart RF unit 
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The microcontroller must ensure all tasks, such as the 
composition of the packet (encapsulation of the data), or the 
waiting time for access to the channel (CSMA-CA 
mechanism) that depends on the channel load. Choice of the 
devices thus largely affects timing, communications and 
power consumptions. 

      

 
Figure 5.  FSM of a microcontroller connected to a basic RF unit 

In Finite State Machine, states are annotated by their 
duration and their power consumption. These values come 
from devices datasheets, and are all validated by 
measurements in our model implementation methodology. In 
order to have more accuracy, the CPU activity is considered. 
Fig. 6 shows the classical model that reflects the hardware 
part: sensor, microcontroller and radiofrequency units. The 
power module receives the current state of devices, and 
records all the state changes and timing in order to calculate 
and to log the power consumption. Energy can thus be 
evaluated with this power module. Table II details part of the 
lookup table that is implemented in power module (for 
ATMEL ATMega 128 and Texas Instruments CC2420 
devices). All the devices in the library are modeled in this 
way.  

The sensor and radiofrequency units are passive (basic) 
parts or active hard-coded, and their timing are well known. 
Meanwhile, the microcontroller has a more detailed finite 
state machine because of the (user) software that is running. 

TABLE II.  POWER INFORMATION OF ATM EGA128 AND TI CC2420  

 
ATMega128 microcontroller CC2420 RF transceiver 

Mode Consumption Mode Consumption 
Active 27 mW Sleep 60 µW 

Power Save 26.7 µW Idle 1.28 mW 
Power Down 0.9 µW RX 56.4 mW 

  TX (0 dBm) 52.2 mW 
  TX (-1 dBm) 49.5 mW 
  TX (-3 dBm) 45.6 mW 
  TX (-5 dBm) 41.7 mW 
  TX (-7 dBm) 37.5 mW 
  TX (-10 dBm) 33.6 mW 
  TX (-15 dBm) 29.7 mW 
  TX (-25 dBm) 25.5 mW 

 

Indeed, this software -often written in assembly or C 
language- can change, and thus behavior and timing of 
microcontroller. This software is analyzed with an 
Instruction Set Simulator (ISS) we have developed for a 
better integration in our platform. Our ISS calculates 
durations of all the functions. Whatever the function that is 
called, even by a hardware interrupt, it is taken into account 
in terms of timing and power consumption. Processing states 
in the finite state machine are thus accurate. This ISS was 
developed for several hardware architectures: ATMEL AVR 
ATMega and Texas Instruments MSP430 for the moment. 

Owing to the fact that ISS are time-consuming 
simulators, we did not choose a co-simulation method; 
hence, the ISS does not run in parallel with the SystemC 
kernel. Indeed, the ISS runs once at the beginning of the 
simulation, and code is analyzed in order to calculate tasks 
timing. These timings are then associated with the finite state 
machine, as Fig. 6 shows. 
 

 
Figure 6.  Node model including software for more accuracy  
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In detail, the ISS we have coded is an instruction set 
simulator that targets multiple hardware architectures. The 
whole instruction set of each targeted microcontroller is 
taken into account. It is written in C++ to offer compatibility 
support with our SustemC / C++ simulator. The ISS takes as 
input the ELF file produced by a compiler, often a C 
compiler. Next, it decodes the ELF file, looks which 
instruction is currently in scope and starts executing the 
functionality. At the end, the ISS produces an output file 
consisting of a lookup table pair: function name - number of 
corresponding clock cycles. ISS is also ran only once before 
SystemC simulation. More details on this ISS can be read in 
[25]. It is the main difference with classical ISS, that 
classically run in parallel with the main simulation kernel. 
Classical ISS thus slow down drastically the simulation 
speed. Using this lookup table and knowing the clock 
frequency of the microcontroller, these cycles are translated 
into timings. Once inserted in the SystemC simulation, 
software states in the finite state machine are timed, so a 
precise finite state machine is set. 

Radiofrequency units are modeled individually because 
of their complexity and wide differences (that would make 
difficult a generic FSM). In Fig. 7 and Fig. 8 below, two 
FSM examples are drawn, of two well-known IEEE 802.15.4 
compliant radiofrequency units: T.I CC2420 and Microchip 
MRF24J40. 

As a whole, several sensors, microcontrollers and several 
radiofrequency units can be selected; the current library is 
detailed in Table III. Each sensor, microcontroller and 
radiofrequency unit can be mapped to each other. Each 
compliant radiofrequency transceiver includes the whole 
IEEE 802.15.4 standard.  

Due to its architecture and file organization, the models 
library is easy to extend: new files, containing new models, 
are added in the folders, the main file includes them. C 
language #define statements permit to change the modeled 
hardware. Signals between modules are connected in the 
SystemC model, as it would be in real hardware.  

 

 
 

Figure 7.  TI CC2420 simplified Finite State Machine  

 
 

Figure 8.  MRF24J40 simplified Finite State Machine 

As it was previously published, all of these models were 
validated with experimental measurements on many test-
beds [26], as detailed in Section IV. 

TABLE III.  MODELED HARDWARE DEVICES IN SIMULATOR LIBRARY 

Sensor units Microcontroller units Radiofrequency units 

N.S. LM35DZ 
Clairex CL9P4L 

ATMEL ATMega128 
Microchip 16LF88 

T.I. MSP 430  

T.I. CC2420 
T.I. CC1000 

Microchip MRJ24J40 

C. The simulator user interface 

The presented models can be used to simulate wireless 
sensor network communications at system level. To help 
SystemC / C++ non-specialists to use easily the simulation 
tool, we developed a graphical interface that is shown in Fig. 
9. 

 
Figure 9.  Simulator graphical user interface 
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The user interface is composed of different sub-windows. 
A graphical viewer shows spatial position of nodes and the 
lines between nodes represent the possible communications 
according to locations, power of the transmission and 
sensitivity of the receiver. Hardware parameters are some of 
selectable microcontrollers and radiofrequency units. One of 
the many IEEE 802.15.4 configurations (in slotted or 
unslotted modes) and superframe parameters (SO, BO, BI 
etc.) can be selected. Sampling rate and payload of packets 
can thus be configured. User enters all parameters though a 
configuration window, called from menus. A click on the 
launch button in the graphical interface launches a SystemC 
simulation in background. Simulation log is displayed in the 
bottom window of the graphical interface, and a timing trace 
(Value Change Dump format: VCD) is created and can be 
opened. Output log files are thus generated for deeper 
analysis.  

IV.  CLASSICAL RESULTS AND RELATED WORK 

From these log files, we can explore design space for the 
best solution (often the lower latency, best packet delivery 
rate, and the lower energy consumption). Many output 
curves are accessible: packet delivery rate (PDR), packet 
latency, node power consumption and energy per packet. All 
these results were validated with measurements on a 9 nodes 
network [27] with a TDMA-based GTS algorithm. These 
nodes, called N@L, are composed of Microchip devices: 
PIC16LF88 microcontroller and MRF24J40 radiofrequency 
unit. Each of the 8 nodes senses periodically a data and tries 
to send it to the coordinator. This period (sample rate) is the 
parameter for this study. Non-periodical scenario can be 
configured as well, timing is simply defined sequentially in 
the testbench file.  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d)

 
Figure 10.  IDEA1 simulation and testbed measurements. Typical output curves: packet delivery rate PDR (a), packet latency (b), node power consumption 

(c), energy per packet (d).  
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IDEA1 simulation results are within 6% of the actual 
value obtained from real measurements. This good accuracy 
is not surprising since models are based on devices 
datasheets. Simulations and measurement simply validate 
datasheets. 

Moreover, these results were compared to NS2 that we 
considered as a reference for this study. As our results are 
measurement-validated, we could explore accuracy of NS2 
as well. NS2 is accurate for network-level results, such as 
packet delivery rate or latency. Indeed, hardware 
components have a small impact on these delays according 
to framing spacing and packet length compared to 
electronics components delays (software were taken into 
account at the same level in both simulators for this 
comparison). Meanwhile, the simulators have different 
results for energy per packet consumption, as Fig. 11 shows. 
This difference is especially important for low data-rate 
applications. Power consumption between IDEA1 and NS2 
ranges from 9% to 16% in a non-beacon CSMA-CA 
algorithm. A simulation time analysis is shown in Fig. 12 
where scalability is detailed. Fig. 12 presents relative 
simulation time: simulation time over simulated time. Even 
if both simulators are event-driven, Fig. 12 shows that 
IDEA1 kernel with FSM-based modeling takes a better 
advantage than NS2 on the application discrete behavior: 
IDEA1 curve is much more constant than NS2' one. 
Scalability is also better. Indeed, in low data rate scenario 
(typical WSN case), few events appear; simulator also 
simulates idle or sleep states. IDEA1 is 3.3 times faster than 
NS2. NS2 is more interesting in high data rate scenario 
(typical networked-computers case) because the ratio 
decreases. Anyway, ratio of IDEA1 decreases too, and it is 
still 3.1 times faster at 1000 Hz sampling rate. 

Moreover, we showed that IDEA1 is able to provide a 
fine and precise power consumption analysis over many 
solutions: [27] detailed –for all IEEE 802.15.4 
configurations- active and sleep consumptions of 
radiofrequency unit and microcontroller. 

 

 
Figure 11.  Node energy per packet. IDEA1 and NS2 simulations in non-

beacon CSMA-CA. 

 
Figure 12.  Relative simulation time (simulation time / simulated time). 

IDEA1 and NS2 simulations. 

Fig. 13 shows this result. For two separate nodes, energy 
of radiofrequency unit in active mode (EnergyTransActive) 
and sleep mode (EnergyTransSleep) is detailed. In 
microcontroller, energy of internal hardware blocks (CPU,  
EnergyCPUPerNode, SPI communication block 
EnergySPIPerNode,  analog to digital SAR converter 
EnergyADCPerNode) are monitored. 

All these above results were obtained for homogeneous 
networks, so a single node hardware architecture. 

The section below presents new simulation results in a 
heterogeneous network context. 

 

 
Figure 13.  Energy consumption of radiofrequency transceiver and 

microcontroller internal blocks for two different platforms (µJ) 
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V. HETEROGENEOUS SIMULATION RESULTS 

Heterogeneous support in simulators with fine and 
accurate hardware and software models is necessary, but few 
simulators support this feature, like [28]. One reason is the 
need of a complex instantiation of models. 

Typical heterogeneous nodes are detailed in Fig. 14: node 
A and node B have different hardware devices.  In our 
simulation, microcontrollers, and radiofrequency units are 
different (brand and model). 

 

Sensor Microcontroller 
Unit A

Radiofrequency 
Unit C

NODE ABatteryBattery

Sensor Microcontroller 
Unit B

Radiofrequency 
Unit D

NODE BBatteryBattery

 
 

Figure 14.  Typical node architectures in a Wireless Sensor Network 
(heterogeneous network) 

As a test example, we simulated a 9 nodes network: one 
coordinator and eight nodes composed of Microchip 
PIC16LF88 and ATMEL ATMega128L microcontrollers 
and Microchip MRF24J40 and Texas Instruments CC2420 
radiofrequency units, as specified in Table IV. 

TABLE IV.  NODES DEVICES FOR TESTBED AND SIMULATION 

WSN device Microcontroller unit Radiofrequency unit 
Coordinator ATMega128 CC2420 
Nodes 0..3 PIC16LF88 MRF24J40 
Nodes 4..7 ATMega128 CC2420 

 

Nodes sense the environment periodically every second, 
and transmit data over the network. Each transmission 
(packet) includes two data bytes (payload). Sensor nodes 
enter sleep mode as long as they can; the coordinator is 
always awake. The IEEE 802.15.4 non-beacon CSMA-CA 
communication scheme with no acknowledge is used, but all 
of the IEEE 802.15.4 can be configured for wider 
exploration. Simulation of this testbed gives a VCD trace, an 
extract is shown in Fig. 15. We can observe the coordinator's 
and nodes' microcontroller and radiofrequency unit states (R: 
Receive, T: Transmit, A: Active, S: Sleep CooMCUState 
stand for coordinator microcontroller state, Cooradiostate is 
the coordinator radiofrequency state. For classical nodes, 
states of microcontroller and radiofrequency unit are also 
detailed with  mcustate0 and radiostate0 for node 0 and 
mcustate7 and radiostate7 for node 7. In this example, 
coordinator microcontroller is always active (A). At time 
1065ms, coordinator radiofrequency unit sends a packet (T), 
node0 radiofrequency unit is in receive mode (R), node7 is in 
power down mode (0). Then, radiostate0 sends an 
acknowledgement (T), and then enters sleep mode. As no 
more processing is required, microcontroller of node 0 enters 
sleep mode. Node 7 wakes up at 1066ms. After a calibrating 
phase, microcontroller is active; radiofrequency unit is in 
receive mode. At 1066.5ms, microcontroller samples a data, 
sends it over SPI. After CCA, radiofrequency unit sends the 
data (T), and enters power down at 1069.3ms. 
Microcontroller enters sleep mode too, node 7 is totally in 
sleep mode too. ….). It is possible to monitor more signals in 
order to see for example the wireless channel usage, or the 
data transfer from the sensor to the radiofrequency unit 
through the microcontroller on each node, and data from the 
radiofrequency unit to the microcontroller on the 
coordinator. 

Information in the log file gives a lot of output data, as 
packet delivery rate (PDR), and latency. Moreover, log file 
includes energy of each block of each circuit in each node. It 
is also possible to draw graphs such as the following ones. 
Fig. 16. presents the overall energy consumptions of the 
nodes. 
 

 

 
 

Figure 15.  Extract of the output VCD file, focus on coordinator and nodes 0 and 5 (microcontrollers and radiofrequency units states) 
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Figure 16.  Heterogeneous nodes energy consumption 

Energy partitioning between the microcontroller and the 
radiofrequency unit for two heterogeneous nodes (node 0: 
Microchip PIC16LF88 and MRF24J40 and node 5: ATMEL 
AVR ATMega128 and T.I. CC2420) are shown. We can see 
the energy consumed by microcontroller (MCU energy in 
grey) compared to the radiofrequency unit one (RF energy in 
dark). In detail, PIC16LF88 consumes a total energy of 
109µJ, AVR ATMega128 consumes 498µJ, so a 4.5 ratio. 
MRF24J40 consumes 848µJ, whereas CC2420 consumes 
1016µJ, so a 1.2 ratio. This testbed shows an interesting 
combination of circuits that composes node 0, because it 
embeds the two most energy-aware circuits. Meanwhile, it is 
interesting to detail this big difference. 

It is possible to have finer granularity and to detail the 
energy consumption of each block within hardware devices. 
Fig. 17 shows the microcontroller energy spent during (from 
top to bottom in bars) sleep, idle and SPI communications 
states. It is to note that CC24220 radiofrequency unit (with 
no IEEE 802.15.4 hardware support) has an impact on the 
active state duration of the microcontroller. Indeed, in that 
example, the CC2420 transceiver just modulates the packet; 
microcontroller implements the IEEE 802.15.4 standard by 
software. For example, it has to check for free channel, to 
respect delays (backoffs), to generate IEEE 802.15.4 
compliant packets, to acknowledge if it is activated, etc. 
More SPI communications are thus required. This fact is 
visible on Fig. 17: active and SPI communication energy 
consumptions are important on AVR ATMega128.  

 

 
Figure 17.  Microcontroller energy consumption comparison 

 
Figure 18.  Radiofrequency units energy consumption comparison 

On the other hand, the MRF24J40 transceiver is a more 
autonomous circuit, as it supports all the aforementioned 
aspects of IEEE 802.15.4 by hardware, the microcontroller is 
thus less active. 

With the same fine granularity, it is possible to detail 
states of radiofrequency units, as shown in Fig. 18. 

This figure shows it is possible to monitor energy 
consumed during states (from top to bottom on bars) of each 
radiofrequency unit: sleep, idle, receive (RX) and transmit 
(TX). Although sleep mode is the less power consuming, it is 
the longest state. Testbed is typical in WSN: duty cycle 
(wake-up duration / application period) is low. CC2420 has 
important energy consumption in sleep mode (compared to 
MRF24J40) because its power consumption is 8.5 times 
bigger. Sleep mode durations depend on activity of nodes, 
node 5 (AVR ATMEga128 + CC2420) needs more 
processing because of the basic radiofrequency unit, as 
discussed above. It is also meaningful to obtain a 10 ratio on 
energy consumption compared to node0. We can remark that 
MRF24J40 has no idle state; default state is RX (Fig. 8). 
While communicating or processing a packet, MRF24J40 is 
in RX state, it is why RX state is so energy consuming. As 
CC2420 has a lower power consumption in TX mode 
(52.2mW at 0dBm) compared to MRF24J40 (69mW at 
0dBm), CC2420 has a lower energy consumption to transmit 
the same amount of packets. 

We can see it is possible to optimize total energy with 
such a deep exploration. 

VI. CONCLUSION 

In this paper, heterogeneous support of IDEA1, our 
system-level simulator for Wireless Sensor Networks, was  
presented. This simulator is written in SystemC and C++. 
SystemC combines advantages of being a widely-used 
language in micro-electronic systems design flow, and 
permitting hardware and software co-modeling. Moreover, 
its kernel is efficient, and as our models are based on Finite 
State Machines, less events appear and simulation speed is 
fast compared to other simulators. The simulator graphical 
user interface permits configure easily a network and set the 
sensor nodes characteristics Simulation gives easy-to-read 
waveforms and easy-to-process output logs. IDEA1 library 
contains many hardware devices and the whole IEEE 
802.15.4 standard. We demonstrated that it is possible to run 
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quick and accurate simulations with different hardware 
devices on the nodes. Classical network simulators outputs 
(packet delivery rate (PDR), packet latency) are supported; 
as well as accurate timing, and detailed energy consumption 
of hardware devices that are measurement validated. It is 
also possible to simulate and compare many scenarios and 
configurations in order to run design-space exploration for 
the best-suited and lower power solution. Current release of 
IDEA1 is publicly available at http://www.idea1.fr. 
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