
HAL Id: hal-01489888
https://hal.science/hal-01489888

Submitted on 23 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Hardware and Software in Heterogeneous
Wireless Sensor Network

David Navarro, Fabien Mieyeville, Mihai Galos, Laurent Carrel

To cite this version:
David Navarro, Fabien Mieyeville, Mihai Galos, Laurent Carrel. Simulation of Hardware and Software
in Heterogeneous Wireless Sensor Network. International Journal On Advances in Networks and
Services, 2014, 7, pp.97-107. �hal-01489888�

https://hal.science/hal-01489888
https://hal.archives-ouvertes.fr

97

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulation of Hardware and Software in
Heterogeneous Wireless Sensor Network

David Navarro, Fabien Mieyeville, Mihai Galos, and Laurent Carrel
Université de Lyon, Institut des Nanotechnologies de Lyon (INL)

UMR5270 - CNRS, Ecole Centrale de Lyon, Ecully, F-69134, France
David.Navarro@ec-lyon.fr, Fabien.Mieyeville@ec-lyon.fr, Mihai.Galos@ec-lyon.fr, Laurent.Carrel@ec-lyon.fr

Abstract – This paper presents a new feature of the IDEA1
Wireless Sensor Network (WSN) simulation platform: its
ability to run simulations on heterogeneous sensor nodes that
compose a network. This platform allows system-level
simulations with hardware accurate models, with graphical
inputs and outputs to easily simulate such distributed systems.
When comparing IDEA1 simulation results to physical
measurements, difference is 6 percent. IDEA1 is more than
three times faster simulation compared to another simulator
(NS2). In the testbed we consider, the well-known IEEE
802.15.4 standard is considered and different microcontroller
units (MCU) and radiofrequency units (transceivers) compose
the heterogeneous nodes. Output curves, packet delivery rate
(PDR), packet latency can be evaluated. Moreover, energy
consumption of sensor nodes is detailed with a very fine
granularity, at hardware and software level. Indeed, energy
consumption of each internal block of each device on each node
can be monitored with IDEA1. Therefore, it is possible to
simulate quickly and accurately heterogeneous (hardware
different) nodes. Indeed, multitude of hardware platforms and
communication standards lead to inter-communicating
heterogeneous networks. This simulation platform can be used
to explore design space in order to find the hardware devices
and IEEE 802.15.4 algorithm that best fit a given application
with a constrained energy budget.

Keywords – Wireless Sensor Network; WSN; heterogeneous;
simulation; model; SystemC.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are widespread sensor
systems. This paper presents IDEA1, a Wireless Sensor
Networks simulator, as briefly presented in The Sixth
International Conference on Sensor Technologies and
Applications (SENSORCOMM) [1]. Wireless Sensor
Networks are used in a large variety of applications, such as
environmental data collection, security monitoring, logistics
or health [2]. Wireless Sensor Networks are composed of
resource-constrained sensor nodes that are deployed at
different locations. The sensor nodes cooperatively monitor
physical or environmental conditions, such as temperature,
sound, vibration or pressure. Because of autonomy
requirements, they have a specific architecture; they are
typically composed of one or more sensors, an 8-bit or 16-bit
microcontroller, sometimes an external non-volatile memory,
a radiofrequency unit (transceiver) and an energy supply.

Limited resources are energy, memory and processing
capabilities. As mentioned in [3], many different platforms
exist, and hardware heterogeneity is now a reality. Indeed,
standards like IEEE 802.15.4 permit heterogeneous nodes to
communicate. Meanwhile, such networks have to be
simulated in order to estimate performances of the network.

The typical hardware architecture of a sensor node is
detailed in Fig. 1. As introduced previously, it is composed
of a sensor, a microcontroller, a radiofrequency unit
(transceiver) and a battery. The sensor converts physical data
into electrical signal. Microcontroller is the central element
in the node as it executes user software. It embeds an analog
to digital converter that is connected to sensor, a
synchronous serial communication block that is connected to
radiofrequency unit, power aware functions (like sleep or
power-down modes). Radiofrequency unit give the
possibility of remote connections to other nodes and gives
the wireless functionality in the network. A battery supplies
all the circuits; its characteristics give node autonomy.

Manufacturers of WSN hardware include ATMEL,
Texas Instruments or Microchip microcontrollers and Texas
Instruments, ATMEL, Freescale, or ST-Micro-electronics
radiofrequency units. Many manufacturers supply sensors
and battery modules. WSN applications are mainly low data
rate.

Sensor Microcontroller
Unit

Radiofrequency
Unit

NODEBatteryBattery

Figure 1. Typical wireless sensor node architecture, block diagram and

hardware example N@L

98

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For high data rate applications and intensive
computations, Linux systems composed of 32-bit RISC
processors are preferred but energy consumption is still
prohibitive and autonomy is largely affected. Examples are
the well-known Crossbow's Stargate platform [4] (Intel X-
Scale processor at 400 MHz), or the TI CC2538 [5]. Even if
these architectures will be probably more and more used in
the future even though these systems shall be low-powered,
they are for the moment relegated to the border of the WSN
field. As stated in [3], 8-bit and 16-bit architectures represent
75% of microcontrollers in WSN applications. We also do
not consider high data rate systems for the moment, and we
focus on several months of battery life systems. Meanwhile,
our platform is able to support these circuits if new models
are included in the framework.

Wireless Sensor Networks design is a difficult task
because designers have to develop a network at system level,
with low-level (at sensor node: hardware and software)
constraints. Therefore, CAD tools are required to make
system-level simulations, considering low-level parameters.
Our simulator IDEA1 permits that. Thus, we detail in this
paper a new feature of our simulation platform:
heterogeneous sensor nodes support.

Structure of the paper is as follows. Section II gives state
of art on WSN simulators and basis of our work. Section III
details our work: models and IDEA1 simulator. Section IV
presents classical simulation results and related work.
Section V shows latest results on heterogeneous simulation
results.

II. WIRELESS SENSOR NETWORKS SIMULATORS

Many simulators were developed over the last few years.
Most of them are restricted to specific hardware or focus on
either network level or node level. Research on sensor
network evaluation can be broadly divided in two categories:
network simulators enhanced with node models, and node
simulators enhanced with network models. A more detailed
description is available in [6]. A summary and the
heterogeneity support are detailed in Table I.

Typical network simulators are general-purpose network
simulators, such as Network Simulator 2 (NS2) [7] and
OMNeT++ [8] (and their declinations).

NS2 [7], an event-driven object-oriented network
simulator belonging to NSNM, is by far the most used
simulator [9] in the Mobile Ad hoc NETworks (MANETs)
domain. Simulations are implemented in the C++ language
and Object-oriented Tcl (OTcl). Protocols and extension
libraries are written in C++; creation, control and
management of simulations in OTcl. The extension policy of
NS2 library has greatly contributed to its popularity, many
protocols being implemented by the scientific community.
WSN-specific protocols were implemented in NS2 among
which a version of the IEEE802.15.4 standard. Large-size
networks are difficult to implement because of their memory
requirements and their simulation time [10]. Furthermore,
detailed energy models for the different hardware and
software elements of the node are lacking, resulting in poor
precision at high abstraction level. Among the extensions of
NS2 dedicated to WSN, SensorSim was developed too.

Criticisms often made to NS2 are about the interdependences
between modules resulting from its object-oriented structure.
Hence, developing protocols for the NS2 library is complex
and requires from developers a thorough knowledge of the
software architecture of NS2. In the network community
where standard protocols are clearly identified, such a
limitation can be tolerated, but in WSN field, where no real
standard was adopted and where research in protocols
domain remains dominant, these mixing-up of modules
become a hindrance to WSN-specific library development.
Indeed, even if IEEE 802.15.4 or Zigbee are widespread, the
increasing need for always-lower power consumption keeps
the protocols domain in the most active research field in
WSN.

The third generation of NS simulator started in July
2006. If NS3 is, as its predecessor, based on C++, OTcl is
neglected in favor of C++ (network models) and the Python
language (optional). In addition, it incorporates GTNetS
[11], a simulator that is known for its support of scalability.
These choices were made at the expense of backward
compatibility that involves the manual and complete
rewriting of any model developed under NS2. This
incompatibility explains the sustained use of NS2 for which
many protocols exist. [12] details more differences between
these two generations.

Second well-known simulator in this category (while
technically it is an all-around simulation environment based
on discrete events), OMNeT++ [8] is a simulator adopting a
modular approach developed in a graphical Integrated
Development Environment (IDE) based on Eclipse for
development, creation, configuration, execution and analysis
results. OMNeT++ is composed of modules that
communicate through messages. OMNeT++ provides the
infrastructure to assemble the simulations of models and
manage their configuration through a specific language
named NED (NEtwork Description). OMNeT++ was
designed to overcome the development problems in NS2
[13] [14] and is becoming even more popular. Often
compared, they are the two most widely used simulators in
the world of WSN [14]. Many WSN simulators are based on
OMNeT++, like Mixim [15] (formerly Mobility Framework)
-dedicated to the simulation of wireless network and mobile-
or Pawis [16].

The problem is these interesting network simulators are
not sensor platform-oriented and they are thus too high-level
for hardware considerations. Moreover, there is no
separation between computation and communication models.
That modeling is not suitable for hardware analysis and
explorations. Then, such simulators do not have accurate
energy models [17], whereas it is the main constraint in
WSN.

Node simulators refer to precise hardware descriptions,
with a synchronization strategy among the nodes, such as
Avrora [18], TOSSIM [19], powerTOSSIM [20], Sycyphos
[21] or SCNSL [22]. These simulators are well suited for
embedded system designs analysis, requiring precise low-
level models.

99

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SIMULATION PLATFORMS AND HARDWARE HETEROGENITY SUPPORT

Simulator Language Hardware modeling Heterogeneity support
NS2 C++, OTcl No Yes

OMNeT ++ C++ No Yes
Avrora Java Yes (limited to ATMEL) No

TOSSIM C Power TOSSIM: limited to ATMEL Yes
Sycyphos SystemC Yes No
SCNSL SystemC No No

Avrora [18] is a sensor network instruction set simulator

(written in Java). It combines the precision of ATEMU [23]
(cycle accurate) to the scalability of TOSSIM (up to 10,000
nodes). Avrora is furthermore language independent and of
the embedded operating systems. The disadvantage of such a
tool is its hardware support limited to ATMEGA128
architecture from ATMEL (node MICA and MICAZ).
Moreover, using a high-level language, Avrora cannot be
easily integrated into a conventional hardware design flow.

TOSSIM [19] and PowerTOSSIM [20] can emulate the
execution of TinyOS. The application code of TinyOS is
compiled and taken into account in the simulation
framework. TOSSIM can consider thousands of TinyOS
nodes with a very fine granularity. PowerTOSSIM is an
extension of TOSSIM that gives power consumption
evaluation. The main problem of these frameworks is that
the user is constrained to a specific platform (typically
MICA motes) and a single programming language (typically
TinyOS/NesC) [24].

Sycyphos [21] objective is to enable design at system
level down to circuit-level, with the help from multilevel
simulation. Sycyphos is dedicated to power consumption
evaluation and reliability study. It is based on Transaction
Level Modeling (TLM), and uses multi-master bus
architecture for radiofrequency network modeling. Nodes
models are based on a multi-threaded instruction set
simulator.

SCNSL (SystemC Network Simulation Library) [22] is
an event-driven simulator of networked embedded systems,
written in SystemC and C++. As SystemC is a C++ class
library, it has the advantage to model both hardware and
software. SystemC is a classical and widely used modeling
language in micro-electronic systems design and particularly
in System-On-Chip design.

Table I gives an overview of the most known simulators,
it details their modeling language, if hardware is modeled,
and if simulators support heterogeneous nodes (different
hardware) simulation. The analysis of Table I leads to the
conclusion that there is no simulation platform taking
hardware into account (electronics designer level) and at the
same time supporting heterogeneous (hardware different)
nodes in the same network. Based on this conclusion, we
planned to answer this problem.

Even with no support on hardware details and
heterogeneity, SCNSL demonstrates a great perspective for
accurate system-level simulation of WSN systems, and its
architecture and language are well suited. Indeed, SCNSL

models include nodes and network separately. That permits a
low level modeling, with hardware support, and an easily
scalable and tunable architecture. By our opinion, it also
could answer fine granularity modeling, fine and accurate
power consumption analysis and heterogeneous support.

Meanwhile, limitations of that library are numerous. We
detail some of them. The "node" block models at once the
hardware node (microcontroller and radiofrequency unit);
therefore, its behavior does not reflect real hardware.
Moreover, only a subset of the IEEE 802.15.4 standard is
implemented in this alpha version: unslotted CSMA-CA
policy with acknowledgments. Then, simulation result is a
CPU time; important node-level and network-level results
are not calculated. SCNSL includes three modules: node
(SystemC), node_proxy (SystemC) and network (C++), as
shown in Fig. 2.

Figure 2. SCNSL model architecture

100

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

During the initialization of the simulation, each node
registers its information (e.g., location, TX power and RX
sensitivity) to a network class, which maintains the network
topology and transmits packets to other nodes. The
node_proxy is an interface between the network and nodes.
By using node_proxy, nodes can be designed as pure
SystemC modules so as to exploit all advantages of SystemC
in hardware/software co-design and verification.

Our simulation platform is based on SystemC and C++,
and SCNSL architecture was the starting point of our work.

III. IDEA1 SIMULATOR

A. Model architecture

The architecture of our model is close to real node
hardware architecture, as Fig. 3 (compared to Fig. 2) shows.
It includes sensor, microcontroller and radiofrequency unit
blocks. Hardware, software and the whole IEEE 802.15.4
standard with many configurations are modeled. The
SystemC blocks connected through a C++ network model
was kept. The network model was modified to consider free
space propagation. This simple propagation model could be
extended to indoor context for example. Complex
components, such as microcontroller or radiofrequency unit,
are modeled as a Finite State Machine (FSM). Computing a
Finite State Machine model in TLM with the efficient event-
driven kernel simulator of SystemC is an interesting
approach to reach fast simulation. It is the reason why
IDEA1 is faster when compared to others simulators, like
NS2.

Figure 3. IDEA1 model architecture

B. Hardware and Software models

The sensor block receives physical data from a file, and
sends its output voltage to the microcontroller. The sensor,
microcontroller and radiofrequency unit are modeled
separately, so that designers can easily switch these inter-
changeable devices. These two parts communicate through
SPI (Serial Peripheral Interface) interfaces.

The microcontroller is the central unit for processing and
controlling purposes. In our typical case, the microcontroller
initializes the radiofrequency transceiver, it reads (converts)
analog data from the sensor, and communicates (digital) data
with radiofrequency transceiver. As SystemC is event-
driven, it is possible to configure events in the sensor, and
make the node react to the sensor with hardware interrupts
available in the microcontroller.

Switching between architectures is done by changing
some parameters in the configuration files. The
microcontroller model can for example switch from ATMEL
to Microchip or Texas Instruments' ones. Radiofrequency
unit can be Microchip or Texas Instruments devices. Figs. 4
and 5 show Finite State Machine examples for
microcontroller. Parameters depend on the microcontroller
itself and on the radiofrequency unit (for example if
hardware support of IEEE 802.15.4 is present or not).

In the first case (Fig. 4), the microcontroller has to
perform few tasks, as the radiofrequency unit is a relatively
autonomous circuit: once configured, it is able to manage
packet sending, packet reception or acknowledgments alone.
The microcontroller has therefore to read the analog to
digital converter, and send the data to the radio frequency
circuit. In the second case (Fig. 5), the microcontroller is
connected to a simple radiofrequency unit that just modulates
ready-to-send data.

Figure 4. FSM of a microcontroller connected to a smart RF unit

101

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The microcontroller must ensure all tasks, such as the
composition of the packet (encapsulation of the data), or the
waiting time for access to the channel (CSMA-CA
mechanism) that depends on the channel load. Choice of the
devices thus largely affects timing, communications and
power consumptions.

Figure 5. FSM of a microcontroller connected to a basic RF unit

In Finite State Machine, states are annotated by their
duration and their power consumption. These values come
from devices datasheets, and are all validated by
measurements in our model implementation methodology. In
order to have more accuracy, the CPU activity is considered.
Fig. 6 shows the classical model that reflects the hardware
part: sensor, microcontroller and radiofrequency units. The
power module receives the current state of devices, and
records all the state changes and timing in order to calculate
and to log the power consumption. Energy can thus be
evaluated with this power module. Table II details part of the
lookup table that is implemented in power module (for
ATMEL ATMega 128 and Texas Instruments CC2420
devices). All the devices in the library are modeled in this
way.

The sensor and radiofrequency units are passive (basic)
parts or active hard-coded, and their timing are well known.
Meanwhile, the microcontroller has a more detailed finite
state machine because of the (user) software that is running.

TABLE II. POWER INFORMATION OF ATM EGA128 AND TI CC2420

ATMega128 microcontroller CC2420 RF transceiver

Mode Consumption Mode Consumption
Active 27 mW Sleep 60 µW

Power Save 26.7 µW Idle 1.28 mW
Power Down 0.9 µW RX 56.4 mW

 TX (0 dBm) 52.2 mW
 TX (-1 dBm) 49.5 mW
 TX (-3 dBm) 45.6 mW
 TX (-5 dBm) 41.7 mW
 TX (-7 dBm) 37.5 mW
 TX (-10 dBm) 33.6 mW
 TX (-15 dBm) 29.7 mW
 TX (-25 dBm) 25.5 mW

Indeed, this software -often written in assembly or C
language- can change, and thus behavior and timing of
microcontroller. This software is analyzed with an
Instruction Set Simulator (ISS) we have developed for a
better integration in our platform. Our ISS calculates
durations of all the functions. Whatever the function that is
called, even by a hardware interrupt, it is taken into account
in terms of timing and power consumption. Processing states
in the finite state machine are thus accurate. This ISS was
developed for several hardware architectures: ATMEL AVR
ATMega and Texas Instruments MSP430 for the moment.

Owing to the fact that ISS are time-consuming
simulators, we did not choose a co-simulation method;
hence, the ISS does not run in parallel with the SystemC
kernel. Indeed, the ISS runs once at the beginning of the
simulation, and code is analyzed in order to calculate tasks
timing. These timings are then associated with the finite state
machine, as Fig. 6 shows.

Figure 6. Node model including software for more accuracy

102

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In detail, the ISS we have coded is an instruction set
simulator that targets multiple hardware architectures. The
whole instruction set of each targeted microcontroller is
taken into account. It is written in C++ to offer compatibility
support with our SustemC / C++ simulator. The ISS takes as
input the ELF file produced by a compiler, often a C
compiler. Next, it decodes the ELF file, looks which
instruction is currently in scope and starts executing the
functionality. At the end, the ISS produces an output file
consisting of a lookup table pair: function name - number of
corresponding clock cycles. ISS is also ran only once before
SystemC simulation. More details on this ISS can be read in
[25]. It is the main difference with classical ISS, that
classically run in parallel with the main simulation kernel.
Classical ISS thus slow down drastically the simulation
speed. Using this lookup table and knowing the clock
frequency of the microcontroller, these cycles are translated
into timings. Once inserted in the SystemC simulation,
software states in the finite state machine are timed, so a
precise finite state machine is set.

Radiofrequency units are modeled individually because
of their complexity and wide differences (that would make
difficult a generic FSM). In Fig. 7 and Fig. 8 below, two
FSM examples are drawn, of two well-known IEEE 802.15.4
compliant radiofrequency units: T.I CC2420 and Microchip
MRF24J40.

As a whole, several sensors, microcontrollers and several
radiofrequency units can be selected; the current library is
detailed in Table III. Each sensor, microcontroller and
radiofrequency unit can be mapped to each other. Each
compliant radiofrequency transceiver includes the whole
IEEE 802.15.4 standard.

Due to its architecture and file organization, the models
library is easy to extend: new files, containing new models,
are added in the folders, the main file includes them. C
language #define statements permit to change the modeled
hardware. Signals between modules are connected in the
SystemC model, as it would be in real hardware.

Figure 7. TI CC2420 simplified Finite State Machine

Figure 8. MRF24J40 simplified Finite State Machine

As it was previously published, all of these models were
validated with experimental measurements on many test-
beds [26], as detailed in Section IV.

TABLE III. MODELED HARDWARE DEVICES IN SIMULATOR LIBRARY

Sensor units Microcontroller units Radiofrequency units

N.S. LM35DZ
Clairex CL9P4L

ATMEL ATMega128
Microchip 16LF88

T.I. MSP 430

T.I. CC2420
T.I. CC1000

Microchip MRJ24J40

C. The simulator user interface

The presented models can be used to simulate wireless
sensor network communications at system level. To help
SystemC / C++ non-specialists to use easily the simulation
tool, we developed a graphical interface that is shown in Fig.
9.

Figure 9. Simulator graphical user interface

103

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The user interface is composed of different sub-windows.
A graphical viewer shows spatial position of nodes and the
lines between nodes represent the possible communications
according to locations, power of the transmission and
sensitivity of the receiver. Hardware parameters are some of
selectable microcontrollers and radiofrequency units. One of
the many IEEE 802.15.4 configurations (in slotted or
unslotted modes) and superframe parameters (SO, BO, BI
etc.) can be selected. Sampling rate and payload of packets
can thus be configured. User enters all parameters though a
configuration window, called from menus. A click on the
launch button in the graphical interface launches a SystemC
simulation in background. Simulation log is displayed in the
bottom window of the graphical interface, and a timing trace
(Value Change Dump format: VCD) is created and can be
opened. Output log files are thus generated for deeper
analysis.

IV. CLASSICAL RESULTS AND RELATED WORK

From these log files, we can explore design space for the
best solution (often the lower latency, best packet delivery
rate, and the lower energy consumption). Many output
curves are accessible: packet delivery rate (PDR), packet
latency, node power consumption and energy per packet. All
these results were validated with measurements on a 9 nodes
network [27] with a TDMA-based GTS algorithm. These
nodes, called N@L, are composed of Microchip devices:
PIC16LF88 microcontroller and MRF24J40 radiofrequency
unit. Each of the 8 nodes senses periodically a data and tries
to send it to the coordinator. This period (sample rate) is the
parameter for this study. Non-periodical scenario can be
configured as well, timing is simply defined sequentially in
the testbench file.

(a)

(b)

(c)

(d)

Figure 10. IDEA1 simulation and testbed measurements. Typical output curves: packet delivery rate PDR (a), packet latency (b), node power consumption

(c), energy per packet (d).

104

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IDEA1 simulation results are within 6% of the actual
value obtained from real measurements. This good accuracy
is not surprising since models are based on devices
datasheets. Simulations and measurement simply validate
datasheets.

Moreover, these results were compared to NS2 that we
considered as a reference for this study. As our results are
measurement-validated, we could explore accuracy of NS2
as well. NS2 is accurate for network-level results, such as
packet delivery rate or latency. Indeed, hardware
components have a small impact on these delays according
to framing spacing and packet length compared to
electronics components delays (software were taken into
account at the same level in both simulators for this
comparison). Meanwhile, the simulators have different
results for energy per packet consumption, as Fig. 11 shows.
This difference is especially important for low data-rate
applications. Power consumption between IDEA1 and NS2
ranges from 9% to 16% in a non-beacon CSMA-CA
algorithm. A simulation time analysis is shown in Fig. 12
where scalability is detailed. Fig. 12 presents relative
simulation time: simulation time over simulated time. Even
if both simulators are event-driven, Fig. 12 shows that
IDEA1 kernel with FSM-based modeling takes a better
advantage than NS2 on the application discrete behavior:
IDEA1 curve is much more constant than NS2' one.
Scalability is also better. Indeed, in low data rate scenario
(typical WSN case), few events appear; simulator also
simulates idle or sleep states. IDEA1 is 3.3 times faster than
NS2. NS2 is more interesting in high data rate scenario
(typical networked-computers case) because the ratio
decreases. Anyway, ratio of IDEA1 decreases too, and it is
still 3.1 times faster at 1000 Hz sampling rate.

Moreover, we showed that IDEA1 is able to provide a
fine and precise power consumption analysis over many
solutions: [27] detailed –for all IEEE 802.15.4
configurations- active and sleep consumptions of
radiofrequency unit and microcontroller.

Figure 11. Node energy per packet. IDEA1 and NS2 simulations in non-

beacon CSMA-CA.

Figure 12. Relative simulation time (simulation time / simulated time).

IDEA1 and NS2 simulations.

Fig. 13 shows this result. For two separate nodes, energy
of radiofrequency unit in active mode (EnergyTransActive)
and sleep mode (EnergyTransSleep) is detailed. In
microcontroller, energy of internal hardware blocks (CPU,
EnergyCPUPerNode, SPI communication block
EnergySPIPerNode, analog to digital SAR converter
EnergyADCPerNode) are monitored.

All these above results were obtained for homogeneous
networks, so a single node hardware architecture.

The section below presents new simulation results in a
heterogeneous network context.

Figure 13. Energy consumption of radiofrequency transceiver and

microcontroller internal blocks for two different platforms (µJ)

105

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. HETEROGENEOUS SIMULATION RESULTS

Heterogeneous support in simulators with fine and
accurate hardware and software models is necessary, but few
simulators support this feature, like [28]. One reason is the
need of a complex instantiation of models.

Typical heterogeneous nodes are detailed in Fig. 14: node
A and node B have different hardware devices. In our
simulation, microcontrollers, and radiofrequency units are
different (brand and model).

Sensor Microcontroller
Unit A

Radiofrequency
Unit C

NODE ABatteryBattery

Sensor Microcontroller
Unit B

Radiofrequency
Unit D

NODE BBatteryBattery

Figure 14. Typical node architectures in a Wireless Sensor Network
(heterogeneous network)

As a test example, we simulated a 9 nodes network: one
coordinator and eight nodes composed of Microchip
PIC16LF88 and ATMEL ATMega128L microcontrollers
and Microchip MRF24J40 and Texas Instruments CC2420
radiofrequency units, as specified in Table IV.

TABLE IV. NODES DEVICES FOR TESTBED AND SIMULATION

WSN device Microcontroller unit Radiofrequency unit
Coordinator ATMega128 CC2420
Nodes 0..3 PIC16LF88 MRF24J40
Nodes 4..7 ATMega128 CC2420

Nodes sense the environment periodically every second,
and transmit data over the network. Each transmission
(packet) includes two data bytes (payload). Sensor nodes
enter sleep mode as long as they can; the coordinator is
always awake. The IEEE 802.15.4 non-beacon CSMA-CA
communication scheme with no acknowledge is used, but all
of the IEEE 802.15.4 can be configured for wider
exploration. Simulation of this testbed gives a VCD trace, an
extract is shown in Fig. 15. We can observe the coordinator's
and nodes' microcontroller and radiofrequency unit states (R:
Receive, T: Transmit, A: Active, S: Sleep CooMCUState
stand for coordinator microcontroller state, Cooradiostate is
the coordinator radiofrequency state. For classical nodes,
states of microcontroller and radiofrequency unit are also
detailed with mcustate0 and radiostate0 for node 0 and
mcustate7 and radiostate7 for node 7. In this example,
coordinator microcontroller is always active (A). At time
1065ms, coordinator radiofrequency unit sends a packet (T),
node0 radiofrequency unit is in receive mode (R), node7 is in
power down mode (0). Then, radiostate0 sends an
acknowledgement (T), and then enters sleep mode. As no
more processing is required, microcontroller of node 0 enters
sleep mode. Node 7 wakes up at 1066ms. After a calibrating
phase, microcontroller is active; radiofrequency unit is in
receive mode. At 1066.5ms, microcontroller samples a data,
sends it over SPI. After CCA, radiofrequency unit sends the
data (T), and enters power down at 1069.3ms.
Microcontroller enters sleep mode too, node 7 is totally in
sleep mode too. ….). It is possible to monitor more signals in
order to see for example the wireless channel usage, or the
data transfer from the sensor to the radiofrequency unit
through the microcontroller on each node, and data from the
radiofrequency unit to the microcontroller on the
coordinator.

Information in the log file gives a lot of output data, as
packet delivery rate (PDR), and latency. Moreover, log file
includes energy of each block of each circuit in each node. It
is also possible to draw graphs such as the following ones.
Fig. 16. presents the overall energy consumptions of the
nodes.

Figure 15. Extract of the output VCD file, focus on coordinator and nodes 0 and 5 (microcontrollers and radiofrequency units states)

106

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Heterogeneous nodes energy consumption

Energy partitioning between the microcontroller and the
radiofrequency unit for two heterogeneous nodes (node 0:
Microchip PIC16LF88 and MRF24J40 and node 5: ATMEL
AVR ATMega128 and T.I. CC2420) are shown. We can see
the energy consumed by microcontroller (MCU energy in
grey) compared to the radiofrequency unit one (RF energy in
dark). In detail, PIC16LF88 consumes a total energy of
109µJ, AVR ATMega128 consumes 498µJ, so a 4.5 ratio.
MRF24J40 consumes 848µJ, whereas CC2420 consumes
1016µJ, so a 1.2 ratio. This testbed shows an interesting
combination of circuits that composes node 0, because it
embeds the two most energy-aware circuits. Meanwhile, it is
interesting to detail this big difference.

It is possible to have finer granularity and to detail the
energy consumption of each block within hardware devices.
Fig. 17 shows the microcontroller energy spent during (from
top to bottom in bars) sleep, idle and SPI communications
states. It is to note that CC24220 radiofrequency unit (with
no IEEE 802.15.4 hardware support) has an impact on the
active state duration of the microcontroller. Indeed, in that
example, the CC2420 transceiver just modulates the packet;
microcontroller implements the IEEE 802.15.4 standard by
software. For example, it has to check for free channel, to
respect delays (backoffs), to generate IEEE 802.15.4
compliant packets, to acknowledge if it is activated, etc.
More SPI communications are thus required. This fact is
visible on Fig. 17: active and SPI communication energy
consumptions are important on AVR ATMega128.

Figure 17. Microcontroller energy consumption comparison

Figure 18. Radiofrequency units energy consumption comparison

On the other hand, the MRF24J40 transceiver is a more
autonomous circuit, as it supports all the aforementioned
aspects of IEEE 802.15.4 by hardware, the microcontroller is
thus less active.

With the same fine granularity, it is possible to detail
states of radiofrequency units, as shown in Fig. 18.

This figure shows it is possible to monitor energy
consumed during states (from top to bottom on bars) of each
radiofrequency unit: sleep, idle, receive (RX) and transmit
(TX). Although sleep mode is the less power consuming, it is
the longest state. Testbed is typical in WSN: duty cycle
(wake-up duration / application period) is low. CC2420 has
important energy consumption in sleep mode (compared to
MRF24J40) because its power consumption is 8.5 times
bigger. Sleep mode durations depend on activity of nodes,
node 5 (AVR ATMEga128 + CC2420) needs more
processing because of the basic radiofrequency unit, as
discussed above. It is also meaningful to obtain a 10 ratio on
energy consumption compared to node0. We can remark that
MRF24J40 has no idle state; default state is RX (Fig. 8).
While communicating or processing a packet, MRF24J40 is
in RX state, it is why RX state is so energy consuming. As
CC2420 has a lower power consumption in TX mode
(52.2mW at 0dBm) compared to MRF24J40 (69mW at
0dBm), CC2420 has a lower energy consumption to transmit
the same amount of packets.

We can see it is possible to optimize total energy with
such a deep exploration.

VI. CONCLUSION

In this paper, heterogeneous support of IDEA1, our
system-level simulator for Wireless Sensor Networks, was
presented. This simulator is written in SystemC and C++.
SystemC combines advantages of being a widely-used
language in micro-electronic systems design flow, and
permitting hardware and software co-modeling. Moreover,
its kernel is efficient, and as our models are based on Finite
State Machines, less events appear and simulation speed is
fast compared to other simulators. The simulator graphical
user interface permits configure easily a network and set the
sensor nodes characteristics Simulation gives easy-to-read
waveforms and easy-to-process output logs. IDEA1 library
contains many hardware devices and the whole IEEE
802.15.4 standard. We demonstrated that it is possible to run

107

International Journal on Advances in Networks and Services, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quick and accurate simulations with different hardware
devices on the nodes. Classical network simulators outputs
(packet delivery rate (PDR), packet latency) are supported;
as well as accurate timing, and detailed energy consumption
of hardware devices that are measurement validated. It is
also possible to simulate and compare many scenarios and
configurations in order to run design-space exploration for
the best-suited and lower power solution. Current release of
IDEA1 is publicly available at http://www.idea1.fr.

REFERENCES
[1] D. Navarro, M. Galos, F. Mieyeville, and W. Du,

"Heterogeneous Wireless Sensor Network Simulation," Proc.
Sixth International Conference on Sensor Technologies and
Applications, SENSORCOMM, pp. 292-295, Rome, Italy,
August 2012.

[2] M. Horton and J. Suh, "A vision for wireless sensor
networks," Proc. IEEE Microwave Symposium Digest, 2005.

[3] C. Fortuna, "Why is sensor data hard to get ?," Proc. COIN-
ACTIVE Summer School on Advanced Technologies for
Knowledge Intensive Networked Organizations in Aachen,
2010.

[4] Crossbow technologies inc, Document Part Number: 6020-
0049-01-Rev-A, "Stargate X-Scale processor platform;"
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/D
ataSheets/stargate.pdf. Last accessed: May 16th, 2014.

[5] Texas Instruments, "A Powerful System-On-Chip for 2.4-
GHz IEEE 802.15.4, 6LoWPAN and ZigBee Applications,"
SWRS096A –December 2012 – Revised April 2013,
http://www.ti.com/cc2538-pr-ds1. Last accessed: May 16th,
2014.

[6] W. Du, D. Navarro, and F. Gaffiot, "Towards a Taxonomy of
Simulation Tools for Wireless Sensor Network," Proc.
International Conference on Simulation Tools and
Techniques, 2010.

[7] S. McCanne and S. Floyd, "Network Simulator NS-2,"
http://www.isi.edu/nsnam/ns, 2010. Last accessed: May 16th,
2014.

[8] A. Varga, "The OMNeT++ discrete event simulation system,"
Proc. European Simulation Multiconference, 2001.

[9] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor
network survey," Computer Network journal, vol 52, pp.
2292-2330, August 2008.

[10] V. Naoumov and T. Gross, "Simulation of large ad hoc
networks," Proc. 6th ACM international workshop on
modeling analysis and simulation of wireless and mobile
systems, New York, USA, 2003.

[11] G. F. Riley, "Large-scale network simulations with GTNetS,"
Proc. Winter simulation conference, pp. 676-684, 2003.

[12] J. L. Font, P. Inigo, M. Domínguez, J. L. Sevillano, and C.
Amaya, "Analysis of source code metrics from ns-2 and ns-3
network simulators," Simulation Modelling Practice and
Theory, Elsevier, Vol 19, issue 5, pp. 1330-1346, 2011.

[13] E. Weingartner, H. vom Lehn, and K. Wehrle, "A
performance comparison of recent network simulators," Proc.
IEEE international conference on communications, Dresden,
Germany, 2009.

[14] C. Mallanda et al., "Simulating wireless sensor networks with
OMNeT++,"
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331
.6889&rep=rep1&type=pdf. Last accessed: May 16th, 2014.

[15] A. Kopke et al., "Simulating Wireless and Mobile Networks
in OMNeT++, The MiXiM vision," Proc 1st international
conference on simulation tools and techniques for

communications, networks and systems & workshops,
Simutools '08, Brussels, Belgium, 2008.

[16] J. Glaser, D. Weber, S. A. Madani, and S. Mahlknecht,
"Power aware simulation framework for wireless sensor
networks and nodes," EURASIP Journal on Embedded
Systems 2008.

[17] F. Chen, I. Dietrich, R. German, and F. Dressler, "An Energy
Model for Simulation Studies of Wireless Sensor Networks
using OMNeT++," PIK - Praxis der Informationsverarbeitung
und Kommunikation, vol. 32, issue 2, pp. 133–138, 2009.

[18] B. Titzer, D. Lee, and J. Palsberg, "Avrora: Scalable sensor
network simulation with precise timing," Proc. Symposium
on Information Processing in Sensor Networks, pp. 477-482,
USA, 2005.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, "Tossim: accurate
and scalable simulation of entire tinyos applications," Proc. of
the 1st int. conf. on Embedded networked sensor systems, ser.
SenSys '03, pp. 126-137, New York, USA, ACM, 2003.

[20] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M.
Welsh, "Simulating the power consumption of large-scale
sensor network applications," Proc. of the 2nd int. conf. on
Embedded networked sensor systems, SenSys '04, pp. 188-
200, New York, USA, ACM, 2004.

[21] J. Wenninger, J. Moreno, J. Haase, and C. Grimm, "Designing
lowpower wireless sensor networks," Proc. Forum on
Specification & Design Languages, Oldenburg, Germany,
September 2011.

[22] F. Fummi, D. Quaglia, and F. Stefanni, "A SystemC-based
Framework for Modeling and Simulation of Networked
Embedded Systems," Proc. Forum on Specification and
Design Languages, 2008.

[23] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras,
"ATEMU: a fine-grained sensor network simulator," First
Annual IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks, pp. 145-152,
Oct. 2004.

[24] D. Weber, J. Glaser, and S. Mahlknecht, "Discrete event
simulation framework for power aware wireless sensor
networks," in Proc. of the 5th Int. Conf. on Industrial
Informatics, pp. 335-340, 2007.

[25] M. Galos, D. Navarro, F. Mieyeville, and I. O Connor, "A
Cycle-Accurate Transaction-Level Modelled Energy
Simulation Approach for Heterogeneous Wireless Sensor
Networks," 10th IEEE International NEWCAS Conference,
Montréal, Canada, June 2012.

[26] F. Mieyeville, W. Du, I. Daikh, and D. Navarro, "Wireless
Sensor Networks for active control noise reduction in
automotive domain," Proc. 14th International Symposium on
Wireless Personal Multimedia Communications, 2011.

[27] F. Mieyeville, D. Navarro, W. Du, and M. Galos, "Energy-
centric simulation and design space exploration for Wireless
Sensor Networks," Wireless Sensor Networks: Current Status
and Future Trends, CRC Press, Taylor & Francis Group,
November 2012.

[28] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D.
Estrin, E. Osterweil, and T. Schoellhammer, "A system for
simulation, emulation, and deployment of heterogeneous
sensor networks," Proc. Int. Conf. on Embedded Networked
Sensor Systems, 2004.

