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Abstract—In order to balance production and consumption on
the power grid, efforts are mostly made on the production side.
Demand response is a classical solution consisting in harnessing
electricity consumption to allow the introduction of renewable
energy sources and self-production in the energy mix. In this
context, the main problem is to coordinate the network nodes,
considered here as agents, in order for them to be able to
anticipate their need and also to adjust their contribution to
the collective load-shedding effort. To tackle this last point
we present an original bottom-up approach of distributed
load-shedding with a decentralized algorithm based on gossip
protocols. These protocols offer both reliability and scalability
to be used on a large scale power grid. On this ground, we
built an efficient decentralized control mechanism using a self-
evaluation process improving the system performances. In this
paper, we present our model and evaluate it using realistic
simulated data. We then discuss current limitations and further
improvements as part of future work.

1. Introduction

The energy sector undergoes dramatic changes as home
electricity consumption raises steadily. Indeed, to satisfy the
energy demand, new production units have to be plugged,
adding complexity to the network as well as financial and
environmental costs. Moreover these equipments are de-
signed to sustain peaks in demand, which means that they
are almost never operating at full capacity, thus generating
additional costs. A simple solution to this problem would
be to act on the demand side to spread or reduce the
load peaks instead of increasing production to match them
(see figure 1). This concept, named load shedding, allows
to greatly reduce the environmental impact of electricity
production while being way cheaper. Load shedding has
been around for many years but was almost uniquely used
in the industrial sector because consumption is controllable
and highly demanding operations can be anticipated days
ahead and easily postponed if necessary. A broader use of
load shedding in network management needs to extend its
principles to smaller, less predictable and distributed loads
: homes. This idea, named distributed load shedding, may
seem obvious at first glance, but a fair number of constraints
must be satisfied to be integrated in the main power grid

Figure 1: Example of the effect of load shedding on a
demand peak.

and accepted by the end user. This means that in addition
to reactivity, reliability and capacity criteria, the system has
to be strongly ergonomic and adaptive.

In this article, we present a solution which satisfies all
these constraints. Our work is based on Hemis1, a smart
building energy management system developed by Ubiant
in collaboration with the LIRIS laboratory. Hemis is able
to compute in real-time the load shedding capacity of a
building with respect to the user’s comfort. This informa-
tion will be transmitted to the system we present in this
article, whose decentralized architecture allows to precisely
and adaptively control and shed the energy consumption
of a large number of buildings. This architecture has been
designed with scalability in mind, paving the way to manage
thousands or even millions of homes with minimal need
for an increasing processing power or any costly network
infrastructure. We had two main goals. Firstly, to be able to
operate in near real-time while maintaining the high quality
of service needed for a smooth integration in the power grid.
Secondly, to make our system as light as possible, allowing
us to manage a possibly large amount of homes. These two
competing objectives led us toward a fully decentralized
approach that we explain here.
We will first present an overview of the related work on

1. http://www.ubiant.com/hemis-ubiant/

http://www.ubiant.com/hemis-ubiant/


distributed load shedding in section 2. We then introduce
our model in section 3 and discuss our simulation results in
section 4, before concluding and presenting some possible
ways to improve our model as part of future work.

2. Distributed load shedding

Load shedding techniques have been used for long to
balance consumption in the power grid, but until now it
was mostly deployed to big consumers like factories or
shopping centres. The adjective distributed refers to the
integration of smaller loads into the system. In this paper,
load shedding will always refer to distributed load shedding
as we designed our system to allow any kind of load of any
curtailment capacity. Load shedding raises many issues at
different levels of abstraction, that could be summarized in
3 main points differentiating the existing approaches.
The first one is the transmission media chosen to exchange
orders and information between the operator and the end
users. It represents an important part of the system costs
and plays a major role on its scalability and reliability.
A direct link permanently established between each client
and the operator means a heavy and costly infrastructure
in most cases, but also allows a nice reactivity. On the
contrary, if connections are not permanent, the frequency
of the connection becomes critical to the quality of the
shedding. This is why most of the works on this topic use
a permanent connection to the operator.
The second main issue is the kind of control the system has
over the loads to start a shedding. Usually, a price signal is
used : the provider changes the energy price to encourage
users to consume more or less, depending on the needs of
the grid. This kind of incentive system is extremely easy to
set up but suffers from bad reliability because the end user’s
reactivity to a change in electricity price is never guaranteed
and even less predictable [2]. Moreover, if the end user fails
to manage his energy consumption correctly and continues
to use his appliances normally when the price goes up, the
impact on his electricity bill could be enough for him to
withdraw completely from the system. These issues make
this price based approach more adapted to less restrictive
needs, like the global curtailing on daily peaks, where simple
pricing schedules can be issued to consumers. Nevertheless,
as a signal or incentive, the electricity price can be an
interesting ground for building distributed load shedding
systems [9][7]. More recently, the interest of the energy
sector has been caught by more straightforward controlling
solutions.

The third point is the algorithm that controls the con-
nected loads. The challenge is to provide a quick and reliable
answer on a given curtailment capacity, then maintain the
stability of this curtailment until the end of the event, while
making sure that the user’s comfort is not altered and ensur-
ing as much as possible a fair sharing of the effort between
each concerned load. On this topic, existing approaches can
be classified according to the degree of centralization of
the decision process. On one end of the spectrum, a central
server sends simple binary orders to connected appliances

which respond immediately. On the other end, each load
decides when to switch on and off, sometimes depending
on external information.

Centralized algorithms applied to some real cases
are mainly based on statistics. Historical systems, like
the Centralized Remote Control by Musical Frequency
(”Télécommande Centralisée à Fréquence Musicale”) from
EDF (historical French operator) [3], allow the operator to
remotely shut down some equipments like the water heater
if the user subscribed to a dedicated contract. Also, as most
of the consumption is basically delayed, such a method may
later create an even higher peak than the one the operator
wanted to reduce at first [2]. This effect is naturally reduced
by stochastic systems which randomly spread the loads
curtailment and can be avoided in a centralized way only
if loads are individually manageable, as in this case it is
easy not to power on all appliances at once. More recent
works on centralized load shedding systems sometimes use
techniques coming from the field of artificial intelligence
like artificial neural networks [5] or reinforcement learning
[14] to automatically choose the most efficient strategies.

Some decentralized approaches use multi-agents sys-
tems. Often based on price incentives [9][7], most of them
use a stochastic approach to force spreading of the agent’s
actions in time, thus smoothing fluctuations or overshoots
that could happen when using a simple hysteresis system
[12][14]. Likewise, Beal and al. [11][10][1][8] suggest a
stochastic algorithm called ColorPower which allows a dis-
tributed control of the energy demand. The idea is for the
end user to set up a kind of connected plug that can switch
off or on his devices. This plug switches randomly with a
probability that is constantly updated according to a signal
sent by a central server. This signal increases the probability
of shutting down during a curtailment effort, and reduces it
otherwise. These systems have one major drawback which is
due to their probabilistic structure : they cannot be efficient
unless a substantial amount of plugs are connected. Indeed,
using this system, the available curtailment capacity is not
the total one because every load does not automatically take
part in the effort. That is why purely stochastic systems
need a minimum number of partakers in order to ensure
a sufficient load shedding capacity and are hard to set up
incrementally [4].

3. Our model

To solve the different issues raised by the existing sys-
tems seen above in terms of user comfort, cost, adaptability
and scalability, we chose to overturn the problem and to
start from the user. Our bottom-up approach is to our
knowledge the first one to focus In this section, we will
start by presenting Hemis, the smart energy management
solution over which we will build our system. We will then
explain the goals our model has to achieve and also the
constraints it has to comply with. We will also describe our
decentralized model for a near real-time distributed load-
shedding management.



3.1. Hemis: Home Energy Management Intelligent
System

Developed by Ubiant in collaboration with the LIRIS
laboratory, Hemis is a smart building energy management
system. Based on a multi-agents system solving a multi-
constraints optimisation problem, Hemis is able to maintain
a desired level of comfort (meaning a correct temperature,
lighting, air quality, etc... with respect to the user’s habits
and preferences) while automatically lowering the overall
energy consumption. Connected appliances (heaters, lights,
sensors, electrical roller shutter, etc...) are represented in the
system by reactive agents collaborating on shared marking
spaces to achieve the objectives of all environmental fac-
tors. The user simply sets theses objectives and the agents
collaborate to find the best trade-off between comfort and
energy consumption.

Hemis relies on two sources of information to determine
the curtailment capacity of the building, that we call flexibil-
ity. The first one is a learning based on a local record of the
user’s habits and energy consumption, combined with real-
time data from the sensors (if the weather is unusually cold,
the electrical consumption will not be the same as the last
days). The second one is the sum of individual anticipations
from the agents themselves. The predicted flexibility takes
into account every connected or known device, even if they
are not currently on. Indeed, a load shedding can either be
done by shutting down some equipments but also by not
turning on an appliance when it was supposed to be, by
advancing or postponing its use (for example by heating
a room a little earlier while benefiting from the thermal
inertia).

It is important to notice that the user stays in control of
its equipments even during a load shedding. If an appliance
is switched on despite a shedding being engaged, it will not
be forced off by the system. The flexibility is then simply
updated with this new piece of information.

3.2. The problem statement

In the following of the paper, we assume there exists
an intelligent system as the one presented in the section 3.1
giving us the ability to know at each time t the flexibility
fa of the building a, which is defined as the amount of
energy the building can shed without diminishing the user’s
comfort. The reliability of this data is of course crucial to
the efficiency of the system but our architecture is robust
enough to tolerate a difference between the anticipated and
the real value of the flexibility. Let N = {a1, a2, ..., an} be
the set of buildings equipped with this system. At each time,
the total flexibility (or total shedding capacity) of the system
is F =

∑
a∈N

fa. To satisfy a request of a given curtailment

capacity Q, each agent a will reduce its consumption by
some amount xa. During the event, it is very likely that one
or more buildings will have their flexibility updated, most of
the time reduced or even brought down to zero. To ensure a
stable curtailment, the system will have to update xa,∀a ∈

N as quickly as possible so that
∑
a∈N

xa = Q at almost

all time. In the next section, we introduce our architecture
that achieves these stability and reactivity requirements in a
decentralized manner and without using any kind of price
incentive.

3.3. Our distributed load shedding architecture

To answer the problems outlined in section 3.2, we
propose a decentralized approach based on a multi-agents
system inspired by gossiping algorithms. An agent repre-
sents a building that knows its flexibility in real time, as
presented in section 3.1. Thanks to a gossip-based aggregate
computation algorithm, that we will describe in section
3.3.2, each agent also knows at each time the value of
various variables concerning the whole population. These
variable are essential to the system as they are the core of
the coordination between the agents. They will be described
in section 3.3.1. The aim of the decentralized system is
to determine for each load shedding event the amount of
participation of each agent. For this purpose, each agent
locally self-evaluates on various criteria and assigns itself
a mark, representing its level of performance. When the
agent receives a load shedding order, it will engage a certain
amount of its total flexibility depending on its mark. Fol-
lowing the event, the agent will update its mark according to
its performance. This process allows the system to improve
the quality of the load shedding at each event (see section
3.3.3 for details).

3.3.1. Shared variables. For the algorithm to work, agents
need to know the value of some variables carrying informa-
tion about or concerning the entire population.

• The order O is a triplet O = {Q, td, tf} with Q the
amount of energy to shed between td and tf . This
order is initially sent to one or more agents by the
energy producer in a fully reliable way.

• The total participation agg is the sum of all the
capacities the agents have committed themselves to
be able to shed at every moment.

• The best mark gmax is the highest computed mark
of any agent at a given time.

• Variable cmax corresponds to the highest participa-
tion of an agent amongst the population during the
m last events.

• Variable rmin corresponds to the lowest failure av-
erage of an agent amongst the population.

These variables are propagated and computed in a decentral-
ized manner with the Push-Sum algorithm that we describe
in the next section.

3.3.2. The Push-Sum algorithm. The Push-Sum algorithm,
presented by Kempe et al. [6], allows a group of agents to
collectively process the value of an aggregate information
(sum, mean, product, maximum, minimum value) in a com-
pletely decentralized way using what is called an epidemic



or gossip propagation model. In their approach, each agent
a possesses three variables : xa is the agent’s value that
will be aggregated with the other’s (the agent’s part in the
shedding for instance), sa is a sum - initialized to xa - and
the weight wa - initialized to 0 or 1 depending on the kind
of calculation. If we want to compute a sum for example,
w will be set to 0 except for one agent whose w will be set
to 1. At t = 0, each agent sends the pair (sa, wa) to itself.
At each time step, a fraction αa,j of sa and wa is sent to a
set of J agents so that

∑
j∈J

αa,j = 1. Values of sa and wa

are then updated by summing every pair (αj,as
j , αj,aw

j)
received by a : sa =

∑
j∈J

αj,as
j and wa =

∑
j∈J

αj,aw
j . The

estimate value of the aggregate for one agent is agga = sa

wa .
Kempe et al. show that, ”given a γ and a δ, the relative error
in the approximation of the real value agg is at most γ with
probability at least 1−δ in at most O(log n+log 1

γ +log 1
δ )

rounds”. This logarithmic complexity allows for scalability.
The topology of the network defines the choice of the neigh-
bours to which an agent sends its messages. The number
of neighbours J depends on the network topology and the
connectivity constraints. Convergence speed will increase
with the number of contacted agents at each step. This
algorithm also only works if the network is a connected
graph, meaning that there is a path between each pair of
nodes. The nature of the Push-Sum algorithm allows us
to add and remove agents in real-time without affecting
the stability of the system, the only consequences being a
small disturbance in the values of the shared variables as the
information propagates and an obvious variation of the total
flexibility in the system. This ”plug-and-play” property of
our model makes it fault tolerant regarding connectivity. In
this article, in addition to a decentralized summing, we also
need to compute minima and maxima (for the agents to be
able to rank themselves amongst the population). Computing
minima or maxima consists in simply keeping the minimum
or the maximum of the received values and propagating it.
In these cases, values are not weighted by α.

It is relevant to notice that this algorithm allows for a
straightforward implementation of performance monitoring
features for the use of an operator. Thus, we will be able
to know the number of agents having a specific value for
any given parameter (reliability, participation, etc...), or the
average participation and other standard statistical tools.

3.3.3. Self-evaluation. The agent computes its mark accord-
ing to three criteria :

• reliability, which is the ability to reduce its consump-
tion of the amount it was committed to shed, and
hold its consumption at the same level during the
entire event,

• the average flexibility it possesses given by Hemis,
• its frequency of participation to the previous efforts.

Each one of these three criteria is evaluated considering
the history of the agent and gives a mark between 0 and
1. The final mark of the agent is computed as a weighted

mean of these three values.
More precisely, the history Ma of an agent a is a list of
triplets Ma = {(ra1 , ca1 , ta1), ..., (fam, cam, tam)} over the last
m events with

• cai the amount of energy shed by the agent a during
the event i

• rai the standard deviation to the initial commitment
of the agent during the event i

• tai equals 1 if the agent participated to the event i,
0 else

The agent’s mark ga is computed from its reliability Ra,
its average capacity Ca and its turnover T a, based on the
history Ma.

• The reliability score of the agent a is given by
Ra = rmin

Ra
moy

. The value rmin = min
a∈N

Ramoy is a
shared variable (see sections 3.3.1 and 3.3.2) and

Ramoy =
m∑
j=1

raj the sum of the standard deviation to

the initial commitment over the last m events. The
maximum mark will be obtained by agents having
the smallest variations in their participation.

• Camoy =
m∑
j=1

caj being the sum of agent’s capacity

over the last m events, the capacity score of the
agent a is Ca =

Ca
moy

cmax
, while cmax = max

a∈N
Camoy a

shared variable updated collectively as seen in sec-
tions 3.3.1 and 3.3.2. It is basically a global ranking
rewarding agents with big shedding capacity.

• The turnover is computed as follow T a = 1−

m∑
i=1

tai

m .
This mark goes up if the agent does not participate
often, increasing its chance to participate to the next
events. An agent who participated to all the last m
events will obtain T a = 0.

At the end, we have ga = k1F
a+k2C

a+k3T
a with k1, k2

and k3 being weighting coefficients so that k1+k2+k3 = 1
and k1, k2, k3 ∈ [0, 1]3.

These coefficients are continuously and autonomously
adjusted by each agent. The reliability coefficient k1 is
increased when the curtailment quality decreases, that is
when the sum of the difference between the requested load
reduction and the effective one over the event is higher than
during the previous events. This aims to choose reliability
over capacity when there is a poor quality of curtailment.
The capacity coefficient k2 increases with the amount of
time needed by the population to reach a consensus when
an order is received, relative to the requested variation
magnitude. Indeed, if the aggregated value is already near
the targeted one, the time needed to reach a consensus
on this value will be shorter than for a bigger gap. The
goal here is to improve the ranking of the agents providing
the biggest shedding capacity, in order to speed up the
consensus process. These coefficients are set to some default
value at the starting of the system, but could potentially be
optimised beforehand.
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Figure 2: Target crossing detection process. A crossing is
confirmed when the aggregate value is above Q(1 + H)
(grey areas) for a duration of twait. The agent then starts
adjusting its share to the effort.

This coefficient adjustment process allows the system to
adapt itself to changes in the user’s behaviour through time,
which could hardly be anticipated as it depends on multiple
factors as economical or weather conditions for example.

3.3.4. Adjusting agent’s participation. Wuhib et al [13]
used the Push-Sum algorithm to design a decentralized
threshold crossing detection algorithm. Adapted from some
of their concepts (an hysteresis and a low-pass filter), we
propose a new algorithm that allows each agent to adjust
its share on a collective effort to quickly reach a global
objective by summing their contributions. The first step is to
detect a gap between the estimated sum of the contributions
agga and the global objective Q. It may seem like an easy
task, but individual contributions are constantly changing.
To avoid an oscillatory behaviour when agga ' Q, two
complementary mechanisms are used. The first one is the
use of a ratio 0 ≤ H ≤ 1 implementing an hysteresis around
the target Q, damping small variations at low frequency
due to the continuous variations of the agent’s flexibility
(see figure 2). A threshold crossing is then detected if∣∣∣aggaQ − 1

∣∣∣ ≥ H .
The second mechanism allowing a reliable detection is a
kind of low-pass filter erasing quick variations. It is im-
plemented with a timer twait. To be taken into account, a
crossing must be observed for at least twait time steps. These
two systems are combined to lead to an accurate threshold
crossing detection by each agent despite the frequent vari-
ations due to the convergence of the collectively computed
aggregate.
When an agent receives a shedding order, it first determines

its maximal contribution xalim regarding its flexibility fa

and its mark ga following the formula xalim = ga

gmax
fa,

gmax being the highest mark in the population (see section
3.3.1). This way, the agents with the higher marks contribute
more than potentially less reliable agents or than those
who participated more frequently. If an agent observes a
gap between the estimated global effort and the objective
as seen earlier, it adjust its own contribution xa with the

formula xa = xa
(
1 + Q−agga

agga

)
. If the low-pass filter timer

twait is correctly defined, it allows the agents population
to stabilize the new value of the collective effort agga
before adjusting again, preventing additional swinging that
could be due to continuous adjustment of individual con-
tributions. If during its adjustment an agent reaches its
virtual contribution limit xalim, it updates this limit with
xalim = min (xalim + (fat − xalim) ∗ v; fat ), v being a vari-
ation coefficient (v ≤ 1).

3.4. Pseudo-code

Algorithm 1 represents the program run by an agent a.
Variables are initialized during step 1. One will notice that
we set w to 0 in this code, which means that one of the
other agents will have its w set to 1 for the aggregation
computation to work as a sum, as we explained when de-
scribing the Push-Sum protocol (section 3.3.2). Apart from
this difference, every agent runs the exact same program.
Steps 2 to 9 contain the implementation of the Push-Sum
protocol.
The processing and the propagation of shedding orders are
done in steps 10 through 15. The virtual limit xalim is set
on step 12.
Steps 16 to 28 correspond to the threshold crossing detection
and the adjustment of the agent’s contribution. The hystere-
sis is found at step 16 as well as the low-pass filtering with
the timer twait.
Steps 24 to 28 allow to update the virtual limit xalim.
At the beginning of the event (step 29), obja memorizes
the committed capacity. This variable will be used later to
compute the reliability score of the agent.
The state variable represents the different stages of a load
shedding event. When state = 0, the agent is idle. Receiv-
ing an order puts the agent in state = 1 until the shedding
starts and then goes to state = 2. While state = 2, the
amount of flexibility the agent has engaged in the collective
effort directly impacts the consumption in the user’s home.
This has not been shown in the pseudo-code for clarity.
At the end of the event (step 34), the agent updates its
history Ha and its coefficients k1, k2 and k3 then switches to
state = 3 where it waits for the shared variables to converge
before computing its grade. Self-evaluation computations
described in section 3.3.3 are not integrated in this pseudo-
code.
Turnover score computation (step 35) can be done immedi-
ately, as opposed to the capacity score Ca and the reliability
score F a which depend on variables that are collectively
computed and therefore need some time to converge. This
is why the agent waits twait time steps while in state = 3
before computing Ca and F a (steps 42 and 43).
The agent’s mark ga can then be computed (step 44).



Algorithm 1 Pseudo-code for an agent a

t = 0
1: x← f, s← x,w ← 0, state← 0
t > 0
2: Let M = {(s∗, w∗, g∗max, c∗min, c∗max)} be all messages

sent to a during round t− 1
3: s← xt − xt−1 +

∑
M

s∗, w ←
∑
M

w∗

4: gmax ← max
M

(g∗max)

5: cmin ← min
M

(c∗min), cmax ← max
M

(c∗max)

6: Let J ⊆ N\{a} be a set of j agents randomly chosen
7: αa ← 1

j+1

8: send (αas, αaw, gmax, cmin, cmax) to M ∪ {a}
9: agg ← s

w
10: if O = {Q, td, tf} is received then
11: send O to j agents
12: xlim ← g

gmax
fa

13: x← xlim
14: state← 1
15: end if
16: if

∣∣∣aggQ ∣∣∣ ≥ H then
17: if t− cnt1 ≥ twait then
18: x← x

(
1 + Q−agg

agg

)
19: cnt1 ← t
20: end if
21: else
22: cnt1 ← t
23: end if
24: if x ≥ xlim then
25: xlim ← xlim + (fa − xlim) ∗ v
26: end if
27: xlim ← min(xlim, f

a)
28: xa ← min(xa, xlim)
29: if state = 1 and t ≤ td then
30: obja ← xa

31: state← 2
32: end if
33: if state = 2 and t > tf then
34: update History Ha

35: compute Turnover T a
36: update coefficients k1, k2 and k3
37: cnt2 ← t
38: state← 3
39: end if
40: if state = 3 then
41: if t− cnt2 ≥ twait then
42: compute Capacity Ca
43: compute Reliability Ra
44: ga = k1R

a + k2C
a + k3T

a

45: state← 0
46: end if
47: gmax ← max(g, gmax)
48: end if

4. Experiments

4.1. Test protocol

We evaluated our algorithm on realistic simulated data.
In the following, we will describe this protocol.

Each building is represented by an agent which pos-
sesses a fixed electricity consumption of 3500W at all time.
It also has a flexibility (in Watts) randomly chosen in
the set {100, 200, 400, 500, 2000, 3000} (100W represents
a few connected light bulbs and 3000W represents a water
heater) , meaning an average flexibility of 1033W for the
population, corresponding to a heater switching off with a
slight dimming of the global lighting.

To simulate a realistic behaviour of the inhabitant, each
agent is given a failure probability drawn from an expo-
nential distribution. This is to reflect the fact that a lot of
people will have a relatively good reliability, while some
of them will systematically cancel their participation in the
load shedding.

Before each event, the simulation determines if the
agent will fail according to this probability. Once again,
to simulate a realistic behaviour, we spread the agents
failure over the time of the event, following a polynomial
curve. To show different kinds of failure, we created two
different behaviours. The first corresponds to users noticing
a difference in temperature that are willing to turn their
heaters up again, reducing the flexibility of their home. This
results in a progressive failure of a part of the population,
growing faster as time passes. In the simulation this is
implemented by a polynomial repartition of the failure point
of the agents. We later reference this scenario as the ”heater
scenario”. The second behaviour is a lighting one in which
users notice a dimming in their lightning, and turn them
back up immediately. This is implemented by the inverted
polynomial function we use in the ”heater scenario”, as the
amount of agents failing will be high at the beginning of
the event and quickly stabilise. The main difference between
these two scenarii is the time when the user reacts to the
shedding. In the case of the lightning, the users either notices
it quickly or does not react at all, as in the heater behaviour
a small temperature change cannot be noticed that fast
thus leading to a slowly growing proportion of the agents
reacting. We also ran tests with both scenario combined,
applying the lighting behaviour to the agents with the lowest
flexibility (as lower flexibility mostly comes from dimming
lights only) and the heater behaviour to the agents with the
highest one (as heaters offer a bigger shedding capacity).
The initial weighting coefficient of the reliability score k1
is set to 0.5, the capacity one k2 is at 0.4 and the turnover
coefficient k3 at 0.1. The agents start with a mark randomly
chosen between 0 and 1 and their history is limited to 10
events. We set the hysteresis to H = 0.02, the delay twait
to one time step and the variation coefficient to v = 0.5.
When not stated otherwise, each agent communicate with
j = 10 other agents chosen uniformly at random at each
step.
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Figure 3: These three charts show the performances of the
system during three consecutive load shedding events. The
red dotted line represents the total flexibility, most of the
time followed by the sum of the xlim of the agents (in
yellow dots and dash line). The continuous green curve
is the aggregate. The dashed blue curve shows the total
consumption, brought down to the same scale for more
readability.

(a) Without self-evaluation

(b) With self-evaluation

Figure 4: This chart shows the failure ratio between the total
decrease of flexibility at each step and the total committed
energy that this decrease impacted. Each peaks is a load
shedding event.

4.2. Results

Our simulations had two main objectives. First, to show
the efficiency of a multi-agents system in maintaining the
curtailment stability in a decentralized manner. Figure 3
shows the ability of our system to compensate for decreases
in the agents flexibility in real-time. We see that as the
total flexibility of the population plummet following the
disengagement of a part of the population, the aggregated
shedding capacity is maintained, suffering only from small
variations.The different scenarii illustrate the robustness of
the system with respect to the behaviour of the end users.
Our system is able to maintain a stable curtailment and does
not rely on the user’s behaviour (the total flexibility has to
be higher than the requested shedding capacity). Moreover,
this quality is obtained without any supervising entity.

Then, to show the effect of the self-evaluation process
on the curtailment quality, we compared the results obtained
with and without the self-evaluation. we ran longer tests
to allow the agents to gather enough information in their
history to assign themselves a relevant mark. On figure
4(a), the agents self-evaluation is disabled. At each event,
the agents commit themselves to their full flexibility. We
see that the amount of engaged energy impacted by the
changes in the flexibility of the agents stays the same. On
figure 4(b), the self-evaluation is enabled. The ratio trend
of impacted capacity over total flexibility loss diminishes
over time instead of staying high, showing the ability of the
self-evaluation system to optimise each agent’s share .
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(b) j = 5
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(c) j = 2

Figure 5: These charts show the performance of the system
with different connectivity constraints. The legend is the
same as figure 3.

Finally, we verified the efficiency of the propagation
algorithm by trying different connectivity levels on the
agent to ensure that the gossip consensus process worked
in various condition, even with limited connections between
the agents. Figure 5 shows the performances of the system
when each agent communicates with 10, 5 or 2 neighbours
at each step. We see that the impact of the connectivity
constraint is barely noticeable, as it really only impacts the
convergence speed when the target value is far from the
current value.

5. Conclusions and perspectives

Distributed load shedding is prone to quickly develop
in the upcoming years. As a straightforward solution to

the biggest current problems of the energy sector without
major drawbacks, it offers an ecological way to keep the
network running while allowing consumers to save energy
and money. The biggest obstacle faced by existing systems
and ongoing work is to be able to deploy such a system
while not affecting the user’s comfort with a system simple
enough to be reliable on a large scale. Yet, in a centralized
system, taking the user’s comfort into account implies a
constant and heavy two-way communication between the
server and the nodes, limiting the system’s scalability and
flexibility.

In this paper, we presented an original decentralized
architecture to solve this problem. Following a bottom-up
approach, the user is the starting point of the process and
stays in control at all time. The home energy management
system deduces the energy the building can shed and trans-
mit it to the system we built on top of it. By doing so, we
guarantee the user’s comfort at all time, as opposed to more
demanding system like price-based ones usually presented
in the literature. We then use a gossip based communication
protocol between the agents to transmit the information
needed for the process to work. It provides a robust and
scalable decentralized architecture allowing the agents to
quickly reach a consensus on their respective participation
to the effort. During an event, the simple reactive behaviour
of the agents ensures a stable curtailment, as any failure
of an agent is immediately absorbed by the adjustment
of many others. This adaptability is then improved by a
self-evaluation process which ensure the fair sharing of
the effort between the agent, depending on their reliability,
capacity, and frequency of participation. Event after event,
the population regulates itself to improve the quality of the
curtailment. This self-evaluation process is then fine-tuned
by a local optimisation process that adjusts the weighting
coefficients on the go, considering the latest performance of
the whole system (always in a decentralized manner).

Moreover we let the on-site system take care of the user
and independently determine its share on a load shedding ef-
fort, separating the complexity and efficiency of the process
from the number of partakers. It allows a fully incremental
deployment of the system, whereas a simple stochastic ap-
proach cannot work without a minimal number of connected
users. In our system, a single user can curtail its load if
needed, as any declared flexibility can immediately be used
by the system.

Our simulations on realistic data confirm the resilience
and the self-adaptation ability of our system to guarantee a
stable curtailment even when any agents are disengaging
at once. They also show the efficiency and relevance of
the self-evaluation mechanism to improve the quality of
the shedding over time, underlying the need of preliminary
benchmarking to provide a high quality of service from the
beginning.

These promising results pave the way to further works
on this model.

First, we have to test our system in real-life settings with
more demanding situations, in terms of failure connectivity



constraints, failure probability and scalability. It will help
us determine the limitations of the model depending on the
use cases.
Second, we plan to add a local parameters optimisation
process similar to the one used for k1, k2 and k3 that could
be used by the agent to adjust the value of the hysteresis
H or the timer twait depending on their evaluation of the
system efficiency. Too many crossing detection could slow
down the system as well as irrelevant detections caused by
a too small twait.
Third, it would be interesting to change the way the load
shedding order is provided to the population. It is currently
sent to one or more agents by a unique external source
which is considered reliable. The entire system is therefore
tied to this source (the energy provider in our case). We
think that a learning mechanism coupled to a trust network
could allows the agents to predict curtailment needs,
to anticipate an order or to react autonomously without
binding to an external operator. This would greatly enhance
the system resilience.
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